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Abstract

The Stochastic Volatility (SV) model, introduced by Taylor (1986) is used for

capturing the empirical properties of financial time series. However, most of the ap-

plications are based on the assumption that the conditional distribution of the returns

given the log volatilities is normal. This paper overviews those properties and com-

pares the SV model with the heavy-tailed error distribution(Student t-distribution)

and the SV model with the normal error distribution. The Simulated Maximum Like-

lihood (SML) method is applied to estimate the parameters and the latent volatility.

Furthermore an empirical analysis with several return series shows that the SV-t

specification adequately account for the well-known properties of the financial series:

a high kurtosis of the returns and low but slowly decaying autocorrelation or the

squared returns.

1 Introduction

It is generally acknowledged that the volatility of many financial returns series is not

constant over time. Over the past two decades two main classes of models have been

developed that capture the time-varying autocorrelated volatility process: the General-

ized Autoregressive Conditional Heteroscedasticity (GARCH) and the Stochastic Volatility

(SV) model. GARCH models define the time-varying variance as a deterministic function

of past squared innovations and lagged conditional variances whereas SV model defines

volatility as a logarithmic first order autoregressive process. Although SV models are more

sophisticated than GARCH models, their empirical application has been limited under the

assumption that the conditional distribution of returns is normal, given the latent volatility

process. This SV-normal model is not able to capture the empirical regularities of finan-

cial return series: first, volatility clustering is often observed. That is, large changes tend

to be followed by large changes and small changes tent to be followed by small changes;

second, financial time series often exhibit leptokurtosis, meaning that their distribution is

symmetrical in shape, similar to a normal distribution, but the center peak is much higher,

so it has a fat tail; third, squared returns exhibit serial correlation whereas little or no

serial dependence can be detected in the return series itself. In the papers of Ruiz (1994),
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Harvey, Ruix and Shephard (1994), Sandmann and Koopman (1998) and Chib, Nardari

and Shephard (1998) the SV model is extended to allow the conditional distribution of the

returns to be more heavy-tailed distribution than the normal distribution by using Student

t-distribution for the standardized residual.

The purpose of this paper is to examine the ability of the SV model to capture the properties

of financial return series mentioned earlier under the assumptions based on a conditional

normal distribution for log volatility and a conditional Student t-distribution for the re-

turns. It is finally shown that such assumptions regarding the conditional distribution of

the returns systematically affects the estimates of the parameters in the latent volatility

process.

Another reason for the limited empirical applications of the SV model is the difficulty to

evaluate the likelihood function directly. The marginal likelihood function of the SV model

is given by a high dimensional integral , which cannot be calculated by standard maximum

likelihood method (ML). In this paper, the simulated maximum likelihood (SML) approach

developed by Danielsson and Richard (1993) is employed to calculate this integral. This

estimation method allows us to demonstrate the statistical inference with the standard

instruments of inference for the ML method.

This paper is organized as follows: Section 2 describes volatility models and more de-

tails regarding SV model. Section 3 contains the data which have been used for this study

and some statistics of the returns and the squared returns. Section 4 describes the SML

and the Accelerated Gaussian Importance Sampling (AGIS) method and Section 5 provides

the results of parameter estimation and some diagnostic checking for our model. Finally,

section 6 gives a summary.
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2 Volatility Models

A series is called conditionally heteroscedastic if the conditional variance depends on time

while the unconditional variance is constant. Throughout the paper, volatility means the

conditional variance of an asset return. Models of such a volatility are referred to as the con-

ditional heteroscedastic models. Since volatility evolves over time, modelling the volatility

plays an important role in both option trading and risk management. Also, it can improve

the efficiency in parameter estimation and the accuracy in interval forecast.

Three main univariate models are discussed in this section: the autoregressive conditional

heteroscedastic (ARCH) model of Engle (1982), Bollerslev’s (1986) the generalized ARCH

(GARCH), and the stochastic volatility (SV) model introduced by Taylor (1986).

2.1 The ARCH and GARCH Models

Engle’s paper (1982) introduced the ARCH model to express the conditional variance of

today’s return as a function of previous observations. The basic idea of the ARCH model

is that the mean-corrected asset returns are serially uncorrelated, but dependent of past

observations. The ARCH(q) model is defined by

rt =
√

λtut, ut v iid(0, 1),

λt = α0 +

q∑
i=1

αir
2
t−i,

where rt is the return on day t and ut is a white noise process.
∑q

i=1 αi < 1 is a necessary

and sufficient condition for rt to be a weakly stationary series. The order q of the process

determines the volatility persistence, which increases with the value of q.

The Generalized ARCH (GARCH) model is an extension of Engel’s work by Bollerslev

(1986) that allows the conditional variance to depend on the previous conditional variance

and the squares of previous returns. The possibility that estimated parameters in ARCH

models do not satisfy the stationarity condition increases with lag. Thus GARCH model
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is an alternative to ARCH model. The GARCH(p,q) model is defined by

rt =
√

λtut, ut v iid(0, 1),

λt = α0 +

q∑
i=1

αir
2
t−i +

p∑
j=1

βjλt−j,

where λt is the conditional variance of rt given Rt−1 = (rt−1, rt−2, . . .) and the parameters

(α0, α1, . . . , αq, β1, . . . , βp) are restricted such that λt > 0 for all t.

2.2 The SV model

The standard version of the Stochastic Volatility (SV) model is given by

rt = exp{λt/2}ut, (1)

λt = α + βλt−1 + γvt, (2)

where rt is the return on day t and λt is the log volatility, that is λt = 2 ln σt where σt is

the return volatility. Both ut and vt are identically and independently distributed random

variables with zero mean and unit variance, but vt is normally distributed. These error

processes are stochastically independent and unobservable. The unobservable volatility

process λt is assumed as a Gaussian AR(1) process with a persistence parameter β. For

| β |< 1, the latent volatility process is stationary. The parameter γ2 represents the variance

of volatility shocks and is assumed to be positive. In most cases, the error ut is assumed to

be normal, but it is observed that a heavy-tailed and leptokurtic distribution for ut better

captures the empirical regularity of the financial time series. In the next section we give

some statistical properties of two SV models: the SV model with a normally distributed

error ut (SV-Normal) and the SV model with a heavy-tailed error ut(SV-t).

2.2.1 Properties of the SV-Normal model

For | β |< 1, the latent volatility process λt ∼ N(µ, σ2) with µ = α
1−β

and σ2 = γ2

1−β2

denote the unconditional mean and variance of λt, respectively. Letting σ2
t = exp{λt} and

assuming that E(u4
t ) < ∞, the moments E(r2

t ) and E(r4
t ) are expressed as follows
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E(r2
t ) = E(σ2

t ) = exp{µ + σ2/2}, (3)

E(r4
t ) = E(σ2

t )
2exp{σ2}E(u4

t ) = exp{2µ + 2σ2}E(u4
t ) (4)

Putting equations (3) and (4) into the definition of the kurtosis, the kurtosis for the un-

conditional distribution of the returns is given by

κ = E(r4
t )/E(r2

t )
2 = E(u4

t )exp{σ2}. (5)

This expression of the predicted kurtosis in equation (5) has two components: the first

one is the baseline-kurtosis due to the term E(u4
t ) that represents the kurtosis of the stan-

dardized residuals and the second one is the kurtosis due to the variation in the volatility

process λt. Under the SV model with a conditional normal distribution for the returns(SV-

normal), the baseline-kurtosis E(u4
t ) is equal to three and so an unconditional kurtosis of

the returns is greater than three.

The autocorrelation function (ACF) of the squared returns is defined by

ρ(h) = Cov(r2
t , r

2
t−h)/V ar(r2

t ), h = 1, 2, . . . (6)

Provided | β |< 1, the autocovariance of the squared returns is give by

Cov(r2
t , r

2
t−h) = Cov(σ2

t , σ
2
(t−h)) by independence of ut

= (exp{σ2βh} − 1)E(σ2
t )

2 (7)

Under the additional assumption E(u4
t ) < ∞, its variance is

V ar(r2
t ) = E({σ2

t }2u4
t )− E(htu

2
t )

2

= E({σ2
t }2)E(u4

t )− E(σ2
t )

2 by independence

= (V ar(σ2
t ) + E(σ2

t )
2)E(u4

t )− E(σ2
t )

2

= E(σ2
t )

2

{(
V ar(σ2

t )

E(σ2
t )

2
+ 1

)
E(u4

t )− 1

}

= E(ht)
2[exp{σ2}E(u4

t )− 1]. (8)
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Inserting the equations (7) and (8) into the equation (6), the ACF of the squared return

r2
t is given by

ρ(h) =
exp{σ2βh} − 1

E(u4
t )exp{σ2} − 1

, h = 1, 2, . . . . (9)

Thus, the SV-normal model predicts a positive autocorrelation in the squared returns which

is exponentially decaying out. The rate is determined by the parameter β and hence the

persistence of volatility shocks depends on the value of β.

2.2.2 Properties of the SV-t model

The heavy-tailed distributions for the error ut means that the fourth moment of ut is

greater than three. This characteristic implies that the kurtosis of a conditional heavy-

tailed distribution for the returns is larger than that of conditional normal returns and

that the level of ACF of the squared returns declines. It can be verified by the equations

(5) and (9). A well-known leptokurtic distribution is the student t-distribution. The density

function of a t-distributed random variable ut with mean zero and unit variance is given

by

f(ut) = [π(ω − 2)]−1/2 Γ((ω + 1)/2)

Γ(ω/2)

[
1 +

u2
t

(ω − 2)

]− (ω+1)
2

ω > 2 (10)

where Γ(·) is the gamma function and the parameter ω denotes the degree of freedom.

The kurtosis of the t-distribution is give by, as long as ω > 4,

κ = exp{σ2}E(u4
t )

= exp{σ2}
[
3
(ω − 2)

(ω − 4)

]
.

If ω < ∞, the kurtosis is greater three and does not exist if ω = 4. Also, the t-distribution

approaches a normal distribution as ω goes to infinity. Note that ρ(1) = exp{σ2β}−1

E(u4
t )exp{σ2}−1

when

h = 1 and so κ can be considered as a function of ρ(1). Liesenfeld and Jung (2000) shows

using an empirical study that the SV-t model can capture the relationship between κ and

ρ(1) better than the SV-normal model. Therefore, it can be concluded in some financial
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Figure 1: Plots of the stock prices over time

return series that a leptokurtic error distribution such as a Student t-distribution helps to

capture the empirical properties of the financial series: a high kurtosis of the returns and

a low but slowly decaying ACF of the squared returns.

3 DATA

Daily return series are used in this paper: stock prices of Microsoft, CIBC, Royal Bank(RBC),

General Motors(GM), Honda, and Hyundai. All the prices have the same period from Jan-

uary 1, 1996 to August 29, 2003, so the total number of observations is 2000. The data

are provided from the Department of Accounting at the University of Waterloo. Figure 1.

illustrates the stock prices versus time.

Denoting the daily price by pt, the transformed log return is give by

rt = ln

{
pt

pt−1

}
.

The summary statistics of the return series are given in Table 1. The kurtosis of the returns

for all series is above three, which is the kurtosis of a normal distribution. These values

imply that the distribution of the returns is leptokurtic.

From the Autocorrelation(ACF) of the returns in Figure 2, it is observed that the log

return series are serially uncorrelated, but not independent as usual. However, in CIBC

and RBC series the first lag autocorrelation appears to be large. This is because the limits
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are very narrow due to the large number of observations. Figure 3 gives some evidence

for the well-known properties of the financial return series that the ACF of the squared

returns is low, but declines with increasing lags very slowly. This is an indication that the

conditional variance depends on time.

Table 1. Summary statistics of data

Statistics MS RBC CIBC GM HONDA HYUNDAI

Sample size 2000 2000 2000 2000 2000 2000

Mean 0.00079 0.00067 0.00051 -0.00000 0.00040 -0.0016

Std. dev. 0.0249 0.0151 0.0186 0.0214 0.0236 0.0485

Kurtosis 7.3005 5.5355 8.7963 5.5507 7.0661 4.9994

Minimum -0.1697 -0.0801 -0.1704 -0.1454 -0.1502 -0.1618

Maximum 0.1786 0.0795 0.1 0.0984 0.1318 0.2256

4 Estimation Method

4.1 Parameter estimation

The likelihood function associated with the known observations R = {rt}T
t=1 and the vector

of the latent variables Λ = {λt}T
t=1 is given by

f(R|θ) =

∫

RT

f(R, Λ|θ)dΛ, (11)

where θ = (α, β, γ) denotes the vector of parameters to be estimated and T is the total

number of observations. The latent process λt in the SV model makes the direct calculation

of the integral in (11) difficult. In this paper, the Simulated Maximum Likelihood (SML)

approach is employed, which was introduced by Danielsson and Richard (1993) to estimate

the parameters in the model. This method depends on Monte Carlo (MC) integration in

evaluating the likelihood (11).

In finite sample space, the SML method performs almost identical to MCMC(See Daniels-

son, 1994). The standard instruments for inference in ML estimation can be used even
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Figure 2: The ACF of the returns on stock return series
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Figure 3: The ACF of the squared returns on stock return series

9



if the number of MC iterations are very large. Moreover, the applications to SV models

can not only be obtained easily once SML process is implemented but extended to the

multivariate case with the latent process λt.

Danielsson and Richard (1993) introduced the SML approach using an important sam-

pling method and an Accelerated Gaussian Importance Sampling (AGIS). Next, we discuss

the SML method with these two sampling techniques.

4.1.1 Important Sampling (IS)

To obtain the MC estimate of f(R|θ), the joint density function of f(R, Λ|θ) is factorized

into an importance sampling function (IF) ψ(Λ|R) and a remainder function (RF) φ(Λ, R)

such that

f(R, Λ|θ) = φ(Λ, R)ψ(Λ|R). (12)

An initial factorization of f(R, Λ|θ) is derived from (12) as follows:

ψ0(Λ|R) =
T∏

t=1

f(λt|λt−1) (13)

φ0(Λ, R) =
T∏

t=1

f(rt|λt) (14)

where f(λt|λt−1) is the conditional density of λt given λt−1 satisfying the equation (2),

which is a normal distribution and f(rt|λt) is the density of the t-th day return conditional

on λt. In a SV-normal model, f(rt|λt) is given by

f(rt|λt) =
1√

2πexp{λt}
exp

{
− r2

t

2exp{λt}
}

,

and in a SV-t distribution model, f(rt|λt) has a form

f(rt|λt) =
1√

π(ω − 2)exp{λt}
Γ((ω + 1)/2)

Γ(ω/2)

[
1 +

r2
t

exp{λt}(ω − 2)

]− (ω+1)
2

.
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Since the expected value of the RF is given by

Eψ[φ(Λ, R)] =

∫

RT

φ(Λ, R)ψ(Λ|R) dΛ

=

∫

RT

f(R, Λ|θ) dΛ

= f(R|θ), (15)

the MC sampling mean is given by

f̂N(R|θ) =
1

N

N∑
n=1

φ0(Λn, R) (16)

where {Λn}N
n=1 denotes N numbers of the simulated sample from the probability distribution

ψ(Λ|R). Thus the ML estimate of θ is obtained by maximizing ln [f̂(R|θ)].

4.1.2 Accelerated Gaussian Important Sampling (AGIS)

It often occurs that the initial IF (13) and RF (14) in IS technique leads to inefficiency

in the integral calculation. That is, the MC sampling variance remarkably increases with

the dimension of the integral T. The Accelerated Gaussian Important Sampling (AGIS)

method, proposed by Danielsson and Richard (1993) can solve this inefficiency problem.

The AGIS method is based on minimizing the variance of the remainder function φ(Λ, R)

while the conditions (12) and (15) hold. That is, the process used in AGIS solves a mini-

mizing problem

min
ψ

V arψ[φ(Λ, R)] (17)

subject to the constraints

f(R, Λ|θ) = φ(Λ, R)ψ(Λ|R) and Eψ[φ(Λ, R)] = f(R|θ) (18)

where the variance of φ(Λ, R) evaluated over an importance function ψ(Λ|R) is given by

V arψ[φ(Λ, R)] =

∫

RT

[φ(Λ, R)− f(R|θ)]2ψ(Λ|R) dΛ.

11



Let us define a variance reduction function ξ(Λ,Q) such that a new IF and a new RF are

given by

ψ1(Λ|R) = [ψ0(Λ|R)ξ(Λ,Q)]/k(Q) (19)

φ1(Λ, R) = [φ0(Λ, R)k(Q)]/ξ(Λ, Q), (20)

where k(Q) is the constant which makes the new IF ψ1(Λ|R) a probability density function

and is given by

k(Q) =

∫

RT

ψ0(Λ|R)ξ(Λ,Q) dΛ. (21)

These transformations for the new RF and IF are suggested to change the variance of the

remainder function while keeping the constraints (18) and ξ(Λ,Q) is defined by

ξ(Λ,Q) =
T∏

t=1

ξ(λt,Qt) (22)

with

ξ(λt,Qt) = exp{−1

2
η′tQtηt} and η′t = (λt, λt−1, 1).

This form reduces the computational burden for calculating a new IF and RF. To obtain

Q = {Qt}T
t=1 and hence ξ(Λ,Q), the following iterations are needed.

• Step 0 (Initialization)

1. Generate a set of N independent random vectors {λ0,t} for t = 1, 2, . . . , T ,

satisfying the following conditions: When t = 1, λ0,t| θ ∼ N(α0, γ
2
0), where

α0 and γ0 are initial values of α and γ respectively. When t is greater than one,

λ0,t| λt−1, θ ∼ N(α + βλt−1, γ
2).

2. Construct the initial IF ψ0(Λ|R) in (13) by calculating the normal density of λ0,t

conditional on λ0,t−1 and the initial RF φ0(Λ, R) in (14).

12



• Step 1

1. Run the following linear regression for t = 1, 2, . . . , T and n = 1, 2, . . . , N :

ln φ0(λ0,n,t) = a1,tλ
2
0,n,t + b1,tλ0,n,t + c1,t + ε, (23)

where ε is a residual and φ0(·) is obtained from the previous step.

2. Construct the matrix Q1 = {Q1,t}T
t=1 with the OLS estimates of the coefficients,

which is given by,

Q̂1,t =




−2â1,t 0 −b̂1,t

0 0 0

−b̂1,t 0 −2ĉ1,t




for t = 1, 2, . . . , T .

3. Construct a first new IF ψ1(Λ|R) = ψ0(Λ|R)ξ(Q̂1)/k(Q̂1) with Q̂1 = {Q̂1,t}T
t=1.

This implies that a new random variable λ1,t has a distribution, given by

N

(
α0 + β0λ0,t−1 + (

√
2â1,t)

−1γ0b̂1,t

(1−√
2â1,t)γ0

, γ2
0(1− γ0

√
2â1,t)

2

)
. (24)

• Step i

1. Construct the i − th matrix Qi = {Qi,t}T
t=1 with the coefficients obtained by

regressing ln φ0(λi−1,n,t) on λi−1,n,t and λ2
i−1,n,t

2. Determine a i− th step IF ψi(Λ|R) = ψi−1(Λ|R)ξ(Q̂i−1)/k(Q̂i−1).

This iteration algorithm is repeated until Q̂i is sufficiently close to Q̂i−1. Usually, the

number of iterations is less than five. Then the MC sample mean is given by

f̂N(R| θ) =
1

N

N∑
n=1

φ0(Λi,n, R)k(Q̂i)

ξ(Λi,n, Q̂i)
(25)

The SML estimate of θ is hence obtained by maximizing the AGIS estimate of the likelihood

function (25) with respect to θ.
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4.2 Volatility Estimation

Once the estimates of parameters are obtained, the unobservable volatility σt is estimated

as the conditional expectation E(σt|R, θ̂) where σt = exp{λ/2}. θ̂ is the SML estimate of

the parameter θ and R is the vector of the returns. The conditional expectation is given

by

E(σt|R, θ̂) =

∫
RT exp{λt/2}f(R, Λ|θ̂)dΛ∫

RT f(R, Λ|θ̂)dΛ
(26)

=
Eψ[exp{λt/2}φ(Λ, R)]

Eψ[φ(Λ, R)]
(27)

The equation (27) can be derived by factorizing the joint density f(R, Λ|θ̂) by (12) and

applying then (13) to both integrals in (26). In order to evaluate the conditional expectation

E(σt|R, θ̂), determine the IF ψ(Λ|R) by the AGIS algorithm and compute then the estimate

of the expectations in (27) by using MC integration. Finally, the MC estimates of E(σt|R, θ̂)

are obtained as a by-product of the likelihood evaluation given θ̂ and the IF ψ(Λ|R).

5 Empirical Results

In our empirical example, the AGIS method is used with the number of observations T =

2000, a MC sample size of N = 50, and AGIS iterations of J = 4. Moreover, the MC

standard deviations are calculated by repeating the estimation thirty times.

5.1 Parameter Estimation Results

The SV-normal estimation results are summarized in Table 2 along with the statistical

standard error of the parameter estimates and the MC sampling standard deviation of the

parameter estimates. The small MC standard deviations and the standard errors of the

estimates indicate that the SML estimates are quite precise. The estimated β are highly

significant in all cases. However, MS and RBC data, the β̂′s are slightly lower than the

rest.
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Table 2. SML estimation of the SV-normal model

Parameter MS RBC CIBC GM HONDA HYUNDAI

α 0.0034 -0.03426 -0.00897 0.00188 -0.0212 0.00498

MC std. dev. 0.0045 0.0005 0.0004 0.0024 0.0013 0.0027

Std. error 0.0122 0.0024 0.0428 0.0423 0.0488 0.0198

β 0.8998 0.91243 0.97236 0.97822 0.95478 0.95132

MC std. dev. 0.0065 0.0002 0.0005 0.0004 0.0011 0.0042

Std. error 0.0124 0.0498 0.0591 0.0379 0.0102 0.0628

γ 0.14352 0.10982 0.15421 0.28423 0.10845 0.1245

MC std. dev. 0.0009 0.0012 0.0014 0.0007 0.0007 0.0041

Std. error 0.0599 0.0544 0.0521 0.0547 0.0573 0.0106

The estimation results for the returns with a Student t distribution with ω = 10 are

displayed in Table 3. It is easily observed that the MC standard deviations and the standard

errors for all the parameter estimates are quite smaller than the ones from the SV-normal

model. This result may be already expected from the fact that the unconditional variance

of the latent process is equal to σ2 = γ2/(1 − β2), which happens to be smaller for the

SV-t than the SV-normal in all the series. The estimates of β are all around 0.95, which

are reasonable. Furthermore, the standard error of the parameter estimates in most cases

are quite small, but the estimates of β and γ for GM are somewhat high. The estimated

values of kurtosis in most cases are quite close to the actual value in Table. 1 except for

MS data.

5.2 Volatility Estimation Result

In Figure 4, 5, and 6, the MC estimates of the sequence of volatilities E(σt|R, θ̂) resulting

from the SV-normal(dash line) and the SV-t models(thick line) are presented along with

the log returns. Note that all the log returns seem to be stationary compared to the actual

stock prices in Figure 1. For MS data, the volatility estimates from SV-normal does not

seem to reflect the movement of the return series compared to the one from SV-t model.

In the estimated volatility plot for GM shows that the estimated volatility from SV-normal
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model is slightly more stable than from SV-t model and both estimates do not reflect the

movement of the return series. In the rest of cases, the estimated volatilities from the SV-t

model exhibit smoother movements than the ones from the SV-normal model.

Table 3. SML estimation of the SV-t distribution model with ω = 10

Parameter MS RBC CIBC GM HONDA HYUNDAI

α 0.00234 -0.02896 -0.00761 0.00082 -0.01925 0.00344

MC std. dev. 0.0001 0.0003 0.0003 0.0005 0.0006 0.0004

Std. error 0.0073 0.0089 0.0072 0.0323 0.0347 0.0082

β 0.92213 0.96356 0.98876 0.98245 0.99241 0.98211

MC std. dev. 0.00002 0.0001 0.0004 0.0001 0.0002 0.00005

Std. error 0.0088 0.0453 0.0291 0.0841 0.0377 0.0379

γ 0.09318 0.08997 0.12653 0.11423 0.08793 0.08436

MC std. dev. 0.0006 0.0003 0.0002 0.0002 0.0004 0.0007

Std. error 0.0512 0.0291 0.0376 0.0772 0.0312 0.0536

κ̂ 4.2389 4.4791 8.1866 5.8202 6.6697 4.8890

5.3 Model Diagnostics

Now some model validation is needed for justifying our model. Let us define the standard-

ized error from equation (1):

ût ≡ rt

σ̂t

(28)

where σ̂t = exp{λ̂t/2} and T = 1001, 1002, . . . , 2000. For convenience of notations, we

label the time periods as t = 1, 2, . . . , 1000. The σ̂t’s are the estimated volatility by the

estimation method presented in Section 4 and rt’s are the observed returns. If the model

is appropriate for our data, then there should be no autocorrelations of the standardized

error ut and the squared standardized error u2
t . Figures 7 and 8 exhibit the ACF of ût and

û2
t . Most plots show no significant serial autocorrelations, but some plots show somewhat

large autocorrelations at certain lags. For example, RBC and CIBC seem to have large
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Figure 4: Top panels: MC estimates of volatilities and bottom panels: corresponding log

return series for MS and CIBC
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Figure 5: Top panels: MC estimates of volatilities and bottom panels: corresponding log

return series for RBC and GM
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Figure 6: Top panels: MC estimates of volatilities and bottom panels: corresponding log

return series for Honda and Hyundai

autocorrelations at lag one, but this may be due to the narrow limits resulting from a

large sample size. The standard deviations of ût are summarized in Table 4. This result is

expected from the original assumption ut ∼ t(0, 1).

Table 4. The standard deviation of the error processes ut and vt

Parameter MS RBC CIBC GM HONDA HYUNDAI

SD of ut 0.7835 0.6235 0.6737 0.7347 0.5293 0.6821

SD of vt 0.9452 0.9867 0.9847 0.9213 1.0382 0.9663

For further model checking, we examine the error process {v∗t }, where v∗t = γvt in (2) with

same criterion. The v̂t’s are generated from

λ̂t = α̂ + β̂λ̂t−1 + γ̂v̂t, t = 1, 2, . . . , 1000

where α̂, β̂, and γ̂ are the SML parameter estimates and λ̂t and λ̂t−1 are estimated volatili-

ties. Figure 9 shows the ACF of the estimated error v̂∗t . The plots show little autocorrelation

in v̂∗t . The standard deviations of v̂t in Table 4 are very close to one, which is the standard

deviation of the error process vt. The normal probability plots in Figure 10 checks the
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Figure 7: The ACF of the standard residual ût
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Figure 8: The ACF of the squared standard residual û2
t
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normality of v̂∗t . In general, the normal probability plots are close to straight lines, so

the v̂∗t seems to be normal. However, the plots for CIBC, GM, and Honda exhibit some

non-normality.

6 Conclusion

This paper analyzes the SV model with a normal error distribution and a leptokurtic error

distribution (t-distribution). The Simulated Maximum Likelihood (SML) method, pro-

posed by Danielsson and Richard (1993) is applied.

The results from the empirical example can be summarized as follows. First, the SML

approach with the Accelerated Importance Sampling (AGIS) technique produces a high

accuracy of parameter estimation. Second, we find that the SV-t model captures the prop-

erties of high kurtosis and slowly decaying ACF of squared returns usually seen in the

financial time series. Finally, the SV-t model is an reasonable choice for the return series

in our example.
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Figure 9: The ACF of v̂∗t
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Figure 10: Q-Q plots of v̂∗t
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