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1. Introduction 

In a Sparre Andersen model, the claim counting process {N(t)} is a renewal 

counting process.  For j = 1, 2, 3, … , let Tj denote the time when the j-th claim of 

amount Xj occurs.  Let  

    Vj  =  Tj  –  Tj–1, j = 2, 3, … ,   (1.1) 

be the interclaim time random variables.  The assumption is that T1, V2, V3, … are 

positive i. i. d. random variables.  We use V to denote a representative of these random 

variables.  We assume that V has a probability density function and denote it as fV.   

 We assume a constant premium rate c.  The individual claims {Xj} are positive i. 

i. d. random variables with probability density function p(x), and are independent of 

{N(t)}.  The requirement of a positive security loading is 

     c E[V]  >  E[X],     (1.2) 

where X denotes a representative of {Xj}. 

A main goal in this paper is to evaluate the expectation 
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        φ(u)  = E[e–δT w(U(T–), |U(T)|) 1(T<∞) ⎢ U(0) = u], u ≥ 0.  (1.3) 

Here, the positive parameter δ can be interpreted as a force of interest, U(t) is the surplus 

at time t,  

   U(t)  =  u  +  ct  –  
j=1

N(t)

∑ Xj,     (1.4) 

T is the time of ruin, w(U(T–), |U(T)|) is the “penalty” at ruin, and 1(.) is the indicator 

function.  We shall obtain specific results under the assumption that V is the sum of a 

fixed number of independent, exponentially distributed random variables.  This 

assumption will be used from Section 4 onwards.  Note that the Erlang(n) model is the 

special case where these exponential random variables are identically distributed. 

 

2. Renewal Equation for φ(u) 

 We now determine a (defective) renewal equation for φ(u) by probabilistic 

reasoning.  For U(0) = u ≥ 0, let f(x, y, t ⎢u) denote the (defective) joint probability 

density function of U(T–), |U(T)|, and T.  Also, define 

   f(x, y ⎢u)  =  
0
∞∫ e–δt f(x, y, t ⎢u) dt.    (2.1) 

Consider the first time when the surplus falls below the initial level.  The probability that 

this event occurs between time t and time t + dt, with 

  u + x ≤ U(t–) ≤ u + x + dx 

and  

         u – y – dy ≤ U(t) ≤ u – y, 

is   

           f(x, y, t ⎢0) dx dy dt.  
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Also, the occurrence y > u means that ruin takes place with this claim.  Thus, 

  φ(u) =  
0
∞∫0

∞∫0
u∫ e–δt φ(u – y) f(x, y, t ⎢0) dt dx dy 

      +  
0
∞∫0

∞∫u
∞∫ e–δt w(x + u, y – u) f(x, y, t ⎢0) dt dx dy 

  =  
0
∞∫0

u∫ φ(u – y) f(x, y ⎢0) dx dy   

   +  
0
∞∫u

∞∫ w(x + u, y – u) f(x, y ⎢0) dx dy, (2.2) 

which is the desired renewal equation. 

 It remains to determine f(x, y ⎢0), the joint “discounted” probability density 

function of U(T–) and U(T) given that U(0) = 0.  Setting u = 0 in (2.2), we have 

   φ(0)  =  0  +  
0
∞∫0

∞∫ w(x, y) f(x, y ⎢0) dx dy. (2.3)  

If we can determine   
) 
φ , the Laplace transform of φ, then we have another formula for φ(0) 

by means of the initial value theorem (Spiegel 1965, p. 5), 

     φ(0) =  lim
ξ→∞

  ξ  
) 
φ (ξ).     (2.4) 

We shall see in Section 7 that, by comparing (2.3) with (2.4), we obtain an explicit 

formula for f(x, y ⎢0), which is a key result in this paper. 

With the definition 

g(y)  =  
0
∞∫ f(x, y ⎢0) dx,     (2.5) 

equation (2.2) can be written neatly as 

   φ  =  φ∗g  +  h,       (2.6) 

where ∗ denotes the convolution operation and the function h(u) is defined by the last 

integral in (2.2).  The differential g(y)dy can be interpreted as the “discounted” 
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probability that the surplus will ever fall below its initial value u, and will be between u – 

y and u – y – dy when it happens for the first time. 

 

3. Lundberg’s Fundamental Equation 

 For k = 1, 2, 3, … , let Uk denote the surplus immediately after the payment of the 

k-th claim, 

    Uk  =  u  +  cTk  – X j
j=1

k

∑ .    (3.1) 

We seek numbers ξ for which the sequence of random variables, 

    {e−δTk +ξU k ;  k = 0, 1, 2, …},   (3.2) 

becomes a martingale.  In (3.2), the term for k = 0 is the constant eξu.  The martingale 

condition is 

      
) 
f V(δ − cξ)  

) 
p (ξ)  =  1,     (3.3) 

where   
) 
f V and   

) 
p  are the Laplace transforms of the probability density functions fV and p, 

respectively.  Equation (3.3) is a generalization of Lundberg’s fundamental equation.  Its 

solutions in the right half of the complex plane play an important role in this paper. 

 Suppose that equation (3.3) has a negative solution –R.  (R can be called the 

adjustment coefficient.)  Then, with ξ = –R, the sequence (3.2) is a bounded martingale 

before ruin.  By applying the optional sampling theorem, we see that, with w(x, y) = eRy, 

    φ(u)  =  e–Ru.        (3.4) 

 



 5 

4. A Specific Assumption on Interclaim Time 

 In the rest of this paper, we assume that V is the sum of n independent, 

exponentially distributed random variables, say with means 1/λ1, 1/λ2, … , 1/λn.  Thus, 

   E[e–ξV]  =   
) 
f V(ξ)  =  

λ i
λ i + ξi=1

n

∏ .    (4.1) 

Let γ(ξ) be the reciprocal of   
) 
f V(δ − cξ).  Then, equation (3.3) becomes 

    γ(ξ)  –   
) 
p (ξ)  =  0.     (4.2) 

By (4.1), 

γ(ξ)  =  
j=1

n

∏ [(1 + 
δ
λ j

)  –  
c
λ j

ξ],    (4.3) 

which is an n-th degree polynomial. 

Let D denote the differentiation operator.  Gerber and Shiu (2003, 2005) have 

shown that the function φ satisfies the integro-differential equation 

    γ(D)φ  =  φ∗p  +  ω,     (4.4) 

where 

     ω(u)  =  
0
∞∫ w(u, y) p(u + y) dy.    (4.5) 

We shall solve (4.4) in terms of Laplace transforms in Section 6.  In preparation, we now 

examine the solutions of equation (4.2) in the right half of the complex plane. 

We claim that, in the right half of the complex plane, equation (4.2) has exactly n 

solutions.  To see this, consider a domain that is a half disk centered at 0, lying in the 

right half of the complex plane, and with a sufficiently large radius.  For Re ξ ≥ 0, we 

have |  
) 
p (ξ)|  ≤  1.  Because γ(ξ) has exactly n zeros and they are positive, our claim 
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follows from Rouché’s theorem if we can show that |γ(ξ)| > 1 on the boundary of such a 

half disk.  It is obvious from (4.3) that |γ(ξ)| > 1 for |ξ| sufficiently large.  Now, for  

Re ξ = 0, ξ lying on the imaginary axis, we have 

   |γ(ξ)|  ≥  
λ j + δ

λ jj=1

n

∏   >  1 

also.  We denote these n roots of (4.2) in the right half of the complex plane as ρ1, ρ2, … , 

ρn. 

 

5. Divided Differences 

 This section presents a brief review on divided differences (Freeman 1960; 

Steffensen 1950).  For a function η(s), its divided differences, with respect to distinct 

numbers r1, r2, r3, … , can be defined recursively as follows: 

  η(s)  =  η(r1)  +  (s – r1)η[r1, s],      

  η[r1, s]  =  η[r1, r2]  +  (s – r2)η[r1, r2, s],     

  η[r1, r2, s]  =  η[r1, r2, r3]  +  (s – r3)η[r1, r2, r3, s],    

and so on.  Hence, if the function h(s) vanishes at s = r1, r2, … , rn, then  

  η(s)  =  η[s, r1, r2, … , rn] (s − rk )
k=1

n

∏ .     (5.1) 

Also, we have the following formula for the (k–1)-th divided difference 

  η[r1, r2, … , rk]   =  
η(rj)

(rj − ri)i=1,i≠ j

k∏j=1

k

∑ .    (5.2) 

It is useful to note that a divided difference with repeated points of collocation can 

be evaluated as a derivative.  For example, if a, b and c are three distinct numbers, then 
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  η[a, a, a, b, b, c]  =  
1

(3 −1)!
1

(2 −1)!
∂2

∂a2
∂
∂b

η[a, b, c],   (5.3) 

a contour-integration proof of which can be found in Shiu (1983).  Because of this 

property of divided differences, in the rest of this paper we shall assume that the roots of 

equation (4.2) in the right half of the complex plane, ρ1, ρ2, … , ρn, are distinct. 

 

6. The Laplace Transform of φ 

 We now solve the integro-differential equation (4.4) in terms of Laplace 

transforms.  Let f(u) be a function with Laplace transform  
) 
f (ξ); the Laplace transform of 

the k-th derivative f(k)(u) is 

  ξk
  
) 
f (ξ)  –  ξk–1f(0)  –  ξk–2f′(0)  −  ...  −  f (k–1)(0) 

(Spiegel 1965, p. 10).  Thus, the Laplace transform of (4.4) is 

   γ(ξ)  
) 
φ (ξ)  +  q(ξ)  =   

) 
φ (ξ)  

) 
p (ξ)  +   

) ω (ξ),   Re ξ ≥ 0, (6.1) 

where q(ξ) is a polynomial of degree n–1 or less, with coefficients in terms of δ, c, λ1, λ2, 

…,  λn, and the values of φ(u) and its first n–1 derivatives at u = 0.  It follows from (6.1) 

that 

     
) 
φ (ξ)   =  

  

) ω (ξ) − q(ξ)
γ(ξ)− ) p (ξ)

,   Re ξ ≥ 0.   (6.2) 

Because   
) 
φ (ξ) is finite for Re ξ ≥ 0, the numerator on the right-hand side of (6.2) must be 

zero whenever the denominator is zero.  We have shown in Section 4 that, in the right 

half of the complex plane, the function in the denominator of (6.2) has n zeros ρ1, ρ2, … , 

ρn.  We apply (5.1) to the numerator and to the denominator of (6.2), with s = ξ and rk= 

ρk.  After canceling (ξ − ρk )
k=1

n∏ , we obtain 
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) 
φ (ξ)  =  

  

) ω [ξ,ρ1,K,ρn ]− q[ξ,ρ1,K,ρn ]
γ[ξ,ρ1,K,ρn ]− ) p [ξ,ρ1,K,ρn ]

,  Re ξ ≥ 0.  (6.3) 

Because q(ξ) is a polynomial of degree n−1 or less, we have q[ξ, ρ1, ρ2, … , ρn] = 0.  

Because γ(ξ) is a polynomial of degree n, the n-th divided difference γ[ξ, ρ1, ρ2, … , ρn] 

is the coefficient of ξn in γ(ξ); we shall denote this leading coefficient as γn.  Thus, 

equation (6.3) simplifies as 

     
) 
φ (ξ)  =  

  

) ω [ξ,ρ1,K,ρn ]
γn − ) p [ξ,ρ1,K,ρn ]

,   Re ξ ≥ 0.  (6.4) 

It is easy to see from (4.3) that 

  γn  =  
−c
λ jj=1

n

∏ . (6.5) 

 In some cases, the function φ can be determined by identifying the right-hand side 

of (6.4).  In general, we have the inversion formula: 

  φ(u)  =   1
2πi  

b− i∞
b+ i∞∫  

) 
φ (ξ) eξu dξ, (6.6) 

where i = −1, and the path of integration is parallel to the imaginary axis in the 

complex plane, with the real number b being chosen so that all the singularities of the 

integrand lie to the left of the line of integration (Spiegel 1965, p. 201).  However, the 

integral can be difficult to calculate, unless  
) 
φ  is a rational function. 

  

7. A Key Result 

 It follows from (2.4) and (6.4) that 

     φ(0) =  lim
ξ→∞

  ξ
  

) ω [ξ,ρ1,K,ρn ]
γn − ) p [ξ,ρ1,K,ρn ]

.     (7.1) 

Now, 
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  lim
ξ→∞

   
) p [ξ, ρ1, ρ2, … , ρn]  =  0 

because   
) p (ξ) → 0, and 

     lim
ξ→∞

 ξ ˆ ω [ξ, ρ1, ρ2, … , ρn] =  lim
ξ→∞

 ξ
 

) ω [ξ,ρ2,K,ρn ]− ) ω [ρ1,ρ2,K,ρn ]
ξ − ρ1

 

     =   0 − ˆ ω [ρ1, ρ2, … , ρn].   (7.2) 

Thus, (7.1) becomes 

 φ(0)  =  
  

− ) ω [ρ1,ρ2,K,ρn ]
γn

  =  
λ1λ2 ⋅ ⋅ ⋅ λn

cn (–1)n–1
 
) ω [ρ1, ρ2, … , ρn].  (7.3) 

 It follows from (4.5) that the Laplace transform of ω is 

     
) ω (ρ)  =  

0
∞∫0

∞∫ e–ρx w(x, y) p(x + y) dx dy. (7.4) 

With the definition εx(ρ)  =  e–ρx, we have 

   
) ω [ρ1, ρ2, … , ρn]  =  

0
∞∫0

∞∫ εx[ρ1, ρ2, … , ρn] w(x, y) p(x + y) dx dy. (7.5) 

Substituting (7.5) in (7.3) and then comparing with (2.3), we obtain a key result in this 

paper: 

   f(x, y ⎢0)  =  
λ1λ2 ⋅ ⋅ ⋅ λn

cn p(x +  y)(–1)n–1εx[ρ1, ρ2, … , ρn]. (7.6) 

For n = 1, this result is implicitly contained in (2.33) and explicitly given in (3.3) of 

Gerber and Shiu (1998). 

 

8. Li’s Renewal Equation 

The function g in the (defective) renewal equation (2.6) is defined by (2.5).  

Applying (7.6) to (2.5) yields 



 10 

g(y)  =  (–1)n–1 λ1λ2 ⋅ ⋅ ⋅ λn

cn 0
∞∫ p(x +  y) εx[ρ1, ρ2, … , ρn] dx. (8.1) 

Thus, we are interested in integrals of the form 

    
0
∞∫ p(x +  y) e−ρx dx,     (8.2) 

which can be viewed as the Laplace transform, for argument ρ, of the translated function 

p(y + •).  Following Dickson and Hipp (2001, p. 336), we consider the linear operator Tρ 

defined as follows.  For a number ρ with nonnegative real part, Re ρ ≥ 0, and for an 

integrable function ϕ, 

           (Tρϕ)(y) =  
0
∞∫ e–ρx ϕ(y + x) dx, y ≥ 0.   (8.3) 

Furthermore, we define 

S  =  
λ1λ2 ⋅ ⋅ ⋅ λn

cn Tρ j
j=1

n

∏ .     (8.4) 

We shall see that the operators T’s commute, 

Tρ Tξ  =  Tξ Tρ,      (8.5) 

and hence, the product of operators, ∏ j=1
n Tρ j

, is unambiguous.  A main goal in this 

section is to show that equation (8.1) is 

   g  =  Sp       (8.6) 

and that 

   h  =  Sω.       (8.7) 

In other words, the renewal equation (2.6) can be written as 

   φ  =  φ∗(Sp)  +  Sω.      (8.8) 
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 With all λ’s being identical, the renewal equation (8.8) was first given by Li 

(2003, Theorem 2).  See also Li and Garrido (2004).  We shall call (8.8) Li’s Renewal 

Equation.  For n = 1, (8.8) is (2.34) of Gerber and Shiu (1998). 

 To understand of the operator Tρ, recall the translation operator (shift operator) E 

that actuaries used to learn in finite differences. Since Exϕ(y) = ϕ(y + x), we have the 

operator equation 

   Tρ  =  
0
∞∫ e–ρx Ex dx.      (8.9)  

Actuarial authors such as Steffensen (1950, p. 186) and Freeman (1960, p. 127) have 

noted that Taylor's formula leads to the operator identity 

    Ex  =  exD,      (8.10) 

with which (8.9) becomes 

   Tρ  =  
0
∞∫ e–x(ρI – D) dx  =  (ρI  –  D)–1.    (8.11) 

That such operators commute with each other, i.e., that equation (8.5) holds, is an 

immediate consequence of (8.11). 

A rigorous discussion of (8.11) can be found in Section 1.3.3 of Butzer and 

Berens (1967).  It is shown that the operator equation is valid under the assumption that 

Re ρ >  0 and that the domain of the operators is the Banach space of bounded, uniformly 

continuous functions on [0, ∞).  As an operator-valued function of ρ, Tρ is called the 

resolvent of the operator D.  Because the differentiation operator D is an unbounded 

operator, some authors would call Tρ a pseudo-resolvent (Hille and Phillips 1957).   

 By (8.11), the partial fraction formula  
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1

ρ j − zj=1

n

∏   =  
j=1

n

∑ ( 1
ρi − ρ ji=1,i≠ j

n

∏ ) 1
ρj − z

   (8.12) 

can be translated into the operator identity 

Tρ j
j=1

n

∏   =  
j=1

n

∑ ( 1
ρi − ρ ji=1,i≠ j

n

∏ ) Tρ j
.    (8.13) 

 We can now show that (8.1) is the same as (8.6).  The divided difference in the 

integrand of (8.1) can be expanded using formula (5.2), with k = n, η(.) = εx(.) and r = ρ.  

Then the integral in (8.1) becomes a linear combination of n integrals of the form (8.2).  

Note that the denominator in (5.2) is of the form rj – ri, while the denominator in (8.13) is 

of the form ρi – ρj; this difference accounts for the factor of (–1)n–1 in (8.1).  We apply 

(8.13) and (8.4) to conclude that the right-hand of (8.1) is (Sp)(y).  This proves equation 

(8.6). 

 Similarly, we can derive (8.7).  Hence, we have proved Li’s renewal equation 

(8.8). 

 

Remark  Li’s renewal equation (8.8) follows from the integro-differential equation (4.4), 

if it can shown that, for each integrable function ϕ,  

   S[γ(D)ϕ  −  ϕ∗p]  =  ϕ  −  ϕ∗(Sp). 

This is the approach given by Gerber and Shiu (2003, 2005), who show inductively that, 

if Sk =  Tρ j
j=1

k

∏ , then 

 Sk[γ(D)ϕ  −  ϕ∗p]  =  (−1)k γ[ρ1, ρ2, … , ρk, D]ϕ  −  ϕ∗(Skp),     k = 1, 2,  ,,, , n. 

Note that γ[ρ1, ρ2, … , ρn, D] = γnI, and the coefficient γn is given by (6.5). 
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9. The Laplace Transform of g 

 As a check, let us take the Laplace transform of (8.8) and derive (6.4).  Observe 

that, for an integrable function ϕ,  

      
) ϕ (ξ)  =  (Tξϕ)(0), Re ξ ≥ 0.   (9.1) 

Thus, taking the Laplace transform of (8.8) and applying (9.1) yields 

   ˆ φ (ξ)   =  
(Tξ (Sω))(0)

1− (Tξ (Sp))(0)
.     (9.2) 

Now, it follows from (8.13), (9.1) and (5.2) that 

  [( Tr j
j=1

m

∏ )ϕ](0)  =  (–1)m–1
 
) ϕ [r1, r2, … , rm].     (9.3) 

Hence,  

(Tξ(Sp))(0)  =  ((TξS)p)(0)  =   
λ1λ2 ⋅ ⋅ ⋅ λn

cn (−1)n
 
) p [ξ, ρ1, ρ2, … , ρn]. 

 (9.4) 

and  

(Tξ(Sω))(0)  =   
λ1λ2 ⋅ ⋅ ⋅ λn

cn (−1)n
 
) ω [ξ, ρ1, ρ2, … , ρn].  (9.5) 

Therefore, (6.4) follows from (9.2), (9.4), (9.5) and (6.5). 

 We now derive an alternative formula for ˆ g (ξ).  It follows from the identity  

  
) 
p  = γ + (  

) 
p  – γ) that 

          
) 
p [ξ, ρ1, … , ρn]  =  γ[ξ, ρ1, … , ρn]  +  (  

) 
p  – γ)[ξ, ρ1, … , ρn].  (9.6) 

The first term on the right-hand side of (9.6) is the coefficient γn, which is given by (6.5), 

while the second term can be evaluated using (5.1).  Thus, 
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) 
p [ξ, ρ1, … , ρn]  =  

−c
λ jj=1

n

∏   +  [  
) 
p (ξ)  –  γ(ξ)]

1
ξ −ρkk=1

n

∏ ,  (9.7)  

applying which to (9.4) yields  

   
) 
g (ξ)  =  (ΤξSp)(0)  =  1  +  

λ1λ2 ⋅ ⋅ ⋅λ n

cn (ρ1 −ξ)(ρ2 − ξ) ⋅ ⋅ ⋅(ρn −ξ)
 [  

) 
p (ξ)  –  γ(ξ)]. (9.8) 

 Two interesting results immediately follow from formula (9.8).  The first result is 

that, for δ > 0, 

          E[e–δT 1(T<∞) ⎢U(0) = 0] =  
0
∞∫ g(y) dy   

    =   
) 
g (0) 

    =  1  +  
λ1λ2 ⋅ ⋅ ⋅ λn

cnρ1ρ2 ⋅ ⋅ ⋅ρn
[1  –  

j=1

n

∏ (1 + 
δ
λ j

)] 

    =  1  –  
(λ k +δ) −  λ1λ2 ⋅ ⋅ ⋅λ n

k=1

n

∏

cnρ1ρ2 ⋅ ⋅ ⋅ρn
,   (9.9) 

which is formula (10) in Li (2003).  For n = 1, this is formula (3.9) of Gerber and Shiu 

(1998).  For n = 2, it is the last formula in Dickson and Hipp (2001).  The last part of 

Theorem 4 in Li and Garrido (2004) evaluates the limit δ ↓ 0 in the Erlang(n) case.  

 The second result following from (9.8) is that to solve for a negative ξ satisfying 

the equation   
) 
g (ξ) = 1 is equivalent to solve for a negative ξ satisfying (4.2).  For n = 1, 

this equivalence has been pointed out in Remark (v) on page 54 of Gerber and Shiu 

(1998).  Such a ξ, the negative of which is the adjustment coefficient R, is needed for 

obtaining an asymptotic formula for φ(u); see Section 4 of Gerber and Shiu (1998). 
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