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ABSTRACT 

This paper shows how some moment inequalities of probability theory 
can be applied in three different areas of actuarial science: (1) In the context 
of the theory of compound interest, a simple and general algorithm for the 
determination of the yield rate is developed. (2) In the context of life con- 
tingencies, some new inequalities for actuarial present values and net single 
premiums are derived. (3) In the context of  risk theory, it is shown that the 
exponential premium is an increasing function of the parameter. 

SOME FACTS ABOUT MOMENTS 

In this section, we discuss some facts concerning the moments of a random 
variable (or its distribution). Quite surprisingly, these facts can be applied 
in three areas of actuarial science. The following sections will feature these 
applications. 

Let X be a positive random variable; to fix ideas we assume that its range 
is bounded, which guarantees the existence of all moments. Then the expres- 
sion 

[E(Xt)] Ill is an increasing function of t > 0. (1) 

This statement is hidden in section V.8 of Feller [2]. For completeness we 
give a proof. Let 0 < s < t. Then by Jensen's inequality 

E(X s) = EI(X,) s/,] < [E(X')] s/', 

which shows that 

[E(XS)] l/s < [E(X')l l/,. 

Since s and t are arbitrary, (1) follows. 
Now let Y be a positive random variable. By setting X = e-  Y in (1), we 

see that 

[E(e-'V)] 1/' is an increasing function of t > 0. (2) 

It follows that for s < t < u 
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76 SOME MOMENT INEQUALITIES AND THEIR APPLICATIONS 

[E(e-"r)V/s < E(e tY) < [E(e Ur)lt/U. (3) 

By taking logarithms, we can rewrite these inequalities as 

In E(e - ' r )  In E(e - ' r )  
s < t < u (4) 

In E(e - ' r )  In E(e uv) • 

Because of  (2), the function [E(e-'V)] ~/' must have a limit for t - - ,  O. In fact, 
there is an explicit expression for it: 

l im [E(e tV)ll" = e -E~v~ (5) 
t - - ~ 0  

To verify this formula,  one uses the expansion e-iV ~ 1 - tY and the fact 
that lim (1 + tx) ~/t = e ~. From (2) and (5) we gather that 

e -tE(Y) < E(e  -tY) for t > 0. (6) 

This inequality can also be obtained directly from Jensen 's  inequality. 
Now let Z be a random variable of  bounded range. By setting X = e z in 

(1), we see that 

[E(etZ)] 1/t is an increasing function of t > 0. 

Since the logari thm is an increasing function, it follows that 

I 
- in E(e tZ) is an increasing function of t > 0. (7) 
t 

Its limit for t ~ 0 is particularly simple: 

iim -1 In E(e tz) = E(Z). (8) 
t - - , O  t 

For a proof  of  this formula one interprets the limit as the derivat ive of  the 
function In E(e tz) at t = 0. Thus the limit is 

d 
- -  In E(e 'z) It~o = E(Z e tz) E(etz) It=o = E(Z). 
dt 

To facilitate the exposition we have tacitly assumed that X, Y, and Z are 
random variables in the proper  sense, i .e. ,  that their distributions are not 
degenerate.  The  modifications for the case of  constant " r a n d o m "  variables 
are trivial; for example ,  all inequalities become equalities. 
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DETERMINATION OF THE YIELD RATE 

We shall propose an algorithm to answer the following classical question: 
If a series of payments is purchased at a certain price, what is the resulting 
yield rate? The proposed algorithm seems new, always works, and is simple. 

For a certain price p, an investor buys a series of n positive payments. 
Let qk denote the payment to be received at time Yk (k = 1,2 . . . . .  n). We 
denote the price corresponding to the force of interest 8 by P(8). Thus 

P(8) = ~ e x p ( - ~ y k )  qk- (9) 
k I 

We are looking for t, the solution of the equation 

P(t)  = p ,  

and the corresponding interest rate i = e' - 1. 
To establish the connection with the preceding section, we introduce a 

random variable Y whose distribution is given by the formula 

P r ( Y  = Yk) = qk/q,  (I0) 

where q = q~ + . . . +q,, denotes the sum of the payments. Then (9) can 
be written as 

P(~)  = q E(e-~r) ,  

and we are looking for the solution of the equation 

E(e  - tv )  = p /q .  (11) 

From (4) it follows that for s < t < u 

In(p/q) ln(p/q) 
s < t < u (12) 

ln(P(s) /q)  ln(P(u) /q)  

Thus, if we know that the force of yield t is between s and u, we can use 
(12) to improve the bounds. 

If we repeat this process, we obtain the following algorithm. We start 
with an initial value 8o > 0 (which may be less than or greater than t) and 
compute 31, ~2 . . . .  recursively according to the formula 

In(p/q) f o r k  = 0,1 . . . . .  (13) 
~k + I = ~k ln(P(Sk) /q)  
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If ~o< t ,  this gives  us an increasing sequence that converges to t; if 8o> t ,  
this produces  a decreas ing sequence that converges  to t. Thus, the choice  of  
the initial value is unimportant .  

As an i l lustrat ion,  cons ider  a $1,000 par value bond that has been bought  
9 years  before its redempt ion  for a price o f p  -- $1,100. What  is the result ing 
yield rate,  if the bond has 12 percent  annual coupons'? 

In this situation n = 9, Yk = k (k = 1 . . . . .  9), ql  = - - - = q8 
= 120, q9 = 1,120, q = 2,080. If it is known that the yield rate of  such 
a bond is somewhere  between 10 and 10.5 percent ,  we may use (12) with 
s = In 1.1, u = In 1. 105 to obtain improved  bounds for t. W e  get 

.097406 < t < .097697. 

Since i = e'  - 1, the corresponding interval for the yield rate is 

10.23% < i < 10.26%. 

In order  to get a precise answer,  we use the algori thm that is g iven by 
formula  13. To demonstra te  the power  of  this algori thm, we use starting 
values that are unreasonably  high (~o = In 1.2, corresponding to io 
= 20%) or  low (~o = In 1.01, corresponding to io = 1%). The results  are 
d i sp layed  in table 1. In each case we find the exact  answer,  i .e . ,  t = .097549 
and i = 10.2465%, in jus t  a few steps. 

TABLE 1 

DETERMINATION OF THE YIELD RATE 

k ~ i~ 

3. .009950 .0100(~ 
.092519 .096934 
.097229 .102112 

; .097528 .102443 
. . . . .  097548 .102464 

5. .097549 .102465 
5 . . . . . . . . . . . . . . . . . . . . . . . . . . .  

.182322 

.103549 

.097936 

.097574 

.097551 

.097549 

.097549 

.200000 

.109101 

.102893 

.102493 

.102467 

.102466 

.102465 

If n = 1, which is the case for a zero-coupon bond,  the random variable 
Y is a constant ,  and the inequalit ies in (12) become equalit ies.  Thus here 
the solution t is found after one iteration; of  course,  this result can be con- 
f i rmed by an e lementary  calculat ion.  

INEQUALITIES FOR ACTUARIAL PRESENT VALUES 

In this second appl icat ion,  we shall der ive  some inequalit ies for actuarial  
present  values (or net single premiums)  in the context of  life cont ingencies .  
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L e t  T = T (x )  denote the future lifetime of (x). We shall consider the net 

single premium A x to be a function of the underlying force of interest ~. 

Symbolically, A~ = Ax(8). Since 

Ax(~)  = E ( e - ~ r ) ,  

a connection with the first section is readily established if we identify Y with 
T. We conclude from (3) that for s < t < u 

[fi, x ( s ) l  t/s < ,4~(t) < [Ax(u) l  '/~. (14) 

From (6) we gather that 

e x p ( - t  ~x) < Ax( t )  • (15) 

Since (6) is a consequence of (3), (14) may be regarded as a generalization 
of the classical inequality (15). 

Since 

1 - Ax ( t )  
dx( t  ) - 

t 

we can derive the corresponding bounds for dx( t ) .  From (14) it follows that 
f o r  s < t < u 

1 - l A x ( U ) ]  t~u 1 - [ A x ( S ) ]  'Is  
< ax( t )  < , (16) 

t t 

and from (15) we obtain the classical inequality 

1 - e x p ( - t e x )  
~tx(t ) < = d ~ ,  (17) 

t 

which appears in example 5.12 of Bowers et al.[ 1 ]. 
If  we know the net single premiums for two given rates of  interest, we 

can use (14) and (16) to get quick estimates for the net single premiums at 
intermediate interest rates. As an illustration, suppose we know that 

Aso = .41272 for i -- 4% 

Aso = .34119 for i = 5% . 
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What can be said about Aso and dso, i f  i = 4 .5%? By setting 

s = In 1.04, t = In 1.045, and u = In 1.05 

in (14) and (16), we immediately discover that 

.37039 < ,~5o < .37904 and that 

14. 107 < ~5o < 14 .304 .  

By varying Y, we obtain from (3) a series of  analogous inequalities which 
are displayed in table 2. Note that K = K(x )  denotes the curtate lifetime of  
X. 

TABLE 2 

INEQUALITIES FOR NET SINGLE PREMIUMS 

Choice of Y Inequality resulting from (3), assuming s < t < u 

K +  1 [A~(s)] t'~ < A~(t) < [A~(u)]'/" 

miniT,n) [,~:~ (s)] I'' < ,~:~ (t) < [ti, x:n~ (u)] r/" 

rain(K+ l,n) [A~:,, (s)] ~j~ '< A~:~ (t/ < [A~:~ ( u ) l "  

T i f m  < T < . m + n  [,.~,,A,(s)l"' .< <~ (u)]"" 
z¢ otherwise 

K + I  i f m  < . T < m + n  
= otherwise ["t"A~ (s)]'~" < "I"A~ (t) < [~j,,A~ (u)] r'" 

In the first three cases, one can use the identities 

I - A ~ ( t )  
~ix( t ) - 

d 

1 - A , ~  (t)  
a,:,- (t) - , and 

where d = 1 
values. 

/ / , : .~ ( t )  = 
1 - A,:~,  ( t )  

- e- t ,  to obtain the corresponding bounds for the annuity 

THE EXPONENTIAL PRINCIPLE OF PREMIUM CALCULATION 

In risk theory a principle of  premium calculation is a rule to determine 
the premium, say rr, for any given risk Z (a random variable) to be insured. 
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The two most simple examples are the variance principle and the standard 
deviation principle, wherein the loading w - E(Z) is proportional to the 
variance and the standard deviation of  Z, repectively. However,  theoretically 
the most important principle is the exponential principle (see Gerber [3]) 
wherein 

1 
av -- - In E(e"Z). (18) 

a 

Here the parameter a > 0 can be interpreted as a measure for the insurer 's 
risk aversion. 

Gerber ' s  (1980) proof  that ~r is an increasing function of  the parameter a 
is unnecessarily complicated; now we see that this is a direct consequence 
o f  (7). Furthermore, we gather from (8) that w ~ E(Z) for a ~ 0 .  
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DISCUSSION OF P R E C E D I N G  PAPER 

H . J .  B O O M :  

Professor Gerber is once again to be complimented on a very interesting 
contribution. His paper vividly illustrates how a given mathematical result 
often will lead to surprising consequences if its variables are reinterpreted 
in an entirely different context. 

This discussion will present two other algorithms for obtaining the yield 
rate involved in a stream of positive cash flows and compare them to the 
one presented in the paper. 

I .  T H E  " i - j - k"  M E T r ~ O D  

If an investor pays a price p for a sequence of n future cash payments qr, 
to be made at times r = 1,2 . . . . .  n, his yield i is such that 

P = ~ qr (1 + i ) - r .  
r 1 

It is well known that the investor, with the help of  an auxiliary account in 
which deposits can be accumulated and from which withdrawals can be 
borrowed, both at rate i, can actually realize the exact yield of ip at the end 
of each period by depositing any excess of  qr over ip to this auxiliary fund, 
or borrowing any shortage of q~ below ip from it; the fund will then show 
a balance of p, the exact amount originally invested, at the end of the nth 
period. This can easily be shown as follows (Donald [3], p. 89): 

( q r  - -  i p ) ( l + i )  n r = ~ q r ( l + i ) n - r  _ ips~i 
I 1 

= ~ qr (1 + i )"  ~ - p [(1 +i )"  - 1] 
I 

-- ( l + i)" ~ q~( l + i) ' - p( l + i)" + p = p. 
1 

The question arises: at what rate j can the investor achieve a level income 
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jp  if the auxiliary account, operating at a rate k 4: i, is still required to have 
a balance p at the end of  the nth period'? This requires 

~ (qr - -  jp)(l  + k ) "  r = ~ qr(l +k)  . . . .  pjs~k = p,  
1 I 

(1) 

from which we obtain 

• q,(l  +k )  . . . .  p 

j = ' (A) 
P S ~ k  

~ qr(l + k ) - r  _ p 

= k +  I (B) 
pa~k 

Of course. (A) and (B) will still hold if i = j = k: it is easy to see that, 
if any two of  i, j ,  and k are equal, all three must be equal. It is therefore to 
be expected that, as k ~ i, also j ~ i. 

If  we now write im for k and i,,+ i for j in equations (A) and (B), then 
repeated application of  either equation, with m = 0, 1, 2 . . . .  successively, 
will generate a sequence i o, i, ,  i 2 . . . . .  Starting with io, a preliminary 
estimate for i, the sequence, if it converges,  will approximate i with any 
required accuracy. 

If we putq~ = q2 = ... = qn , andq, ,  = q~ + c, the investment may,  
for c > 0, be considered as a bond with n coupons qi and maturity value 
c, purchased for p,  or, alternatively, for - q l  <~ c, as a loan of  amount p,  
paid off  by n -  1 level payments  of  q, followed by a last partial payment (if 
- q ~  < c < 0) or a balloon payment ( i f c  > 0); finally, i f c  = 0, the 
investment is a simple level annuity. Regardless of  the value of  c. as long 
as ql = q2 = ... = q,, i. equations A and B can be simplified to: 

q~ - ip - c)s,~lk 
j = (A' )  

P 

By substituting 1 - ia~i for v" in the standard formula p = qla~,  + cv" 

for the price of  a straight term bond. Spoerl ([4], p. 192) obtained 

ql - (P - c)a~li  
i = (2) 

C 
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Replacing i in the left-hand side with j ( = i,,,+ l~ and in the right-hand side 
with k ( =  ira) results in 

ql  - (P - c ) a ~ l k  
j = ( B ' )  

c 

as a companion formula to (A'). 
Butcher and Nesbitt ([2], Pi 223) obtained formula (A') from (2) by 

substitution of  s,~ti + i for a,~ i. They also showed that, for p - c < 0 
(discount bonds), formula (B') generates a monotone sequence (k < j < i 
or k > j  > i) converging to i, whereas formula (A') does so forp  - c > 0 
(premium bonds). Furthermore, they gave sufficient (but not necessary) con- 
ditions for the convergence of  these sequences in the opposite case: for 
discount bonds the (A') sequence converges if c < 2p and for premium 
bonds the (B') sequence converges if 1/2 p < c (so that for 1/2 p < c < 2p 
both sequences are always convergent, whether the bond is purchased at a 
premium or at a discount). 

In the special case of  the level annuity (c = 0), (B') is not usable and 
(A') will always converge. 

We now compare the rate of  convergence of the algorithms provided by 
equations (A') and (B') to that of  Gerber's algorithm by applying them to 
the same example (p = 1,100, ql = .-. = q8 = 120, q9 = 1,120, i.e.,  
c = 1,000), with io = .01 and i o = .20 as starting values. The results (we 
also show in each column at which stage nine-digit accuracy is attained) are 
exhibited in Table 1. 

T A B L E  1 

Gcrber's Equation Equation 
m Equation 13 A '  ] B'  

0 i~ = .01 t .  = 2 0  to = .01 m " . 2 0  

I 
2 
3 
4 
5 
6 
7 
8 

i, .01 h) ~- .20 

.096934 .109101 

.102112 .102893 

.102443 .102493 

.102464 .102467  

.102465 .102466  

. . . . . . . . . . . . . .  102465 

.102465421 .102465421 

.099387 

.102379 

.102463 

.102465 

.102465421 

.104710 

.102528 
~102467 
102465 

102465421  

108326 
102057 
102494 
102463 
102466 
102465 

.095192 

.102966 
,102431 
,102468 
,102465 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  102465421 .102465421 

11. EXTENSION OF WANG"S METtIOD FOR ANNUITIES 

Wang ([51, p. 235) presents a Newton-Raphson approach to obtain the 
yield rate for a level annuity, i .e.,  for the special case mentioned previously, 
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with q) = q 2  = . . .  = q , , .  We adapt his procedure to the more general case 
q l  = q 2  = . . .  = q , ,  t 4 :  q , , .  T h e n p  = (q,, - q ) ) ( l + i ) - "  + q t a ~ i .  If 
we letp/q~ = a , ( q , ,  - q l ) / q t  = c a n d  1 + i = x, this becomes 

l - - x  " 
( I  - -  CX n - -  O. 

x - - i  

We multiply b y x  - I and put 

g ( x )  =- - c x  " + t  + ( c + l ) x  " + a x  - a - 1 ,  

so we have to solve g(x) = 0, for which we use the Newton-Raphson 
algorithm (Burden and Faires [1], pp. 42 -43 )  given by 

g ( x . , )  
x .... l = x,,, , . (3) 

g ( x . , )  

Differentiating: 

g ' ( x )  = ( n - l ) c x  " - n ( c + l ) x "  J + a ,  

so that (3) becomes 

C X m  " +  - ( c + l ) x ; , , "  - a x , , ,  + a + 1 
x . . . .  l = x , , ,  + ( C ' )  

( n - I ) c x  " - n ( c + l ) x m "  t + a 

(Note that putting c = 0 will result in Wang's  original algorithm for the 
level annuity.) 

We now compare the results of  (C') with those of  Gerber's equation 13, 
again for the same example,  in Table 2. 

TABLE 2 

m Equation 13 Equation C' 
4) 6)  = O l  q) = 2 i() = O l  iu  '~ 2 

.096934 
•102112 
.102443 
•102464 
.102465 

• 102465421 

.109101 

.102893 

.102493 

.102467 

.102466 

.102465 

.102465421 

.021853 .117362 

.056738 .103450 
• 173448 ,103356 
.112911 .102470 
.102989 .102469 
• 102467 .102465421 
.102465421 . . . . . . . . . . . . . . . .  

It is remarkable that the Newton-Raphson method, which converges quad- 
ratically, does not become accurate to six significant digits any earlier than 
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the other methods considered here; however, when it does reach this stage, 
it is actually accurate to (at least ) nine digits! 
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GRAHAM I.ORD: 

Mr. Gerber has provided an elegant adaptation of inequalities from prob- 
ability theory to various actuarial problems. His principal result, that [E(e-t~] la 

is an increasing function of t > 0, has applicability to the calculation of 
internal rates of return, to the comparison of net single premiums, and to 
the development of properties satisfied by premiums determined by the ex- 
ponential principle as it is defined in Risk Theory. The latter application 
shows the elegance of the inequality by furnishing an immediate proof that 
~r(a) is increasing in a. 

As a practical tool, the method does have value as evidenced by the net 
single premium dominance relationships summarized in Table 2. The bounds 
on a premium for an unusual though constant interest rate are direct and 
simple to calculate. However, when the inequalities and their derivative 
methodologies are applied iteratively, it appears that they are globally less 
efficient than standard algorithms. 

Take the example of the $1,000 par value bond bought at a price of $1,100 
and paying nine annual coupons of 12 percent. The determination of the 
yield correct to six decimal places by the recursive formula 13 requires five 
or six iterations depending on the starting value. (See Table 1.) But if instead 
of (13), Newton-Raphson is used, without any enhancements such as local- 
ization to improve efficiency, convergence to the same yield from the same 
starting values is obtained in one fewer iteration. Here the difference in the 
number of steps taken by the two methods is negligible. If, however, it is 
necessary to know the yield to double the precision, the difference between 
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formula 13 and Newton-Raphson becomes significant: with the same starting 
values as before, the latter converges in five iterations--less than half the 
number of steps required by formula 13. The reason for this marked differ- 
ence in speed is the fact that the convergence of the inequality-derived 
method, formula 13, is of first-order or linear (as can be shown by elemen- 
tary algebra), whereas that of Newton-Raphson is of second-order. (See, for 
example, Stephen G, Kellison's Fundamentals of  Numerical Analysis, R.D. 
Irwin, 1975, pages 254-55.) Though the difference in the orders of conver- 
gence implies the overall superiority of Newton-Raphson, there are instances 
when (13) will perform more efficiently. An easy example is the case of a 
zero-coupon bond. 

ERIC S. S E A H :  

I would like to focus my discussion on the algorithm given in the paper 
(which will be referred to as Gerber's algorithm) for determining the yield 
rate of a stream of positive payments at a given price. We present recursive 
APL programs for both Gerber's and Newton-Raphson's algorithms, and 
compare the number of iterations required for some typical situations using 
various initial estimates. 

We will follow the notation of the paper. Newton-Raphson's algorithm 
calls for the generating of a sequence {~ili - 0,1 .... }, with the iteration 
formula ~i+ i ~- ~ i  - -  f ( ~ i ) / f ( ~ i ) ,  where f ix )  = p - P(x). For a detailed 
description of  this algorithm, refer to [2]. It is well known that the sequence 
{~i} of Newton-Raphson's algorithm is quadratically convergent ([l], pp. 
52-56). Gerber's algorithm is linearly convergent with asymptotic constant 
given by the following formula: 

lim [~,+1 - ~ 1 / [ ~ , - ~ 1  = 1 - ~.[P'(~)/P(~)]/Loge(p/q). 
i ----) oc 

Thus, in general, a sequence generated by Newton-Raphson's algorithm 
would be expected to converge more rapidly than the one generated by 
Gerber's algorithm. However, there are situations where Gerber's algorithm 
outperforms Newton-Raphson's algorithm. 

Recursive APL programs for the two algorithms are listed in the appendix 
of this discussion. For simplicity, we assume the time unit for the streams 
of payments runs from 0 in increments of integral value 1. For both algo- 
rithms, we stop the iteration process when the difference of the two consec- 
utive iterated values is less than ]0 -6. Since qk -> 0, it follows thatf'(x) > 0. 
Thus ~, is defined for all i under Newton-Raphson's algorithm. Gerber's al- 
gorithm can always be applied, except when ~o -- 0. 
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The  f o l l o w i n g  tables g ive  the n u m b e r  o f  i terat ions for  three s t reams  o f  

cash  f lows :  coupon  bond ,  leve l  annui ty ,  and z e r o - c o u p o n  bond.  T h e  first 

e x a m p l e  is ident ical  to G e r b e r ' s .  Var ious  8o'S are used.  

EXAMPLE I 

COUPON BOND 
y, ~--- 1 2 3 4 5 6 7 8 9  
qk ~---120 120 120 120 120 120 120 120 1120 
q ~-- 2080 
p ~-- 1100 

is 0.0975489 

8o 

- 10.000000 
- 1.000000 

0.009950 
0.100000 
O. 182322 
0.693147 
1.1300(O0 

NUMBER OF ITERATIONS 

Newton-Raphson's 

95 
14 
5 
3 
5 

34 
80 

Gerber's 

EXAMPLE 2 

LEVEL ANNUITY 

yk~---I 2 3 4 5 6 7 8 9  10 11 12 
qk ~-- 250 250 250 250 250 250 250 250 250 250 250 250 
q ~--- 3000 
p ~-- 1400 

is 0.133175 

NUMBER OF ITERATIONS 
80 

- 1 0 . 0 0 0 0 0 0  

- -  1 . 0 0 0 0 0 0  

0.100000 
0.126151 
0.200000 
0.693147 
1.000000 

Newton-Raphson's 

124 
16 
4 
3 
5 

24 
58 

Gerber's 
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EXAMPLE 3 

Z E R o - C o u P o N  B O N D  

yt , s - - I  2 3 4 5 6  
qk * - - O 0 0 0 0  17(XI 
q~-~ 1700. 
p ,-- 1000 
& is 0.088438 

8o 

- 10.000000 
- 1.000000 

O. I O ( X ) O 0  

O. 200000 
0.693147 
0.9000~X) 

N U M B E R  O F  I T E R A T I O N S  

Ncwton-Raphson's 

65 
l l  
3 
5 

39 
130 

Gerbcr's 

Judging from these results, we would conclude that Gerber ' s  algorithm works 
qui te  well .  Al though  N e w t o n - R a p h s o n ' s  a lgor i thm in genera l  requires fewer  
i terat ions  when  8o is c lose  to 8, it never the less  requires  a lot more i terat ions 
w h e n  8o is far away f rom 8 (refer to all three examples ) .  This  is because ,  
w h e n  8i is negat ive  and far away f rom 8, ~f"(Si) I > >  [f(8,)[, thus caus ing  
8i ,  1 to inch s lowly  towards  8 (if  we start with 8o > >  8, 81 will be < 0). 
The  fo l lowing  sequence  o f  i terated va lues  us ing N e w t o n - R a p h s o n ' s  algo-  
r i thm (Example  1 with ~o = - 1.0) i l lustrates this p h e n o m e n o n :  

i 8, i 8, 

0 . . . . . . . . . . . . . . . . .  

[ . . . . . . . . . . . . . . . . .  

9 

3 . . . . . . . . . . . . . . . . .  

4 . . . . . . . . . . . . . . . . .  

5 . . . . . . . . . . . . . . . . .  

6 . . . . . . . . . . . . . . . . .  

7 . . . . . . . . . . . . . . . . .  

- I .(YO00000 

-0 .8877458 
-0 .7751942 
- 0.6622467 
- 0.5487865 
- 0.4347253 
- 0 3201847 
- 0.2060739 

9 . . . . . . . . . . . . . . . .  

I 0 . . . . . . . . . . . . . . . .  0.0690339 
11 . . . . . . . . . . . . . . . .  0.0946412 
12 . . . . . . . . . . . . . . . .  0.0975171 
13 . . . . . . . . . . . . . . . .  0.0975490 
14 . . . . . . . . . . . . . . . .  0.0975490 

- 0.0956956 
0.0018087 
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These observations suggest we could use Gerber's algorithm (or alterna- 
tively the Bisection algorithm) to obtain a reasonably good approximation, 
and then employ Newton-Raphson's algorithm to get to the final answer. 
As an illustration, we perform three iterations of Gerber's algorithm for 
Example 2 with 8o -- - 1.0, and get 63 = 0. 132246. Now applying New- 
ton-Raphson's algorithm with 80 = 0. 132246, we obtain 83 = 0.133175. 
Thus, a total of six iterations are required, as compared to eight and sixteen 
iterations under the Gerber's and Newton-Raphson's algorithms, respectively 
(/'efer to the table for Example 2). 

In [3], Silver studied the computation of the interest rate i of a n-year 
level annuity and derived the following inequality: 

i ~  [1 - (a~/n) 2] / [a,~ + (a~/n)2], 

where a~ is the price for a stream of n annuity payments of 1, with the first 
payment commencing one year after the price is paid. It was shown that, 
under normal situations (0.01 <- i <- 0.21 and 10 <- n <- 60), this lower 
bound for i proves to be an extremely good initial approximation for Newton- 
Raphson's algorithm. Using Example 2 again, we have i = 0.1344538 
(hence 6o = 0.1261513), and Newton-Raphson's algorithm converges after 
three iterations (refer to the table for Example 2). Thus, Newton-Raphson's 
algorithm, using the lower bound above as the initial approximation, appears 
to be a more efficient way of determining the yield rate of level annuities. 

One could also compare the number of operations required for each it- 
eration under Gerber's and Newton-Rapbson's algorithms. In this respect, 
they are quite comparable. Newton-Raphson's algorithm involves evaluating 
)Ix) and f '(x), and Gerber's algorithm requires calculating P(x) and the log- 
arithm of P(x)/q (the logarithm, in general, is approximated by some min- 
imax polynomial on the computing machines). 

In conclusion, while Gerber's algorithm works rather well with the prob- 
lem of finding the yield rate of a stream of positive payments at a given 
price, Newton-Raphson's algorithm can be applied to more general situations 
involving negative cash flows. 
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APPENDIX 

1. Gerber's algorithm: 
• GERBER~MAIN is the main program which calls recursive subprogram GERBER 

to produce the sequence of iterated values based on the initial estimate XO. 
• Lines [1] and 13] of GERBERAMAIN define the stream of positive payments (QK) 

and the given price (PVAL). Examplc I is bcing shown here. 
• Function P gives the present value of the stream of positive payments using the 

yield rate X. 

e C E R R E R a H A I N  %O;C 
[I] O.X*(8P120).1120 
[2] YK*~p~2,~ 
C3] PVAL*1100 
[~J Q*+laX 
[5] C,,-ePYAL÷Q 
[6] TOL*IE-6 
C7] CERBER rO 

v 

e Z',-GERBER x 
[I] *(TOL>I)[-Z-X~C÷®(P %)÷Q)]O 
[2] z 
f3] Z-CERBER Z 

v Z * P X  
[1]  Zo+/QX,*-YK.I  

v 
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2. Newton-Raphson' algorithm: 
• NEWTONAMAIN is the main program which calls recursive subprogram NEW- 

TON to produce the sequence of iterated values based on the initial estimate XO. 
• Lines [I] and 131 of NEWTONAMAIN define the stream of positive payments (QK) 

and the given price (PVAL). Example 1 is being shown here. 
• Function F calculates the value f iX)  = P V A L - P ( X )  for a given yield rate X. 
• Function FP returns the first derivative of fiX) for a given yield rate X. 

• NEWTON~JiAI# ZO 
[ 1 ]  QA'~(SPl20),ll20 
[ 2 ]  YR- tO0.~  
[3 ]  PVAL÷1100 
[4J Q**/O.X 
Is3 rOL*tE-6 
[6] ~EVTOX xo 

v 

v Z÷NEIITON I 
[ 1 ]  * ( T O L > I I - Z * I - ( F  I)~FP I)/O 
[ 2 j  z 

v Z * ~  I 
I t ]  z - e v ~ t - p  I 

v 

v Z-Fp  X 
[ I j Zo*/olC.Yt¢,* Y ~ , X  

v 

M A R K  D.  E V A N S :  

Professor Gerber has developed some interesting new actuarial tools. Per- 

haps a few comments  concerning the determination of yield rates will be 
helpful. 
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Comparing the iteration method utilizing formula 13 to results obtained 
by a modification of  the secant method permits some interesting observa- 
tions. This modification of  the secant method uses the previous two values 
o f  ~3 k, which minimizes the absolute value of  p - P(~k). This suggests 
combining the two methods: using the moment formula for two iterations 
and then switching to the modified secant method. The results are shown in 
the tbllowing table, which is based upon Table I in the paper. 

~ I O D I F I E I )  

k MOMENT SECAYr COMBINED 
ik i~ ik 

I1 . . . . . . . . . . . . . . . . .  

2 . . . . . . . . . . . . . . . . .  

3 . . . . . . . . . . . . . . . . .  

4 . . . . . . . . . . . . . . . . .  

5 . . . . . . . . . . . . . . . . .  

0 . . . . . . . . . . . . . . . . .  

.20(D00 
109101 
102893 
102493 
102467 
102466 
102465 

.01 and .20 

.143598 

.078828 
078220 
.102991 
.102453 
.1O2465 

.1029 and .1091 

.102451 

.102465 

The moment method works well at getting within a few basis points of  
the yield but has difficulty when it is very close to the solution. Switching 
to the modified secant method after two iterations solves this difficulty. This 
is because the moment method gives successive iterations with errors de- 
creasing by roughly constant magnitude while the modified secant method, 
being exact for linear equations, has an error roughly related to (~ - ~,t) 2 
of  Taylor ' s  lbrmula, permitting rapid convergence near the root. 

Frequently one must determine yield rates from cash flows where some 
future cash flows are positive and others are negative. Consider a series of  
paylnents  purchased for p = 1,000 where q l = ..- = q5 = 420 and q6 
= ... = qm = - 200. This series of  payments has two yield rates, Given 
starting points of  - . 0 5  and 0, the modified secant method obtains a yield 
of  - . 0 3 7 2 2 3  after five iterations, while the moment  method requires four- 
teen iterations from a starting interest rate of  - . 0 5 .  Given starting points 
of  .20 and .25, the modified secant method obtains a yield of  .212646 after 
tour iterations, while the moment inethod diverges, given a starting interest 
rate of .20. 
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The poor performance of the moment method when negative payments 
are involved is consistent with Professor Gerber 's  condition that Y must be 
positive. The importance of this condition is emphasized by considering the 
lbllowing limit: 

In (p/q) 
lira 

q - o In [P(Sk)/q]" 

HO KUEN NG; 

Professor Gerber has given an interesting and simple algorithm for the 
yield rate of a series of payments. We will look at it from another perspec- 
tive. 

Although the algorithm is derived using moment inequalities, it belongs 
to the wide class of fixed-point algorithms. In this discussion we will dis- 
regard the case when the yield t is 0. (Note that in the case t = 0, the 
algorithm gives 8~ = 0.) With the notations used in the paper, and letting 

In(p/q) 
g(x) = ,~ ln[P(x)/q]' we have P(t) = p if and only if g(t) = t. Thus, the 

theory of  fixed-point algorithms suggests that we try equation 13. This 
turns out to be a good choice among all possible fixed-point functions 
because of its convergence properties and simplicity. 

Next we consider the convergence properties of the proposed algorithm. 

In(p/q) 
With g(x) -- x ln[P(x)/q]' we obtain 

1 
g'(x)  = In(p/q) lnIP(x)/ql 

x[P'(x)/P(x)] 

{ln[P(x)/q]}2]" 

Note that P'(t) = - E exp(-tyk) qzvk < 0, and ln(q/p) > 0. Thus g'(t) < 1. 
On the other hand, (4) shows that if s < t < u, then g(s) < t < g(u), 

that is, g(s) < g(t) < g(u). With this and the differentiability of g except at 
0, checking the left- or right-hand derivative of g at t gives g'(t) >- O. 

Since 0 -< g(t) < 1, we see that t is a so-called point of attraction. 
In fact, the algorithm does even better than predicted by the theory of 

fixed-point algorithms. Professor Gerber 's  algorithm is of a nonlocal nature. 
Since P(x) is continuous, the equation P(.v) = p has a unique positive so- 
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lution. Starting with any point ~o 4: 0, the algorithm must converge to the 
yield t. However, this derivation gives some interesting results. 

We observe that -P ' ( t ) /P ( t )  is the duration D of the series of payments. 
It follows that D <- ln(q/p)/t. Also, the rate of convergence of the algorithm 
is linear, except in the case D = ln(q/p)/t, when the rate will be faster. 
Finally, in the linear convergence case, since 0 < g'(t) < 1, procedures 
such as the Aitken's A2-process can be used to speed up the convergence 
to the yield rate. 

ELIAS S.W. SHIU" 

Dr. Gerber is to be congratulated for another elegant mathematical paper. 
l would like to present an alternative derivation of (1) by means of H61der's 
Inequality, which states that 

where 

f lfgl 

and 

For 0 < s < t, consider 

and 

By H61der's Inequality, 

~n[hl~'dl x 

Thus, for 0 < s < t, 

p > l  

p '  = p / ( p  - 1). 

f =-ihl  
g = l  

p = t/s. 

<--(f~] ]hit dp.) I/p ( f ~ l  dl-t) I/1'" 

= (f~ IhL' d~) ~/' I~(~)l" s,. 

which implies that, for a nonnegative random variable X, 

[E(X~)] "-~ < [E(X,)] ~". 
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In fact, the last inequality holds as long as s -< t. It is not necessary to 
assume that they are both positive numbers ([10], p. 455; [1], section 16). 
An immediate consequence of this result is the ordering among the harmonic 
mean, geometric mean, and arithmetric mean: 

[ E ( X - ' ) ] -  ' -< e Et|n(X)~ ~ E(X) .  

For a nonnegative random variable X and 0 < s < t, the inequality 

[EfX")] '/~ -< [E(X')] )/' 

implies that [E(XS)V/" <- E(XQ and E(X") -< [E(X')] 'It. It is possible to obtain 
sharper inequalities. For instance, given 0 < a < b and r >- 1, we have 

b r = { a  + ( b  - a ) ]  r 

~ - a  r + (b - a )  r ,  

which is a sharper bound than b r >- a r. Tong ([12]; [13], Lemma 2.3. i) has 
applied this observation to obtain the following moment inequality. For a 
nonnegative random variable X and a real number k->2, 

E(X ~) >_ [E(X)] k + [Var(X)] '~2. 

Instead of comparing [E(X")] l/~, with [E(Xg] 1/I, we may consider compar- 
ing 6, ' (E[,b(X)]) with qt-J (E[*(X)]),  where 4) and q'  are strictly-mono- 
tonic continuous functions. Define 

h(x) = + [ q ' - ' ( x ) ]  

and 

v - -  qs(x). 

Without loss of generality, assume that 4) is an increasing function. Then 

~-~ (El~b(X)]) >- q'  ~ (Elqt(g)]) (D.1) 

if and only if 

EIh(V)] -> h[E(V)I, 

which holds if h is a convex function. If (D. 1 ) holds for each random variable 
X, then the function h is necessarily a convex function ([6], p. 70). 

The approximation 
e - t Y  ~-  1 - tY  
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is used in the proof  of  Dr. Gerber ' s  equation (5). For this approximation to 
be valid, we need the random variable Y to be of  bounded range. It is possible 
to prove equation (5) without this assumption of bounded range,  but the 
proof  is quite complex ([6], p. 139). 

Motivated by the development  in the paper, let me now present an ap- 
plication of  Jensen 's  Inequality to the theory of  immunization.  Using the 
notation in the paper,  let {q~} be a stream of cash flows to occur  at times 
{vk}. Given a force of  interest 8, the value of the cash flows evaluated at 
t ime "r is 

V(&-r) = ~ exp[8('r - YDlqk- 

If the force of  interest changes from 8 to 8 + e, then the value of cash 
flows changes to 

V(8 + e, "r) = ~'~ exp[(8 + e)('r - Y,)]qk 

= '~, exp[~('r - yk)]exp[N'r - Y,)lqk- 

Note that the function 

J(y) = exple( 'r  - y)] 

is a convex function. Introduce a random variable W whose distribution is 
given by 

Pr(W = YD = exp[8(*r - yk)]qk/V(8; "0 

By Jensen 's  Inequality 

It is easy to check that 

Also, 

if 

= e x p l N - y D ] q ~ / V ( 8 ;  0), 

E[f(w)l -> BE<W)I. 

E[f(W)] = V(8 + ~; T)/V(& "r) 

J]E(W)I = 1 

(D.2) 

n- = E(W). 

Thus,  if ~r is the Macaulay-Redington duration of  the stream of  positive cash 
flows {qk}, 

V(5 + ~; "r) >~ V(8; "r). 
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This result can easily be generalized to the case where yield curves are 
not flat. Consider 

and 

V(8; "r) = ~ exp[ .'k 

V(5 + ~: 'r) = ~ exp{ .k 15(t) + ~(t)] dt}qk 

if 

for all positive y, and 

if 

we have 

V(8 + ~; "r) >_ V(5; "r) 

[~(y)12 _> ( ( y )  

V(8 + ~; ~) -< V(8; "r) 

[~(y)]2 < ¢,(y) 

for all positive y. 
This generalizes a theorem of Fisher and Weil [3]. This generalization 

can also be derived by the Mean Value Theorem; see [11]. 
My final comment is motivated by the result 

d ln(e,Z)[,= ° E(Z) 
dt 

and an article by C.L. Trowbridge [14]. Put 

E(Z)  = ~t. 

Let the "r be the duration of the cash flows {qk} computed with the force-of- 
interest function 8(t). Since 

f'Lv) = f(Y){[~O')] 2 - e'~')}, 

8(0 dt]qk, 

= ~(t) dt]. .fly) exp[ _', 
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Let 

and 

E[et(Z-g )] = I + tx2 t2/2 + tx3 t3/3! + t-t4 t4/4! + --" 

ln[E(etZ)] = KI t + K2t2/2 + K3t3/3! + K4t4/4! + ,.. 

The cumulants and the moments  about the mean are related by the formulas 

([9], p. 73): 

K I = IX, 

K 2  = IX2, 

K 3 = I./,3, 

K4 = IX,* -- 3(IX2) 2, and so on. 

Let W be the random variable defined by (D.2). Thus, 

V(5 + ~; 0)/V(5; 0) = E(e-~w).  

Let • = E(W) be the duration of the cash flows computed with 5. Then the 

relation 

IX ~ KI 

means that 

d 
"r = -~-~ln[V(5 + ~; O)/V(5; 0)] 1~=o 

- - d l n l V ( 5  + ~; 0)} 1, o 
d~ 

= - d l n l V ( 5 ;  0)1 (D.3) 

( = s - d i n [ V ( 5 ;  s)] for each real number s). 

Expression D.3 explains why Sir John Hicks ([7], p. 186) called "r the 
elasticity of  the capital value with respect to the discount ratio e ~. Also, 
L. Fisher [2J, then unaware of  Hicks's  elasticity, had shown that the Ma- 
caulay-Redington duration had the properties of an elasticity. 
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Fol lowing  [4], let us denote  the variance o f  W by M z, i .e . ,  

M e = ~ (Yk - r)  2 P r ( W  = Yk). 

Then,  the equat ions K 2 --- ix2 and K3 = ~3 immediate ly  yield the two 
formulas  pointed out by Trowbr idge  I14]: 

d 
- -  v = - M 2 (D.4) 
d8 

and 

d 
--7~M 2 = - ~ (Yk - "0 3 P r ( W  = Yk). 
ao 

Formula  D.4 is known in the immuniza t ion  l i terature ([5], p. 40; [8], pp. 

148-49).  
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(AUTHOR'S REVIEW OF DISCUSSION) 

HANS U. GERBER: 

1 would like to thank the discussants for their comments, which I enjoyed. 
Most of these comments concern the first application (determination of the 
yield rate). Alternatives to the algorithm that is given by formula 13 are the 
Newton-Raphson method (as pointed out by Mr. Boom, Mr. Lord, and Mr, 
Seah), the secant method (suggested by Mr. Evans) and the most intriguing 
" ' i - j -k"  method (described by Mr. Boom). 

As pointed out by Mr. Evans and Mr. S e ~ ,  the assumption of positive 
payments is crucial. If negative payments are admitted, the equation P(t) = p 
might have several solutions, and not all of them can be obtained from applying 
formula 13. However, the notion of a yield rate may not be that meaningful 
in such a situation. 

The algorithm that is based on formula 13 can be interpreted as a fixed- 
point algorithm (see the discussions of Mr. Ng and Mr. Seah), which leads 
to first order convergence (also observed by Mr. Evans and Mr. Lord). 
Alternatively, the algorithm has the following two attractive interpretations: 

For the first interpretation, we introduce the function 

f(5) = InlP(5)/q]. 

Note that.ri0) = 0 , f ' ( 5 )  = P' (5 ) /P(5 )  is negative, and that 

f ' ( 8 )  = P"(8) /P(8)  - [P' (8) /P(8)}  2 

can be interpreted as a variance and is theretbre positive. We seek t, the 
solution of the equation f i t )  = In(p/q). Given an approximation 8 k, we use 
the secant between the origin and the point with coordinates 8k and flSD to 
determine a new approximation St+ i- This procedure is illustrated in the 
following figure and leads to formula 13. 
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I 
I 
I 
I 

In(p/q) 

f(6D 
f (6)  = i n iP (3 ) / q ]  

For the second interpretation we assume an approximation 3k. Then the 
idea is to replace the payments  q~ . . . . .  q,, by a single payment  of  q at t ime 
"r k that is equivalent under the tbrce o f  interest 8,. Thus ~'k is determined 
from the condition that 

e x p ( -  8, "r,) q = P(SD, 

which leads to 

T,  = - f ( S D / 8 , .  

Now 3k~ ~ is determined such that p is the present value of  the payment  o f  
q at t ime a-h: 

p = e x p ( -  gk~ ~ ~rk)q- 

This gives 

3~.1 -- - ln(p/q)/ 'rk : 3 ,  l n (p /q ) / f (3D,  

which is formula 13. 
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Recently I learned that essentially this derivation has been given by Jau- 
main [2] and that the resulting algorithm has been explored by De Vylder 
[1}, Thus I propose that the algorithm that is based on formula 13 be called 
Jaumain's  algorithm. 

I would like to add some comments about the random variable W whose 
distribution is given in formula D.2 of Mr. Shiu's discussion. This distri- 
bution can be interpreted as the Esscher transform of the distribution that is 
defined in formula 10. There is a connection with the function f that has 
been introduced here: the expectation of W is - f ( ~ ) ,  and its variance is 
f'(8). 

As is indicatd by the comments of Mr. Shiu, there are models and prob- 
lems of finance that go beyond the classical theory of compound interest. It 
is important that actuaries examine and understand these new models, so 
they do not have to rely on the judgment of others. I look forward to hearing 
more from Mr. Shiu about this topic. 
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