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Part I Introduction and Preliminaries

1. Introduction and
Preliminaries

Introduction

® Tools for measuring “riskiness”

Problem of interest. price determination of an insur-
ance risk; “riskiness” of a risk:. certain properties of
claims distribution; consider risk measures defined in
terms of expectations with respect to distorted prob-
abilities. (See Wang, Young, Panjer (1997), Wang
(1998), Artzner (1999).)

e Unifying representation of risk measures
1
— -1
R(F, ¥) = [ F~()¥(s) ds
(See Jones and Zitikis (2003).)
e Estimators of risk measures

— Nonparametric (based on L-statistics)
— Parametric (based on MLES)
— Robust (based on trimmed means)
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Risk Measures

e Proportional Hazard Transform (PHT)

P(s) =r(1—s) "

Here constant » (0 < r» < 1) can be inter-
preted as the degree of distortion.

e Right-Tail Deviation (RTD)

W(s) =r(l—s) 1 -1

For » = 1/2 this measure corresponds to
Wang's Right-Tail Deviation (Wang (1998)).

e Wang Transform (WT)

Yw(s) = exp{=AP~1(s) — A\?/2}

Here parameter )\ reflects the systematic risk
and ®(-) is the cdf of N(O, 1) distribution.
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Interval Estimation

® General objective

For a fixed sample size, favorable statistical proce-
dures are those that yield the shortest interval while
maintaining the desired (high) confidence level.

® Specific aims

— Convergence rates

How fast do the proposed (asymptotic) intervals
attain the intended confidence level?

— Comparison of procedures at the model

Under strict distributional assumptions, how much
do we gain if, instead of empirical intervals, para-
metric or robust confidence intervals are used?

— Sensitivity to assumptions

How bad are the consequences if the underlying
assumptions necessary for the theoretical state-
ments to hold are ignored or cannot be verified?
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Simulation Study

e Contamination model
ng (1—8)F+8G

F'is central distribution, G is contaminating
distribution, ¢ is level of contamination.

® Choices for the central distribution F

— Exponential distribution (x > xg, 6 > 0)
Fi(z) =1 — e (#70)/0
— Pareto distribution (x > zg, v > 0)
Fr(z) =1 — (z0/z)?
— Lognormal distribution (x > xg, 4 € R)
F3(z) = ®(log(z — z0) — 1)

NOTE: Due to xq, distributions Fy, F>, and
F3 have the same support.
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® Choices for the contaminating distribution G
— Uniform distribution (10xzg < x < 50 zq)

— Pareto distribution (x > xg, 0 < v1 < 7)

NOTE: Since 0 < vy1 < v, this distribution has
heavier upper-tail than Pareto with parameter ~.

® Choice of parameters

Parameters 6, v, and u are chosen so that
all three distributions have the same level of
“riskiness” . That is, for selected function v,

R(F17 TP) — R(F27 QP) — R(F37 ¢)

e Study design
— Sample size: n =25, 50, 100, 250.
— Confidence level: 1 —a = 0.90, 0.95, 0.99.
— Distortion level: » =0.50, 0.70, 0.85, 0.95.

— Systematic risk: X = 0.25, 0.50.
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2. Estimation Techniques

Nonparametric Approach

100(1 — a)% confidence interval (based on the
empirical estimator of a risk measure) is

Ln[X] + Za/Q\/Qn(:f’ ¢)7
where
n—1n—1
Qu(y, ¥) = > Z en(i, 3) $(i/n) (i /n) X
1=1 9=

X(Xig1:m — Xin) (Xjg1m — Xj:n)]

with ¢, (¢, 7) = min{i/n, j/n} — (i/n)(j/n) and
n
Ln[X] = Z CinXin
with ¢, = [ V" 9p(s) ds, and z, is the a/2-

critical value of N(0, 1), and X1.,, < --- < Xpm
denote the ordered values of data Xq,..., Xn.
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Parametric Methods

e Exponential distribution (z > zg, 6 > 0)
— (1 — a)100% confidence interval for 6:
g|\/||_ (1 + Zoz/2 1/7?,)

— MLE of 8: Oy =1Y" (Xi — z0)

T n

e Pareto distribution (z > zg, v > 0)

— (1 — @)100% confidence interval for ~:
L (1 £ 24/21/1/n)
—~ n -1
— MLE of ~: ML = [% S 1 10g(X;/z0)]
e Lognormal distribution (z > zo, u € R)
— (1 — a)100% confidence interval for u:
V== Za )2 1/n
— MLE of i fimL = = iy l0g(X; — x0)

NOTE: Corresponding intervals for the risk measures are
found by appropriately transforming the above intervals.

-
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Robust Procedures

e Exponential distribution (z > zg, 6 > 0)

— (1 — «)100% confidence interval for 6:

§T|\/| (1 :I:za/Q k/n)

— Trimmed Mean (TM) estimator of 6:

1 " [nf2]
9T|\/| = E | Z (in - 330)7
i =[np1]+1

where

—[np] -1
d = d(B1,B2,n) = Z > (n—i)!

j=[nB1]+1 =0
and B1 and B> are trimming proportions.

— Efficiency constants k:

B1=p]0.00 0.05 0.15 0.45
k | 1.00 1.090 1.271 1.946
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e Pareto distribution (z > zg, v > 0)
— (1 — @)100% confidence interval for ~:
:)\’TM (1 + Za/Q k/n)

— TM estimator of «:
-1

1 " [n2]
™™ = |5 > log(Xin/xo)
1= [nA1]+1

NOTE: Constants d and k are the same as for the
exponential distribution.

e Lognormal distribution (z > zg, p € R)

— (1 — a)100% confidence interval for u:

HTm £ 252\ Kp/n

— TM estimator of u (81 = B> = B):

LY
ATM = log(X; — o)
n=2n8l,_ g 41

NOTE: Efficiency constants Kg are: Ko =1, Kg.05 =
1.026, Ko.15 = 1.100, Kgg45 = 1.474.
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3. Comparisons and
Conclusions

Comparisons

PHT measure (“clean” data scenario)

TABLE 1. Length (L) and coverage (C) of 95% CI’s,
for selected F and e = 0, r = 0.85, n = 100.

F1 (exponential) | Fo (Pareto) | F3 (lognormal)
Estimator L C L C L C
EMPIRICAL .10 .92 .13 .89 .14 .86
MLE(Fy) 11 .94 .10 .84 .10 .81
MLE(F») .16 .92 .15 .95 .15 .96
MLE(F3) .10 .86 .09 .56 11 .95
TM(5%,F1) 11 .95 .10 N4S) .10 .69
TM(5%,F>) .18 .84 .15 .95 .15 .97
TM(5%,F3) 11 .87 .10 74 11 .95
TM(15%,F}) 12 .95 .10 .67 .10 .63
TM(15%,F») 21 A7 17 .95 .16 97
TM(15%, F3) .13 .76 11 .85 11 .95
TM(45%,F}) .15 .94 .13 .66 12 .68
TM(45%, F») .29 N4S) 22 .95 22 .98
TM(45%, F3) .16 .67 .13 .89 .13 .95

NOTE: Standard errors for all entries are between .0001 and .0009
(for L) and betweeen .001 and .009 (for C).
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PHT measure (“contaminated” data scenario)

TABLE 2. Performance of 95% CI's for selected F,
G =U(10z0,50x0), and € = 0.05, r = 0.85, n = 100.

F1 (exponential) | F» (Pareto) | F3 (lognormal)
Estimator L C L C L C
EMPIRICAL 3.66 .19 3.55 .20 | 3.65 .20
MLE(F1) .79 .01 .76 .01 .79 .01
MLE(F>) .65 .02 .55 .03 .58 .03
MLE(F3) .14 .40 12 .68 .14 .34
TM(5%,F1) 22 .53 21 .54 21 .54
TM(5%,F>) .30 .32 .26 .49 27 51
TM(5%,F3) .13 57 11 .78 .13 .70
TM(15%,Fy) .13 .89 12 .88 11 .87
TM(15%,F») 24 44 .20 .80 .19 .87
TM(15%,F3) .14 .52 12 .85 12 .86
TM(45%,Fy) .16 .95 .14 .81 .13 .83
TM(45%,F») .33 .54 .25 .89 .24 .94
TM(45%,F3) 17 46 .14 .83 .14 .90

NOTE: Standard errors for all entries are between .0002 and .0151
(for L) and betweeen .001 and .013 (for C).
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PHT measure (overall performance)
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FIGURE 1. Proportions of coverage of 95% CI's for
selected F, G =U(10x9,50x0), r = 0.85, n =100, e =0
(“clean” model) and € = 0.05 (“contaminated” model).
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W'T measure (overall performance)
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FIGURE 2. Proportions of coverage of 95% CI's for
selected F, G =U(10x9,50x0), A =0.25, n =100, e =0
(“clean” model) and € = 0.05 (“contaminated” model).
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Conclusions

® Convergence of the proportion of coverage of the em-
pirical intervals is slow and depends on the function 4.
For “light” ¢, the coverage levels of these intervals
get reasonably close to the nominal level for n > 100
and for all distributions F' that we considered. For
“severe” 1, however, their performances are unac-
ceptable even for n = 1500. Parametric and robust
intervals attain the intended confidence levels for all
v and F', and for sample sizes as small as n = 50.

® At the assumed model F', robust and parametric in-
tervals perform better than empirical intervals with
respect to the coverage criterion. Also, for n > 250,
parametric intervals dominate robust and empirical
counterparts with respect to the length criterion.

® \When the assumed model F' is contaminated or mis-
specified, both parametric and empirical procedures
perform poor. In such situations, only sufficiently ro-
bust estimators, designed for model F', vield intervals
with consistently satisfactory performance.
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