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ABSTRACT 

This paper develops mathematical transformations of variable interest credit 
and mortality charge scales to simplify calculation of policyholder cash value 
accumulation and related amounts. These transformations are of theoretical 
as well as practical interest. Additionally, they suggest new product designs. 

INTRODUCTION 

Many life insurance products today accumulate policyholder cash values 
by applying interest credits and mortality charges that are subject to change 
from month to month. The possibility of fluctuating credits and charges 
necessitates the use of a complex cash value accumulation formula. A dis- 
advantage of complex formulation is that computation of associated premi- 
ums is quite involved. However, mathematical transformations applied to 
scales of interest credits and mortality charges can remove the complexity 
from the cash value accumulation formula, thereby greatly easing related 
premium and other computations. 

This paper develops these transformations, illustrates some practical uses, 
and makes the case that these transformations also are of theoretical interest. 
Finally, two product possibilities resulting from these transformations are 
presented. 

CASH VALUE ACCUMULATION FORMULAS 

The following formula is typically used for accumulating cash values 
under a life insurance product with variable, nonguaranteed interest credits 
and mortality charges: 

[0V + P - Q (1/(1 + i g )  - O V  - P)] (1 + i c )  = 1 V .  (1) 

Formula (1) is more complex than is formula (2), used for fully guaranteed 
products and taught in life contingencies courses: 

[(0V + P) ( l+ ig )  - Q] / ( 1 - Q )  = 1v. (2) 

Definitions of the terms used in these formulas are 

0V cash value at the beginning of the period 
1V cash value at the end of the period 
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20 LIFE INSURANCE TRANSFORMATIONS 

P premium paid at the beginning of the period, after deducting pre- 
mium loads 

ig guaranteed interest rate 
ic current interest rate 
Q current mortality charge per $1 of coverage for the period. 

Formula (2) is mathematically more desirable than formula (1) because 
of computational ease. Resulting from it are many of the relationships be- 
tween insurance values and annuity values that are taught in life contingen- 
cies courses. Commutation functions can be used to calculate values of P 
to be used with formula (2) to produce any desired plan of insurance. 

If formula (1) could be made to look like formula (2), via transformations 
of ic, ig, and Q, then it would gain the advantages possessed by formula 
(2). 

In the remainder of this paper, the symbol A will represent the single 
premium for $1 of life insurance and the symbol a will represent the present 
value of a life annuity due of $1 per period. Where the value at a particular- 
age is required, the age will be indicated in parentheses following the symbol. 

The Simple Case 

Often insurers are called upon to make calculations using formula (1) 
while assuming that ic will always equal ig. Letting i = ic = ig, we obtain 
a simple case of formula (1) which can be written as 

(0V + P) ( l + i )  = (1V + Q) / (1 + Q). (3) 

But formula (2) can be written as 

(0V + P) (1+i)  = Q + ( l - Q )  1V. (4) 

We require a transformation of Q into Q' such that formula (4), written 
with Q', is equivalent to formula (3). In other words the following relation- 
ship must hold: 

( 1 V +  a ) / ( 1  + Q) = Q' + (1 - Q ' ) IV.  (5) 

Formula (5) simplifies to 

Q' = Q / ( 1  + Q). (6) 

In the simple case where ic = ig = i, the transformation (6) of the scale 
of cost of insurance will simplify the cash value accumulation formula. 

To illustrate a practical use of the simple-case transformation, imagine a 
purely back-end loaded Excess Interest Whole Life product guaranteeing 5.5 
percent interest on the cash value accumulation. The insurer wishes to de- 
termine gross premiums which will reproduce endowment at age 95 coverage 
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using 5.5 percent and the cost of insurance scale guaranteed for use with 
the cash value accumulation formula. This might be best accomplished for 
issue ages 0 through 94 in the following steps: 

1. Set Q(94) equal to 1 (to allow for the endowment). 
2. Set A(95) equal to 1. 
3. Set Q' (x) equal to Q(x)/(1 + Q(x)) for x equal 0 through 94. 
4. Calculate A(x)  fo rx  equal 94 through 0, with the recursion formula 

A(x)  = [a ' (x)  + ( 1 - a ' ( x ) ) A ( x + l ) ] / 1 . 0 5 5 .  
5. Calculate the gross premiums as dA(x) / (1 - A(x)) ,  where d is 

.055 / 1.055. 

These steps are illustrated in Table 1 in spreadsheet form. Alternatively, 
commutation functions could have been calculated from Q(x) and used in 
computing premiums. Either way, the resulting gross premiums will be exact 
to as many decimal places as are carried through the process. 

TABLE 1 

THE SIMPLE CASE 
INTEREST RATE 0.055 

COl SCALE 1980 CSO MALE ALB 

Endowment 
at 95 

Age . COl Per Thousand . Q'(x) . A(x) . Premium 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

2.63 
1.03 
0.99 
0.97 
0.93 
0.88 
0.83 
0.78 
0.75 
0.74 
0.75 
0.81 
0.92 
1.07 
1.24 
1.42 
1.59 
1.72 
1.82 
1.88 
1.90 
1.90 
1.88 
1.84 
1.80 
1.75 
1.72 
1.71 
1.70 
1.72 

0.002623 
0.001028 
0.000989 
0.000969 
0.000929 
0.000879 
0.000829 
0.000779 
0.000749 
0.000739 
0.000749 
0.000809 
0.000919 
0.001068 
0.001238 
0.001417 
0.001587 
0.001717 
0.001816 
0.001876 
0.001896 
0.001896 
0.001876 
0.001836 
0.001796 
0.001746 
0.001717 
0.001707 
0.001697 
0.001717 

0.043320 
0.043193 
0.044586 
0.046094 
0.047707 
0.049447 
0.051333 
0.053371 
0.055571 
0.057921 
0.060412 
0.063032 
0.065743 
0.068503 
0.071278 
0.074051 
0.076815 
0.079579 
0.082380 
0.085249 
0.088227 
0.091356 
0.094664 
0.098178 
0.101929 
0.105928 
0.110200 
0.114741 
0.119549 
0.124639 

2.36 
2.35 
2.43 
2.52 
2.61 
2.71 
2.82 
2.94 
3.07 
3.21 
3.35 
3.51 
3.67 
3.83 
4.00 
4.17 
4.34 
4.51 
4.68 
4.86 
5.04 
5.24 
5.45 
5.68 
5.92 
6.18 
6.46 
6.76 
7.08 
7.42 



TABLE 1--Continued 

Endowment 
at 95 

Age COl Per Thousand Q'(x) AOc) Premium 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 

1.75 
1.80 
1.87 
1.95 
2.05 
2.17 
2.32 
2.49 
2.68 
2.90 
3.15 
3.42 
3.71 
4.03 
4.37 
4.73 
5.12 
5.53 
5.97 
6.46 
7.00 
7.63 
8.33 
9.13 

10.01 
10.96 
11.97 
13.04 
14.18 
15.42 
16.80 
18.36 
20.12 
22.09 
24.27 
26.62 
29.13 
31.79 
34.65 
37.81 
41.37 
45.43 
50.08 
55.34 
61.10 
67.25 
73.70 
80.37 
87.32 
94.76 

102.94 
112.09 
122.41 
133.84 
146.12 

0.001746 
0.001796 
0.001866 
0.001946 
0.002045 
0.002165 
0.002314 
0.002483 
0.002672 
0.002891 
0.003140 
0.003408 
0.003696 
0.004013 
0.004350 
0.004707 
0.005093 
0.005499 
0.005934 
0.006418 
0.006951 
0.007572 
0.008261 
0.009047 
0.009910 
0.010841 
0.011828 
0.012872 
0.013981 
0.015185 
0.016522 
0.018028 
0.019723 
0.021612 
0.023694 
0.025929 
0.028305 
0.030810 
0.033489 
0.036432 
0.039726 
0.043455 
0.047691 
0.052438 
0.057581 
0.063012 
0.068641 
0.074391 
0.080307 
0.086557 
0.093332 
0.100792 
0.109059 
0.118041 
0.127491 

0.130000 
0.135640 
0.141558 
0.147753 
0.154233 
0.161000 
0.168053 
0.175387 
0.183004 
0.190907 
0.199091 
0.207553 
0.216297 
0.225330 
0.234651 
0.244269 
0.254193 
0.264426 
0.274983 
0.285869 
0.297080 
0.308613 
0.320441 
0.332551 
0.344915 
0.357518 
0.370355 
0.383432 
0.396756 
0.410333 
0.424156 
0.438203 
0.452432 
0.466799 
0.481262 
0.495784 
0.510356 
0.524979 
0.539670 
0.554430 
0.569230 
0.584012 
0.598694 
0.613173 
0.627357 
0.641202 
0.654710 
0.667926 
0.680925 
0.693785 
0.706542 
0.719194 
0.731707 
0.744036 
0.756177 

7.79 
8.18 
8.60 
9.04 
9.51 

10.00 
10.53 
11.09 
11.68 
12.30 
12.96 
13.65 
14.39 
15.16 
15.98 
16.85 
17.77 
18.74 
19.77 
20.87 
22.03 
23.27 
24.58 
25.97 
27.45 
29.01 
30.66 
32.42 
34.29 
36.28 
38.40 
40.66 
43.08 
45.64 
48.37 
51.26 
54.34 
57.62 
61.12 
64.87 
68.89 
73.19 
77.77 
82.64 
87.77 
93.17 
98.85 

104.86 
111.25 
118.12 
125.52 
133.52 
142.18 
151.54 
161.68 
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TABLE 1--Continued 

Endowment 
at 95 

Age COl Per Thousand Q'(x) A(x) Premium 

85 
86 
87 
88 
89 
90 
91 
92 
93 
94 

158.98 
172.21 
185.73 
199.53 
213.69 
228.43 
244.11 
261.43 
282.13 
309.97 

0.137172 
0.146910 
0.156637 
0.166340 
0.176066 
0.185952 
0.196212 
0.207248 
0.220047 
0.236623 

0.768216 
0.780337 
0.792818 
0.806042 
0.820519 
0.836939 
0.856237 
0.879732 
0.909326 
0.947867 

172.79 
185.20 
199.50 
216.65 
238.33 
267.58 
310.50 
381.34 
522.81 
947.87 

The General Case 

Usually formula (1) is applied with ic not equal to ig. Examples would 
include illustrations of various prospective interest-crediting rate patterns as 
part of a sales proposal and day-to-day administration of products using this 
type of formula. 

The following develops the transformations required to simplify formula 
(1) to formula (2) for the general case where ic is not equal to ig. 

Formula (1) can be rewritten as 

(0V + P) (1 +ic) = [1V + a ( l+ic)  / (1 +ig)] / (1 + a). (7) 

As a first simplifying step, let Q" = Q (1 +ic) / (1 +ig) and then rewrite 
(7) as 

(OV + P) (l +ic) = (1V+ Q") / [1 + Q" (l +ig) / (l +ic)]. (8) 

We require a transformation such that formula (8) can be rewritten in the 
form 

(0V + ?) (1+i') = (1V + Q") / (1 + Q"). (9) 

Such a transformation would yield the simple case discussed previously; 
compare formula (3) with formula (9). To obtain the simple case, the following 
relationship must hold: 

(1+i') (1+ Q") = (l+ic)  [1 + Q" ( l+ig) / (l+ic)]. (10) 

Formula (10) simplifies to 

i' = (ic + Q"ig) / (1 + Q"). (11) 

The transformation (11) gives the simple case, so we also require the 
transformation (6) on Q": 

Q' = Q" / (1 + Q"). (12) 
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To summarize, we have set the following values: 

a "  = a (1+ic)  / ( l + i g )  

i t 

Q, 

Q" is an intermediate 
eliminated: 

i' = [ic ( t + i g )  

Q' = Q 

= (ic + Q"ig) / (1  + Q") 

= Q " / ( 1  + Q"). 

value which may ease calculations but can be 

+ Q ( l + i c )  ig] / [1 + ig + Q ( l+ ic ) ]  

(1+ic)  / [1 + ig + Q (1+ic)].  

(13) 

In the general case where ic is not equal to ig, the transformations (13) 
will simplify the cash value accumulation formula. If ic does equal ig, (13) 
becomes (6), the simple-case transformation. 

To illustrate a practical use of the general-case transformation, imagine a 
purely back-end loaded Excess Interest Whole Life product with a guaranteed 
interest rate on a fund of 4 percent. A prospective insured aged 35 wishes 
to see an illustration of whole life coverage with an interest crediting rate 
of 10 percent. This might be best accomplished for all durations in the 
following steps: 

1. Set Q(99) equal to 1. 
2. Set A(100) equal to 1. 
3. Set a(99) equal to 1. 
4. Calculate Q'(x) as in (13) forx equal 35 through 99. 
5. Calculate i'(x) as in (13) for x equal 35 through 99. 
6. Calculate A(x) for x equal 99 through 35 with the recursion formula 

A(x) = [Q'(x) + (1-Q'(x))A(x + l)] / (1+ i'(x)). 
7. Calculate a(x) for x equal 98 through 35 with the recursion formula 

a(x) = a(x+l) / (1 +i'(x)) / (1-Q'(x)) + 1. 
8. Calculate P(x) for x equal 99 through 35 as A(x) /a(x). P(35) is the illustrative whole 

life premium. 
9. Calculate the fund accumulations at the end of policy year t (t = 0 through 64) as 

(P(35 + t) - P(35)) a(35 +t). 

The last formula (for the fund accumulations) will be recognized as a 
formula for terminal reserves under fully guaranteed life insurance. Under 
the transformations (6) and (13), fund accumulations are mathematically the 
same as terminal reserves. 

These steps are illustrated in Table 2 in spreadsheet form. Alternatively, 
commutation functions could have been calculated using i'(x) and Q'(x) and 
used in making computations. Either way, the resulting premiums and fund 
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accumulations will be exact to as many decimal places as are carried through 
the process. 

In general, i'(x) varies with the age x. The effect of having ic and ig 
constant by policy duration is that the i'(x) and Q'(x) columns can be cal- 
culated once and used for any issue age. If ic or ig is not constant by policy 
duration, then i'(x) and Q'(x) must be recalculated each time the issue age 
changes. 

TABLE 2 

THE GENERAL CASE 
INTEREST RATES 

GUARANTEED 
CURRENT 

0.04 
0.10 

Age 

35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 

Curren! I 
COl ~r  i 

Thousand ~ Q'~) i'~) A(J0 a(X) 

2.00 0.002111 [0.099873 0.052458 10.454430 
2.06 0.002174 !0.099870 0.055704 10.420672 
2.14 0.002258 0.099864 0.059222 10.384087 
2.24 0.002364 0.099858 0.063020 10.344586 
2.36 0.002490 0.099851 0.067108 10.302069 
2.50 0.002637 0.099842 0.071497 10.256425 
2.65 0.002795 0.099832 0.076199 10.207522 
2.82 0.002974 0.099822 0.081238 10.155114 
3.01 10.003174 10.099810 0.086632 10.099025 
3.24 0.003415 ~0.099795 0.092398 10.039054 
3.50 0.003688 0.099779 0.098540 9.975175 
3.82 0.004024 0.099759 0.105072 9.907247 
4.19 0.004412 0.099735 0.111980 9.835400 
4.60 0.004842 0.099709 0.119262 9.759662 
5.04 0.005303 0.099682 0.126926 9.679952 
5.50 0.005784 0.099653 0.134992 9.596069 
5.96 0.006264 0.099624 0.143491 9.507682 
6.45 0.006776 0.099593 0.152477~ 9.414227 
6.97 0.007318 0.099561 0.161984! 9.315348 
7.56 0.007933 0.099524 0.172052 9.210637 
8.25 0.008650 0.099481 0.182692 9.099980 
9.03 0.009461 0.099432 0.193893 8.983486 
9.90 0.010363 0.099378 0.205657 8.861134 

10.88 0.011377 0.099317 0.217992 8.732856 
11.99 0.012523 0.099249 0.230892 8.598688 
13.25 0.013821 0.099171 0.244345 8.458776 
14.69 0.015300 0.099082 0.258326 8.313365 
16.31 0.016958 0.098982 0.272795 8.162878 
18.11 0.018795 0.098872 0.287718 8.007675 
20.09 0.020807 0.098752 0.303067 7.848043 
22.25 0.022993 0.098620 0.318822 7.684182 
24.56 0.025319 0.098481 0.334974 7.516195 
27.04 0.027805 0.098332 0.351544 7.343856 
29.79 0.030546 0.098167 0.368555 7.166934 
32.89 0.033618 0.097983 0.385979 6.985711 
36.45 0.037122 0.097773 0.403753 6.800839 
40.58 0.041155 0.097531 0.421764 6.613508 
45.26 0.045684 0.097259 0.439846 6.425435 

p(,x') 

5.02 
5.35 
5.70 
6.09 
6.51 
6.97 
7.47 
8.00 
8.58 
9.20 
9.88 

10.61 
11.39 
12.22 
13.11 
14.07 
15.09 
16.20 
17.39 
18.68 
20.08 
21.58 
23.21 
24.96 
26.85 
28.89 
31.07 
33.42 
35.93 
38.62 
41.49 
44.57 
47.87 
51.42 
55.25 
59.37 
63.77 
68.45 

Fund 
@t 

0.00 
3.42 
7.12 

11.11 
15.41 
20.03 
24.98 
30.28 
35.96 
42.02 
48.49 
55.36 
62.63 
70.29 
78.35 
86.84 
95.78 

105.24 
115.24 
125.83 
137.03 
148.82 
161.19 
174.17 
187.75 
201.90 
216.61 
231.84 
247.54 
263.69 
280.26 
297.26 
314.69 
332.59 
350.93 
369.63 
388.58 
407.60 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
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TABLE 2--Continued 

C u n e n t  i 
COl ~r F u n d  

A g e  i T h o u s a n d  i Q'~) i i'~) i A(X) i a(X) i P(X) t @ t i t 

73 50.43 0.050638 0.096962 0.457858 6.238089 73.40 426.56 38 
74 55.99 0.055909 0.096645 0.475703 6.052470 78.60 445.33 39 
75 61.85 0.061401 0.096316 0.493351 5.868894 84.06 463.90 40 
76 67.98 0.067079 0.095975 0.510833 5.687038 89.82 482.30 41 
77 74.50 0.073042 0.095617 0.528213 5.506229 95.93 500.58 42 
78 81.53 0.079388 0.095237 0.545524 5.326138 102.42 518.80 43 
79 89.26 0.086265 0.094824 0.562767 5.146733 109.34 536.94 44 
80 97.85 0.093789 0.094373 0.579890 4.968557 116.71 554.96 45 
81 107.62 0.102196 0.093868 0.596800 4.792568 124.53 572.75 46 
82 1 1 8 . 5 5  0.111419 0.093315 0.613301 4.620797 132.73 590.12 47 
83 130.39 0.121198 0.092728 0.629220! 4.455047 141.24 606.87 48 
84 142.78 0.131203 0.092128 0.644478i 4.296105 150.01 622.92 49 
85 1 5 5 . 4 5  0.141202 0.091528 0.659128! 4.143395 1159.08 638.34 50 
86 168.27 0.151088 0.090935 0.673331 3.995240 168.53 653.28 51 
87 181.32 0.160920 0.090345 0.687317 3.849173 178.56 668.00 52 
88 1 9 5 . 0 6  0.171028 0.089738 0.701355 3.702364 189.43 682.78 53 
89 210.12 0.181832 0.089090 0.715664 3.552436 201.46 697.84 54 
90 i 227.00 0.193611 0.088383 0.730401 3.397629 214.97 713.35 55 
91 246.13 0.206557 0.087607 0.745726 3.236080 230.44 729.49 56 
92 266.55 0.219925 0.086805 0.761868 3.065091 248.56 746.49 57 
93 285.47 0.231915 0.086085 0.779511 2.877095 270.94 765.07 58 
94 311.27 0.247684 0.085139 0.800303 2.654244 301.52 786.98 59 
95 400.00 0.297297 10.082162 0.825126 2.386077 345.81 813.15 60 
96 500.00 0.345912 i0.079245 0.847617 2.134559 397.09 836.91 61 
97 600.00 0.388235 10.076706 0.869722 , 1.872022 464.59 860.33 62 
98 700.00 0.425414 0.074475 0.896096 1.534759 583.87 888.39 63 
99 1000.00 0.514019 0.069159 0.935315 1.000000 935.31 930.30 64 

100 - -  - -  - -  1 . 0 0 0 0 0 0  - -  - -  1000.00 65 

Option B Universal Life 
Universal Life insurance products almost always offer the insured the 

choice of "Option A" or "Option B' coverage (this terminology is common, 
but not ubiquitous). "Option B" is herein taken to mean that the death 
benefit equals the face amount plus the fund accumulation. An analogous 
design is possible with fully guaranteed insurance, but has rarely been mar- 
keted, possibly due to administrative difficulties. With the advent of Uni- 
versal Life, Option B coverage gained a significant portion of the market. 

The typical Option B accumulation formula is 

{0V + P - a [(1 + 0V + P) / ( l + i g )  - 0V - P]} (1+ic) = 1V. (14) 

In the simple case, where ic equals ig equals i, (14) becomes 

(OV + P) ( l + i + Q i )  = 1V + Q. (15) 

Formula (15) will take the form of formula (3) (the level-death-benefit, 
simple-case formula) if the following relationship holds: 

l + i + Q i  = (1+i ' )  ( I+Q).  (16) 
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Solving for i ', 

i' = i - Q / ( I + Q )  (17) 

With the transformation (17), (15) becomes 

(OV + P) (1+i ' )  = (1V + Q) / (1 + Q). (18) 

This is formula (3), except that i is now i' ,  so the level death benefit 
simple-case transformation (6) will complete the task. 

Tosummarize, if ic equals !g equals i, the transformations 

i' = i - Q / ( I + Q )  
(19) 

Q' = Q I ( 1  + Q) 

allow the Option B accumulation formula (14) to be rewritten as 

[(0V + P) (1+i ' )  - Q'] / ( 1 - Q ' )  = 1V. (20) 

This is in the form of (2), and is the formula which greatly eases premium 
and cash value calculations. 

In the general case, ig and ic are not equal. For notational ease, let r 
equal (1 +ic)/(1 +ig).  Then (14) can be rewritten as 

s 

(0V + P ) [ ( I + Q )  ( l+ ic )  - Or] = 1V + Qr. (21) 

Now let Q" equal Qr. Then we have 

(0V + P) [(1 + Q"/r) (1 +ic) - a"] = 1V + a".  (22) 

Formula (22) simplifies to 

(OV + P) ( l + i c + Q " i g )  = 1V + Q". (23) 

Letting i" equal (ic + Q"ig) / (1 + Q"), formula (23) becomes 

(OV + P) ( l + i " + a " i " )  = 1V + Q". (24) 

Since (24) is in the form of (15), the transformations (19) will complete 
the task. 

To summarize, we have set 
Q "  = 

i" = 

i' = 

Q '  = 

the following values: 

Q ( l+ ic )  / ( l+ ig )  

(ic + Q"ig) / (1 + a") 

i" - Q" / ( I+Q")  

Q " / ( 1  + Q"). 

Q" and i" are intermediate values which may ease calculations but can be 
eliminated: 
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Q' = Q ( l+ ic )  / [1 + ig + Q ( l+ ic) ]  
(25) 

i' = [ ( l+ig)  ic - Q ( l+ ic )  (1- /g)]  / [1 + ig + Q ( l+ic)] .  

In the Option B general case where ic is not equal to ig, the transfor- 
mations (25) will simplify the cash value calculations. If ic does equal ig, 
(25) becomes (19). 

To illustrate a practical use of the Option B transformation, imagine a 
purely back-end loaded Universal Life product with a guaranteed interest 
rate of 4 percent. A prospective insured aged 35 wishes to see an Option B 
illustration which will provide a cash value at age 65 equal to $2,000 for 
each $1,000 of face amount at an interest crediting rate of 10 percent. Using 
annual time periods (monthly periods are treated later), this might be best 
accomplished in the following steps: 

1. Set A(65) equal to 2. 
2. Set a(64) equal to 1. 
3. Calculate Q'(x) as in (25) forx equal 35 through 64. 
4. Calculate i'(x) as in (25) forx equal 35 through 64. 
5. Calculate A(x) for x equal 64 through 35 with the recursion formula 

A(x) = [a'(x) + (1-a'(x)) A(x + l)] / (l +i'(x)). 
6. Calculate a(x) for x equal 63 through 35 with the recursion formula 

a(x) = a(x + l) / (l +i'(x)) ( 1 - a ' ( x ) )  + 1. 
7. Calculate P(x) forx equal 64 through 35 as A(x) /a(x). P(35) is the premium for the 

desired coverage. 
8. Calculate the fund accumulations at the end of policy year t 

(t = 0 through 29) as (P(35 +t) - P(35)) a(35 +t). 

These steps are illustrated in Table 3 in spreadsheet form. Alternatively, 
commutation functions could have been calculated; this approach is illus- 
trated in Table 4. Results are exact with either approach, as evidenced by 
the agreement of entries in Table 3 and Table 4. 

Monthly Application 

Universal Life policies generally apply the cash value accumulation formula 
(1) on a monthly basis. The terms Q, ig, and ic are monthly rates obtained 
from annual rates, usually by dividing by 12 or by a geometric conversion. 

If the transformations developed in this paper had to be applied separately 
to each month under consideration, the number of computations would in- 
crease twelve-fold over the case of annual application. Such an increase 
would greatly diminish the usefulness of the procedure. 

Fortunately, there is a shortcut. The shortcut arises from the fact that, 
although the accumulation is monthly, the variables Q, ig, and ic are invariably 
held constant for all 12 months of any particular policy year. (This is not to 
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TABLE 3 

OPTION B UNIVERSAL LIFE 
INTEREST RATES 

GUARANTEED 0.04 
CURRENT 0.10 

Current J I 
COI ~ r  ~ Fund ! 

Age Thousand Q'(X) i'(X) A(X) I a(X) ~X)  @ t t 

35 2.00 0.002111 0.097762 0.153585!10.358745 14.83 0.00 0 
36 2.06 0.002174 0.097695 0.1668411 10.295411 16.21 14.20 1 
37 - 2.14 0.002258 0.097606 0.181360 10.225763 17.74 29.75 2 
38 2.24 0.002364 0.097495 0.197249 10.149174 19.44 46.771 3 
39 2.36 0.002490 0.097361 0.214624J 10.064959 21.32 65.40 4 
40 2.50 0.002637 0.097205 0.233611 9.972360 23.43 85.76 5 
41 2.65 0.002795 0.097037 0.254353 9.870545 25.77 108.01 6 
42 2.82 0.002974 0.096848 0.277014 9.758594 28.39 132.33 7 
43 3.01 0.003174 0.096636 0.301766 9.635498 31.32 158.90 8 
44 3.24 0.003415 0.096380 0.328797 9.500148 34.61 187.94! 9 
45 3.50 0.003688 0.096090 0.358295 9.351327 38.31 219.65 ! 10 
46 3.82 0.004024 0.095734 0.390476 9.187697 42.50 254.25 11 
47 4.19 0.004412 0.095323 0.425546 9.007790 47.24 291.991 12 
48 4.60 0.004842 0.094868 0.463744 8.809988 52.64 333.121 13 
49 5.04 0.005303 0.094379 0.505343 8.592507 58.81 377.951 14 
50 5.50 0.005784 0.093869 0.550655 8.353377 65.92 426.80~ 15 
51 5.96 0.006264 0.09336010.600031 8.090426 74.17 480.08 16 
52 6.45 0.006776 0.092818 0.653882 7.801256 83.82 538.22 17 
53 6.97 0.007318 0.092243 0.712626 7.483238 95.23 601.68 18 
54 7.56 0.007933 0.091591 0.776727 7.133473 108.88 670.96 19 
55 8.25 0.008650 0.090830!0.846652 6.748782 125.45 746.59 20 
56 9.03 0.009461 0.089972i 0.922886 6.325667 145.90 829.10 21 
57 9.90 0.010363 0.089016 1.005977 5.860268 171.66 919.09 22 
58 10.88 0.011377 0.087941 1.096524 5.348331 205.02 1017.23 23 
59 11.99 0.012523 0.08672611.195174 4.785165 249.77 1124.23 24 
60 13.25 0.013821 0.085350 I 1.302616 4.165602 312.71 1240.85 25 
61 14.69 0.015300 0.083782: 1.419593 3.483937 407.47 1367.94 26 
62 16.31 0.016958 0.082024 1.546897 2.733874 565.83 1506.36 27 
63 18.11 0.018795 0.080078Jl.685404i 1.908458 883.12 1657.11 28 
64 20.09 0.020807 0.077945 1.836080 1.000000 1836.08 1821.25 29 
65 22.25 0.022993 0.075628 2.000000 i 30 

say that insurers change crediting rates only on policy anniversaries. It is to 
say that, in calculating required premiums or making illustrations, midyear 
changes in these variables are not assumed.) The transformation (6) (13), 
(19), or (25) needs be applied only once for each policy year to the monthly 
values of Q, ig, and ic applicable for that year. 

When monthly applications of the cash value accumulation formula are 
in effect, the values of Q' and i' alone will not suffice for making calcula- 
tions. The present value of $1 of annual premium payable monthly for one 
year is not $1, but instead is 

( 1 )  ~ [X-Q'~' (26, 
,~o kl+i ' ]  

where Q' and i' are based on monthly values of Q, ig, and ic. 
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TABLE 4 

0P'nON B UNrVERSAL Li~  
COMMUTATION FUNCTION APPROACH 

INTEREST RATES 
GUARANTEED 0.04 

CURRENT 0.10 

Current 
CO l  per Fund 

Age  Thousand , Q ' (X)  L i , (x )  , D ( x )  , C(X) , P{x)* , @ t** , t 

35 2.00 0.002111 0.097762 1.000000 0.001923 14.83 0.00 0 
36 2.06 0.002174 0.097695 0.909021 0.001800 16.21 14.20! 1 
37 2.14 0.002258 0.097606 0.826317 0.001700 17.74 29.75! 2 
38 2.24 I 0.002364 0.097495:0.751136 0.001618 19.44 46.77 3 
39 2.36 ! 0.002490 0.097361 0.682792 0.001549 21.32 65.401 4 
40 2.50 i 0.002637 0.097205 0.620663 0.001492 23.43 85.761 5 
41 2.65 0.002795 0.097037 0.564185 0.001437 25.77 108.01! 6 
42 2.82 : 0.002974 0.096848 0.512843 0.001390 28.39 132.331 7 
43 3.01 0.003174 0.096636 0.466171 0.001349 31.32 158.90 8 
44 3.24 0.003415 0.096380 0.423743 0.001320 34.61 t87.94 9 
45 3.50 0.003688 0.096090 0.385172 0.001296 38.31 219.65 10 
46 3.82 0.004024 0.095734 0.350110 0.001286 42.50 254.25 11 
47 4.19 0.004412 0.095323 0.318235 0.001282 47.24 291.99 12  
48 4.60 0.004842 0.094868 0.289258 0.001279 52.64 333.12 13 
49 5.04 0.005303 0.094379 0.262915 0.001274 58.81 377.95 14 
50 5.50 0.005784 0.093869 0.238967 0.001264 65.92 426.80 15 
51 5.96 0.006264 0.093360 0.217197 0.001244 74.17 480.08 16 
52 6.45 0.006776 0.092818 0.197407 0.001224 83.82 538.22 17 
53 6.97 0.007318 0.092243 0.179416 0.001202 95.23 601.68 18 
54 7.56 0.007933 0.091591 0.163062 0.001185 108.88 670.96 19 
55 8.25 0.008650 0.090830 0.148195 0.001175 125.45 746.59 20 
56 9.03 0.009461 0.089972 0.134680 0.001169 145.90 829.10 21 
57 9.90 0.010363 0.089016 0.122394 0.001165 171.66 919.09 22 
58 10.88 0.011377 0.087941 0.111225 0.001163 205.02 1017.23 23 
59 11.99 0.012523 0.086726 0.101071 0.001165 249.77 1124.23 24 
60 13.25 0.013821 0.085350 0.091840 0.001169 312.71 1240.85 25 
61 14.69 0.015300 0.083782 0.083449 0.001178 407.47 1367.94 26 
62 16.31 0.016958 0.082024 0.075820 0.001188 565.83 1506.36 27 
63 18.11 0.018795 10.080078 0.068884 0.001199 883.12 1657.11 I 28 
64 20.09 0.020807 0.077945 0.062578 0.001208 1836.08 1821.25 29 
65 22.25 0.022993 0.075628 0.056845 0.001215 30 

• P(x)  = I000  [C(x) + C ( x +  l )  + " ' "  + C(64)  + 2.0(65)] 1 [D0c) + D 0 r +  I)  + " ' "  + D(64)]  
" ' F U N D ( l )  = (P(x+t)-PC)) [ O ( x + t )  + D(x+t+ I)  + ' ' " + D(64)  ] / O(x+t) 

Also, the present value of $1 of death benefit for one year is not Q' 
/ (1 +i ' ) ,  but instead is 

( Q' ) 
~ \1+i']" t = 0  

(27) 

To simplify things, let i" equal ((1 + i ' ) / (1 -  0'))  12 - 1 .  Then (26) can be 
rewritten as 

( 1 - v " ) / ( 1 - v  "n) (28) 
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where v" equals 1/(1 +i"). Refer to the expression (28) as a "~'2~. Then (27) 
can be rewritten as 

a"O2~ v'Q' (29) 
where v' equals 1/(1 +i ' ) .  

These considerations suggest the following commutation function definitions: 

D(O) = 1 

D(x) = D(x -  1)(1 - Q ' ( x -  1)) '2 / (1 +i ' (x -  1)) '2 

D(xy'2> = D(x) 

C(x)C~2) = 12 D(x) a "~2) v' Q' (30) 

where i ' ( x -  1) is i' for age x -  1 and Q'(x-  1) is Q' for age x -  1. 
Table 5 illustrates these commutation functions for a hypothetical Uni- 

versal Life policy. For computational ease, the additional functions N(x) ~2) 
and M(x)C12) can be calculated in the usual way. 

Once these commutation functions have been calculated, they can be used 
with traditional actuarial formulas to calculate premiums and fund accumula- 
tions on an exact basis for any desired plan of insurance. Fund accumulations 
are obtained using formulas analogous to traditional formulas for reserves. 

Front-End Loads 

The front-end loads most commonly used with life insurance products 
incorporating fund accumulatiofls are similar to those sometimes used in 
pricing fully guaranteed products: dollar amounts per policy, dollar amounts 
per unit of face amount, and percentages of premiums paid. These types of 
loads (also referred to as expense charges) can be handled with little trouble 
when employing the transformations developed earlier. 

For example, assume a loading of $60 per policy per year, charged monthly, 
for the first 5 years and a zero loading after 5 years. The exact annual 
premium required for whole life coverage would be calculated in two steps. 
First, the net premium is determined using methods discussed earlier. Sec- 
ond, the level cost of the 5-year load is determined and added to the net 
premium. The level cost is equal to 

4 

60 ~ O(x + t)c12) 
t = 0  

Z D(x+t) 
t~O 

where the terms are defined as in (30). 
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TABLE 5 

OPTION B 
UNIVERSAL LIFE 

MONTHLY FORMULA APPLICATION 
INTEREST RATES ANNUAL MONTHLY 

GUARANTEED 0.04 0.00327374 
CURRENT 0.10 0.00797414 

Monthly 
Cu~ent i ! 
COl per {12) l (121 (12) 

Age Thousand Q'~) i '~) r ~ )  a '~)  , D~) i D~) C~) 

0 0.18 0.000181 0.007792 0.100008 0.957613 1.000000 0.957613 0.002062 
1 0.07 0.000070 0.007903 0.100003 0.957615 0.909085 0.870553i0.000729 
2 0.07 0.000070 0.007903 0.100003 0.957615 9.826438[0.791410~0.000663 
3 0.06 0.000060 0.007914 0.100003 0.957615 9.751305 9.719462 0.000516 
4 0.06 0.000060 0.007914 0.100003 0.957615 9.683003 9.654054 0.000469 
5 0.06 0.000060 0.007914 0.100003 0.957615 0.620911 D.594594 0.000427 
6 0.06 0.000060 0.007914 0.100003 0.957615 9.564463 9.540538 0.000388 
7 0.05 0.000050 0.007924 0.100002 0.957616 9.513147 9.4913970.000294 
8 0.05 0.000050 0.007924 0.100002 0.957616 9.466496 9.446724 0.000267 
9 0.05 0.000050 0.007924 0.1000021 0.957616 0.424087 9.406112 0.000243 

10 0.05 0.000050 0.007924 0.100002 : 0.957616 9.385533 9.369192 0.000221 
11 0.05 0.000050 0.007924 0.100002 0.957616 9.350483 9.33562810.000201 
12 0.06 0.000060 0.007914 0.100003 0.957615 9.318621 9.305116 0.000219 
13 0.07 0.000070 0.007903 0.100o03 I 0.957615 9.289655 9.277378]0.000232 
14 0.08 0.000080 0.007893 0.100003 0.957615 9.263322 9.25216110.000241 
15 0.09 0.000090 0.007883 0.100004 0.957615 9.239382 9.229236:0.000247 
16 0.10 0.000100 0.007873 0.100004 0.957615 9.217620 9.208396 0.000249 
17 0.10 :0.000100 0.007873 0.100004 0.957615 9.197835 9.189450 0.000227 
18 0.11 0.000111 0.007863 0.1000051 0.957615 0.17985C 9.172227 0.000227 
19 0.11 0.000111 0.007863 0.100005 I 0.957615 0.163499 9.156569 0.000206 
20 0.11 0.000111 0.007863 0.100005! 0.957615 9.148635 9.142335 0.000187 
21 0.11 0.000111 0.007863 0.100005 0.957615 9.135122 9.12939510.000170 
22 0.11 0.000111 0.007863 0.100005 0.957615 0.122838 9.117631 0.000155 
23 0.11 0.000111 0.007863 0.100005 0.957615 0.11167C 9.106937 0.000141 
24 0.10 0.000100 0.007873 0.100004 0.957615 0.101518 0.097215 0.000116 
25 0.10 0.000100 0.007873 0.100004 0.957615 0.092289 9.088377 0.000106 
26 0.10 0.000100 0.007873 0.100004 0.957615 0.083898 0.080342 0.000096 
27 0.10 0.000100 0.007873 0.100004 0.957615 0.076271 0.073038 0.000087 
28 0.10 0.000100 0.007873 0.100004 0.957615 0.069337 0.066398 0.000079 
29 0.10 0.000100 0.007873 0.100004 0.957615 0.063033 0.060362 0.000072 
30 0.10 0.000100 0.007873 0.100004 0.957615 [0.057303 0.054874 0.000066 

Rad~ = 1.000000 

The level cost can be determined using the transformed values i', Q', and 
a" (the a" value being useful whenever the load is applied monthly or pre- 
miums are paid monthly). 

A type of load sometimes used with fund accumulation products, but not 
having a counterpart in fully guaranteed products, is the crediting of a lower 
rate of interest on the first $x of the fund. This type of load raises a number 
of practical problems that may not be subject to simplification by mathe- 
matical transformations. 



LIFE INSURANCE TRANSFORMATIONS 33 

F O R M U L A  VARIATIONS 

Not all life insurance products incorporating fund accumulations use for- 
mula (1) or formula (14) for Option B Universal Life. In fact, formulas (1) 
and (14) as presented here may be the most difficult ones used in practice. 
For example, the following formula is sometimes used: 

[ 0 V + P -  a ( 1  - 0 V -  P ) ] ( l + i c )  = 1V. 

This formula is equivalent to formula (1) with ig equal to zero. The 
transformations presented earlier can be used with this formula if ig is set 
equal to zero, which is a simplification. 

Quarterly, Semiannual, and Irregular Premiums 

Monthly premium payments were discussed earlier, and (28) defined a 
variable a" for use in calculating commutation functions: 

(1) 
a "c'2) = (1-v")  / (1-v"ii).  

This definition can be generalized as follows: 

a "c') = (1-v")  / ( 1 - v " ) .  (31) 

Now the definition of D(x)C~2) in (30) can be generalized: 

D(x)C") = D(x)a"C"~. (32) 

This generalization fully allows for modal premiums in the fund accu- 
mulations. It can even allow for continuous premiums, by letting n approach 
infinity. Note that the generalization of C is not necessary, because assess- 
ment of the cost of insurance charge is, in practice, always on either a 
monthly or an annual basis. 

Irregularly timed premium payments could be included in commutation 
function formulas by estimating the function D at nonintegral values of x. 
This is unappealing in that it introduces an element of approximation into a 
process which up to now has been exact. Perhaps transformation techniques 
should not be used where irregular premium payments are involved. 

Irregular Current Interest 

When the interest-crediting rate to the fund varies by duration, a compli- 
cation is introduced which is analogous to that of split-interest cash value 
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and reserve calculations for fully guaranteed life insurance. The complication 
is that the transformations must be recalculated for each issue age. If many 
issue ages are involved, this may make using transformations less practical 
than iterative methods. 

ACTUARIAL THEORY 

Life insurance products that accumulate policyholder cash values by ap- 
plying interest credits, mortality charges, and expense charges that can vary 
from month to month are sometimes referred to as "unbundled." This means 
that the changes in cash value can be allocated precisely to interest, mor- 
tality, and expense elements. Yet it is widely theorized that the same mech- 
anism is at work in fully guaranteed products, except that it is kept under 
wraps. 

With the transformations presented earlier, the equivalence of unbundled 
and fully guaranteed products is established mathematically. The theory is 
proven. 

Letting n approach infinity in (31) suggests the idea of a continuous Uni- 
versal Life policy. The following continuous commutation functions could 
be defined: 

D(x)  = D(x)  ~" (33) 

C(x) = D(x)  ~ "6" (34) 

where a" equals (1 - v") / In (1 + i") and p. is the continuous counterpart 
to the annual cost of insurance (COI) rate. 

A simpler route to a continuous policy is to start with (1) and let the time 
interval between 0V and 1V approach zero. This causes the left-hand side 
of (1) to become 

[0V + P dt - Iz at (1/e 'go a, _ OV - P dt)] [e icc ,it] (35) 

where icc is the continuous counterpart to the annual current interest-cred- 
iting rate, igc is the continuous counterpart to the annual guaranteed interest 
rate, and time dt is measured in units of one year. Formula (35) represents 
0V plus the differential of Ok', so the derivative of 0V with respect to t is 
found by subtracting Ok', dividing by dt, and then letting dt approach zero. 
The result is 

d 
dt OV = OV icc + P - V ( 1 - O V ) .  (36) 

This result holds regardless of the relationship between ig and ic; in other 
words, at the limit, the general case always reduces to the simple case. 
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Further, this result takes the same form as the derivative of the reserve for 
fully guaranteed insurance, meaning that, at the limit, the simple case trans- 
formation is unnecessary. This could have been anticipated by noting that 

I-q, = l ira 'q~ = l i m  'q~ (37 )  
,~0 t ,-,o t(l+,qx)" 

These considerations establish the equivalence of a continuous unbundled 
policy and a continuous fully guaranteed policy. 

In practice, a continuous Universal Life policy would be administered by 
crediting interest daily and charging a cost of insurance daily. 

PRODUCT DESIGN IMPLICATIONS 

P a c  M a n  Universal  Li fe  

Since it is possible to make the Universal Life fund accumulation formula 
look exactly like the traditional fully guaranteed cash value formula, it is 
also possible to make the latter look exactly like the former. This suggests 
that in-force traditional policies can be converted to Universal Life policies. 
In addition to gaining flexibility, such conversions would defend against 
replacement by turning the tables on the replacing company. The strategy 
of turning the tables is sometimes referred to as the Pac Man strategy, since 
it plays a crucial role in the video game by that name. 

The simplest implementation of such conversions would be to modify (1) 
to be 

[0V + P - Q (1/( l+ic)  - OV - P)] ( l+ i c )  = 1V. (38) 

With (38) the simple-case transformation is sufficient, but must be applied 
in reverse: 

Q = Q' / (1 - Q') (39) 

where Q' is the mortality rate underlying the cash value formula of the old 
policy and Q is the annual COI rate to be used with the new policy. The 
company must guarantee that ic will never be less than the cash value interest 
rate of the old policy. Finally, a flexible loading formula is needed which 
will duplicate the loading of the old policy (gross premium less nonforfeiture 
factor). One approach would be to deduct the policy fee from the fund at 
the beginning of every year and to convert the rest of the load to a percentage 
of premium paid. 

Such conversions should be acceptable to state insurance departments 
since flexibility for the policyholder is added and the equivalence to the old 
policy cash value accumulation formula can be demonstrated. 
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The expense of implementing a large-scale conversion might be offset by 
the administrative cost savings from becoming a one-product company. 

Cash Management Account Universal Life 

The possibility of continuous Universal Life policies was previously pointed 
out. The differential equation (36) indicates that, for a continuous policy, 
the fund accumulation will equal the accumulation of premiums at contin- 
uous interest less the accumulation of cost of insurance charges at continuous 
interest. 

This suggests the creation of an insurance fund side-by-side with an in- 
vestment fund of the type used by brokerage firms for clients with idle cash. 
Such investment funds have interest credited daily at market rates. The 
insurance fund assets would be indistinguishable from the investment fund 
assets, and the same daily rate of interest would be credited to deposits to 
either fund. The only difference is that the insurance fund is charged each 
day for a cost of insurance. 

Each month, the client would receive a summary showing the activity in 
the two funds. The insurance fund activity could be shown as the accumu- 
lation at interest of the beginning fund plus deposits, less the accumulation 
at interest of the insurance charges. 



DISCUSSION OF PRECEDING PAPER 

ERIC S E A H  A N D  E L I A S  S.  W .  S H I U :  

The recursive formulas considered in this paper are of the form 

a(k)V(k) + b(k)P = c(k)V(k+ l) + d(k), (D.1) 

where a(k), b(k), c(k) and d(k) are known functions in k. Given a pair of 
boundary values V(m) and V(n), ra < n, we wish to find the level premium 
P for which (D. 1) holds for all k between m and n - 1. 

Formula (D.1) is a first-order linear difference equation. Analogous to the 
case of first-order linear differential equations which are solved by the method 
of integrating factors, first-order linear difference equations are solved by 
the method of summation factors; see [3]. Transforming (D.1) as 

e(k)V(k) + f(k)P = e ( k + l ) V ( k + l )  + g(k) (D.2) 

and summing (D.2) from k = m to k = n - 1, we obtain 
n - I  n - 1  

e(m)V(m) + P ~, f(k) = e(n)V(n) + ~, g(k). (D.3) 
k=m k=m 

Hence, the level premium P is given by 
n - 1  

e(n)V(n) - e(m)V(m) + ~, g(k) 
P = .-1 k=m (D.4) 

Ef( ) 
k=m 

In the remainder of this discussion we shall assume that V(m) = 0. We 
write P(m) for P to emphasize that there is a different level premium for 
each m, m = n -  1, n - 2 ,  n -  3 . . . . .  The definitions: 

n 

e(k) = II a(j) k < n, c(j)' 
f(k) = e(k+ 1)b(k)/c(k), k<n,  

and 

g(k) = e(k + 1)d(k)/c(k), k<n,  

(D.5) 

(D.6) 

(D.7) 

37 
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transform (D.1) into (D.2). Hence, (D.4) becomes 

,-1 d(k) " a(j) 
a(n)c(n) V(n) + k ~=. ~ j=kH+l c(j) 

P(m) = 
"- '  b(k) ~[ a(j) 
Z c(O j -+l c(j) k=ra 

Formula (D.8) can be elegantly implemented in APL, as follows: 

(D.8) 

v PREH;U;S;TLHUH;DEHOH 
U ÷ ( I S ) * . ~ I S ÷  I+PA 
D E N O H ÷ + / U x ( S , S ) P ( - I ~ B ÷ C ) x T ÷ I * ~ x \ ~ A ÷ C  
HUM÷(VHx(-I÷A)÷-I÷C)++/Ux(S,S)P(-I~D÷C)xT 
IO00xHUH÷DEHOH 

In this program A, B, C and D are vectors that correspond to a(k), b(k), c(k) 
and d(k) in formula (D.1). The APL global variable VN is V(n). For example, 
to derive the last column of Table 1, we set: 

A ~ 1.055 1.055 . . . 1.055 
B *- 1.055 1.055 . . . 1.055 
Q *-- 0.00263 0.00103 0.00099 . . . 0.28213 0.30997 1.0 
C ~ 1/(1 + Q) 
D ~-Q/(1 + Q) 

VN ~- 1.0 

In this example, 0 -< m < n = 95. Upon invoking PREM, the computer 
will return a vector of length 95, giving the premium rates at issuance age 
0, 1, 2 . . . .  ,94.  
Remarks. (i) Net premium reserves satisfy the formula [1, equation (7.8.2)] 

(kV + 'rrk)(1 + ik) = Px+k k+,V + qx+k b,+,. (D.9) 

If rr, = Pg(k) for a known function g(k), then (D.9) can be expressed in 
the form (D.1) and the method above can be applied to solve for the net 
premiums "n-k. 

(ii) The symbol P is used to denote the "premium . . . after deducting 
premium loads." Calling it "gross" premium may create confusion. 

(iii) Formula (36) in the paper is sometimes called Thiele's differential equa- 
tion [2, p. 70]. Variations of the differential equation can be found in ex- 
ercises 7.32 and 7.41 of [1]. 
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LAWRENCE SILKES." 

Mr. Eckley's paper introduces some interesting transformations of the 
mortality and interest elements in life insurance policies. These transfor- 
mations enable the actuary to perform Universal Life calculations in the 
traditional manner. 

The introduction of the Universal Life product by the insurance industry 
coincided with a switch from thinking prospectively to thinking retrospec- 
tively on the part of the actuary, regulator, and auditor. 

Prospective analysis is cumbersome because it requires the projection of 
premiums and costs over all future periods. Once such projections are made, 
commutation functions can greatly simplify further calculations. But pro- 
spective thinking kept life insurance products static because of the necessity 
of reconfiguring all calculations in order to make changes. 

Another important change in actuarial thinking is that traditional reserve 
factors are not asset accumulations. A net premium calculation is an idealized 
equation of positive and negative cash flows. A reserve factor is the differ- 
ence between accumulated net premiums and accumulated tabular claims; 
another idealization. 

A subtle aspect of reserve factors that has great implications is that they 
are calculated on a per-survivor basis. The various recursion formulas for 
reserves, one of which is discussed at the beginning of Mr. Eckley's paper, 
illustrate this aspect. Survivorship, in addition to premiums and interest, 
causes traditional reserve factors to increase over time. But where is the 
survivorship element in the typical Universal Life accumulation formula? 
One way to view Mr. Eckley's paper is as an answer to this question. 

(AUTHOR'S REVIEW OF DISCUSSION) 

DOUGLAS A. ECKLEY: 

Professors Seah and Shiu have offered evidence that the transformations 
developed in the paper can, after all, be programmed and used efficiently. 
Their discussion strikes me as an example of actuaries using their mathe- 
matical expertise to solve practical problems. I do feel that the transforma- 
tions can be of practical use in certain situations, such as the calculation of 
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illustrative or guideline premiums, so I am thankful to Professors Seah and 
Shiu for their contribution. 

Mr. Silkes takes a step back and views the paper in the context of ret- 
rospective versus prospective thinking. He sees the transformations as the 
link between these types of thinking. Perhaps that is both their appeal and 
their bane: It is reassuring to know that the link exists, but the simplicity of 
the retrospective approach may eventually make a relic of the prospective 
approach. I thank Mr. Silkes as well. 


