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MEASUREMENT OF EQUITY 

S. DAVID PROMISLOW 

ABSTRACT 

When an insurer classifies risks for the purpose of setting rates, one of 
the goals is to achieve equity. In general, however, inequities can be intro- 
duced when only certain factors are considered and others ignored. This 
paper, guided by ideas used by economists to measure income inequality, 
proposes a method of measuring this inequity. The proposed method is then 
used to investigate the effect on inequity of refining the classification of 
risks. 

INTRODUCTION 

The concept of equity is one that is frequently encountered in actuarial 
terminology. Indeed, one possible definition of an actuary is an individual 
concerned with maintaining adequacy and equity in insurance schemes and 
similar financial programs. There is a problem, however, of deciding on a 
reasonable definition of equity. How do we justify our decisions when we 
say that one course of action is more equitable than another? 

In an age where there is increasing concern for human rights, the insurance 
industry is often required to justify actions which appear to discriminate on 
the basis of such characteristics as age, sex, and race. The defense of equity 
is frequently invoked. Suppose we have two groups of individuals, group A 
and group B, such that the expected cost per individual of providing a certain 
insurance benefit is higher for those in group B. The standard and familiar 
argument is that it must be more equitable to charge a higher premium to 
those individuals in group B. If the groups consist of relatively homogeneous 
risks, this proposition seems quite valid. However it does not seem as ob- 
vious in the case where there is a great deal of variation in risk within the 
groups. A main goal of this paper is to try to provide a deeper analysis of 
this argument than it seems to have received. 

There are many possible definitions and philosophical questions dealing 
with the idea of equity. In this paper we are going to focus on only a single 
aspect of this concept. We believe that it is easy in theory to give a perfectly 
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acceptable definition of equity in insurance. An individual wishes to insure 
against a loss. The amount of this loss is, of course, not strictly determined 
but is rather a random variable L. We postulate as a basic principle that 
equity simply involves charging the expectation of this random variable as 
a net premium, and we will take this as a departure point for our further 
investigations. The problem arises however since an insurer may be unwill- 
ing or unable to determine the random variable L. In assessing a risk one 
may look at certain obvious factors such as age or sex but ignore other 
characteristics. Our sole concern in this paper is the inequity that arises from 
making use of less than perfect information in determining the expectation 
of loss. 

Consider again, the situation with the two groups of individuals. If one 
assesses the risk by looking at only certain factors and ignoring others, then 
it can indeed turn out that within each group there is a diverse collection of 
risks. Suppose an individual is in the group with the higher mean expectation 
but actually has an expectation lower than the average of the total collection 
of people. It is clear that such a person is treated less favorably than he or 
she deserves to be. This is an argument often put forth by the layman, but 
it tends to be dismissed by the expert as being somewhat naive. It would 
appear, however, that it merits more scrutiny. It is true, as the expert inev- 
itably argues, that we must consider equity as a whole and not just that of 
particular individuals. However this brings us squarely face to face with the 
question of how to determine equity as a whole. The fact that any decision 
will necessarily result in some individuals being treated less fairly than they 
should be indicates that there is no obvious solution. We should not merely 
offer simple intuitive explanations without further analysis. 

The first task then is to arrive at some method for the measurement of 
equity. To my knowledge this particular question has not been previously 
considered, but a similar problem has received a great deal of attention in 
the economic theory literature. This is the measurement of income inequal- 
ity. In section 3 we use some results from this area as a guide and propose 
some formulas for measuring equity. Section 5 is devoted to giving some 
justification that our formulas really do achieve the main features that one 
would expect from such a measure. 

The rest of the paper is mainly devoted to the investigation of whether or 
not these formulas lead to greater equity when the risk classification is 
refined. There are no definite answers as it depends on which one of many 
possible formulas in a given family is used, but an interesting fact is that it 
is not always'the case. We show this in section 6 where we present an 
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example using a measurement formula based on the idea of entropy in in- 
formation theory, a concept which has been used extensively for similar 
measurement problems. In section 7 this question is investigated in more 
detail, and at the same time a more general mathematical model is formu- 
lated. Some theorems are stated, giving conditions under which refining the 
risk classification will or will not achieve greater equity. These results de- 
pend heavily on a concept of comparing riskiness of random variables, which 
is discussed in section 4. 

2. THE RESTAURANT ANALOGY 

The problem of determining equity arises in many situations other than 
insurance. We will attempt to motivate our theory by looking at a very simple 
situation. Supposc that three people enter a restaurant and order meals for 
one dollar, two dollars, and three dollars, respectively. The total bill of six 
dollars must then be divided up among the three. It seems likely that most 
people would agree that the most equitable way of doing this is to have each 
person pay his or her own share of the bill. (There of course may be other 
opinions. For example, some may believe that more equity is achieved by 
sharing the cost. We are not going to consider these here. As indicated in 
the introduction, it is in accordance with our basic principle to adopt as 
axiomatic the fact that each person paying his or her share is the most 
equitable procedure). Similarly most would agree that the least equitable 
method of division is to require the person with the minimum one dollar 
charge to pay the entire bill. It is not at all obvious however as how to rank 
the infinite number of possibilities between these two extremes (e.g., Is it 
more equitable for each to pay two dollars, or for the three dollar person to 
pay his or her share and let the othcr two each pay a dollar and a half?.). 

Consider a more elaborate situation. A large table of people is seated, 
and they order meals of various amounts. Nobody knows what the amount 
of his or her order is, and each will pay whatever bill he or she receives. 
The waiter dccides that it is too much work to give separate bills and pro- 
poses to give only one, which will be divided equally among the entire table. 
Somebody objects that this is inequitable. The waiter then decides that it is 
possible to give two bills, one for the north side of the table, to be divided 
equally among those who sat on that side, and another for the south side. 
Is the second scheme more equitable than the first or not? It is this type of 
question that we wish to address. 

Notc that the waiter in the last example is in a similar position to the 
insurer mentioned in the introduction. Faced with the difficulty of making 
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an exact determination of actual charges, the tendency is to look at obvious, 
easily determinable factors such as "side of table" and ignore others. 

Some will no doubt argue that the situation is different in that the factor 
"side of table" has no bearing on the person's bill. It is possible however 
to imagine situations where there could be some influence. Suppose for 
example that generally the large eaters tend to sit on the north side, where 
the view is not as good, since they are more interested in eating than looking. 
Consider a light eater who also sits on the north side since he does not like 
the particular view. He is in a similar position to the low cost individual in 
the high cost group which we referred to in the introduction. 

3. T H E  DISCRETE M O D E L  

Using the restaurant situation as a guide, we will construct a mathematical 
model for measuring equity. In general let us consider for a group of n 
individuals, two nonnegative vectors. 

satisfying 

a = (al, a2 . . . . .  a.) and b = (bl ,  bz . . . .  , b .)  

E,ai = E,b, 

and (3.1) 

a i = 0 implies bl = 0. 

In this discussion, ai represents the fair cost incurred by the ith individual, 
and b i represents the actual charge made to that individual. The first con- 
dition in (3.1) simply states that the total charges must equal the total costs, 
and the second means that we do not consider requiring payments from 
people who did not incur a cost from the beginning. 

In certain cases we will want to postulate the further condition that 

bi = 0 implies ai = 0. (3.2) 

This says that anybody who incurs a cost must be charged some positive 
amount. 

We want to define for all positive integers n and all such vectors a and b 
a real number U(a ,b )  which measures the amount of inequity inherent when 
the fair costs are given by a but the actual charges made are given by b. 
(The letter U stands for un fa i rness  as opposed to I for inequity which is an 
overworked letter in mathematics.) 
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As mentioned in the introduction, a guide to defining U(a,b) can be found 
by looking at methods of measuring inequality of incomes. Suppose we have 
a population of n individuals, and the ith individual receives a proportion Pi 
of the total income allocated to the group. Economists wish to measure the 
inequality resulting from such a division. This is done for a variety of pur- 
poses such as comparing inequalities between certain countries or comparing 
the equality-producing effects of different tax measures. Although the em- 
phasis may be different, from a mathematical point of view we really have 
the situation described at the beginning of the section where for all i, 
al = 1/n and bl = Pi. In other words, the income inequality case deals 
with the situation where all fair costs are equal (making the usual assumption 
of zero-order homogeneity). 

There is a great deal of literature on the question of measuring income 
inequality, and many methods have been proposed. See Marshall and Olkin 
[13, section 13F] for a brief survey. We do not want to give an exhaustive 
treatment here, but simply want to note that much of the recent literature, 
Cowell and Kuga [4], Shorrocks [16], and Theil [17], suggests that an 
appropriate form of measurement in our model is as follows. We first define 
for each i, an inequity ratio 

ri = bi/a~ 

which is simply the ratio of actual charge to fair cost for the ith individual. 
We will always take ri = 1 if a i = b~ = 0. We then define 

U(a,b) = ~ a,g(r,) (3.3) 
i = l  

where g is a convex function with g(1) = 0. (Some basic facts about con- 
vexity are reviewed in section 4.) 

Note that we do not have a single formula for measuring inequity but 
rather a family of formulas depending on the convex function g. 

In section 5 we will present evidence that formula (3.3) does indeed 
achieve many of the features that one would expect from a measure of 
inequity. We would first like to recast the definition in a more probabilistic 
form. 

For any vector a = ( a i ,  a 2 . . . . .  an) we let Y, la,I be denoted by Ilall. (The 
usual mathematical notation is Italh indicating the ll norm. We will supress 
the subscript here as no other norms are involved.) 

Suppose we choose one unit of fair cost at random, where we consider 
all such units to be equally likely. Let R be the random variable giving the 
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equity ratio for that unit. For example, in the case where a = (1,2,3) and 
b = (2,2,2), we would have R taking the values 2, 1, and 2/3 with proba- 
bilities 1/6, 2/6, and 3/6, respectively. 

In general, R will take the value bJai with probability a,/llall, and it follows 
easily that 

E(R) = 1. (3.4) 

We can now write (3.3) as 

U(a,b) = l~all E[g(R)].  (3.5) 

We can already see that our formula has some intuitive appeal. Inequity is 
measured by simply multiplying the total costs by the expected value of a 
certain function of the inequity ratio. 

In many cases we will want to consider the amount of inequity per unit 
of fair cost, and so we define what we will call the inequity index 

Uo(a,b) = Ilat1-1 U(a,b) = E[g(R)]. 

One point to note is that, in general, we will view U as an ordinal rather 
than a cardinal measure. That is, we will not be interested in the actual 
values of the function but rather in the order relation which it induces on 
the possible actual charges for given fair costs. We will consider therefore 
two such functions U and U' to be equivalent if they result in the same such 
relation. To state this precisely, U and U' are equivalent if for all pairs of 
vectors with the same first entry, (a,b) and (a,c) we always have 

U(a,b) < U(a,c) if and only if U'(a,b) < U'(a,c). 

If U is given by (3.3), multiplying g by any positive constant gives an 
equivalent formula. Note also adding a multiple of ( x -  1) to g gives in fact 
exactly the same formula in virtue of (3.4). 

A concept of duality for measurement formulas was suggested by Bour- 
guignon in [3]. Similar ideas appear in [17]. We would like to develop this 
idea in more generality here for application to later sections of the paper. 

Suppose now that (3.2) holds, which means that the vectors a and b can 
be treated symmetrically. Given any function U for measuring inequity, we 
can naturally associate another function with it by simply reversing the roles 
of the fair costs and actual charges. To be precise, we have a dual function 
U* given by 

U*(a,b) = U(b,a) for all a and b. 
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In the case that U is given by (3.3) for the convex function g, it is not 
difficult to see that U* is also of this form, given by the function 

g*(x) = x g( l lx)  

which is convex on the interval (0, ®). 

4. RISKINESS 

At this point, we will digress somewhat and discuss a result from risk 
theory which we will eventually apply to our random variable R. Consider 
two random variables X and Y with the same expectation. There are many 
situations (insurance, gambling, investment strategy) which involve an ex- 
change of one such random variable for another and for which we wish to 
compare the random variables as to the degree of risk. One of the most 
appropriate and useful methods is as follows. For X and Y as above, let us 
say that X is less risky than Y if 

1 -  F(x) dx < 1 -  G(x) dx for all t (4.1) 

where F and G represent the distribution functions of X and Y, respectively. 
In view of the fact that E(X) = E(Y), formula 4.1 is equivalent to 

F(x) dx <_ G(x) dx for all t. (4.2) 

In the literature, (4.2) is usually referred to as second order dominance of 
X over Y, while (4.1) is referred to as second order stop-loss dominance of 
Y over X. See Goovaerts, De Vylder, and Haezendonck [10] for the general 
nth order definitions. Also see Rothschild and Stiglitz [15] for an extensive 
discussion of this concept together with other equivalent formulations. Be- 
fore stating our main result, we will review some facts about convex func- 
tions. Recall that a real valued function g defined on an interval I of the real 
line is said to be convex if for all s and t in I and all a in the interval (0,1) 

g[as + ( 1 - a ) t ]  <_ ag(s) + (1 -a )g( t )  (4.3) 

One of the most useful consequences of this is the increasing slope condition. 
Given any points x < y < z in I, we apply (4.3) with s = x, t = z and 
o~ = ( z - y ) / ( z - x )  to obtain that 

[g(y) - g (x ) ] / (y -x )  <_ [g(z) - g(y)] ~(z -y ) .  (4.4) 
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From (4.4) it is not hard to deduce that g is continuous at all interior 
points of the interval I, although it is not necessarily continuous at the 
end points of I, if any. 

The function g is said to be strictly convex if the inequality sign is strict 
in (4.3) and hence also in (4.4). Geometrically, this means there is no 
subinterval of I over which the graph of g is a straight line. 

In the case that g is twice differentiable, convexity of g is equivalent 
to the condition that g" _> 0. 

The main result about riskiness that we want is: 

THEOREM 4.1. Suppose that X is less risky than Y. Then for any convex 
function g: R---, R (or R + --> R in the case that X and Y are nonnegative), 

e[g(x)] _< E[g(v)] 

provided that both expectations exist. 
There are several proofs given in the literature. See, e.g., [10] or [15]. 

Most proofs seem to involve some restriction, such as requiring bound- 
edness of the random variables or differentiability of g, but the result is 
true in the full generality as stated in Theorem 4.1. 

We can easily show that the conclusion of Theorem 4.1. is a sufficient 
condition for X to be less risky than Y. For any real number t, define the 
functions 

0, if x _< t t - x ,  if x _< t 

x - t ,  i fx_> t 0, i f x _ > t .  

These are convex functions and (4.1) says precisely that the conclusion 
of the theorem holds for all ,x,, while (4.2) says that it holds for all [3,. 
The proof of Theorem 4.1 can be achieved by showing that any convex 
function can be suitably approximated by a positive linear combination 
of the ,x,'s and [3,'s. We will not go into the details here. We will return 
however to these functions in section 7. 

For a typical interpretation of Theorem 4.1, as given in [15], note that 
a risk adverse individual will have a concave utility function. The ine- 
quality in the conclusion reverses and, as terminology suggests, the less 
risky choice is preferred. 

For one application to our problem at hand, observed by Atkinson [1] 
in the income inequality case, note that if we measure equity according 
to formula (3.3), then the ranking of possibilities may depend on the 
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choice of the function g. However suppose we have two choices of dis- 
tributing the actual charges leading to the random variables R1 and R2 
such that R, is less risky than R2. Then it does not matter what g is. We 
always get more equity by choosing the distribution leading to R,. 

We will give more applications of the riskiness concept in section 7. 

5. PROPERTIES OF U(a,b) 

We now look at certain features which result from our definition of 
inequity. Some of these ideas have been extensively discussed in the 
income inequality case, and we want to adapt them to the case of inequity 
measurement. 

The Transfer Principle. In the income inequality case, this was formulated 
by some of the earliest writers on the subject, see [6, 14], and accordingly 
is often referred to as the Pigou-Dalton property. Taken in our present 
context of inequity measurement, it would say that, if a person who is 
treated more unfairly than another has a sufficiently small portion of his 
charge transferred to that other person, then the equity, as a whole, should 
increase. To state this precisely, suppose that for given vectors a and b 
we have indices i and j and a positive constant s such that 

(bi - s)/ai >- (bj + s)/aj. 

Let b' be defined as b except with (b; - s) replacing b; and (bj + s) replacing 
bj. Using the increasing slope property of convexity, we can see that 

g[(bj +s)/aj] - g(bj/aj) < g(b,/ai) - g[(b, -s)/ai] 
s/aj s /a  i ' 

and after some algebraic manipulation, we get 

aj g[(bj + s)/aj] + ai g[(bi-s)/a~] <_ aj g(bj/aj) + a~ g(b,/a~), 

and we arrive at the transfer principle 

U(a,b') <_ U(a,b). (5.1) 

Another argument, essentially used in [1] for the income inequality case, 
is to note that a transfer as shown leads to a less risky distribution for R 
and then to invoke Theorem 4.1. 

Many writers have advocated a stronger version of (5.1) in which the 
inequality sign is strict. In our context, this would say that a transfer 
should result in a definite decrease in inequity and not merely leave it 
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unchanged. This, of course, will occur if we require that g be strictly 
convex, since then the inequality sign will remain strict throughout the 
derivation. 

Minimum and Maximum Inequity. We now show that the transfer principle 
does indeed give us the expected results regarding the points of minimum 
and maximum inequity. The postulate that g(1) = 0 tells us that U(a,a) -= 0 
for all a, obviously a required feature since we should have no inequity if 
everybody pays the fair cost. Morever we see that this is the minimum value 
of U, since if b 4: a, we could reduce inequity by making a transfer. A 
consequence of this is that U(a,b) is always nonnegative, which is not com- 
pletely obvious from the original definition since g can take negative values. 
Similarly, the maximum inequity occurs when the individual with a minimal 
fair charge must pay the total. In any other case, we could increase inequity 
by a transfer reverse to the type described. These same principles hold in more 
general situations. Suppose we fix the actual charges for certain individuals and 
then ask what is the fairest way to divide the remaining charges among those 
remaining. The transfer principle again tells us that we must divide propor- 
tionally so that all equity ratios of the remaining individuals are equal. Similarly 
the maximum inequity results when an individual with a minimum fair cost is 
required to pay all the remaining charges. 

So, for example, given a = (1,2,3,4,5), suppose we impose the constraint 
that b 4 = 1 and b5 = 2. Then U(a,b) is minimized for b = (2,4,6,1,2) and 
maximized for b = (12,0,0,1,2) 

Subadditivity. A direct consequence of the convexity of g is that, given two 
pairs of vectors (a,b) and (a',b'), we have that 

U(a+a',b+b') <- U(a,b) + U(a',b'). 

This property does not seem to have been considered in the income inequality 
case. In our context, we can give an interpretation using the restaurant analogy. 
Suppose that the same group of people visit two restaurants, each of which 
uses a different scheme for dividing the total bill. The preceding says that total 
inequity resulting from both visits is less than the sum of the inequities from 
each of the visits. This seems reasonable in view of the fact that individuals 
who were treated very unfairly in one case may receive very favorable treatment 
in the other, allowing some cancellation of inequity. 

Equity within and between groups. We now discuss another important principle 
which has been extensively considered in measurement questions of the type 
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we are investigating. It gives some insight into a possible choice for the function 
g(x) appearing in (3.3). 

It will be more convenient here to work with the inequity index Uo rather 
than U. 

Fix a and b and select a certain subset S of our individuals. It is natural to 
try to compute that portion of the inequity, which results solely from the 
treatment of individuals within that subset. For simplicity in notation, suppose 
that S = {1,2,..,k}, and let 

as = (al,aE,...,ak), bs = (bl,bz,...,bk). 

If Ilasll = Ilbsll, then it is clear that Uo(llasll, Ilbsll) is the quantity we want. In 
general, however, these two subvectors will have different norms. Let 

t = Ilbsll/ltasll 
and define the inequity index pertaining to subset S by 

Uo(S) = Uo(t as, bs) 

which is also equal to Uo (as, t-1 bs) provided that bs is not the zero vector. 
In the case that U is given by (3.3), we see that 

Uo(S) = e(R') ,  

where R' is the random variable equal to tR, conditioned on the fact that the 
unit of fair cost comes from subset S. 

Note that if t is not equal to one, then the group S, as a whole, is treated 
more or less favorably than it should be. The quantity Uo(S), however, ignores 
this source of the inequity and concentrates solely on the relative treatment of 
individuals within this group. 

Suppose now that we have a partition of {1,2,3,...,n} into pairwise disjoint 
subsets $1, $2 .... ,S~. In addition to the inequity within each group, we will have 
the inequity resulting from the treatment between the groups which we will 
denote by Uo B. It seems natural to define this by simply looking at the total fair 
costs and actual charges within each group. That is, we take 

ug = Uo(c,d) 

where 

c = (1I%11, Ilas211, . . . ,  I1%11) and d = (llbs~ll, Ilbs211, . . . ,  Ilbskll)- 

A reasonable requirement is that the total inequity index Uo(a,b) should 
depend in some natural way on the between group inequity U B and the within 
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group inequities, Uo(Sg) i = 1,2 .... ,k. For the income inequality case, this idea 
was extensively investigated by Theil in [17] and was further considered by 
Bourguignon [3] and Shorrocks [16]. This latter work has a system of axioms 
concerned with such a between-within group decomposition. Applied in our 
context the axioms would show that up to equivalence as defined in section 3, 
U is given by (3.3) where the convex function g is one of the following family, 
indexed by a real number c. 

go(x) = (x ~ - 1) / [c(c-  1)], c :/: 0, 1 "1 
go(x) = -In(x) / (5.2) 
gl (X)  = X In(x) 

Exactly the same family was found by Cowell and Kuga in [4] using somewhat 
different axioms, which involve a weaker assumption about the between-within 
decomposition but additional assumptions on transfers. 

The main property of this family is as follows. Suppose we are given vectors 
a and b and a partition as before. For each i = 1,2, k, let 

pg = [[asi[[ / [[a[[, the proportion of fair costs for the ith group, 

qi = [[bsi][ / lib[l, the proportion of actual charges for the ith group 

Wi,c : p!a-c) ~ .  

Let Uo,c denote Uo calculated by (3.3) using go- (Note that in the case that c 
_< 0, we must assume (3.2) since gc is not defined at 0). Then, a straightforward 
calculation shows that for all c, 

Uo, c (a ,b)  -~ U~, c -~- ~ wi, c Uo, c (Si). (5.3) 
i=l 

In other words, this says that using any of the convex functions in this family, 
we have the total inequity index decomposed into a portion which is due to the 
inequity between groups plus a weighted sum of the within-group inequity 
indices. 

The cases of particular interest are when c = 0 or 1, since these are the 
only values giving weights which sum to unity. For c = 1, the weights are 
the proportion of actual charges, and for c = 0, the weights are the proportion 
of fair costs. Note that these two cases are dual to each other since we see 
immediately from (3.6) that 

Ix in(x)]* = - In(x). 
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These cases, particularly c = 1, were considered extensively in [17]. The 
motivation is from information theory, where the function x In(x) forms the 
basis for Shannon's entropy. See [11]. The decomposition given in (5.3) cor- 
responds to the information theoretic result that the entropy H of finite proba- 
bility distributions satisfies 

H(A,B) = H(A) + H(B~).  

Suppose that the vectors a and b have norm one, so they may be considered 
to represent finite probability distributions. In this case, the quantities Uo,c for 
c = 1 and 0 correspond to the Kullback measures of divergence between the 
two distributions [13]. (Also see Bmckett and Cox [2] for another application 
of Kullback divergence to an actuarial problem.) 

Note that Uc depends continuously on the parameter c. This is not completely 
obvious when c = 0 or I but, as indicated in [4], is easily seen by an application 
of L'Hopitals rule. 

In the case where the weights are Pi or qi, statement 5.3 is so strong that it 
almost characterizes the resulting inequity measure, in fact, without necessarily 
assuming (3.3) from the outset. Further research will show that, assuming only 
(5.3) with the weights w;.c replaced by qi, a mild continuity assumption, and 
the fact that Uo is always nonnegative and equal to 0 when the two vectors are 
equal, then, necessarily, Uo is given by (3.3) where g(x) = kxln(x) for some 
nonnegative constant k. The case where the weights are given by p~ similarly 
characterizes the function -In(x).  Similar results appear frequently in the lit- 
erature. See [3], Foster [8], Gehrig [9]. 

Another fact of interest is to note that the result on duality mentioned pre- 
viously generalizes to the fact that for all c 

i ; , c  = 

which we see immediately from (3.4) and (3.6) since for all c 4 : 0  or 1 

g; (x) = g(,_,) (x) - ( x - 1 ) / [ c ( c -1 ) ] .  

To summarize, the class of measurement formulas resulting from the family 
(5.2) would seem to be an attractive one to use for the measurement of inequity. 
It includes most of the specific formulas which have been proposed for the 
measurement of income inequality and similar measurement problems. 

6. AN EXAMPLE 

We now turn to one of our basic questions. Suppose we have a group of 
individuals, and initially we have no information which will allow us to 
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distinguish between their respective fair charges. We propose to charge each 
the average amount. We are then given information which allows us to divide 
the group into two subgroups. At this point, we could charge each individual 
the average amount for the particular subgroup to which that person belongs. 
(Refer back to the restaurant situation with the large table for one concrete 
example.) Will this always lead to greater equity, or are there cases where 
we should ignore the additional information? (We are assuming here that 
the only goal is to maximize equity. In practice, there are certainly other 
factors, such as those involving market conditions, which would affect one's 
decision in this circumstance. We are not concerned however with these in 
this paper.) 

We now want to give one example where, using one of the possible 
definitions of equity which we proposed in the last section, we should ignore 
the additional information. Refining the classification actually decreases equity. 

Example 

Take g(x) = x In(x) and use (3.3). Suppose that the actual fair costs for 
a group of six individuals, are given by the vector 

a = (2,2,2,1,1,10). 

Initially, all we know is that the total is 18, and without further information, 
we will make actual charges according to the vector 

b = (3,3,3,3,3,3). 

Suppose now that we are given the information that the total cost of 18 
is divided into 6 for individuals 1,2, and 3, and 12 for the remaining three 
individuals. Using this information, we could make charges according to 

b ' =  (2,2,2,4,4,4). 

A direct calculation shows that Uo (a,b) = .368, while Uo (a,b') = .412. 
It is instructive to analyze this in terms of the decomposition given in 

(5.3). Take the partition S = {1,2,3} T = {4,5,6}. Using b we have Ug = 
.059, while using b' we obviously reduce the between-group inequity to 0. 
(This observation will inevitably lead some people to consider it as obvious 
that we must increase equity by refining the classification. However we must 
also consider the within-group inequity.) In both cases we have Uo(S) = 0 
and Uo(T) = .619. However in using b', the weight attached to group T 
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increases from 1/2 to 2/3, and this more than compensates for the decrease 
in Uo ~. 

Suppose that, instead of using g(x) = x In(x), we use the dual function 
g(x) = -In(x). Now as we saw in section 5, the weights for the within- 
group inequities are based on the proportion of fair costs and these do not 
change. The within-group inequity stays the same, and the reduction in the 
between-group inequity causes a reduction in total. This happens not only 
for this, but all examples. So we have established a key fact that for the 
function -In(x), refining the risk classification always results in additional 
equity. 

Are there other functions which do this? It appears unlikely. Further re- 
search could show that given any other function in the class (5.2), we can 
find an example similar to that given. We conjecture that this is true for all 
convex functions. 

This may cause some to feel that -In(x) is the best choice of function. 
There are, however, other considerations. Arguments in [5] and [16] for the 
income inequality case show that choosing a particular function g causes 
different relative effects of transfer payments depending on the income levels 
of the transferor and transferee. We will illustrate this in our context with a 
similar example. 

Example 

Suppose that four individuals each with a fair cost of 4, are charged, re- 
spectively, 1, 3, 5, and 7. Let us compare the effect of the following: 
I. The second individual agrees to share the charges equally with the first, 

so each is charged 2. 
II. The fourth individual agrees to share the charges equally with the third 

so each is charged 6. 
Consider the family of formulas given in (5.2). For c = 2, transfer II and 
transfer I both result in the same reduction in inequity. For c > 2, the 
reduction is greater for transfer II, and for c < 2 the reduction is greater for 
transfer I. One's choice of c might then well depend on whether one feels 
that reduction in inequity should be more sensitive to transfers among those 
treated favorably or treated unfavorably. In the income equality context, 
some writers have advocated staying away from high values of c. As the 
preceding example indicates, the effect of such values is to give more weight 
to transfers among the "wealthy," and many are of the opinion that this 
should not be so. This argument would seem not to apply in our case. We 
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might well want to make inequity more sensitive to those who were treated 
unfavorably and, hence, use high values of c. Many opinions are possible, 
and we will not elaborate further. 

7. THE GENERAL MODEL 

We would like to formulate our main mathematical results in terms of a 
more general model. We will now consider our collection of individuals to 
be represented by a general probability space. The discrete model we dis- 
cussed previously will turn out to be the special case where we have a space 
with n points, with equal probabilities. 

We begin then with a probability space (I~, E, P) and consider two non- 
negative random variables: X representing the fair cost and Y representing 
the actual charge. By analogy to (3.1), we postulate that E(X) = E(Y), and 
that X = 0 implies that Y = 0. 

Let 0, denote the common expectation of X and Y. 
We now define a new probability measure P* on (/~,Y~) by 

P*(A) = L X(to)/~ dP, for A in E. 

We define the random variable R = Y/X on (f~,E,P*). This is legitimate 
since, by our assumption, R is defined on the set N = [o0".X(o~) # 0], and 
for the complement N c, we have P*(N c) = 0. The effect of this change of 
measure is that, as in our original model, R represents the inequity ratio per 
unit of fair cost. Now, letting expectations with respect to P* be denoted 
by E*, we have 

E*(R) = {[Y(co)/X(co)][X(co)/p.J}dP = i~ -1 Y(co) dP = 1 

since by assumption Y = 0 on N c. 
We define the inequity index 

Uo (x,r) = e*[g(R)]. 

Note that when P is the uniform measure on a finite set, the resulting P* 
is precisely the probability measure considered in section 3, namely, that 
which gives equal probability to each unit of fair cost. Accordingly, the 
expectation E used in section 3 corresponds to E* of our present section, 
and we see that the definition of inequity index agrees with that given pre- 
viously when applied to the discrete model of section 3. 
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Let us consider the particular case that Y is the constant ~,. In this case R 
= t~/X, and we will denote this random variable by Rx. We obtain infor- 
mation about Rx as follows. 

LEMMA 7.1. 

E* [h(Rx)] = E [h*(X/p.)] 

where h* is defined in (3. 6). 

Proof. This follows directly from the definition of P* since 

f,~ h[u/X(o~)] dP* = ~-' f,~ h[u/X(,,,)]X(,,,) ae. 

We now return to the functions ot and 13 defined in section 4. 

LEMMA 7.2. For all s > 0 

(a) oq = s 13,. 

(b) 13~ = s ~,,, 

Proof. These are direct calculations from the definitions. For example, sup- 
pose that 0 < x <- 1/s. Then 1/x >_ s and % (l/x) = 1/x - s. So a~(x) 
= 1 - (sx) = s(1/s - x )  = s 131/s (x). The remaining calculations are 
similar. 

THEOREM 7.3. I f  X is less risky than Y, then Rx is less risky than Rr. 

Proof. If X is less risky than Y, it is easily seen that X/p. is less risky than 
Y/p,  and applying Theorem 4.1, 

E[o,,,~ (X/~.)] _< e[ ,~ , .  (Y/p)] 

for all s > 0, so that by Lemma 7.2 (b) 

E[IS; (X/~.)] _< E[13; (Y/~.)]. 

Now by Lemma 7.1, and the fact that g** = g for all functionsg defined 
on (0,®), 

e*[13.(Rx)] -< E*[13,(R,.)], 

and our conclusion follows directly from the definition as given in formula 
4.2. 
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Suppose now that we have another random variable K which takes the 
values 1 and 2. So ~ is partitioned into the two sets {K= 1} and {K= 2}. 
The idea here is that we have divided our set of individuals according to 
some observable characteristic, and we wish to analyze the resulting effect 
on equity. (A similar model was introduced by DeWit and VanEeghen in 
[7], but the emphasis in that work is somewhat different.) For simplicity, 
we will restrict our attention to the case that K has two values. Of course 
in practice, one wants to consider risk characteristics which can take on 
several different values (age for example). Analagous results to those fol- 
lowing can be obtained, but the notation and formulation is much more 
complicated. 

We first introduce some notation. 
Let p = P ( K = I ) ,  r = P * ( K = I ) ,  X 1 = (XIK= I), )(2 = (XIK=2), 

~,1 =E(X1), ~lb 2 = E(X2), R, = ~l,1/X 1 and R 2 = ~.I,2/X 2. We note that X is a 
mixture of X1 and X2 with the weights p and 1 - p ,  respectively, and ~, = 
pl~l + ( 1 - p ) ~ 2 .  Moreover 

and similarly 

1"1 = P-1 fK=l X(oo) dP so that 

r = i, -1 ]K:I X(o) d P =  p P.III* (7.1) 

1 - r  = ( 1 - p ) p J ~ .  (7.2) 

Suppose now that we fix our actual charges according to the observation 
given by K. In other words, we take Y = ~'K, K = 1 or 2. This gives an 
inequity index of 

Uo (X,~zK) = r E*[g(R1)] + ( 1 - r )  E*[g(R2)]. 

Suppose instead that we choose to ignore the effects of our observation and 
charge a constant ~. Let Sl = P~/P.1 and let s2 = ~/~2. We see that now R 
= Iz/X will equal sK RK SO that 

Uo (X,p.) = E*[g(R)] = r E*[g(R) l K = 11 + ( l - r )  E*[g(R) I K=2] 
= r[E*[g(slR,)]] + 0-r)e* (s2R2)]. 
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Let D/( denote the gain in equity when the risk is refined according to the 
observation K. From the previous two expressions we have 

DK = r E*[hsl (R1)] + (1 - r )  E*[hs2 (R2)] (7.3) 

where hs(x) = g(sx) - g(x). 

Consider now properties of the function h which we have just defined. In 
many of our previous examples of suitable g's we can show that 

A. hs is convex for s > 1 and concave for s < 1 
or that (7.4) 

B. h~ is concave for s > 1 and convex for s < 1. 

For example, if g(x) = x In(x), then hs(x) = xg(s) + (s -1)g(x)  satisfies 
(7.4A), while ifg(x) = x ~ -  1, then h~(x) = (s':- 1)x ~. Dividing by c ( c -  1) 
shows that functions in the class given in (5.2) satisfy (7.4A) if c > 0 and 
(7.4B) if c < 0. Naturally enough, for go(x) = In(x), h,(x) = -In(s)  is 
constant and trivially satisfies both A and B in (7.4). 

Further insight into the behavior of h can be obtained if we consider the 
case where g is twice differentiable. Then 

h " ( x )  = s 2 g ' ( s x )  - g ' ( x ) .  

This shows that (7.4A) always holds in the case that g"(x) is increasing. 
This observation regarding -In(x) gives us an alternate derivation of the 

fact that DK must be nonnegative when this function is chosen for g(x). In 
this case, h~(x) = -In(s),  implying that E*[hsi (Ri)]  = -ln(si) for i = 1 

or 2. Now substitute in (7.3), recalling that s; = P~/P,i, and using (7.1) and 
(7.2). If we temporarily denote the function xln(x) by k(x), this yields 

Dr = pk(p~l/p~) + ( 1 - p )  k(l~z/Ix) 

and by the convexity of k 

D~: -> k [[p Ix1 + ( 1 - p )  ~z2]/tx] = 0. 

We now consider more general functions for g and state a theorem which 
compares the effect of two subdivisions K and K'. Suppose that K leads to 
the R.V. 's  Xa and X2 and K' leads to the R.V. 's  X'I and X'2. 

THEOREM 7.4. Suppose that g satisfies (Z 4). Let the subscript 1 refer to 
the lower mean random variable in the case that A holds or to the higher 
mean random variable in the case that B holds. 
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(a) Suppose that Dx is nonnegative. Then if X1 is less risky than X'I and 
X'2 is less risky than 2(2, we must have that DE, is nonnegative. 

(b) Suppose that DE is nonpositive. Then if X'~ is less risky than Xi and 
Xz is less risky than X'2, we must have that DE, is nonpositive. 

Proof. Part (b) follows immediately from (a), by reversing K' and K. We 
now derive (a). For definiteness we consider the case where case A of (7.4) 
holds. The derivation is similar in case B. Since s~ = ~ / ~  is greater than 
1, hs~ is convex. Then, since R1 is less risky than R'I, we can invoke 

Theorem 4.1 to conclude that 

E*[hsl (R,)] -< E*[hs~ (R'I) ]. 

Similarly, since s2 is greater than 1 and R'2 is less risky than R2, we conclude 
that 

E*[hs2 (RE)] --< E*[h~ 2 (n'z)]. 

Now substitute in (7.4) to see that D E, is greater than or equal to DE. 
There is one case in which we can say that refining the risk must increase 

equity regardless of what g is. 

THEOREM 7.5. Suppose that X2/Ix2 = X~/~x. Then Dr is nonnegative. If 
moreover g is strictly convex and ~a ¢ P~2, then Dr is positive. 

Proof. In this case Rz = Rx. Moreover R is a mixture of (p~/~)Ra and 
(~/~2)R2 with weights of r and 1 - r ,  respectively. It follows that 

Uo(X,p.) = E*[g(R)] = r E*[g(lx/NlR1) ] + ( 1 - r )  E*(pJ~zRa) 

which by the convexity of g 

>_ E*[g(rwlw, R, + ( 1 - r )  p./W~R2)] 

= E*[g(R, ) ]  = Go (X, 

The second statement follows immediately since the given conditions clearly 
imply that the inequality sign is strict. 

COROLLARY 7.6. Suppose that (7.5) holds and let the subscript 1 be as in 
Theorem 7.3. If X2/p.z is less risky than X~/~I, then DE is nonnegative. 

Proof. This is immediate from Theorems 7.4 and 7.5. 
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The preceding theorems constitute only a beginning of the theory. There 
are still many questions to be answered concerning necessary and sufficient 
conditions for refinement to increase equity. 

Consider the interpretation of our theorems. Let us suppose that (7.4) 
holds. We will call X2 as defined in the statement of Theorem 7.3 the 
dominant random variable. Our results show that refining the risk classifi- 
cation does indeed increase equity provided that the dominant random var- 
iable is not too risky relative to the other random variable. Refer back to 
the section 6 example. The dominant random variable is the high mean one, 
which is just too risky when compared with the low mean one. (Of course 
in this case, the low mean random variable is constant and carries the min- 
imum possible degree of riskiness.) As the amounts of riskiness of the two 
random variables move towards each other, there is a greater tendency for 
refinement to increase equity. In the extreme case given in Theorem 7.5, 
we could interpret the given condition as stating that the two random vari- 
ables have exactly the same degree of risk, and now we always gain equity 
by refining. 

8. S UM M AR Y AND CONCLUSIONS 

We have not reached many definite conclusions regarding the measure- 
ment of equity and the effect of refining the risk classification. Indeed it 
was not the intention of the paper to do so but rather to introduce the subject. 
We can briefly summarize our ideas and results as follows: 

1. To justify an action on the basis of equity should first require some method for 
measuring equity. This does not imply that one must neccessarily arrive at definite 
numbers, or even that one has to select a definite formula. One however should 
be aware of the theoretical background and the consequences of choosing various 
methods of measurement. 

2. There does not appear to be any unique method of measuring equity, but the family 
of methods given by (3.3) seems like a reasonable choice. It is intuitively plausible, 
satisfies the obvious properties that one wants from such a measure, and has been 
extensively used by economists in similar measurement problems. There is certain 
evidence that we may well further restrict the choices by those given in (5.2). 

3. If one wants to require that refining the risk classification should always increase 
equity, then it is possible to do so within the framework of (3.3) by using the 
function g(x) = -In(x). It seems likely that this is the unique such function. In 
any event, it is the unique such function in the restricted family given in (5.2). 

4. If one wants to admit other choices of the function g(x), then it turns out that 
refining the risk classification may increase equity in some case and not in others. 
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This in itself is an important message. It should refute, for example, the often 
heard argument that, if we began to ignore certain risk characteristics, then this 
will inevitably lead to ignoring such factors as age in life insurance. The factor of 
age appears to be one where the amount of riskiness does not increase noticeably 
as the mean changes. The results of section 7 would then indicate that we should 
distinguish by age. But this need not necessarily hold for all risk factors. There 
may be other cases, such as indicated in the section 6 example, where, due to the 
high variations in expected costs among one of the classes, we may legitimately 
question whether or not we gain equity by refining the classification. 

5. Obviously, as we continue to refine our risk classification, we approach the situation 
where all individuals in a class have the same expectation, the point of perfect 
equity, as we have defined it. Hence, at some point in the refining process, we 
must start to gain equity. This is confirmed by the theoretical results of section 7. 
It does not follow however that this gain in equity must occur at all stages. It is a 
common fallacy to believe that natural processes must be monotone. It could well 
be in a given situation that equity decreases up to some point in the refining process 
and only then starts to increase. 
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DISCUSSION OF PRECEDING PAPER 

ELIAS S. W. SHIU: 

Professor Promislow is to be congratulated for this thought-provoking 
paper. There are many interesting ideas and concepts in it. I would like to 
expand on the important concept of riskiness in Section 4 and present two 
applications to immunization theory. Some of the results below also have 
been discussed in another paper by Professor Promislow [12]. 

Theorem 4.1 may be reformulated as follows. It is a result due to J. 
Karamata [8], published in 1932. 

Theorem 1 ([8], [9, section XI.7], [10, p. 449]): 
Let Ix be a signed measure defined on the Borel subsets of (a, b). Then, for 
all convex functions ok, 

if and only if 

and 

f~ dp(t) dix(t) > 0 

f 'dix(t) = 0, 

I~t dtt(t) = 0 

f ~ ~(a,t) dt >_ 0 

for all w ~ (a, b). 

The following variant of Theorem 1 is well known in the literature of 
stochastic dominance ([6], [7]). 

Theorem 2: 
Let IX be a signed measure defined on the Borel subsets of (a, b). 
Then, for all nonincreasing convex functions ~,, 

Ia~ ~I~t) dix(t) >_ 0 

239 
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i f  and only i f  

and 

fi' dtz(t) = 0 

I ~(w - t) dtz(t) >- 0 (1) 

for  all w • (a, b). 

The "only if" direction in Theorem 2 is obvious as the functions 1, - 1, 
and (w - t)+ = flw(t) are convex and nonincreasing. Also, by considering 
~(t)  = a~(t) = (t - w)+, the condition on ~ may be changed from 
nonincreasing to nondecreasing if the integral in (1) is replaced by 

f f  (t - w) dlz(t). 

The next result is helpful for understanding the concept of riskiness. 

Theorem 3 ([19], [14], [2, p. 112], [3, p. 92]): 
Let X and Y be two random variables in R a having finite means. Then, 

_> E[*(Y)] 

for  each nonincreasing convex function ~ if  and only if  there exists a random 
variable Z such that 

Pr(X <_r) = Pr(Y + Z <_r) 

for all r e R I and 

E(ZI  -- 0 (2) 

almost surely. 

The second half of Theorem 3 states that the random variable X has the 
same distribution as Y + Z where E(ZIY ) _~ 0. Thus X may be interpreted 
as Y plus "noise"  Z; it is therefore more risky, or more uncertain, than Y. 

If in Theorem 3 the condition that the function • is nonincreasing is 
dropped but the condition that E(X) = E(Y) is required, then (2) becomes 
E(ZIY ) = 0 almost surely. This result was first proved by David Blackwell 
[1, p. 100] in the context of sufficient statistics. Also see [11, p. 108]. 



DISCUSSION 241  

Below are two applications to immunization theory. 
Let {lj} be a stream of liability payments to occur at times {sj} in the future. 

Both the amounts and the dates are known with certainty. Assume that the 
liabilities are to be funded by a stream of asset cash flows {ak}. The cash 
inflow ak is to Occur at time tk. Let the force of interest function be g(t). 
Assume that assets and liabilities have the same present value, 

fi'6(s) ds] exp [ -  Io ~ ak exp[ -  = ~ lj 6(s) ds]. 

Now, suppose that the interest rates change from to [i(t) to ~(t) + A(t). 
What are the conditions on the cash flows and the shock A(t) so that 

ak exp{--[i k [g(s) + A(s)] ds} 
k 

-> ~ ly exp { - [ o  ~j [g(s) + A(s)] ds}? (3) 
J 

For simplicity, write 

ot k 

and 

~0 k = ak exp [ -  6(s) ds], 

h i = lj exp [ -  8(s) ds] 

fo f(t) = exp [ -  A(s) ds]. 

Then (3) may be written as 

o~ f(tk) >- E hj f(sj). (4) 

The functionfdepends on the interest-rate shock A. In the classical works 
of Redington [13] and Fisher and Weil [4], the shock A is assumed to be 
constant; hence f is a convex function. By considering 

I x ( - ~ , t ]  : ~ a k -  2½" ,  
tk~;t Sj~t 

Theorem 1 and the method of linear programming can be applied to deter- 
mine the assets for which (4) and (3) will hold for constant shocks. 
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The following is a consequence of Blackwell's Theorem. 

Theorem 4 [15]: 
Let the real numbers al, a2, a3 . . . .  , am, tl, t2, t 3 . . . ,  tin, At, Ae, A3, 
• . . ,  An, s~, s2, s3, • • . ,  s,  be given. Assume that all ak and Aj are non- 
negative. Then, 

k=~ j~J 

for  all continuous convex function ~9 i f  and only if  there exists a nonnegative 
m by n matrix B such that the sum of each of  its m rows is 1, 

(a,, a2, as . . . .  , = (a , ,  a2, a s , . . . ,  An) 

and 
the n columns of the matrix B partition the asset cash flows into n streams, 

In the context of immunization, the second half of Theorem 4 says that 
the n columns of the matrix B partition the asset cash flows into n streams, 
each with the same present value and duration as one of the n liability 
outflows. Thus, a necessary and sufficient condition for the immunization 
of multiple liabilities is the separate immunization of each liability outflow. 
This result has been stated without proof on page 138 of [5]. 

For more detailed discussions on the immunization theory of multiple 
liabilities, see [16], [17] and [18]• 
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JAMES C. HICKMAN~ 

Professor Promislow's unfairness function attains its minimum value of 
zero when a = b, that is, when the vector of actual charges denoted by b 
is equal to the vector of fair costs denoted by a.  The Introduction makes it 
clear that fair costs are the actuarial present values of corresponding future 
benefit payments. The unfairness function U(a,b) measures a special kind 
of distance between a and b. The unfairness function has certain properties, 
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described in Section 5, that are selected to correspond to some of our com- 
mon-sense notions of the properties of unfairness. 

In the Introduction, it is stated that the 

• . .sole concern  in this paper  is the inequi ty  that arises f rom m a k i n g  use  o f  less 

than perfect information in determining the expectation of loss. 

I will examine this issue from a somewhat different viewpoint using ele- 
ments of statistical decision theory. The development will be based on a 
simple model employing the following notation: 

X will denote the random variable that can be interpreted as the present 
value of future claims on a policy. 

0 will denote a vector of parameters that determine the distribution of X. 
In life insurance the elements of 0 might be the numerical values rep- 
resenting age, sex, height, weight, and so on. 

I will denote an information gathering process for learning about O. One 
could think of I as a set of classification procedures. The process I will 
not necessarily provide perfect information about O. 

Before the classification information is collected by process I, the risk 
about O. 

Before the classification information is collected by process I, the risk 
parameters have a distribution which can be interpreted as the prior (before 
the collection of information) distribution of risk parameters in the population 
of insurance applicants. After the information specified by process I is col- 
lected, the risk parameters have a posterior distribution. Because information 
is not collected on all risk parameters and some information collected is 
subject to error, the posterior distribution of 0, given I, is not a degenerate 
distribution at the true value of O. 

These ideas lead to the following results: 

//(/) = E,W [X]/] = E01, E,~0[X]O] = Eot,[II(0)] 

War(Xl/) -- War0t, [E(X)I0)] + E~ [Var(Xl0)]. 

If I yields perfect information about O, 

i1(0 = n( o) 

Varol, (E[X[0]) = 0 

Eol~ [War(X)10)] -- Var(X10) 

Var(X1/) = Var(X]O). 
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To simplify the subsequent development, we will assume that the eco- 
nomic consequences of incomplete knowledge about the value of X can be 
measured by ~ and that the cost of information process I is C(/) >- 
0. Then the gross premium, denoted by G, for a policy paying benefits of 
X would be 

G = II(/) + k ~  + C(/) + L 

where k -> 0, k ~ is a premium component associated with risk, 
and L is the expense loading. The decision theory approach is to examine a 
set of feasible information processes to minimize k ~ + C(/). 

Consider a simple example where 0 consists of one element which can 
take on values w~ and w2. The prior distribution is Pr[0 -- wl] = p and 
Pr[0 = w2] = 1 - p.  Suppose information process I provides no infor- 
mation about 0. With perfect information, we would have premiums l-[(w1) 
and "rr(w2). With process I, we obtain 

min ['rr(w,), "rr(w2)] -< w(I ) = p 7r (w,) + (1 - p) "rr(w2) 

_< max ['rr(w,), ~w2)] 

Var(X~/) = p Var(X]wl) + (1 - p) Var(X]w2) 

+ p (1 - p) [zr(w,) - ~w2)] 2. 

A simple numerical illustration is summarized in the following two tables. 
In the first table the basic parameter values are given and in the second the 
results are illustrated. 

[xlo] 
W 1 

13 

W~ 

17 

0 0.25 

17 16 

8 8.19 

P 

0.50 0.75 1.00 

15 14 13 

8.25 8.19 8 
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This example was selected to be appropriate for a blended mortality table 
combining male and female experience. The numerical values correspond 
roughly with the values of a life annuity at age 65 with zero interest rate. 

The point of this discussion is to suggest the possibility of a decision 
theory approach to the problem addressed in the paper. Measuring the ine- 
quality distance between a vector of actuarial present values and a vector of 
actual charges is an important problem. However, it seems that the practical 
problem of which parameters can be measured will be settled by law. De- 
cision theory can help determine which parameters should be measured and 
the accuracy that should be specified, taking into consideration the cost of 
information and the reduction in variance achieved by acquiring it. 

S T UAR T  A.  KL UGM AN:  

Professor Promislow has presented a novel way (at least to actuaries) of 
looking at the risk classification problem. However, it would be uncharitable 
to claim that the problem of measuring equity has not been previously con- 
sidered. Two examples that come to mind are Norberg [3] and Woll [4]. As 
far as the present discussion is concerned, I would like to augment the paper 
in three directions. First, Professor Promislow's paper proceeds from a sim- 
ple case (a fixed set of true and assigned net premiums) directly to an entirely 
general case (based on measure theoretic concepts). For the benefit of readers 
who are not comfortable with this setting, I will present an intermediate 
version of the model based on the Society of Actuaries Course 110 level 
mathematical statistics. This model will be seen to be sufficient for describ- 
ing the situation typically faced by an insurer. It has the added benefit of 
making the operational meaning of the criteria clear. Next, I will introduce 
a different criterion: squared error. Finally, I will look at these criteria from 
a perspective, not mentioned by Professor Promislow, that may aid in their 
interpretation. Along the way I will provide an argument for g(x) = - In(x) 
as the function of choice for Professor Promislow's approach. 

A Model for Risk Classification 
Let us begin by assuming that each insured has an intrinsic, unknown, 

parameter 0. Our knowledge of human behavior is not perfect, so knowledge 
of 0 does not imply that we know what will happen to the insured. We do 
assume that knowledge of 0 completely determines the probability distri- 
bution of the loss, W. Assume W is a continuous random variable with p.d.f. 
f(w[O ). Consistent with Professor Promislow's statement, if we know the 
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value of 0 we will charge the expected loss as the net premium. That is, we 
charge P-0 = E(14~0) = fwf(wlO)dw. 

Next, assume there are k risk classes. Each insured will be assigned to 
one of the classes 1 , . . . ,  k on the basis of some observable characteristics. 
Each policyholder can then be characterized by the pair (J, 0) drawn from 
the joint density f(j,O). The density will be discrete with respect to J and 
continuous with respect to 0. The nature of this density will depend on the 
rule for assigning individuals to risk classes. 

Each insured in risk class j will be charged a net premium of 75. For the 
moment no restrictions are placed on the choice of these net premiums. The 
success of a classification system will depend on how well the assigned net 
premium 75 approximates the correct net premium P-o- Let the function 
L(~ri,l~o) measure the penalty incurred. Then a reasonable choice for a mea- 
sure of riskiness of the classification system is the expected penalty incurred 
for a randomly selected insured. That is, 

k 
U = ~ fL(~,l~o)f(j ,O) dO. 

j=l 

Keep in mind that there are three discretionary items: 

1. the classification system (represented byf(j,0)), 
2. the premium structure (represented by ~),  and 
3. the loss function (represented by L). 

I believe this framework is sufficient to describe the situation faced by 
the typical insurer. In Professor Promislow's notation, I am using/.1,o in place 
of his x and 75 in place of his Y. In the next two sections we look at two 
loss functions and the restrictions, if any, that need to be placed on the 
premium structure. 

A Second Loss Function 

Professor Promislow restricts attention to loss functions of the form L(75,tZo) 
= Izog(~rj/p.o). Norberg [3] addresses the same problem and looks only at 
squared error, L(75,1Zo ) = (75.-i~o) z. Let Uu (N for Norberg) refer to the 
unfairness measure when using this criterion. Let UL refer to the unfairness 
measure when using Professor Promislow's criterion with g(x) = - In(x). 

If we continue to let the net premium 'rrj be unspecified, we can ask the 
question: "For a given loss function and classification system, what set of 
net premiums will produce the smallest amount of unfairness?" For the 
Norberg criterion this is easy to find. Setting the derivative of Uu with respect 
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to 7 5 equal to zero (and assuming the derivative can be taken inside the 
integral) gives 

0 = y2 (~.-p,o)f(J',O) dO 

~. = f~of(l',O) dO/f(j) = f~.of(O[/) dO 

wheref(j) = ff(l',O) dO is the marginal probability of being assigned to class 
j .  A little bit of algebra will show this premium can also be written as 

~. = E (W~), 

and so it really is the net premium for those assigned to class j .  It would 
appear that this is a desirable property for any classification evaluation sys- 
tem, that the optimal net premium is indeed the net premium for the class. 

For Professor Promislow's class of loss functions we need an additional 
restriction. To solve the minimization problem, it is necessary to restrict 
attention to sets of net premiums that satisfy 

k 

E f(J) N = E(W). 
j = l  

This was assumed from the start by Professor Promislow. It guarantees that 
the total premiums we expect to collect equal the total expected payout. 
Using Lagrange multipliers we need the derivative of 

k 

u, + -,Z=I f(j) 

It is 

This yields 

= dO/AfO), 

= f 0f(j,0) do/ f(j), 
and it is easy to see that with A = 1 we get the same result as with squared 
error. So this is another argument in favor of using g(x) = -In(x) from 
Professor Promislow's collection of possibilities. It is equally easy to show 
that the other members of Professor Promislow's family of equations (5.2) 
do not yield the net premium as the optimal choice. In particular, with g(x) 
= x In(x) the result is 

'r 5 = A exp[fln(tzo) f(j,O) dO/f(j)] 

with A selected to make the net premiums add up to the desired amount. 
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Another View 
From the insurer's perspective, the risk involved is the relationship be- 

tween the amount of money collected and the amount paid. In the setting 
described here, the dollar loss on a randomly selected policy is W - 7 5. 
The major difference between this loss random variable and the one intro- 
duced in Bowers et al. [1] is that here the amount of premium collected is 
also random, due to the unknown (prior to issue) class to which the insured 
will be assigned. Restricting attention to net premiums for the 75., the ex- 
pected loss is zero and so the variance of the loss is 

Z [ ( W -  ~.j)2]. 

A small amount of algebraic manipulation will show that this is equal to 

UN + fVar (w[O)f(O) dO 

and since the second term does not depend on the risk classification elements 
(items 1-3 in Section 1), the criterion presented here is the same as the U~v 
criterion. 

We have, then, that the Uu criterion relates to a well-accepted measure 
of risk, the variance of the excess of loss over revenue. We next wonder if 
the UL measure has a similar relationship. The loss with respect to premiums 
and revenue is 

- E [ W  In (,rr.dW)] = UL + E[/zo ln(/zo)] - E[W In(W)] 

where once again the second term does not depend on the risk classification 
scheme. 

So, both measures can be related to an expected discrepancy between 
revenue and expenditures. From its use in statistics we are familiar with 
squared error loss, but we are perhaps less familiar with the logarithmic loss 
introduced by Professor Promislow. The following expansion may provide 
some insight: 

UL = - E[~o ln(~r,/o,o)] 

= - E{p.o ln[1 + ('n'.~- tzo)l~o]} 

= - - g0)2/2 o] 

= 

This looks very much like a chi-square goodness-of-fit measure. The nu- 
merator is the squared difference between the observed and expected values 
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while the denominator is the expected value. This indicates a potential draw- 
back of the UL measure. The presence of/x0 in the denominator means that 
low-cost risks will receive the highest weight when computing the expected 
loss, while the highest cost risks will receive the lowest weight. 

Professor Promislow has given us a lot to think about in the evaluation 
of risk classification schemes. I hope that someone will take the logical next 
step --  to apply these concepts to some real classification problems. Un- 
fortunately, this may be very difficult to do. Application of these methods 
requires knowledge off(j ,  O) when all we can observe is W givenj. Cummins 
et al. [2] provide several examples to indicate how difficult this can be. 
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(AUTHOR'S REVIEW OF DISCUSSION) 

S. DAVID PROMISLOW: 

I would like to thank Professors Shiu, Hickman, and Klugman for their 
discussions. Each of them has provided interesting and valuable additions 
to the paper. 

Professor Shiu shows how far reaching the idea of riskiness can be and 
adds to some of his previous work involving the application of this concept 
to immunization theory. 

Professor Hickman produces an interesting optimization problem by bal- 
ancing the cost of obtaining additional information with the resulting in- 
creased equity. 

I am grateful to Professor Klugman for pointing out other literature where 
equity is discussed. These references in turn have led me to discover many 
others, some of which should be acknowledged. Tryfos [4] uses absolute 
deviation, which is equivalent to formula (3.3) of the paper with g(x) = 
~x- 1], to compare two automobile insurance classification schemes. I would 
also like to thank Professor Tryfos for bringing my attention to a paper by 
Schmalensee [2]. This work considers a model somewhat similar to mine 
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and also discusses some effects on equity of suppressing information. The 
most extensive work in this area that I have discovered is that of Ferreira 
[1], in a study done for the Massachusetts State Rating Bureau. His moti- 
vation and objectives are very close to those of my paper. His methods, 
criteria, and resulting formulas are somewhat different however, which fur- 
ther indicates the difficulties involved in arriving at a suitable way to measure 
equity. 

Squared Error 

I would like to discuss at length the important idea of squared error in- 
troduced by Professor Klugman. 

This of course is a common method for measuring the "closeness" of 
one distribution to another. It is perhaps most familiar in the case of variance 
where we use squared error to obtain a measure of distance from a distri- 
bution to the degenerate distribution concentrated at its mean. Hence, it also 
forms the basis of Professor Hickman's suggested measure of unfairness. 

One of the most useful properties of squared error is that, as in the case 
of the formulas given by (3.2) in the paper, we get a nice within-group and 
between-group decomposition. For the purpose of comparing with formula 
(5.3), I will illustrate with reference to the discrete model given in Section 
3. The result remains true in the general setting. Suppose that given the 
vectors a and b we define 

n 

U(a,b) = ~lai-b , I  = 
i = 1  

and the corresponding normalized quantity 
r l  

Uo(a b) ~ l  12. : - a i - -  b i 
" h i =  = 1  

For this discrete case, Uo corresponds to Professor Klugman's UN. 

Given any partition of {1,2, . . . ,  n} into subsets, $1, $2, . • . ,  Sk where 
there are ni elements in S/, we let a '  and b' be obtained from a and b, 
respectively, by replacing each entry by the average entry of the subset 
containing it. Let a" = a - a ' ,  b" = b - b ' .  Then the between set inequity 
is given by 

= V o ( , , ' , b ' )  

and the inequity due to the i-th subset is given by 
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Uo(S,) = _1 i . . ~ ;  v "  I ~ I I  ' 

H i i e . S  i 

leading to the decomposition 
k 

Vo(,,,b) = g + E Uo(S/). 
i=1  n 

There is a simple deriviation of this decomposition formula for those 
familiar with elementary Hilbert space theory. In this case it is easier to look 
at the corresponding formula for U rather than Uo. Then the between-group 
term is the norm squared of the orthogonal projection of the vector a - b  on 
the subspace consisting of vectors which are constant on the sets of the 
partition, and the within-group term is the norm squared of the projection 
on the orthogonal complement. 

With the given definition of Uo we then have a decomposition analagous 
to formula (5.3). Note that the weights depend neither on the fair costs nor 
the actual charges, but on the number of individuals in the group. As with 
the case of g(x )  = -In(x), the within-group portion is independent of the 
classification. Referring to the model in the form given by Professor Klug- 
man, this means that the within-group inequity does not depend on the 
premium structure. Hence, for both of these measurement formulas, the 
minimum equity must be obtained when the between-group inequity is re- 
duced to zero by charging each class the net premium for that particular 
class. This gives an alternative derivation of Professor Klugman's results. 

This concept of optimality of net premiums is discussed by Schmalensee 
[2], referred to as "competitive equitability." In fact, Schmalensee takes 
this concept as one of the main postulates in his axiomatic approach to justify 
squared error. 

Professor Klugman's remark that this principle is a "desirable property 
for any classification evaluation system" needs qualification, in my opinion. 
I agree that given a method of evaluation we think is sound, any method of 
classification should result in the optimality of net premiums. But if this 
does not occur, inefficiency of classification may be the cause rather than a 
faulty evaluation method. To illustrate, consider the example in Section 6 
of the paper. As shown in the paper, when we evaluate by using formula 
(3.3) with g(x )  = x In(x), the net premiums are not optimal. In my opinion, 
this fact does not detract from the appropriateness of the method. Given that 
we are going to divide the six individuals into two groups of three and charge 
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each group the same premium, then there is no way to avoid subsidizing the 
high risk individual with a cost of 10. We might question, however, if it 
seems equitable to have the entire burden of the subsidy fall on the two very 
best risks simply because they happen, through some observable character- 
istic, to be placed in the same class as this high cost individual. This occurs 
using the net premiums for the two classes. Using the optimal allocation for 
g(x)  = x In(x), some of the subsidy is born by the intermediate risks, those 
with a fair cost of 2. (Admittedly the total subsidy is larger in this case.) 

There is another way to compare the squared error with the formulas given 
by (3.3). Using the squared error we can write the above formula for U as 

n 

U(a,b) = ~,ai2 g(rl) 
i = 1  

where g(r)  = (r - 1) 2 and ri = b i / a i .  

From this point of view, we have a formula similar to that suggested in 
the paper, but which uses as weights the squares of the fair costs rather than 
the costs themselves. The effect is to give higher weight to the high cost 
entries. We could, as Professor Klugman suggests, look upon the presence 
of/z0 in the denominator of the formula for UL as giving highest weight to 
the lowest cost risks. On the other hand, we could look upon it as a correction 
to the overly low weights given to these risks by the use of squared error. 
It depends on one's point of view. 

There are some possible difficulties with the use of squared error to mea- 
sure equity. For example, the transfer principle, as given in Section 5, no 
longer holds. Take 

a = ( 2 , 5 , 1 1 ) ,  b = ( 7 , 1 0 , 1 ) ,  b' = ( 6 , 1 1 , 1 ) .  

For any g used in formula (3.3) we will get 

U(a,b) >_ U(a ,b ' )  

since the change from b to b' involves transfer of charge from an individual 
who was charged 3.5 times his fair cost to one who was only charged 2 
times, and the amount tranferred is small enough to preserve the order of 
ratios (3 as opposed to 2.2 after the transfer). Using Uu however we do not 
reduce inequity, since 

UN (a,b) = 150, Uu(a,b')  = 152. 

The validity of the transfer principle as we have stated it depends on the 
principle that the ratio of actual charges to fair costs is a reasonable way to 
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gauge inequity for a particular individual. There are possible alternative 
viewpoints. Some, for example, may measure this by the absolute difference 
between actual charges and fair costs. In such a case, using squared error 
would reduce inequity under the resulting modification of the transfer prin- 
ciple. To my mind it seems that someone who has a fair cost charge of 1 
and is charged 10 is treated more inequitably than one who has an fair cost 
of 100 and is charged 109. 

For another example, based on the same idea, suppose a number of in- 
dividuals have exactly the same risk of loss but, on account of an inefficient 
classification system, are charged different amounts. This will produce some 
unfairness. Suppose now that the insurer must increase premiums and does 
so by charging each individual a constant amount, which is the equitable 
method since the risks are the same. Intuitively, it appears that this should 
have a leveling effect and reduce inequity. Indeed it does, using the formulas 
of the paper with a strictly convex function g, for instance, any of those in 
(5.3), as shown by the subadditivity principle given in Section 5. Take a'  
= b' to be the vector with constant entries equal to the increase so that 
Uo(a',b') = 0. But this does not happen for the squared error formula, since 
adding the same constant to all entries obviously leaves inequity unchanged. 

Claim Costs 

Professors Klugman and Hickman have both made a worthy contribution 
by bringing another "layer" into the model, namely, the actual cost of the 
risk (Professor Hickman's X and Professor Klugman's IV). I did not need 
this quantity when computing inequity, but paradoxically it provides a reason 
for introducing it. It is important to clarify what should be included and 
what should not be, as there is often much confusion on this point. Ob- 
viously, there will be individuals who have exactly the same risk parameters 
but who will incur different claims because of random fluctuations. Indeed, 
this fact forms the very foundation of insurance and it is not these deviations 
that we wish to consider as inequity. 

Professor Klugman notices that with both UN and UL we can obtain an 
additive decomposition of the total variation between claims and premiums 
into that attributable to the inequity inherent in the classification and that 
attributable to randomness. This is another consequence of the additive de- 
composition mentioned above. Consider the partition whereby two individ- 
uals are in the same subset if they have the same risk parameters and are 
charged the same premium, that is, the partition determined by the pair (j,0) 
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in Professor Klugman's notation. Then apply the particular formula to mea- 
sure the difference between claim costs and premiums collected. The be- 
tween-group term gives the portion due to inequity, and the within-group 
term gives that portion of the difference which is due to randomess and could 
not have been predicted beforehand from our knowledge of 0. This will not 
work when using a function from the family (5.2) other than - In  x. We do 
get the decomposition as given by formula (5.3), but the weights in the within- 
group portion depend on the premiums. Consequently, the second term in the 
decomposition will depend on the classification scheme. 

There is an alternative way to arrive at the split into the inequity and ran- 
domness portions for the two given formulas. The randomness component is 
found by simply applying the postulated method to measure the "distance'" 
between W and/Zo. 

Conclusion 

The works on equity referred to in the discussions (by Professor Klugman 
and this review) for the most part deal directly with the case of automobile 
insurance, where problems of risk classification have caused the most contro- 
versy. However, life and pension actuaries certainly face similar questions. 
Debates over unisex pricing furnish such an example. I think that all Society 
of Actuaries members could benefit from looking at some of the casualty 
actuarial literature presenting views that depart somewhat from traditional phi- 
losophy. For an interesting, completely nontechnical work, I would particularly 
recommend Stone [3]. This publication consists of excerpts from the final report 
of Commissioner J.M. Stone and includes his justification for some controver- 
sial recommendations, such as the elimination of age and sex as rating variables 
for auto insurance. Many of his ideas were influenced by Ferreira [1], men- 
tioned above. The conclusion of the paper by Woll, a reference given by 
Professor Klugman, contains a summary of some of this work. 

A major theme of these writers is the idea that if a class is extremely het- 
erogeneous, then the mean expected loss is not representative of the expected 
claims for any individual and, hence, may not be suitable as a net premium. 
Referring again to the example in Section 6, one may view things in this way. 
The net premium of 4 is really not representative for a class with the fair costs 
of (1,1,10). Of course, such a principle involves the subjective notion of ex- 
treme heterogeneity. The theorems ! proved in Section 7 involving the riskiness 
concept could be viewed as one attempt to provide a more precise definition 
for this notion. 
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These observations provide an important psychological reason why many 
actuaries tend to reject new ideas on risk classification. In this, as well as in 
other actuarial problems, we often put too much emphasis on mean values. We 
reason, for example, that the average expected cost for a class must necessarily 
give us the appropriate net premium. Our traditional actuarial education some- 
times leads us to sweep stochastic difficulties under the rug by replacing dis- 
tributions by their expected values and relying on the law of large numbers to 
make everything right. For many purposes such a point of view turns out to 
be a brilliant idea. It allows us to derive complicated formulas and make 
calculations in an easy manner. But when we move from the computational to 
the conceptual level, we must recognize that features of a distribution other 
than its expected value have to be considered. We can expect this perspective 
to be more prevalent in the future as it forms a basic theme in the new actuarial 
textbook. 

In conclusion, I would like to again thank the three discussants of my paper. 
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