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ABSTRACT 

This paper describes several methods of creating interest rate scenarios 
that the actuary can use for pricing analysis or asset-liability testing. The 
characteristics of the methods as well as possible variations and refinements 
are discussed. In addition, some aids for using one method are offered. 

INTRODUCTION 

Recent years have witnessed the increased awareness by actuaries of the 
risks of changes in interest rates. The proliferation of interest-sensitive prod- 
ucts, such as single premium deferred annuities, has accompanied this 
phenomenon. 

The concepts of duration and convexity are excellent tools for measuring 
the risks of interest rate changes. Strategies like immunization have been 
developed to deal with such risks. Nevertheless, the abstract nature of such 
concepts often makes communication difficult, especially with nonactuaries. 
There are various practical difficulties to implementing or using strategies 
like immunization. These difficulties have led many actuaries to search for 
and use other means of analyzing interest rate risk. 

Interest rate scenarios are often used to address these hurdles. Interest rate 
scenarios are readily understood by nonactuaries, and basing actuarial analy- 
sis on scenarios facilitates communication of such analysis. Interest rate 
scenarios can be used to answer "what if" questions about both sides of the 
asset-liability equation and to develop an easily comprehended distribution 
of profit (or loss) results under a wide range of possibilities. 

Interest rate scenarios have even appeared in the legal arena. Recently the 
state of New York passed a regulation that incorporates the use of scenarios 
to aid in formulating an actuarial opinion for the financial statements of 
insurers who have sold certain kinds of interest-sensitive products. It would 
not be surprising to see more of this type of legislation in the future, or to 
see more detailed scenarios. 

Although interest rate scenarios have been used by more than a few ac- 
tuaries, there is little discussion of them in the actuarial literature. This paper 
addresses that dearth. 
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PRESET SCENARIOS 

A rudimentary way of creating interest rate scenarios is to specify the 
rates, one by one, for as many scenarios as the creator wants to test. The 
span of time between different rates (for example, three months or a year), 
the projection period (for example, ten years), and the kind of rates (for 
example, 91-day Treasury bills, ten-year high-quality corporate bonds) are 
chosen to suit the purpose. This is an excellent way to create particular 
scenarios, such as the "worst  case"  scenario or a scenario that duplicates a 
particular historical period. But for many purposes this approach poses sev- 
eral problems: 

• Are the chosen scenarios appropriate? 
• How many scenarios are enough? 
• Specifying all the desired rates can be time-consuming. For example, one might want 

for each scenario all maturities up to 20 years for Treasury debt, different grades of 
corporate debt, and mortgage-backed securities. 

• Quite often the starting point chosen for each scenario is the current or recent interest 
rate. In such cases, the scenarios will likely have to be created again when repeat 
analysis or more analysis is needed at a later date. 

Specifying individual rates for particular scenarios is a method that should 
not be ignored, but leaves much to be desired. Therefore, we consider meth- 
ods that are more systematic and efficient. 

The random generation of scenarios responds to all the problems listed 
above, particularly efficiency. The user will likely use enough scenarios to 
cover a wide and representative range of possibilities. Others will be less 
inclined to question the objectivity of the user's analysis if the scenarios are 
randomly generated ( " r andom"  is often taken to mean "unbiased,"  and 
sometimes "object ive") .  Because of these advantages, the rest of this paper 
is devoted to random interest rate generation. 

COMMENTS ON TERMINOLOGY 

The term "b i a s "  is used without being well-defined. It is used in reference 
to properties of an interest rate generation method that may be considered 
undesirable, but different methods may have different kinds of biases. 

Bias seems to be unavoidable with any probabilistic or stochastic method 
of interest rate generation. If the method is not biased in one sense, it is 
biased in some other sense. The term bias can, of course, have many mean- 
ings besides those specifically mentioned here. Also, with regard to future 
interest rates, one person's bias may be another person's idea of what is 
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rational. The way out of this conundrum is to choose the bias that is the 
least bothersome and to judge the method on the credibility of the scenarios 
it produces. 

The words "expected" and "expectation" are used only with their strict 
statistical meaning: the sum of the products of possible outcomes times their 
respective probabilities. The words "anticipated" and "anticipation" are 
used when the ordinary sense of "expected" or "expectation" is meant. 

BINOMIAL  LATTICE [1] 

The binomial lattice method of creating interest rate scenarios involves a 
decision tree and random decisions on which branch of the tree to follow in 
setting the interest rate at the next point in time. The tree or lattice can be 
depicted as shown in Figure 1. 

FIGURE 1 

BINOMIAL LATFICE METHOD FOR GENERATING INTEREST RATE SCENARIOS 
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Suppose lk = 10 + 0.5k. In other words, the interest rates are evenly 
spaced 0.5 percent apart with Io = 10 percent. Also, suppose that at any 
time tk the probabilities that the interest rate is 0.5 percent higher or lower 
at tk, j are both 1/2. Then a random technique (for example, a flip of a coin, 
or whether a random integer is even or odd) is used to determine whether 
the next interest rate is on the higher or lower step of the lattice. 

This binomial lattice method might be criticized because the set of pos- 
sibilities for the next interest rate has only two members. It even precludes 
the possibility of the rate not changing. Such criticism is valid, but not fatal. 
The lattice could obviously be made trinomial, or even multinomial. Of 
course, the random technique would need to be modified. The binomial 
lattice method also becomes problematic as the number of time periods per 
scenario is increased. This becomes clear later in the discussion. 

One might also suggest setting the interest rates at lk = 10 (1.05) k on the 
grounds that changes in interest rates should be proportionate to their level. 
The suggestion is reasonable, but one should be fully aware of the effect. 
Without a change in the probabilities, the change would introduce an upward 
bias in the interest rate scenarios created. This is because when at Ik the 
expected interest rate at time k+  1 is higher than lk. For example, at 10 
percent it is 1/2(10.5 percent) + l/2(9.52 percent) = 10.01 percent. This is 
not much bias and is insignificant over a small number of time periods, but 
the effect is compounded with each additional time period. 

Such bias could be offset by changing the probabilities so that at interest 
level Ik the expected rate for the next time period equals lk. Changing the 
probabilities, of course, invites the criticism that the lattice is biased in the 
sense that the next interest rate at any time is anticipated to decrease more 
often than increase. 

YIELD CURVE JUMPING [3] 

A third method is a probabilistic approach to scenario generation. The 
technique involves specifying a set of interest rate curves (for example, A- 
rated corporate bonds) and the probabilities of jumping from one curve to 
any other in a fixed interval of time (for example, one year). Then, using a 
random technique and the curves and probabilities specified, one can gen- 
erate as many scenarios for as long a projection period as desired. 

A fairly simple example illustrates the method. Figure 2 shows a limited 
range of possible yield curves. 
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FIGURE 2 

YIELD CURVE JUMPING METHOD OF SCENARIO GENERATION 
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The probabilities of moving from any one curve in Figure 2 to any other 
curve in Figure 2 are given below: 
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The sum of the probabilities in each row is 100 percent. Some individual 
probabilities could, of course, be zero. Interest rate scenarios are generated 
by using some random choice technique, for example, random numbers that 
are "mapped"  to the probabilities in the table. 

The random technique can be visualized as a roulette wheel, or as a spinner 
for a board game, with 100 possible outcomes. For example, when at curve 
3, the 100 possible outcomes are P3~ l ' s ,  P32 2's, P33 3's, and so on. A spin 
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of the wheel or spinner determines the curve number at the next point in 
time in the interest rate scenario. Subsequent spins determine the curve for 
each subsequent point in time in the scenario, and this technique is used for 
as many scenarios as desired. 

When using this method, as well as any other, one should be aware of 
the possible biases. For example, if the probabilities in the fourth row of 
the table are not normally distributed around curve 4, there will be a bias, 
at least in some sense. The expectation could still be upward or downward 
and would depend on the interest rates on the curves. Of course, this ex- 
pectation could vary depending on which curve one is on. When on either 
the top or bottom curve of Figure 2, it is impossible to eliminate bias in the 
sense of equal probabilities of rates going up or down. 

FIRST STOCHASTIC MODEL 

Another way to generate interest rates is to use a recursive algebraic 
formula in which the interest rate for the next period is determined from the 
current period interest rate, a random variable, and one or more parameters 
or constraints. The formula that comes readily to mind is the following: 

I,+, = I, ( I + Z x V F )  

where I, is the current interest rate; I,+ ~ is the interest rate one period later; 
Z is a random variable that is normally distributed with a mean of 0 and 
standard deviation of 1 (Appendix A describes means of developing these 
random variables, which can be easily programmed on a computer); and VF 
is a volatility factor appropriate for the time period from t to t + 1 and for 
the particular interest rate (for example, the one-year Treasury rate or the 
ten-year Treasury rate). 

This model has an advantage over the previous models in that the number 
of possible outcomes is limited only by the number of possible Z's. It also 
invites looking at actual historical interest rates to set the volatility factor. 

Not much is said about this model because the next model described is 
quite similar, yet better than this one. The above formula, without a con- 
straint added, would have the flaw that it could produce a zero or negative 
interest rate. All it would take is for Z x VF to be less than or equal to - 1. 
Therefore, the formula should only be used with a lower bound on I1,+ t or Z. 
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SECOND STOCHASTIC MODEL 

D e v e l o p m e n t  

Let us alter the previous model by assuming instead that In [(I + A / ) ÷ / ]  
is normally distributed. Now we can generate interest rates by using the 
following formula: 

I . . l  = l ,e  z×vr  

where the symbols have the same meaning as in the previous formula. 
This author has found that changes in historical interest rates are approx- 

imately normally distributed, whether measured simply or logarithmically. 
Suppose we have a history of one-year Treasury rates over many years at 

our disposal and find that the standard deviation over one-year periods of In 
[(•+ A I ) + / ]  equals 0.27. Further, suppose we set V F  = 0.27 in the above 
formula and generate scenarios. 

Unfortunately, this approach only a p p e a r s  to produce interest rates con- 
sistent with history. Actually, the distribution of the randomly generated 
interest rates is much more varied than the historical rates over multiple time 
periods, even though the volatility over one-year periods is fine. This is clear 
from the following formula: 

I , . , ,  = I, e vv~zj ,z2 . . . . . .  z ,) .  

For example, suppose I, = 8 percent, and E~=~ Zt. = 5. Then I,+,, = 30.86 
percent. 

How might the model be changed to avoid such unrealistic rates? Three 
possibilities are: 

1. Lower the volatility factor. 
2. Put bounds on how high or how low the rates can go. 
3. Both of the above. 
The first solution may be appropriate if short-term rate fluctuations are 

not important to the application; however, they often are. The second so- 
lution is more practical; it may even be suitable for the application. But it 
will cause the interest rates in a number of scenarios to " s t i ck"  at or near 
the upper or lower bound. Also, it invites the criticism of a bias against 
rates outside of the bounds. Interest rates may also "s t i ck"  with the yield 
curve jumping model, unless the probabilities of moving from the extreme 
curves are very skewed. 
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Comparison with Prior Models 

Suppose we were to construct a series of lattices, L3, Ls, L 7 ,  - • • , the 
subscript indicating the number of branches at each node on the lattice. 
Further suppose that for each lattice the interest rates were geometrically 
spaced and the probabilities were "normally distributed" as much as pos- 
sible. Then the limit of the series would be the lognormal model just de- 
scribed (with no bounds). 

We saw earlier that a lattice with the interest rates geometrically spaced 
resulted in an expected interest rate at time t + 1 higher than I,, but that this 
bias could be removed by changing the probabilities. This becomes difficult 
as the number of branches at each node is increased, but would be practical 
with this model. It could be done by shifting the mean of the variable Z 
downward from zero to a small negative number. 

Let us assume that the interest rates on the curves in the yield curve 
jumping model are geometrically spaced and that the probabilities at each 
curve are "normally distributed" as much as possible. That would be anal- 
ogous to this second stochastic model with upper and lower bounds. 

T H I R D  S T O C H A S T I C  M O D E L  

The third stochastic model addresses some of the shortcomings of the last 
model and extends it to generate yield curves, rather than just one kind of 
interest rate. The model assumes a starting one-year Treasury rate, TI(0), 
and a starting twenty-year Treasury rate, 7"20(0). The future interest rates are 
generated in steps: first the one-year rate, then the twenty-year rate, and 
finally the intermediate rates. 

One-Year Treasury Rate 

To maintain the short-run volatility shown by history yet temper the long- 
run volatility, this model incorporates a mean-reverting formula, rather than 
imposing an upper and lower bound. The one-year Treasury rate one year 
later, Tl(t+ 1), is calculated as: 

T , ( t+ l )  = [T,(t) + f(t)]e z×VF 
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where 
f(t) = minimum {.015[T~(00) - T~(t)]3; .5[T~(®) - T,(/)]} 

if T~(t) < TI(®) 
= maximum {.015[/'1(00) - T,(t)]3; .5[T1(®) - T~(t)]} 

if T~(t) >_ T~(®); 
T~(®) is a parameter signifying the " long-run"  T~; and 
Z and VF are defined as in the last model. 
The function f(t) defined above is not derived from a detailed analysis of 

historical data. It does, however, reflect a commonly held view about real- 
world interest rates. Its varying effect is consistent with the economic law 
of supply and demand. Clearly, it has very little effect if the difference 
between T~(t) and TI(Q0) is small and a greater effect as the difference in- 
creases. When current interest rates are above or below what interested 
parties perceive to be "normal , "  then market forces exert their effect to 
bring them back into line. And the further from "normal"  rates are, the 
stronger the forces. 

A mean reverting function might be criticized from the standpoint that at 
any given time no one really knows where future interest rates will be; yet 
the model says that the anticipated rate, T~(t) + f(t), is toward T~(~). The 
criticism has a certain amount of validity, but perhaps the only alternative 
is a less realistic model. 

One more point is worth discussing. Where does one set Tj(~)? It would 
typically be set at T1(0), but that is not obligatory. One may set it above or 
below to effect an upward or downward bias on the interest rate scenarios, 
if it is thought that the starting interest rates are " l o w "  or " h i g h . "  

Let us now compare this model with the prior one. The prior model, with 
the upper and lower bounds, also has a sort of market force as just described. 
But its behavior is quite different. It has no effect until the interest rate is 
far from normal. It does not allow the interest rate to go past the bound. It 
does not pull the interest rate back toward normal. 

Twenty-Year Treasury Rate 

We noted that the one-year Treasury rate is a function of its anticipated 
rate and a random term. A similar approach is taken for the twenty-year 
Treasury rate. The formula is as follows: 

T2o(t+l) = [axT~( t+l )  + b] + Z(r2o. 
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The variable Z is random, normally distributed with a mean of 0 and a 
standard deviation of 1. Theterm cr2o is the standard deviation of the spreads, 
presumably derived from historical data, between one-year and twenty-year 
Treasury rates. Suggested values for a, b, and e2o are given in Appendix B. 

The bracketed part of the formula is the anticipated rate and recognizes 
an important constraint on the " r a n d o m "  generation of simultaneous interest 
rates: There must be a reasonable relationship between any one rate and 
another. 

The above formula, using the values suggested in Appendix B, is graph- 
ically depicted in Figure 3. The solid curve shows the anticipated twenty- 
year rate. The broken curves above and below the solid curve indicate the 
anticipated twenty-year rate _+ Cr2o. Thus, about 68 percent of the time 
T2o(t + 1) would be anticipated to fall between the broken curves. Points on 
the graph that are below the 45-degree line would give inverted yield curves. 

FIGURE 3 

TWENTY-YEAR TREASURY RATE AS A FUNCTION OF THE ONE-YEAR TREASURY RATE 
AND A RANDOM TERM (VALUES FROM APPENDIX B) 
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A historical graph of twenty-year rates versus one-year rates would not 
look as simple as the one in Figure 3. For example: 

• The middle curve, representing average twenty-year rates, would be bumpier. 
• The "band" would be a little wider in the middle and narrower at the high end, 

probably because of the high number of occurrences of interest rates in the midrange 
and low number of occurrences of interest rates above 12 percent. 

History cannot be formulated so easily. But Figure 3, and hence the values 
in Appendix B, will give good results for almost any practical application. 

Other Treasury Rates 

Linear combinations of Tl(t) and T2o(t + 1) for the intermediate maturities 
would probably give satisfactory results for many practical applications. The 
formula could be expressed as: 

T,,(t+l) = [Wl(m) x TI(t+I)]  + [W2o(m) x Tzo(t+l)] (2_<m<19) 

in which W1 and W2o are weights for the one-year and twenty-year rates. 
Alternatively, one could set Tm(t + 1) for two to four key values of m, for 
example, m = 2, 5, 7, and 10, and interpolate to find the remaining Tm(t + 1). 

This approach makes no attempt to simulate the multitude of shapes that 
the Treasury yield curve may have in the real world. The user is invited to 
search for a formula or formulas, or even add one or more random elements, 
to more closely represent the real world. 

The Starting Curve 

If one were to select a starting curve from the real world, only by pure 
coincidence would it match the curve that would result from starting with 
TI(0) and then calculating 7,,(0) (m > 1) with Z = 0, using the above 
formulas. Rather, the real-world starting curve would be to some degree 
inconsistent with the later randomly generated curves. One could ignore the 
inconsistency, bend the real-world curve to fit the model, or adjust the 
formulas. The last option might involve minor adjustments initially that later 
diminish and grade into the unadjusted formulas over time. For example, one 
might use two different formulas for deriving the anticipated twenty-year rate 
from the one-year rate. The first formula might be for t = 0, the second for t 
-> 5, and a weighted average of the two formulas for t = 1 to 4. 
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MULTIPLE CURVES 

The last model described a method of generating yield curves for Treasury 
rates. What if the user also wanted other simultaneously occurring interest 
rates, such as corporate debt or mortgages? 

Interest rates for other kinds of debt can be determined by simple formulas 
using the Treasury rates for the same maturity. Two possibilities readily 
come to mind. The first is an addition to the Treasury curve, that is, a so- 
called quality spread. The second is a multiple of the Treasury rate, which 
would give a "quali ty spread" that varies with the level of the Treasury 
rate. The latter is probably more realistic. Either method would probably 
yield satisfactory results for any practical application. Perhaps time studies 
of quality spreads have been made and published by someone, but the author 
is not aware of any. 

Whichever formula is chosen, all the following pertain: 

• Quality spreads vary significantly with the number of years to maturity. 
• If the application does not model defaults, then the calculation of the interest rates 

should incorporate a credit risk deduction to indirectly allow for defaults. 
• In the real world, quality spreads are dismayingly volatile. One might specify quality 

spreads that are higher (or lower) than normal at the starting poin! for each scenario 
and grade into more normal spreads later in the scenario. However, doing so would 
build in a bias. 

The volatility of quality spreads in the real world might suggest two kinds 
of refinements: 

• Quality spreads that vary with the economic cycle, narrowing during good times and 
widening during bad times, however the user might determine those times by interest 
rates. 

• Adding a random element to the calculation of the interest rates for the other kinds of 
debt. 

However, the effort that would be required to measure, program, test, and 
monitor the refinements probably would far exceed the benefits derived from 
the refinements. 

CONCLUSION 

This paper has described methods of creating interest rate scenarios, which 
are a valuable tool for analyzing interest rate risk and facilitate communi- 
cation of analysis of such risk. The methods described are skeletal in form. 
The use of variations, combinations, refinements, and different parameters 
is encouraged, with one precaution: Analyze the practical results. Are they 
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reasonable in relation to historical rates? What is the short-run volatility? 
The long-run volatility? How frequent are the highs and lows? How high 
and low are they? 

The thrust of the first and second stochastic model was toward randomly 
generated interest rates that are closer to historical reality. This goal was 
pursued more vigorously with the third stochastic model. Without a com- 
prehensive theory of the behavior of interest rates, such a pursuit lacks 
scientific precision. That does not mean that the pursuit should not be un- 
dertaken. The more realistic we actuaries can make our scenarios, the more 
credible will be the results. 

The use of interest rate scenarios by actuaries is of fairly recent origin, 
as is the systematic development of such scenarios. The methods described 
in this paper eventually may be viewed as unsophisticated. But this author 
hopes that this paper will contribute to the evolution. 

How might the model be further improved? Two ideas that seem worthy 
of consideration are the cyclical nature of interest rates and changes in in- 
terest rates between different eras, such as before and after October 1979. 
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APPENDIX A 

The stochastic models require random variables, Z, which are normally 
distributed with a mean of 0 (Ix = 0) and a standard deviation of 1 (o- = 
1). Most statistics textbooks tell us that a normal distribution closely ap- 
proximates a binomial distribution if certain conditions are met. This fact is 
used because binomial distributions are easily done on a computer, which 
will give random numbers. 

Let X1, X2, . . . , XN be a sequence of l ' s  and O's each indicating a 
"success"  or "fa i lure"  where the probability of a success is 1/2 (P = 1/2). 
Let X equal the sum of the sequence. If N, the number of trials, is sufficiently 
large, then Ix = NP, tr = ~ / N P ( 1 - P ) ,  and (X - Ix) + o is normally 
distributed. 



436 INTEREST RATE SCENARIOS 

The sequence of l ' s  and O's can be produced on a computer by random 
selection on two possibilities, for example, determining whether a random 
integer from a range of integers (the range even-numbered or very large) is 
even or odd. Therefore, it takes little more than N random numbers to 
produce Z = (X - 0.5N) + 0.25N, which is normally distributed with p~ 
= 0 and ~ = 1. N = 30 is suggested as a minimum. It is reasonable to 
discard Z if IZ[ > 3. 

There are more esoteric and efficient methods for generating values of Z 
that are normally distributed with ix = 0 and cr = 1. For example, there is 
the Box-Muller method [2]. Let U~ and U2 be random numbers, both from 
the unit interval (0,1). Then two random numbers Z, and Z2 can be calculated 
a s :  

Z, = ( - 2  In UI) u2 cos(2rrU2) 

Z2 = ( - 2  In U~) 'tz sin(2rrU2). 

APPENDIX B 

The volatility factors in all stochastic models and the cr2o in the third 
stochastic model are important. An effort was made in both models to allow 
parameters based on historical data. Of course, the numerical value implied 
by the data will vary with the period of history studied. 

For the second stochastic model (the lognormal formula) a reasonable 
value for the volatility factor to model one-year Treasury rates at one-year 
intervals is about 0.27. 

For the third stochastic model a reasonable value for the volatility factor 
to model one-year Treasury rates at one-year intervals is about 0.23. It is 
lower than the 0.27 because the mean-reverting function adds some short- 
run volatility. 

Suggested parameters for calculating the twenty-year Treasury rate are as 
follow: 

a = 0.8 b = 2.5 if T1 < 10% 
a = 0.6 b = 4.5 ifT~ > 10% 
cr2o = 0.2 + 0.1T'zo if T'zo -< 10% ] T'zo is the 

Crzo = 1.2 if T'zo > 10% J anticipated rate. 
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Suggested weights for calculating the in-between Treasury rates are as 
follow: 

m Wl(m ) W2o(m ) 

2 0.64 0.36 
5 0.39 0.61 
7 0.24 0.76 

10 0.16 0.84 





DISCUSSION OF PRECEDING PAPER 

STEPHEN J. STROMMEN: 

Mr. Jetton has provided an excellent and thorough introduction to the 
topic of interest rate scenarios. His paper is a welcome addition to the 
actuarial literature. 

This discussion describes two possible modifications to the third stochastic 
model described in the paper. These modifications have proven useful in 
practice, and one of them is supported by historical data. Throughout this 
discussion, the notation follows that used by Mr. Jetton in describing his 
third stochastic model. 

A Different Mean-Reverting Formula 
One of the assumptions in the third stochastic model is the long-run normal 

interest rate on one-year Treasuries TI(~). When interest rates are higher 
than TI(®), they tend to fall, and when they are lower than T~(~), they tend 
to rise. This is accomplished in the model by using a function, f(t), which 
is negative when interest rates are higher than Tt(®) and positive when 
interest rates are lower than TI(®). The assumption is that next year's interest 
rate, Tj(t+ 1), is randomly distributed around T~(t)+f(t). 

The difficulty with this procedure is in choosing an appropriate value for 
T](®). As Mr. Jetton noted, if the chosen value is different from T~(0), an 
upward or downward bias is built into every randomly generated scenario. 
One could consider that to be undesirable, because it is very difficult to 
build a strong argument for any particular choice of T~(~). 

An alternative approach involves an assumption that there is a range of 
normal values of T~(®) rather than a single value. For example, assume that 
TI(®) = T~(t) as long as T~(t) lies between 4 percent and10 percent. T](~) 
is then never lower than 4 percent nor higher than 10 percent. Mr. Jetton's 
formulas for f(t) can still be used, but this change in T](®) results in f(t) 
being zero whenever the one-year Treasury rate lies between 4 percent and 
10 percent. 

This approach eliminates the need to choose a single normal level for 
interest rates and replaces it with the need to choose a normal range. Aside 
from the effect on the resulting scenarios, the use of a range of normal 
values can make it easier to get agreement from a large number of people 
that a given assumption is realistic. It also makes it less likely that the 
assumption will need to change from time to time. 

439 
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A Different Approach to the Slope o f  the Yield Curve 

Throughout the paper, Mr. Jetton tacitly assumes that the slope of the 
yield curve is directly connected to the level of interest rates. The higher 
the interest rates, the smaller the slope of the yield curve. 

~This shows up in Figure 2 for the "yield curve jumping" method. In 
Figure 2, all the yield curves for the high interest rates are inverted, while 
all of those for low interest rates are positively sloping. 

It shows up again in Figure 3 for the third stochastic model. In Figure 3 
the difference between the one-year Treasury yield and the 20-year yield is 
randomly distributed around a figure that gets smaller as interest rates rise. 
By using this model, it is very unlikely that one could randomly generate a 
positively sloping yield curve when interest rates are at 14 percent, nor could 
one generate an inverted yield curve when interest rates are at 6 percent. 

An alternative approach to the slope of the yield curve is based on a 
fundamentally different assumption: 

The slope of the yield curve depends more on whether interest rates previously went up 
or down than on the current absolute level of interest rates. 

This assumption can be implemented by using the procedure described 
below. In addition, it will be shown to have some support from historical 
data. 

To aid in the discussion, let us define the "s lope"  of the yield curve as: 

s(t)  = [T2o(t) T,(t)] / T,(t)  

so that 

T2o(t ) = Tt(t).[1 + S(t)]. 

Under this definition, the slope is zero when the yield curve is flat. Let us 
also assume that there is some "normal"  value of S(t); call it S(®). 

To implement our assumption, let us make S(t) follow a recursive rule. 
In particular, 

S(t + 1) = (1 - a) " S(~) + a.S(t) + b.[T,(t + 1) -T , ( t ) ] / r , ( t )  [1] 

In words, this means that next year's yield curve slope is equal to a weighted 
average of this year's slope and the normal slope, plus a shock factor based 
on the change in interest rates. Assuming that b is less than zero, any sudden 
increase in interest rates tends to decrease the slope (perhaps creating an 
inverted yield curve), but if interest rates remain level thereafter, the slope 
returns to normal. 
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It can be useful to put limits on the projected value of S(t); one might 
assume that it must fall between - 0 . 2 5  and + 0.50. This prevents the slope 
from getting unreasonable in a scenario in which interest rates move in the 
same direction in sizable amounts for a few years in a row. 

Given these definitions, historical data can be used to arrive at reasonable 
values for the constants S(~), b, and a. If we make the transformation c = 
S(®)-(1 - a), we can express [1] in a form suitable for a linear regression 
on two independent variables, as shown in [2] below. 

[2] Y =  c + aX~ + bX2 

where Y =  S(t + 1) 
x, : s(t) 
Xz = [T~(t + 1) - T,(t)]/T~(t) 

Use of historical data on government securities for the period 1960-84 
leads to the following regression results: 

Parameter Estimate 

c 0+064 
a 0.718 
b -0.587 

S(z) = cl(I-a} 0.227 
R - squared 0.934 

Using these values, the fit between actual and projected slopes is quite 
good, as is shown in Chart 1 (the data are given in Table 1). In Chart 1, 
the estimated slope S(t + 1) is calculated from the previous estimated value 
of S(t) rather than the previous actual value. The fact that the estimated 
slopes follow the actual ones so closely indicates that the recursive rule 
works quite well when using parameters estimated from the regression. 

When using this alternative approach to  the slope of the yield curve, the 
procedure generating an interest rate scenario for Treasury rates is as follows: 

1. Calculate the one-year Treasury rates Tt(t ) for all future years. 
2. Calculate the yield curve slope S(t) recursively for each future year, starting with 

the current actual slope. 
3. Calculate the 20-year Treasury rates from the one-year rates and the slopes: T2o(t) 

= T,(t)[1 + S(t)]. 
4. Calculate other points on each year's yield curve in the manner suggested by Mr. 

Jetton. 



Chart 1 

Yield Curve Slope 1960-[14 

0.4 

0.3' 

0.2 

0"10 

-0.1 i X  

- ' 0 . 7 '  ~ I I I I I I I I ! I I I I I I I I I I I ! I I I 1 

1960 1970 1980 

, n ¢ 5 . ~ 1  

JI, 

[ntirr~t~l 

TABLE 1 

S i c  ~e 

Y e a r  A c t u a l  E s t i m a t e d  

1960 
1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 

0.1634 
0.3495 
0.3180 
0.2280 
0.1000 
0.0393 

-0 .0781 
0.0335 

-0 .0253  
-0 .1007  
-0 .0369  

0.2290 
0.1885 

-0 .0373  
-0 .0365  

0.2090 
0.3277 
0.2828 
0.0268 

- 0.1233 
-0 .0646  
-0 .0706  

0.0540 
0.1901 
0.1438 

0.1571 
0.2859 
0.2367 
0.1877 
0.1078 
0.0997 

-0 .0159  
0.0927 
0.0358 

-0 .0597  
0.0127 
0.2529 
0.2467 

- 0.0427 
- 0.0469 

0.1430 
0.2310 
0.2278 
0.0042 

-0 .1004  
-0 .0933  
-0 .1324  

0.0618 
0.2470 
0.1515 
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Random numbers are only used in Step 1. The rest of the procedure is 
completely deterministic. 

Closing Comment 

This discussion has provided two possible modifications to the third sto- 
chastic model presented by Mr. Jetton. Given the current state of actuarial 
knowledge and practice in this area, it is not possible to say whether they 
represent a definite improvement. The key, as Mr. Jetton pointed out, is to 
"Analyze the results!" 

JEFFREY M." GURSKI: 

Mr. Jetton should be commended for his valuable ground-breaking efforts. 
The projection of plausible yield curves is an essential and timely topic for 
many actuaries who need to model their business over various future scen- 
arios. This discussion presents an alternative to Mr. Jetton's third stochastic 
model, as well as some comments on the author's version. The alternative 
version involves first the projection of the ten-year rate in a manner similar 
to the author's projection of the one-year rate. Then conditional distributions 
are used to generate movements of the one- and thirty-year rates in a manner 
that correlates them to the ten-year move. 

I. ANALYSIS OF HISTORICAL DATA--RESULTING ASSUMPTIONS 

Historical Data 

Salomon Brothers" Analytical Record of Yields and Yield Spreads pro- 
vides an historical data base of month-to-month Treasury yields (i (2) basis) 
for various maturities back to 1954. This data base was used to: 

(1) Test whether the natural logarithms of the changes in yields are indeed normally 
distributed 

(2) Determine what are reasonable levels and slopes of the yield curve 
(3) Study the volatility patterns of the one-, ten- and thirty-year yields 
(4) Study the correlation between the movements of the one- and thirty-year yields to 

those of the ten-year. 

It could be argued, especially in today's rapidly changing financial world, 
that history should not be used to predict future results. However, we are 
not predicting any one future. Rather, we are trying to determine a set of 
plausible futures. Actual historical results will likely provide more reliable 
guidelines for this purpose than our intuition. 
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Definition of Random Variables 
Because the alternative version involves the projection of the one-, ten- 

and thirty-year Treasury yields, we focus only on these. The rest of the 
curve is filled in by using an interpolation that is detailed in Appendix B. 
Three rates are projected rather than-two in order to better model the various 
shapes that the yield curve can take on. The thirty-year rate is important 
when modeling annuity or other long-duration business. When analyzing 
business having little or no long cash flows, projection of just the one- and 
thirty-year rates would be sufficient. 

First, we define the random variables X~, X~o, and X3o for the natural 
logarithms of the ratios of yields from one month to the next for each of the 
respective maturities. That is, 

Xi = In [Ti(t + 1)/Ti(t)] for i = 1, 10, and 30, 
where Ti(t) represents the yield on the/-year Treasury bond at month t. 

Tests of Normality 

It is indeed reasonable to assume that each of the random variables Xt, 
Xio, and X~o are normally distributed. Chi-square tests for normality (at the 
5 percent level of significance) over recent subsets of the historical data 
show that this hypothesis cannot be rejected. For example, normality is 
confirmed for each of the three Treasuries when taking samples over the last 
two and one-half years, over the last ten years, and over the last twenty 
years. However, note that samples over the last thirty years or over the entire 
data base would lead us to reject the normality assumption for each of three 
Treasuries. This could be due to the lack of 'normal' type changes in rates 
seen in samples of the early data. 

Volatility of Rates 

The measure of interest rate volatility that we are interested in is the 
standard deviation of each of the random variables Xt, Xlo, and X3o. Let 
these standard deviations be denoted by St, S~o, and $3o, respectively. 

Based on the premise that the true variance of the underlying distributions 
can change over time, one might analyze sample standard deviations over 
various time periods to see how this measure is "trending." In deciding on 
an appropriate level of volatility for our purposes, the projection of future 
yield curves, it is reasonable to weigh the volatility of recent periods more 
heavily. With this in mind, reasonable estimates for S~, $1o, and $3o (an- 
nualized basis) turned out to be 22.0, 18.5 and 15.0 percent, respectively. 
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These choices are somewhat subjective and could justifiably be influenced 
somewhat by one's view of the direction of future volatility levels. Although 
the magnitude of these numbers is not important to this discussion, the 
process of estimating volatility is a worthy topic of discussion in itself. 

I I .  T H E  M E T H O D  

Background."  C o n d i t i o n a l  D i s t r i bu t i ons  

We will be considering the joint normal distributions f (x~,  x lo)  and f(x.~o, 
x~o), rather than the multivariate form f (x~,  X~o, X3o). For simplicity, I have 
chosen to ignore the relationship between xl and X~o, but invite those who 
delight in the more advanced statistics to expand the formulas below to the 
multivariate case. 

It can be shown that the conditional distribution f(x~ I Xlo) is itself normal 
with mean 

['J~l "dr- R l ,  lO ( S l / S l o ) ( x l o  - ['.LIO) 

and standard deviation 

S,  (1 - R2,,1o) I/2 

where X~o is a fixed observation of)(10 (not a random variable) 
Rl.~o is the correlation coefficient for the random variables x~ and x.~ 

~ and I~o are the means of the random variables x~ and x.~. 
Note that the means are assumed to be zero (although the entire historical 
data do reflect an upward trend in rates, this mean is negligible over the 
more recent data). 

The mean and standard deviation off(x3o ]x~o) are analogous to those for 
f ( x  I [Xlo ) given above. Using Ix~ = P-~o = 1~3o -- 0, we have, in summary, 
the following normal distributions of interest: 

Dislribution Mean Standard Dtviatmn 

f(x,,,) o S,,, 

f(x,~,,,) R,.,o . (S,/S.,) . x, .  S, " 0  - R,.,,,) ''~ 

. . • . • . R ~ . . , . )  f(x~,~q.) R~,, ,,, (S3olS,.) x,o S~, , - (1  - z , a  
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Deve lopmen t  o f  Pro jec t ion  Formu las  

We want to generate random observations Xlo, xl, and X3o from the dis- 
tributions f(Xlo), f(x~ [ xlo), and f(x3o [ x~o), respectively. This is done by 
making random generations z from the standard normal, one for each of the 
three observations needed. In order to keep these three generations from the 
standard normal distinct, they are labeled Zjo, z~, and Z3o. Now we need to 
write the xi's in terms of z,'s. Recall that a normal random variable X with 
mean Ixx and standard deviation S,̀  is defined in terms of the standard normal 
random variable Z by using the following relation: Z = (X  - ~x)/S~ or 
X = Ix,, + S,`Z. Thus, 

To Sample from Formula in Terms of Standard Normal 

f(x,,,) x,o = S,(~,,, 

f(x, I xl,,) x ,  = s ,  [z, (1 - R~., . )  'c2 + z,o R , . , , ]  

f<x3. Ix")) x3,, = s3,) [z3a ( l  -- R~(LIn) 1~ + glo R.~o.l(,] 

Finally, we can write the formulas for the Treasury rates we are seeking: 

T,o(t + 1) = T,o(t ) • exp[S, o • Z,o(t)] 

T,(t + 1) = T,(t)  • exp{S, • [z,(t) "(1 - R{,,o) '`z + z,o(t) • R,,,o]} 

T3o(t+ 1) = T~o(t) • exp{S3o • [Z'3o(t) • (1 - R~o.,o) 'r2 + Z,o( t ) 'R3o. ,o]}  

Changes in T~ and T3o are influenced by two factors: 

(1) The change in T~o, determined by z~o(t) 
(2) An independent random movement, determined by zj(t) or z3o(t). 

The higher the correlation, the greater the weight given to factor (1), and 
the lesser the weight given to factor (2). Analysis of the historical data shows 
that R~.lo has been about 0.85 recently, while a value of 0.95 for R3o.jo 
shows the strong relationship between the month-to-month changes in T,) 
and T3o. 

I l l .  A D J U S T M E N T S  T O  P R O J E C T E D  R A T E S  

M e a n  Rever t ing  Process  

I agree with Mr. Jetton that it is desirable to adjust the random projections 
to keep the rate levels reasonable in relation to historical precedents. In fact, 
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the mean reverting adjustment Mr. Jetton suggests is quite similar to the 
adjustment I have used in my scheme. I will just note my variation: 

Tyi(t + 1) = Ti(t + 1) + c'[ri(oo ) - -  Ti(t+ !)] 

where C is the "central tendency" factor and T~(~o) is the long-term mean 
for the i year rate. 7",.(oo) could also be used as an assumed level for Ti under 
"normal" economic conditions. A value of 0.01 for C produces reasonable 
results when projecting rates month to month. 

This mean reverting adjustment has the desirable property of creating a 
cyclical pattern of interest rates. For example, as rates get high relative to 
their historical means, there is a fairly strong influence bringing the rates 
down (because the adjustment is larger as the rates get farther from their 
mean.) 

Constraints on Spreads 

The recognition of the historical correlations between rate movements in 
the methodology helps to keep the projected rates reasonable in relation to 
one another. However, if these relationships get out of line with historical 
standards, it is desirable to make adjustments. Analysis of the historical data 
shows that the spread between Tt and T,o is rarely greater than ___ 225 basis 
points (bp). Only 10 out of 411 observations had greater spreads. These 
observations were: -308,  -259,  -237,  226, 228, 230, 235, 240, 243, 
and 250 bp. Note that the amount above or below the 225 points is usually 
not too great. 

Because using a fixed constraint would cause spreads to cluster, unusual 
spreads are dampened significantly but not eliminated entirely. This is ac- 
complished by using the following process. If the spread between the pro- 
jected rates T1 and Tlo becomes greater than 225 bp, the excess is reduced 
by 60 percent using an appropriate adjustment to TI. There is nothing special 
about the 60 percent figure, except that it helped to constrain the spreads in 
a manner that produces results similar to the historical experience. 

Likewise, the spread between T,~ and T3o w a s  kept in line with historical 
standards. Only 10 out of 411 historical observations of (T~o - Tto) were 
outside the range - 70 to 90b: - 7 9 ,  - 7 5 ,  - 7 4 ,  92, 92, 92, 94, 95, 95, 
and 121. So, using the same method as above, if the projected (T~o - T,0 
is less than - 7 0  bp by an amount x, then T3o is increased by 60 percent of 
x. If (T3o - T~o) is greater than 90 bp byx, then T.~o is reduced by 60 percent 
ofx. 
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Results Using the Method 

This method was used to project monthly interest rate scenarios over a 
five-year horizon in order to model our spot-rated group pension business. 
Thus, 61 yield curves (including the starting curve) were needed for a single 
trial and 6100 for 100 trials. Using the one-, ten- and thirty-year Treasury 
yields as of 8/1/88 as a starting point, these rates were projected using the 
method outlined above. There are 6000 observations in these data which 
correspond to the random variables X1, Xlo, and X3o, the natural logarithms 
of the ratios of yields from one period to the next. 

Even though the raw random generations were artificially adjusted using 
the mean reverting process and for spread considerations, sample statistics 
from the projected Treasuries were very consistent with the assumptions of 
the underlying distribution: 

NfJrm;tlly Distribulcd? 

Si Sla S3n R].ln Rlo..uJ Xm XdXI¢I X3(llgla 

Assumed 22.0 18.5 15.0 0.85 0.95 yes yes yes 
Projcctcd 21.5 18.2 15.0 0.85 0.95 ycs yes yes 

The patterns of the spreads (Tio - TI), (T3o - Tio) and (T.~o - T1) were 
also analyzed. The average amounts these spreads changed month to month 
in the projected curves were reasonable in relation to the historical data. A 
comparison is shown below: 

AVERAGE ABSOLUTE MONTHLY CHANGES IN SPREAD (BASIS POINTS) 

Historical (last 20 ye~,rs) 
Historic~d (ult d;it;t) 
Projected Curves 

IA(7"~n - Till ]~[('/~an - "Gn)l [A('/'~o -Tdl 

30.6 III.7 34.S 
17.9 8.4 26.0 
22.9 12.6 24.5 

IV. C O M M E N T S  ON T H E  A U T H O R ' S  A P P R O A C H  

The similarities between Mr. Jetton's third stochastic model and the ap- 
proach outlined above are apparent. The author's method for generating 
values of T~ is essentially identical to my generation of values of Tlo. Our 
"mean reverting" formulas are similar and are meant for the same purpose. 
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Where I disagree with the author's method is in his calculation of his 
second rate, T20, and how he relates it to T~. With the equation 

Tzo(t + 1) = [a × T, (t + 1) + b] + Z~zo 

the author is assuming a fixed linear relationship between the rate levels T2o 
and T,, and then perturbs the projected values away from the line by using 
the random component Z~20. This equation prescribes what the slope of the 
yield curve will be, on average, based on the level of the one-year rate. Yet 
the historical data show that there have been flat, inverted and positively 
sloping yield curves at many different rate levels. A simple linear regression 
is the statistical method under which we can study the relationship between 
7"20 and T 1. Actually, to be consistent with Mr. Jetton's approach, we would 
break the data into two separate regressions: one set with T, -< 10 percent 
and the other with T, > 10 percent. Either way, regressions of the historical 
data do seem to reveal a strong linear relationship between the variables (as 
measured by the coefficient of determination), ostensibly justifying the use 
of Mr. Jetton's formula for 7"20. However, upon closer analysis, the following 
points become evident. 

(1) The use of "the standard deviation of the spreads" %0 is not appropriate for the 
author's formula. More consistent would be the use of the standard deviation of 
the error or "residual" random variable ei from the regression equation 
Yi = a X ,  + b +e l .  

(2) Whether we analyze actual spreads (T2o - T,) or the residual of the regression, . 
one finds that these random variables are not normally distributed. Furthermore, 
tests show there is a strong serial correlation of these random variables through 
time. For example, if the spread (T2o - T,) is high this month, it is likely to be 
high next month also. A similar phenomenon is seen when studying the residual 
random variables one month to the next. As would be expected, this effect begins 
to wear off as the observation period is lengthened. For example, the spread (T2o 

- T~) is less dependent on what it was one year ago than what it was one month 
ago. The table below shows the serial correlation of the (Tzc ~ - T~) spread for 
various time lags: 

M°°th'a l  2 1 3 J 6  '2t24 
Correlation 0.93 0.84 0.77 0.61 0.47 0.11 

The serial correlations were also very high for the residual variable. These 
high serial correlations mean that neither the spreads nor the residuals form 
a stochastic process, because they do not have the element of randomness 
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through time. Thus, it would be inappropriate to use the author's "random 
term" Z%o in his formula for T2o because the residuals are neither normally 
distributed nor even random in nature. 
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APPENDIX A 

Another method of generating random observations from the standard 
normal distribution is described below (using APL). 

Store in the variable F values of the cumulative distribution function of 
the standard normal for the following 10,001 values of Z: -5 .000 ,  
-4 .999  . . . . .  4.999, 5.000. This can be done efficiently by using SAS, 

with the results transferred to an APL environment. Then, random obser- 
vations of Z can easily be generated by using the APL step: 

Z ,-- ( - 5 )  + 0.001 x + / F  > 0.000001 x (?1000000) 

See Hillier and Liberman [2] for an explanation of the theory behind this 
approach. 

APPENDIX B 

Because only the one-, ten-, and thirty-year Treasury rates are projected, 
we need to interpolate (and extrapolate for rates shorter than one year) to 
obtain Treasury rates at other maturities. The method described below was 
quite effective in reproducing historical yield curves from the historical 
one-, ten-, and thirty-year rates. 

We seek to fit two logarithmic splines of the form 

Tt = (1/ /0"  In (a +bt  + ct 2) 
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where t is the maturity of the Treasury or, 

tl, = a + bt  + ct  2 

where 1I, = exp(K T,) and where K = 70 proved to be an effective constant, 
and we need to solve for a, b, and c. One spline is fit between T~ and Tm 
and the other between T~o and T3o, with the curves going through the points 
Ti ,  Tlo and T30. 

We solve the following two 3 × 3 systems: 

a l + b l + c l  = Y~ 

a~ + 10bl + 100cj = Y~o 

bl + 20cl = M = (Y3o-Yw)/20 = desired slope of II, @ t = 10. 

and 

a 2 + 1 0 6 2 + 1 0 0 c 2  = Y10 

a2 + 3062 + 900c2 = Y3o 

b 2 + 20c 2 -- M.  

a 1, bl, and c~ define the curve between T~ and Tin, and a2, b2, C 2 define the 
curve between Tio and T3o. 

For rates with a maturity less than one year, the first spline can be used 
to extrapolate. However, when this method was attempted to reproduce 
historical three-month rates from the historical T1, Tm and T~o, it was found 
that the reproductions were on average about 25 bp too high. Thus, an 
adjustment can be made for this, to give the interpolating curve a downward 
bend more like the actual historical rates. 

Occasionally, this method produces some rates that are complex, so the 
results should be checked for this. When it occurs, quadradic splines can be 
used instead. The same framework as above is used except that Y, = 7", 
(no exponential transformation is made). 

JOSEPH J. BUFF AND RICHARD B. LASSOW: 

Mr. Jetton has written a useful and interesting paper on an essential aspect 
of asset/liability management, namely, interest rate scenarios. We would 
like to offer some references and comments in order to complement the 
author's work. 
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References on Scenarios 

Mr. Jetton comments that there is little discussion of interest rate scenarios 
in the actuarial literature. He cites three references in the bibliography of 
his paper, none published later than 1985. Through the forum of Society of 
Actuaries meetings and annual Valuation Actuary Symposia, there has been 
an ongoing exposition of interest rate scenarios. 

The model Mr. Jetton calls yield curve jumping is an application of a 
general mathematical process called a stationary Markov chain. For a general 
discussion of the mathematics of such random walk processes, the reader 
can consult: 

FELLER, W. An Introduction to Probability Theory and Its Applications, 3d ed. New 
York, N.Y.: John Wiley & Sons, 1968, Chapter XV, p. 372. 

The approach that Mr. Jetton calls the second stochastic model is often 
referred to in the financial literature as the log-normal model. References 
for the log-normal model include: 

ROLL, R. Behavior of Interest Rates. New York, N.Y.: Basic Books, 1970. 

BRENNAN, M. and SCHWARTZ E. "'A Continuous Approach to the Pricing of Bonds," 
Journal of Banking and Finance (1979):133-55. 

Some specific numerical case studies using the yield curve jumping ap- 
proach to yield curve modeling may be found in: 

DEAKINS, P.B. AND TULIN, S.B. "C-3 Risk," Chapter III in The Valuation Actuary 
Handbook, by the Committee on Life Insurance Company Valuation Principles. Itasca, 
Ill.: Society of Actuaries, 1987. 

BAT'rE, M.C. "Corporate Modeling and Forecasting (Practical Aspects of the Valuation 
Actuary Recommendation)," panel discussion by S.B. Tulin, RSA 12, No. 2 (1986):1239. 

Buvv, J.J. "Investment Considerations in Product Development," panel discussion by 
P.B. Deakins, RSA 13, No. 2 (1987):939. 

Some specific numerical case studies using the log-normal model may be 
found in: 

BUFF, J.J. "Testing Interest-Sensitive Cash Flows," Section 4, Chapter II in The Val- 
uation Actuary Handbook, by the Committee on Life Insurance Company Valuation 
Principles. Itasca, Ill.: Society of Actuaries, 1987. 

BATrE, M.C. "Corporate Modeling and Forecasting (Practical Aspects of the Valuation 
Actuary Recommendation," panel discussion by D. Carr, RSA 12, No. 2 (1986):1224. 
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GRIFFIN, M.W. "Investment Strategy for Life Insurance Products," panel discussion by 
J.J. Buff, RSA 14, No. 2 (1988):821-61. 

Comparison of Scenario Generators 
Mr. Jetton's discussion of his third stochastic model does not include a 

numerical example. Some case studies based on the third stochastic model 
would be useful to answer these questions: 

1. How different are the interest rate scenarios based on the third stochasti~ model 
compared to those based on the second stochastic model? More importantly, how 
different is the range of output financial results based on the two models? 

2. How important to the output is the choice of the long-term interest rate trend as- 
sumption? How critical are the values of the parameters chosen for Mr. Jetton's f(t)? 

We raise these questions for the following reasons: 

1. As with any other financial model, there is probably some point of diminishing 
returns with regard to the real effective impact, on management decisions, of detail 
refinements to the model. It is not yet clear whether the differences, in how the 
second and the third stochastic models try to avoid "unreasonable" interest rates, 
would lead to material differences in the management information to be derived from 
the scenario projections. Perhaps the author or other researchers can address this 
question. 

2. The parameterization of the third stochastic model is presumably important to its 
practical use. Sensitivity testing regarding the choice of critical assumptions is always 
advisable--even the New York insurance regulation referred to in Mr. Jetton's in- 
troduction, Regulation 126, calls for sensitivity testing. Some guidance as to the 
choice of parameters, and their impact on ultimate management decisions, would 
be of considerable interest. Again, perhaps Mr. Jetton or someone else can address 
this question in the future. 

Having argued that the users of different stochastic scenario models ought 
to compare the results of the different models, we would like to draw atten- 
tion to some published research on this question. The Proceedings of the 
1987 and 1988 Valuation Actuary Symposia include comparisons of projec- 
tions output based on two different scenario generators used by some prac- 
titioners, namely, what Mr. Jetton has called the yield curve jumping model 
and what the present writers prefer to call the log-normal model. This on- 
going research indicates that it can sometimes be quite important to identify 
the effect on an insurer's management information system of: 

1. Which scenario generator is used 
2. How the scenario generator is parameterized 
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3. How many scenarios are run 
4. How the results are summarized. 

Critiques of Different Stochastic Models 
Every stochastic generator, like every other actuarial or financial model, 

will have both strengths and weaknesses. The present writers are not aware 
that a thorough comparison of the strengths, pitfalls, and hidden assumptions 
behind the different scenario generators yet exists in one place in the liter- 
ature. We believe that the compilation of a definitive comparison would be 
a major undertaking. Purely for argument's sake, we offer some basic ques- 
tions that practitioners ought to ask regarding any scenario projection pro- 
cedures they might rely upon: 

1. What aspects of historical interest rate behavior does the model encompass, and 
what aspects does it ignore? In what ways does the model recognize that future 
interest rate behavior may differ from historical experience? 

2. What assumptions about yield curve behavior are implicit in the model, such as a 
finite or infinite number of possible yield curves, one process or another for avoiding 
"unrealistic" interest rates, and dependence or independence of the direction of 
interest rate movements from one period to the next. 

3. What parameters for the model can be derived from or based upon historical expe- 
rience, and which ones are more heavily dependent on professional judgment? 

Users of interest rate scenarios should bear in mind that there is some 
controversy among financial theorists with respect to many aspects of the 
modeling of interest rates. Opinions tend to be divided on such matters as 
the appropriateness of mean reversion adjustments, expectations hypothesis 
adjustments, and arbitrage pricing theory. The choice of method will depend 
on how the interest rate scenario projections are to be applied. It is possible 
that in some instances there is no single perfect approach nor one "right 
answer."  

Default Risk 

Mr. Jetton touches briefly on the subject of asset default risk. To leave 
out any provision for default risk in the preparation of interest rate scenario 
projections may be inappropriate in situations in which default risk exposure 
is not trivial. Again, New York Regulation 126 does include guidelines as 
to the treatment of default risk. 

Readers looking for more reference material on default risk scenarios may 
wish to consult: 
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ALBERT, F. "Quantifying the C-I Risk (Defaults in Fixed Dollar Investments and Market 
Value Changes in Equity Investments)," panel discussions by I. Vanderhoof and J. Buff, 
RSA 13, No. 3 (1987):1591-1622. 

In addition, Dr. Vanderhoof has written a paper for the Transactions on the 
subject of defauit experience, which will appear in Volume XLI. 

How Many Scenarios Are Enough ? 

Mr. Jetton raises as one problem in stochastic scenario modeling the ques- 
tion of how many scenarios are enough. This subject is discussed at length 
in the panel discussion "An Approach to the Stochastic Modeling of C-3 
Risk" referenced above. In addition, research on this question is presented 
in the 1988 Valuation Actuary Symposium Proceedings. We would like to 
give one example of the application of such research. 

Purely for illustrative purposes, let us consider how stochastic scenario 
modeling can be used to help determine whether a reserve and accompanying 
assets are "adequate" to support a block of liabilities. Let us suppose that 
"adequate" means that the business is solvent at the end of some projection 
period in 90 percent of the scenarios tested. (Of course other definitions of 
reserve adequacy could be used instead. Furthermore, many applications of 
stochastic scenario testing do not pertain to reserve adequacy.) 

If the projection assumptions and the scenario model parameters are fro- 
zen, the percentage of scenarios tested that actually show a solvent outcome 
can be regarded as a random variable. The value of the random variable will 
depend on the particular set of scenarios produced by the scenario generator. 
Thus the "success rate" among the scenario set is subject to sampling error, 
unless "enough" scenarios are used. 

The variable being sampled is the underlying success rate across the (po- 
tentially infinite) universe of scenarios whose distribution is specified by the 
stochastic model and its parameters. Running a set of scenarios and deter- 
mining the sample success rate provide an estimate by Monte Carlo tech- 
niques of the underlying "population" success rate. 

The statistical credibility of a sample "success rate" based on a sample 
of given size can be quantified by determining confidence intervals using 
probability theory. Chart 1 graphs the 95 percent confidence interval for the 
population insolvency rate, in an example in which the observed rate of 
insolvency among the tested scenarios is 10 percent. The confidence interval 
size is a function of the number of scenarios run. This calculation, using 
combinatorial techniques we will document elsewhere in the future, is not 
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dependent on the particular stochastic model used. Note that the X-axis of 
this graph has a nonlinear scale. 

Chart 1 illustrates how sampling credibility increases with sample size. 
However, there appears to be a point of diminishing returns somewhere 
around 200 or 500 scenarios, if the user is attempting to test reserve adequacy 
according to the definition we have chosen for illustration. In general, the 
"right" number of scenarios to run will depend on the particular problem 
being analyzed. The matter is subject to considerable professional judgment 
as well as probability theory. 

Chart 1 

HOW MANY SCENARIOS ARE ENOUGH? 

Observed Reserve Inadequacies = 10% 
95% Confidence Interval for True Inadequacy Probability 
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Conclusion 

We have enjoyed reading and discussing Mr. Jetton's paper. We hope 
that our discussion will help to demonstrate that this area of work is very 
fertile. 

GRAHAM LORD" 

Mr. Jetton presents a collection of straightforward methods of developing 
interest rate scenarios, methods that are accessible not only to actuaries but 
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also to those with whom actuaries must interact. The desirability of such 
methods has been heightened by the need to adequately analyze and value 
the plethora of insurance and other financial products that have come into 
being in recent years and by the need to treat the effect of the interactions 
between such products (as occurs in asset/liability management, for exam- 
ple.) The complexity of these products has forced on financial analysts (in- 
cluding actuaries) a review of the earlier standard valuation techniques: such 
techniques prove to be inadequate except in the simplest of applications. A 
subsequent search for methods that more accurately capture the behavior of 
these complex products leads directly to models that develop interest rate 
scenarios. 

Mr. Jetton states that there has been little discussion in the American 
actuarial literature on the topic of modeling interest rates and interest rate 
scenario generation. However, the topic has been very actively pursued by 
financial economists, econometricians, and actuaries in Europe. Many of 
the results of these researchers' efforts are available in the public domain. 
For example, a steady stream of papers related to this topic has been pub- 
lished by the Journal of the Institute of Actuaries. To cite one earlier paper 
with which many American actuaries are familiar, there is our Society's 
Halmstad Prize-winning article of Phelim Boyle [3]. Other actuarial publi- 
cations that contain papers of interest include our own Society's Record, 
The Valuation Actuary Handbook, and the Proceedings of the Valuation 
Actuary Symposia, 1987 and 1988. And there is the Transactions paper of 
Robert Clancy [4] referred to by Mr. Jetton. (Note this latter paper also won 
the Halmstad Prize.) 

Mr. Jetton's article has opened the door through which we can peek into 
the world of interest rate analysis and forecasting. His models are relatively 
simple, each with its own shortcomings. Some of these weaknesses have 
been avoided in more sophisticated extensions not mentioned, whereas other 
flaws appear to be inherent in the type of model chosen. An example of the 
latter is in the yield curve jumping method in which the transition rates, for 
moving from one curve to another, seem as if they can only be determined 
subjectively. Their values critically affect the outcome of the random gen- 
eration of the scenarios and so bias the results. 

The binomial lattice approach in finance has its origin in the discrete 
versions of the Black-Scholes-Merton option pricing theory. Clancy [4] de- 
veloped an adaptation to the pricing of fixed-income instruments but does 
acknowledge some of his model's weaknesses mentioned by the paper's 
discussants [7]. An example is the lack of put-call parity in his approach. 
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A refined model that corrects these problems is presented in [6]. The lattice 
method is used not only for the pricing of options on equities but also the 
pricing of contingent cash flows associated with fixed-income instruments 
and their derivatives and with interest-sensitive insurance products. The method 
also underlies many of the discretizations of the stochastic differential equa- 
tion models of interest rates, such as the models of Cox, Ingersoll and Ross 
[5] and others. Note here that trinomial and multinomial lattices referred to 
in the paper prove to be unfruitful extensions [1,2]. 

A desirable criterion for yield curve scenarios mentioned by Mr. Jetton is 
mean reversion. He presents an example, apparently not supported by de- 
tailed evidence, in f(t) for his third stochastic model. If there is reversion, 
one would think it would be towards an expected forward one-year Treasury 
rate and not, as is suggested, to the initial rate of T~(0). To determine the 
forward rate, account must be taken of (i) the structure of the yield curve 
and of an acceptable term structure theory--whether it be the expectations 
hypothesis, the liquidity preference theory or the preferred habitat theory, 
for example, and (ii) the statistical distribution of the generated scenarios. 
The link between the one-year and the twenty-year rate and the shape of the 
yield curve along each interest rate path would then be better specified. 

In the context of Mr. Jetton's model, the functionf(t) does push successive 
interest rates, Tl(t), towards TI(®), but can do so excruciatingly slowly. The . 
following table shows the difference between future values of the one-year 
rate and the long-run rate for a selection of initial rates when there is no 
volatility, that is, with VF = 0. With a large difference between the starting 
and the long-run value, the next one-year rate is moved sharply towards the 
limit, but the closer the value becomes to the limit, the slower the conver- 
gence. The table indicates how slow that convergence is. (A nonzero vola- 
tility could have the effect of making the convergence even slower.) The 
gradual attenuation is caused by the choice of the constants as well as the 
form off(t). How have these been determined? In fact, one wonders what 
the basis is for all the parameters of his principal, the third, stochastic model. 

The brief comments made here hint at the extent of the subject of interest 
rate modeling and indicate how it can become quite technical as models are 
improved to better mimic reality. Mr. Jetton's paper gives an introduction 
to a variety of these approaches and in so doing provides a useful starting 
point for further exploration. 
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DEVELOPMENT OF THE DIFFERENCE 
BETWEEN THE ONE-YEAR RATE 

FROM THE LONG-RUN RATE 
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JOHN A. MEREU: 

I found Mr. Jet ton 's  paper to be of  great interest. His first stochastic 
model is one in which the interest rate takes a random walk with steps that 
are normally distributed about a zero mean.  The  model can be unrealistic 
because it permits the occurrence of  negative interest rates. 

In his second stochastic model it is the log of  the interest rate that takes 
a random walk.  This model is more plausible in that negative interest rates 
cannot occur.  However ,  the interest rates in this model can become unbe- 
l ievably large because there is no mean reverting feature. 
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In his third stochastic model the log of the interest rate takes a random 
walk, but with a component returning it to a defined point of central tend- 
ency. I believe this is more realistic than the second model and is suitable 
for an economic environment in which inflation is constant. 

Where inflation varies, I would recommend a refinement to the model to 
provide for a randomly moving point of central tendency that simulates the 
changing rate of inflation. This will result in a wider spectrum of interest 
rate tracks to cover plausible futures. 

STEVEN P. MILLER: 

My comments are directed toward Mr. Jetton's discussion of bias. He 
notes that, "Bias seems to be unavoidable with any probabilistic or stochastic 
method of interest rate generation." Accepting the fact that our models are 
in some way biased, our goal should be to know the implications of any 
bias and to avoid making bad decisions because of it. The purpose of this 
discussion is to examine some possible biases and their implications. We 
also offer a technique for removing a bias in Mr. Jetton's third stochastic 
model, at the cost of.introducing another. 

Option pricing models, using binomial lattices, are often characterized as 
"unbiased" if they eliminate arbitrage opportunities. In the course of cre- 
ating a lattice that is arbitrage-free, certain "probabilities" are created. These 
numbers follow the mathematical definition of probabilities and thus have 
properties that are extremely useful in estimating the solution to the equations 
that are inherent in arbitrage pricing theory. There is no reason to believe 
that these probabilities can be used to forecast interest rates. As a matter of 
fact, these probabilities are based on the assumption that there is no expected 
benefit to investing in long bonds, despite historical evidence to the con- 
trary.* This is not a flaw in option pricing theory, which seeks to find a 
portfolio of bonds that will match the cash flows under all interest rate paths, 
regardless of probability. Rather, it is a caution against making probabilistic 
statements by using numbers that are not intended to reflect the probability 
of economic events in the real world. We can see that the "b ia s"  in this 
family of models comes from assuming that a model that works for one 
purpose will work for all purposes. 

Mr. Jetton's third stochastic model has many desirable characteristics. For 
example, the yield curve is more likely to be inverted in high-interest-rate 
environments than in low; the mean-reverting property reflects the belief 

*IBBOTSON ASSOCIATES, Stock, Bonds, Bills and Inflation 1988 Yearbook. 
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that authorities will "do something" if interest rates become unreasonable, 
and the calculation of other rates by weighting of long- and short-term rates 
produces yield curves that are consistent with history. However, Jetton makes 
no attempt to eliminate risk-free arbitrage opportunities. 

Simply stated, arbitrage is the profit made by buying and selling exactly 
the same cash flows at different prices. It is believed that an unbiased model 
should not allow arbitrage without risk. The usual formulation for this is, 
"the expected present value of a cash flow N years from now should be 
equal to the value of a zero coupon bond that is purchased today to mature 
in N years." This is a sufficient but probably not necessary condition. A 
transaction may be expected to produce excess profits, but this may not be 
guaranteed. 

Arbitrage in Mr. Jetton's third stochastic model may be demonstrated by 
the following example. Assume that an actuary is pricing a product in an 
environment in which one-year interest rates are 7.5 percent and twenty- 
year interest rates are 9.5 percent. All other rates are interpolated as sug- 
gested in Jetton's paper, and weighting factors not given are calculated by 
using linear interpolation. The liability exists for one year and is substantially 
equivalent in market value to a portfolio of bonds consisting of 54.4 percent 
19-year bonds, 29.6 percent four-year bonds, and 16.0 percent one-year 
bonds. Target surplus is equal to 5 percent of liabilities, which is to be 
invested in one-year bonds, and the profit goal is 12 percent return on equity 
(ROE). In addition, the actuary would like to guarantee an ROE of at least 
10 percent. Expenses are ignored. 

The obvious investment strategy would be an exact match, with a profit 
margin of 60 basis points. This would guarantee a 12 percent ROE under 
all scenarios. Assume, however, that the actuary uses the third stochastic 
model to test the product under an investment strategy of 54.4 percent twenty- 
year bonds, 29.6 percent three-year bonds and 16.0 percent two-year bonds. 
By sampling 1000 scenarios, we obtain some surprising results. With no 
profit margin at all, the expected ROE is 12.3 percent and the minimum for 
any scenario is 10.1 percent. It appears that the actuary can exceed the profit 
goal with no profit margin at all. 

Of course, this "profitable" investment strategy has been presented in a 
straightforward manner to emphasize that this model allows risk-free arbi- 
trage. Unfortunately, reasoning similar to the above example may be one 
facet of a larger problem that is so complex that the presence of such illusory 
profits may not appear suspicious. In such a case, a company may test a 
strategy similar to the above example and thus project arbitrage profits that 
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would be unavailable in the real world. For example, some asset liability 
management programs use linear programming techniques to find optimal 
investment strategies. Surely such a program would exploit any inconsist- 
encies in the model but may not allow the fallacious reasoning to be easily 
noticed. The result would be underpriced products with the only evidence 
of the error buried deep in some intermediate calculation. Clearly, it would 
be useful to eliminate this bias. 

One method of correcting the problem involves the introduction of a num- 
ber of correcting scenarios that eliminate simple arbitrage opportunities. 
Specifically, if K - 1  scenarios are known and we desire no arbitrage, the 
Kth scenario that corrects the bias can be calculated by using the following 
iterative procedure: 

B(k,m,n) = [K P ( m + n )  - S]/V(k,n) 

where B(s,m,n) = price of an M-year zero coupon bond, in scenario s, at 
time n 

P(m + n) 

l/(k,n) 
S 
V(k,1) 

= price of an m + n  year zero coupon bond using today's 
yield curve 

= product of B(k, L t) for t = 0 . . . .  , n - 1 
= sum of V(s,n) B(s,m,n) for s = 1 . . . .  , k - 1 
=PO). 

The yield curve for par bonds can be created from the zero coupon bond 
prices by using: 

Y (k,m,n) = 1 - B(k,m,n) 

B(k,t,n) 
t = l  

when Y(k, m, n) is the yield of an m-year par bond in scenario k at time n. 
For example, if k = 2, this procedure will produce one correcting scenario 

for every scenario generated by the original model. If it is desired, boundary 
conditions can be placed on the scenarios so that the correcting scenarios 
are "reasonable." Should boundary conditions constrain the correcting scen- 
ario, another scenario would be generated to eliminate the rest of the arbitrage. 

An actuary could make statements regarding the probability of ruin using 
the original model, but use the correcting scenarios to estimate the amount 
of profit due to arbitrage. In the above example, the correcting scenarios 
give an expected value equal to - 1  times the value given in the original 
model. Thus, all profits in our example are due to arbitrage. 



DISCUSSION 463  

The obvious question is, "But what is the probability that any of these 
correcting scenarios actually happen?" This leads us back to the question 
of bias, and so it goes. The moral of the story is that one must design an 
interest rate model around the question at hand and never assume that this 
model is valid for any other question. 

ERIC S. SEAH: 

The author points out quite correctly that there are "more efficient meth- 
ods for generating Z that are normally distributed with I~ = 0 and tr = 1". 
These methods include the Box-Muller method (also known as the Polar 
method), the odd-even method, the rectangle-wedge-tail method, and the 
ratio method. A very good description of these methods can be found in 
Knuth [1, pp. 117-127]. 

The author describes a method for producing binomial distributions with 
parameters n and p (=0.5).  The method calls for generating n random 
numbers and enumerating those which are odd (or even). It works well for 
small n. For large n, more efficient methods are available, see [1, p. 131]. 
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ELIAS S.W. SHIU: 

The paper points out that "interest rate scenarios can be used to answer 
'what if' questions about both sides of the asset-liability equation and to 
develop an easily comprehended distribution of profit (or loss) results under 
a wide range of possibilities." An earlier attempt to address this issue is the 
Society of Actuaries monograph [9], which deals with provisions for the 
risks of adverse deviation in a valuation carried out under Generally Ac- 
cepted Accounting Principles (GAAP) as required by the Audit Guide for 
Stock Life Insurance Companies. Section 2.13 of [9] discusses the generation 
of interest rate scenarios. 

The hypothesis of no arbitrage is "one of the most basic unifying prin- 
ciples of the study of financial markets" [8, p. 56]. In a well-developed 
financial market with rational, profit-seeking individuals, arbitrage oppor- 
tunities should be very rare. As soon as such opportunities arise, profit- 
maximizing agents will attempt to exploit them. In an interest-rate movement 
model, if the yield curves are always flat, then there are arbitrage oppor- 
tunities; this has been pointed out by actuarial authors such as Boyle [2] and 
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Milgrom [6]. The binomial lattice method described in this paper is not 
arbitrage-free. In their discussion of [3], Tilley, Noris, Buff and Lord have 
pointed out that the put-caUparity relationships for European options do not 
hold in the binomial model presented in [3]. Indeed, Bookstaber, Jacob and 
Langsam [1, p. 17] write: "Despite the pernicious nature of such lattice 
inconsistencies, it appears to have not been widely treated in the academic 
or professional literature. The potential for arbitrage-inconsistent lattices ex- 
tends beyond the option pricing models to interest rate simulation method- 
ology. Interest rate simulations are applied broadly for applications in which 
the complexity of the option feature of financial instruments makes the usual 
option pricing models unworkable . . . .  Adjustable rate mortgages, CMOs 
(collateralized mortgage obligations) and a number of financial products, 
such as the universal life programs and single-premium deferred annuities, 
are typical candidates for simulation analysis. A simulation model that does 
not explicitly consider the full span of rates for the relevant portion of the 
yield curve and that is not founded on an arbitrage-free construction may 
not give dependable results for either pricing or exposure management." 

In addition to the arbitrage problem, the yield curve jumping method 
described in the paper contains the following bias. The transition matrix 
P = (P,~) determines a finite-state Markov chain [5, p. 502]. Properties of 
transition matrices and Markov chains are well-known in the literature. For 
an irreducible ergodic Markov chain, it can be shown that 

lira P" 

exists and that each of its rows is the vector ('rrl, wz, 'rr3 . . . .  ), where the 
numbers {'n)} uniquely satisfy the steady-state relations [5, p. 510]: 

"rrj > 0, 

q'r j = ~ "lT i P ij , j = 1 , 2 , 3  . . . . .  
i 

~ rrj = 1. 
J 

The number rrj is the probability that, after a large number of transitions, 
the interest rate curve is the j-th one. The steady-state probabilities {'rrj} are 
independent of the initial curve! When modelers prescribe the transition 
probabilities {P~}, they may think that they are just putting down conditions 
for random generation of interest rate curves and may not realize that at the 
same time they are specifying the long-run trend of interest rates. 
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I now sketch another approach for modeling interest rate scenarios. As- 
sume that the interest rate process l(t) satisfies the stochastic differential 
equation: 

dl(t) 
l(t) - ~(t, I) dt + (r(t,I) dZ(t), (1) 

where Z(t) is a Gauss-Wiener process with incremental variance dt. Consider 
the function y(t,I) = logo(I). Applying It6's lemma, we have 

Oy Oy 1 02y 
dy = ~ at + ~ dl + ~--~ (d/) 2 

dl 1 
= o + 7 + 2)( 212 ae) 

= ( I X -  ~i2) dt + crdZ. 

If Ix and cr are constant functions, then 

y(t) - y(s) = (Ix - cr2/2)(t - s) + o'[Z(t) - Z(s)], 

or  

l(t) = l(s)exp{(Ix - cr2/2)(t - s) + ~r[Z(t) - Z(s)]}. (2) 

The formula 

I,+,, = I, exp[VF(Z, + Z2 + . . .  +Z,)]  

in the paper may be viewed as a special case of (2). 
A problem with the log-normal process (2) is that the variance grows 

linearly with time. As the variance becomes large, the probability for very 
high or very low interest rates becomes substantial. "There  is reason to think 
interest rates are mean reverting, since abnormally high rates will lead to a 
shift in monetary policy to reduce rates while unusually low rates will lead 
to a less restrained policy which will lead rates to increase" [1, p. 21]. 

For a mean-reverting interest rate process, one can put ~ ( t , / )  = K(0 - /) 
in (1), where K and 0 are positive constants. This corresponds to a continuous 
time first-order autoregressive process where the randomly moving interest 
rate l(t) is elastically pulled toward a long-run mean 0. The parameter K 
determines the speed of adjustment. In a path-breaking paper [4], Cox, 
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Ingersoll and Ross postulate that the spot interest rate (local interest rate) 
process r(t) satisfies the equation: 

dr = K(O - r ) d t  + O~/r dZ. 

In the context of an intertemporal general equilibrium asset pricing model, 
they derive a closed-form formula [4, (23)] that determines the values of 
noncallable and default-free bonds. In their model, the yield curve is rising 
for low spot rates and falling for high spot rates. There is a range of spot 
rates that produces a humped yield curve. The volatility of " l o n g "  rates 
decreases with maturity. Interest rates are never negative. The variance of 
the interest rate is an increasing function of the interest rate. As these are 
reasonable properties of interest rates, one may consider using their model 
to generate interest rate scenarios. More complex models involving more 
than one state variable are also available in the literature. 

The Nelson and Siegel paper [7] introduces a parametrically parsimonious 
model for yield curves that has the ability to represent the shapes generally 
associated with yield curves: monotonic, humped and S-shaped. "The ability 
of the fitted curves to predict the price of the long-term Treasury bond with 
a correlation of 0.96 suggests that the model captures important attributes 
of the yield/maturity relation" [7, p. 473]. 

Finally, I would suggest that the binomial method in Appendix A for 
generating normal random variates is an unusual application of the central 
limit theorem. Many very efficient methods for generating normal random 
variates are available in the literature. The Box-Muller method is one of 
them. 
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JOSEPH H. TAN" 

I congratulate the author for writing a timely and informative paper de- 
scribing the various methods of creating interest rate scenarios. The methods 
presented are a useful tool for analyzing interest rate risk and facilitating the 
communication of the analysis of such risk. 

My discussion deals with extensions of the author's paper. It is hoped 
that my discussion can contribute to the value of the methods presented by. 
the author. 

Advantages of the Random Generation Method 

The author has listed various advantages of the random interest rate gen- 
eration method over the rudimentary method (that is, specifying the rates 
one by one for as many scenarios as the creator wants). I believe another 
advantage of the random interest rate generation method is that it simplifies 
the task of forecasting interest rates over an extended period of time (the 
projection period). That is, under the rudimentary method, the creator has 
to specify the interest rate for the entire projection period; while under the 
random generation method, the creator only needs to determine the rate for 
the next period (perhaps with the use of a probability distribution) given the 
rate for the current period and maybe the prior periods. The task under the 
random generation method is simpler because it is easier and more reliable 
to predict the rate for one period (for example, next year) than for the next 
20 or 40 successive periods. 

Problems and Misconceptions Related to the Random Generation Method 

Although the creation of interest rate scenarios is used for various purposes 
(for example, pricing, "what if" testing, New York Regulation 126 filing, 
testing the adequacy of reserve), my discussion focuses on the test for reserve 
adequacy. To the best of my knowledge, the random generation method is 
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currently not required for reserve adequacy by any regulatory authority but 
is internally used in the company to satisfy the actuary and management that 
the reserve is adequate. 

Reserve adequacy testing is often done by using a cash flow test and is a 
very complicated process, with the creation of the interest rate scenarios 
being only a part of the process. Other tasks include the setting of the various 
assumptions required by the actuary's model (for example, lapse rate, mor- 
tality rate, asset call, expense), the construction of the model, and the gen- 
eration of the projection. My discussion focuses only on the task of random 
generation of interest rate scenarios and its implications. To this extent, my 
discussion assumes that the other tasks involved in the reserve adequacy 
testing are done appropriately. 

Because both reserve adequacy and inadequacy scenarios often are present 
in a set of interest rate scenarios, it is often difficult for the actuary to 
conclude whether the reserve is adequate. And in the case of the random 
generation method, the issue is complicated by the fact that any set of 
randomly generated scenarios (for example, 50) is a very small sample of 
the set of all possible scenarios (often called the population) that can be 
generated by the model. This is because the size of the population is ex- 
tremely large. Consider a simple example. 

Assume that given this year's interest rate, there are only three possible 
rates for next year. Over a forty-year period, the total number of possible 
scenarios is 340 (or 1.21 x 10Jg). Even though some of these scenarios can 
be ruled out by specifying a maximum rate ceiling and a minimum rate 
floor, there will still be millions and billions of possible scenarios in this 
simple model. Given that the creator of the interest rate scenarios (for ex- 
ample, valuation actuary) only generates 50 (or perhaps 100) scenarios: 

• How can he or she be 75 percent, 90 percent (or even 5 percent) confident that a 
"safe" conclusion can be drawn from the results of the model (for example, that the 
reserve is adequate)? 

• How many generated scenarios are enough? Are 50 (or perhaps 1,000) scenarios 
sufficient? 

• Are the chosen scenarios appropriate and representative of the population (that is, 
the set of all possible scenarios)? Could the next 50 randomly generated scenarios 
from the same model show significantly different results from the current 50 scen- 
arios? If so, how should the actuary interpret the results from the model? 

In the remaining discussion, I address these three questions. These ques- 
tions arise because the valuation actuary does not know the underlying prob- 
ability distribution of the population and hence finds it difficult to make 
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probability statements regarding the population based on the results of a 
small set of randomly generated scenarios. In other words, to make proba- 
bility statements regarding reserve adequacy for the set of all possible scen- 
arios in the model, the valuation actuary needs to know the probability 
distribution of the ending surplus (for example, 40th-year surplus). However, 
such a probability distribution can take various forms, depending on the 
particular company's situations and assumptions. That is, based on the com- 
pany's investment, reinvestment, prepayment, lapse, premium, and so on, 
experience and assumptions, the underlying probability distribution of the 
ending surplus could be normal, log-normal, or any other form of known or 
unknown probability distributions. 

Some people believe that by taking a large enough sample size (that is, 
large number of generated scenarios), the underlying probability distribution 
would be approximately normal. Their belief, which is mainly due to their 
mistaken understanding of the central limit theorem, is clearly incorrect. The 
central limit theorem states that the sample average of a random sample of 
size n (X,) will approach a normal distribution as n approaches infinity. In 
applying this theorem to our random generation method, we can only claim 
that the average ending surplus of the n (say 50) randomly generated scen- 
arios is approximately normally distributed. And the probability distribution 
of the individual outcome is still unknown. 

Unless future research can clearly identify the probability distribution of 
the individual (versus sample average) ending surplus, probability statements 
regarding the ending surplus of the population (that is, the set of all possible 
rate scenarios) cannot be made. However, based on known statistical results,. 
probability statements regarding the proportion of adequate scenarios can 
still be made. I believe that such probability statements are also relevant in 
addressing the reserve adequacy issue. 

Probability Statements Regarding the Proportion of Adequate Scenarios 
Based on the proportion of adequate scenarios in the set of randomly 

generated scenarios, the valuation actuary can make probability statements 
regarding the minimum proportion of adequate scenarios in the population, 
that is, the set of all possible scenarios of the model. 

Let us use the following notation: 

N = the size of the set of all possible scenarios of the model, usually 
called the population size 

P = the proportion of adequate scenarios in the population 
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n = the randomly generated sample size, for example, 50 
X = the number of adequate scenarios in the sample 
p = the small p denotes the proportion of adequate scenarios in the 

random sample and is equal to X/n 
Pr = probability 
Z = the standard Normal variate, that is, Z has a Normal distribution 

with mean 0 and variance 1 
r = the minimum acceptable confidence level. This could be 90 percent, 

95 percent, or whatever level the valuation actuary desires. 

If the random sample is taken with replacement (that is, repetition of the 
same scenario is allowed in the sample), then the number of adequate scen- 
arios in the sample has a Binominal distribution 

f(x) = ,Cx px (1 - p),,-x 

where ,,Cx denotes combination n taken X. 

If the random sample is taken without replacement, that is, no scenario 
is allowed to be repeated, then the distribution would be a Hypergeometric 
distribution. But since the population of all possible scenarios is extremely 
large, it is highly unlikely that a relatively small random sample will contain 
any repeated scenario, and hence the binomial distribution also suffices for 
sampling without replacement. 

A well-known statistical result is that the Normal distribution is a good 
approximation to the Binomial distribution. That is, 

" I f  n is large and P is not too close to 0 or 1, the probability distribution of X (and 
hence p) can be approximated by a Normal distribution. Experience indicates that the 
approximation is fairly accurate as long as nP>5 when P < Vz and n(l -P)  > 5 when 
P > 1/2." 

(This statement can be found in a number of statistical references. For 
instance, it can be found on page 153 of Mansfield's book Statistics for 
Business and Economics, New York: W. W. Norton & Company, 1980.) 
The following table shows the required sample size n for some selected P 
values to make the Normal approximation fairly accurate. 

P Required Sample Size n 

0.75 21 
0.8 26 
0.85 34 
0.9 51 
0.95 101 
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Since the expected value and variance o f p  are 

E(p) = P 

and 

we know that 

P(1 - P) 
Var (p) - 

n 

p - P  
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in the population. Note that: 

1. For a given acceptable confidence level r, the lower bound of P (that is, the quantity 
to the right of the inequality) gets larger as p or n increases. Hence by increasing 
the sample size, the actuary can obtain a higher lower bound for P. And by trans- 
forming the above equation, we can easily derive the minimum sample size n needed 
to ensure (with some confidence level) that the difference between the sample p and 
the population P be less than some quantity (say 2 percent). 

2. Some statisticians have recommended the use of a continuity correction in the above 
equation. This is a correction that is used when a discrete probability distribution 
(for example, binomial) is approximated by a continuous one (for example, Normal). 
The correction is relatively minor and is normally done by subtracting 0.5 from X 
(or 1/2n from p). 

To assess whether  the current reserve is adequate given the results of the 
randomly generated sample ,  the valuation actuary can use a procedure as 
follows: 

1. Determine a minimum acceptable confidence level, for example, 90 percent. 
2. The reserve will be considered adequate if the lower bound of P, the proportion of 

adequate scenarios in the population, is at least some amount P* (for example, 0.80). 

Let us illustrate the application of  the procedure with a simple example.  
Assume that in a set of  60 randomly generated scenarios,  there are 54 ad- 
equate scenarios.  Then we can say with a 90 percent confidence that 

/ 0 . 9 ( 1  - 0.9) 
V > 0.9 - 1.29 ~ /  60 - 0.85 

where 1.29 is the Z value with 90 percent probabil i ty to the left of  it. That 
is, there is a 90 percent probabil i ty that the proportion of adequate scenarios 
in the set of  all possible scenarios of  the model wilt be at least 0.85. If a 
lower bound of  0.8 is specified for P ,  then the reserve would be judged to 
be adequate. 

If the actuary wants to increase the confidence level from 90 percent to 
95 percent,  the lower bound of P will be somewhat  smaller,  

/ 0 . 9 ( 1  - 0.9) 
P _> 0.9 - 1.645 ~ 60 - 0.84 

And, for a 99 percent confidence level,  the lower bound of P is 0.81. 
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Summary 
Unless future research clearly identifies the underlying probability distri- 

bution of the ending surplus, it will be difficult for the valuation actuary to 
extend the randomly generated results to the population. However, the ac- 
tuary can use our suggested procedure to make probability statements re- 
garding the proportion of adequate scenarios in the set of all possible scenarios 
that can be generated from the creator's (actuary's) model. Such a procedure 
is based on well-known statistical results and is simple to apply. It is hoped 
that future research can uncover more elaborate and precise methods than 
the simple method illustrated here. 

It should be reiterated that any conclusion about reserve adequacy based 
on the result of a model is highly dependent on the appropriateness of the 
model and its assumptions. The latter, plus the determination of what is 
adequate (80 percent, 95 percent, and so on), involves subjective judgment. 
To this extent, it is better to use the suggested procedure as a management 
analytical tool and not as a regulatory requirement. 

(AUTHOR'S REVIEW OF DISCUSSION) 

MERLIN F. JETTON" 

I thank the discussants for their fine comments, which enhance the value 
of this paper. 

Mr. Strommen offers some interesting variations on the third stochastic 
model. Regarding using a range of values for T~(®), I would advise also 
increasing the coefficients off(t) to achieve a more suitable behavior. With- 
out such a change, the mean-reversion property would be greatly weakened. 

His method of calculating the twenty-year Treasury rate is creative, and 
it has some nice properties. It provides a built-in solution to the case for 
which the starting yield curve has an atypical slope. The fact that it uses 
parameters that can be based on historical interest rates is, I believe, a 
definite plus. 

Mr. Gurski provides some strong statistical support for the hypothesis that 
changes in interest rates are normally distributed. It is a welcome addition 
to my paper, because the assumption is an important one and I did not 
furnish such support. 

He describes an alternative model that has much in common with my third 
stochastic model. The major difference between his model and mine is the 
method of calculating another point on the yield curve, given only one point. 
His method relies more heavily on statistics, which a user may find desirable. 
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A point worth noting, however, is that heavier reliance on conventional 
statistical methods called for an additional constraint, because such methods 
fall short of mirroring the real world. Regarding my model, he states that 
one should use the standard deviation of the error or residual random variable 
e from the regression equation Y= a X + b  + e rather than the standard devia- 
tion of the spreads. Strictly speaking, he is correct. Practically speaking, 
they are nearly the same. 

Mr. Gurski claims that historical spreads (T2o-Tt) are not normally dis- 
tributed and that they are serially correlated. The question "Are historical 
spreads normally distributed?" has no clear answer. It depends on the data 
you look at and the statistical test (type and confidence level) used. In my 
opinion there is more than adequate justification for assuming that spreads 
are normally distributed. The second claim is correct, given that the time 
interval between measurements is short enough. I would agree that this 
characteristic of spreads should be recognized in a model in which interest 
rates are determined more frequently than semiannually or annually. 

Mr. Gurski states that he has used a linear mean-reverting formula. I 
tested a linear formula in the course of developing my cubic formula and 
found it inadequate to handle the full range of differences between Tl(t) and 
TI(~). If the coefficient was suitable for large (small) differences, then it 
was too large (small) for small (large) differences. 

I commend Mr. Gurski for having tested output from his model against 
historical interest rates. 

Messrs. Buff and Lassow should be thanked for their list of references, 
many of which were published after my paper was submitted for publication. 
They raise several good questions about creating interest rate scenarios. I 
will respond to a couple of their questions about comparing different models. 

First, they asked how scenarios based on the third stochastic model com- 
pare to those based on the second. It would be easiest to answer with a 
graph. Suppose a number of scenarios were generated from both models and 
frequency curves were drawn from the one-year Treasury rates generated by 
each model. Then the curves would be similar to those in Figure 4. 

Second, they asked how important is the choice of the long-term interest 
rate trend assumption. Again a graph seems to be the best means of response. 
Suppose two sets of scenarios are generated, one with T~(00)= T,(0) and the 
second with T~(®) = T~(0) + 1%, and frequency curves are drawn from the one- 
year Treasury rates. Then the curves would be similar to those in Figure 5. 
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FIGURE 4 

0.20 Second Stochastic Model (unbounded) 
Second Stochastic Model (bounded) 
Third Stochastic Model 

o.15 i ' ~  

0.05 . .  -p " /  " ~.-~'~.. .ii 

2 4 6 8 10 12 14 16 
Interest Rate 

FIGURE 5 

0.20 

0.15 

e., 

o O.lO 

0.05 

Third Stochastic Model 

7", (z )  = 7", (0) 

T, (~)  = T, (O) + 1% 

//  

2 4 6 8 10 12 14 16 18 
Interest Rate 

Mr. Lord also deserves thanks for his references to other literature on 
modeling interest rates. 

He points out the relative simplicity of the models presented in the paper. 
My goal was to provide skeletons and discuss major characteristics, which 
could be readily understood. I have found that much of the other literature 
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is very technical, is not made for easy reading, and/or contains models 
described in words without the mathematics. 

Mr. Lord seems to believe that the mean reversion formula should produce 
a more rapid convergence toward T](c0). The formula I gave does not have 
much effect when the difference between Tl(t) and Tl(00) is small. I do not 
believe there is an objective answer here. It would be very difficult to base 
an answer on historical interest rates, for it would be hard to distinguish 
between interest rate movements that are " r andom"  and those that are due 
to "mean  reversion." Anyone who agrees with Mr. Lord can, of course, 
use a different formula more suitable to his/her tastes. 


