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AIDS: SURVIVAL ANALYSIS OF PERSONS TESTING HIV + 

HARRY H. PANJER 

ABSTRACT 

The purpose of this paper is to provide a survival analysis of persons in 
the various stages of HIV infection typically leading to AIDS and ultimately 
death. The model used is a continuous time Markov process with a constant 
intensity for each stage. It is shown that this model adequately describes the 
data which originated from a German longitudinal study. The data were 
previously analyzed using less formal methods in the comprehensive paper 
of Cowell and Hoskins dealing with the effect of HIV infection on life 
insurance. This paper should be of special interest to health insurers since 
it deals with distribution of~duration in each stage of progression of the 
disease. 

INTRODUCTION 

The progression of persons infected with the Human Immunodeficiency 
Virus (HIV) to Acquired Immune Deficiency Syndrome (AIDS) is being 
studied at the Centre for Internal Medicine of the University of Frankfurt 
[1]. The longitudinal study follows subjects in groups at high risk of AIDS 
through various stages from good health with an HIV+ status to death 
primarily caused by AIDS. 

In the study 543 subjects were observed-during the study period from 
1982 through 1985; 377 were HIV + at the time they were initially observed; 
307 were observed for at least three months of which 259 were HIV + upon 
initial observation. 

The Walter Reed Staging Method [6] was used as a basis for classifying 
subjects: 

la (At-Risk) 
Ib (HIV+) 

2a (LAS) 

2b (ARC) 

3 (AIDS) 

Healthy persons at risk for HIV infection, but testing negative; 
Otherwise asymptomatic persons testing HIV + ; 
Persons with HIV infection and lymphadenopathy syndrome (LAS), 
together with moderate cellular immune deficiency; 
Patients with HIV infection and LAS, together with severe cellular 
immune deficiency (AIDS-Related Complex, or ARC); 
Patients with AIDS. 

The sixth stage was death. 
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Table 1A classifies the number of persons observed during the study by 
the length of time under observation and the initial stage; that is, the stage 
at the time the subject was first observed in the study. Table 1B gives the 
corresponding number of persons whose condition worsened at least one 
stage during the study period. Table 1C gives the ratio of Table 1A to Table 
1B as a percentage. These tables are taken directly from the paper by Cowell 
and Hoskins [2, Part 2, p.19]. 

TABLE 1 

Range of Stage S t~abge Stage S~ge Stage 
Observation 1 a 2a All 

Periods (At-Risk) (HIV + ) (LAS) (ARC) (AIDS) Stages 
A) Number of Patients Observed by Stage and Observation Period 

3-6 months 10 9 21 8 6 54 
6-12 months 14 18 51 29 9 121 

12-24 months 21 20 29 20 7 97 
24-36 months 3 5 19 7 1 * 35 

All Periods 48 52 120 64 23 307 
B) Number of Patients Observed Whose Health Worsened by at Least One Stage, or Who Dicd 
during the Observation Period 

3-6 months 
6-12 months 

12-24 months 
24-36 months 

All Periods 

1 1 3 0 4 9 
6 10 20 3 6 45 
9 15 14 10 5 53 
2 4 14 4 0* 24 

18 30 51 17 15 131 
C) Percentage of Patients Observed Whose Health Worsened by at Least One Stage, or Who Died 
during the Observation Period 

3-6 months 10% 11% 14% 0% 67% 17% 
6-12 months 43% 56% 39% 10% 67% 37% 

12-24 months 43% 75% 48% 50% 71% 55% 
24-36 months 67% 80% 74% 57% 0%* 69% 

All Periods 38% 58% 42% 27% 65% 43% 

*One patient with AIDS was still alive 28 months after diagnosis of Kaposi's'sarcoma; all others 
with AIDS had died before the end of 24 months. 

It should be noted that only information regarding the initial stage (that 
is, the stage at the time an individual entered the study) is available from 
these tables. An individual passing through several stages during the period 
of observation is indistinguishable from an otherwise identical person but 
moving only tO the next stage. 

The later sections of this paperdeal with a formal analysis of these data 
for the purpose of making inference about the distribution of lifetime for 
persons in the various stages. 
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THE MODEL 

As in Cowell and Hoskins [2, Part 2, pp. 4,5], it is assumed that indi- 
viduals progress through the successive states in order and do not return to 
a previous state. In medical terms, this means that a person's condition 
(according to the Walter Reed Staging Method) can remain the same or 
deteriorate but can never improve.* 

We model progression from stage to stage by assuming that a person in 
a given stage of H iv  infection is subject to an intensity function (force of 
progression, hazard rate) that depends only upon the stage and not upon 
other factors such as age, sex and the length of time in the stage. 

Let ~ j , j  = la,  lb, 2a, 2/9, 3, denote the intensity function of progression 
from stage j to the next stage. Let Tj denote the time in stage j .  Then, the 
probability that a person just entered stage j will remain in stage j for at 
least t years is 

er{T i > t} = exp { - f £  txflt} = e-'~J; (1) 

the cumulative distribution function (cdf) of Tj is 

F~.(t) = Pr {T i -< t} = 1 - e-t~J; (2) 

and the probability density function (pdf) of Tj is 

frj(t) = tx i e-'"J. (3) 

This is the exponential distribution with mean 1/~j and variance 1/tx~. 
A consequence of this model is that the times Tj, j = la ,  lb, 2a, 2b, 3, 

are stochastically independent. Furthermore, the memoryless property of the 
exponential distribution means that the length of time that a person has been 
in the current stage is irrelevant for our purposes and that the expected time 
of progression to the next stage is the same for all persons in the stage; that 
is, it is independent of  the time already in the current stage. 
is, it is independent of the time already in the current stage. 
can be easily computed. For example, the random variable denoting the time 
from progression to AIDS (~tage 3) from a positive HIV test (stage lb) is 

T~t, + T~ + Tz~ (4) 

*Seven of 307 subjects observed for more than three months improved at least one stage. This 
is attributed to the possibility of misdiagnosis of one of the stages, an event that can be expected 
to occur since some judgment is involved [1, p. 1178]. 
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with mean 

and variance 

1 1 1 
E[Tlb] + E[T~] + E[T2b] = - -  + - -  + - -  (5/ 

Pqb Ixz~ P~Eb 

1 1 1 
Var[T~b] + Var [T~] + Var[T2h] -- Ix~h + ~L + ~ ,  (6) 

due to independence of the T/s. 
The exact distribution function of T,, + Tz~ + T~ is easily obtained 

by integration. We first obtain the pdf for a pair of exponential random 
variables. 

fr,-,-r2(t) = fr, *fr2(t) = I~ ,e -"" t~2e  ~2('-,') ds  

_ ~________L_2 f r , ( t )  + P~--------i-- x fT2(t) 
IX2 -- IX, I~a -- IXz 

where * indicates the convolution operator. Consequently, 

f r ,  + T2 + r3(t) = f r ,  * f r 2  * fr3(t)  

(7) 

fr ,+r2+~)(t)  = 
~-L2[d, 3 

(t~2 - P,1)(P,3 - Ix,) f 'r '(t)  + 
Pq IX3 

(IX, - P'2)(IX3- IX2) f'r2(t) 

Pq ~2 
+ (1~1 - 1~3)(1~2 - ~3) fL~(t)" (8) 

In general, it can be shown [4, p. 79] that the distribution of Tj + T2 + .  • • + 7",, 
is 

,= ~ j*~ I~ j -  ~ (9) 

Similarly, it can be shown that the probability that an individual in any 
stage (arbitrarily labeled 1) will pass through stages 2 , 3 , . . . ,  n - 1  and be 
in stage n exactly t years later is 

I'"--' I f  1 le_~/ .  
lj~=, ~l'j ~ ij~i ~J-- ~l~i J I (10) 

i = 1  
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This allows for exact evaluation of probabilities to answer questions such 
as "What  is the probability that an HIV+ individual will develop AIDS 
within three years?" or " O f  1,000 HIV + persons, how many can we expect 
to have AIDS or have died within five years?" 

In the next two sections the parameters of the model are estimated and 
the model is tested for validity against the observed data given in Table 1. 

ESTIMATION OF M O D E L  P A R A M E T E R S  

Consider a single stage with constant intensity I~. Since the times in each 
stage are independent, we consider the stages separately and drop the sub- 
script j for notational convenience. 

Notation: 

I~ = "force of progression" to next stage, 
dl = number of persons progressing for those in observation period i, 

i = 1 , 2 , 3 , 4 ,  
ni = number of persons observed in observation period i, 

i = 1 , 2 , 3 , 4 ,  
p,. = probability of not progressing if in observation period i, 

i = 1 , 2 , 3 , 4 ,  
q,. = 1 - Pi = probability of progressing at least one stage. 

The likelihood function is 

4 ( n / )  • - - 
L ( ~ )  = I I  d, (1 - p , )  a ,p , , -d , .  (11) 

i=1 

The loglikelihood function is 

e(~) = log d,- 
i=l  

Note that only p,. is a function of ~ and will be specified later. 
The maximum likelihood estimator (MLE) ~ of the parameter 0, is ob- 

tained as the maximum of L(I~) or equivalently of e(Ix). 

Differentiating the loglikelihood yields 

/ 

~ ,  O~ 1 - p~ 

n, - 4 + 

f 
(13) 
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Solving ; 

should y!eld the M L E  12. 

ae(~) 
- - = 0  

We use a Newton-Raphson method to solve equation (14) for ~. Let 

(i4) 

Then 

f ' ( ~ )  = _ 
i=l LOI  J~2 1 - -  P i  

0e(~) 
f(~) - - -  (15) 

d~ 

oi(~) 
f ' (~ )  = ~ (16) 

0Ix 

!eli] 
(Opil2[ di .-I -ni - d i ] } .  (17)  

+ \ a ~ 2 /  (1 - pi) 2 p~ 

Beginning with an initial estimate of 12o the successive estimates are obtained 
as  

f(12,,) ^ 

r ^ " 12,,+, ~,, f (~,,) (18) 

Now we make some assumptions regarding the exact time-on-study for 
the subjects. This is necessary since, for example, for a given individual 
observed for between 24 and 36 months, we require the exact time of ob- 
servation. First, we assume that each subject was observed up to the midpoint 
of the interval, for example, 30 months for each subject in the 24-36 month 
interval. Then we repeat the exercise using a random censoring mechanism. 

A. Assume exposure to the midpoint of the interval, then we obtain the 
probabilities 

pl=  
18 

P2 = ~3 ~ /4 

p~e -~' dt = e ±(3/8). ~" 

lae- ~' dt = e- (3/4) p. 
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Then 

and 

P3 =,  hoe - ~  d t  = e -<3n) ~ 
. /2 

i, o P 4  = g e  - u '  d t  = e -'c512) ~ 
12 

(19) 

Opi O 
- e -  i = = t i * e - ~ i "  (20) 

ap~ og, 

02p i  = t i ' 2 e - ~ ' i  * (21) 

where ti* is the midpoint of interval i. 
B. Assume a uniform random censoring mechanism for each observation. 

Let t denote the exact time of observation. If the limits of the right-hand 
end of observation period i are a i and b,-, we have a i < t < b i .  Since we 
have no information about the relative likelihood of the possible censor- 
ing times t, we treat t as a random variable with a uniform (a~, bi) 
distribution making all censoring times t equally likely. Then 

L f° bi 1 l a e -  ~ d s  d t  
P i  ~- 

i b~ a i 

d t  e 
i bi ai 

1 I i  ~i 
- - e - ~  d t  

bi ai i 

e -~ai  :-- e -W, i  

la,(bi - ai) ' 

e -~a i  _ e-W~i 

qi  = 1 - Iz(bi  - ai)  ' 

- ~ ( a , e -  ~ i  - b , e -  ~ i )  - ( e -  ~ i  - e -  ~ i )  

(22) 

(23) 

api Oqi 1 

Otz Otz bi - ai  p2  
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02pi 

01L z 

a ' e - u ~ i  - b t e - u b i  ~ }  

= - I, ~ ( b i - - ~ / )  + ' 

OPi 
1 a a,e - u~g _ b,e-  I'tt~i [.L - ~  --  Pi 

(bi - ai) ao. 

1 

Ix z 

- ~(aiZe-U,,i - b i2e -~ i )  - (a,e-U,,i_ b , e - ~ i )  

(24) 

bi - ai  ~2 

_ _1 ap___!, + p ,  

i.z ol.z /z 2 

ai2e - ~ i  - bi2e - ubi 

~ ( b  i - ai)  p.2(b, - ai)  

= a i2e-pa i  - bi2e-U-bi _ 2 ~ O p i l .  

}.l.(b i - ai)  ILl. t a t ~ J  

a,e-  Is~ i - -  b,e-  ~ i  1 0 p i  Pi 
+ - - - - - - - 4 - - -  

IX d~ i ~2 

The asymptotic variance of the MLE of ~ is obtained as 
1 

AsVar(12) = 

-E  L0 2 ] 

(25) 

(26) 

which is estimated by 
1 

AsVar(12) = 02~/0 ~1, 2 (27) 

evaluated at 0, = 12. 
The square root of the estimated asymptotic variance can be used as an 

estimate of the standard error of the estimate of ¢. It provides a measure of 
the reliability of the estimate 12 based on the observed data. Since under 
mild regularity conditions the MLE has an asymptotically normal distribu- 
tion, approximate 95 percent confidence bounds can be calculated by adding 
and substracting 1.96 "~,/AsVar(12) from the MLE 12. 

The asymptotic variance of any function g(12) can be obtained as 

AsVar (g(12)) = AsVar (O,){g'(12)} 2. (28) 
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It is well known [5, p. 43] that in the case of an exponential distribution 
with data that are not censored or grouped, f~/3 approaches normality more 
quickly (as the sampled size increases) than ~. Because of this, we will base 
estimates of confideiace bounds of various quantities on the confidence bounds 
of A~/3 using the assumption of normality of A~/3. We obtain its asymptotic 
variance using (28) as 

1 4/3 AsVar(12 ~/3) = AsVar(12)~l~- . (29) 

In the next section, confidence bounds on A1,3 are transformed directly to 
obtain confidence bounds on related quantities. The reader interested in 
reviewing the properties of the maximum likelihood estimator should consult 
Cox and Hinkley [3, Ch. 9] or similar texts on statistics. 

NUMERICAL RESULTS 

Maximum likelihood estimates of the intensity function and the expected 
time to the next stage as well as upper and lower 95 percent confidence 
bounds were calculated using the methods described in the previous section. 
These calculations were carried out using both a midpoint departure as- 
sumption as well as a random censoring assumption. Table 2 indicates that 
the two assumptions produce virtually identical results. Consequently, we 
shall henceforth present results based on the midpoint method only. 

TABLE 2 

ESTIMATES AND 95% CONFIDENCE BOUNDS OF THE INTENSITY FUNCTION 
AND THE EXPECTED TIME IN STAGE 

! 
Stage la I Stage lb 
(At-Risk) I (HIV+) 

A) Midpoint Method 
Intensity Function 
Lower Confidence Bound 
Upper Confidence Bound 
Expected Time in Stage 
Lower Confidence Bound 
Upper Confidence Bound 

I Stage 2a I Stage 2h [ Stage 3 
(LAS) (ARC) (AIDS) 

Intensity Function 
Lower Confidence Bound 
Upper Confidence Bound 
Expected Time in Stage 
Lower Confidence Bound 
Upper Confidence Bound 

0.45 0.86 0.53 0.30 
0.27 0.57 0.40 0.18 
0.69 1.2 0.70 0.46 

2.2 1.2 1.9 3.4 
1.4 0.81 1.4 2.2 
3.7 1.7 2.5 5.7 

B) Random Censoring Method 
0.45 0.88 0.54 0.30 
0.27 0.58 0.40 0.18 
0.70 1.3 0.71 0.47 

2.2 1.1 1.9 3.4 
1.4 0.79 1.4 2.1 
3.7 1.7 2.5 5.7 

1.1 
0.60 
1.8 

0~93 
0.57 
1.7 

1.1 
0.61 
1.8 

0.91 
0.55 
1.6 
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The expected time to the next stage is the average future length of time 
that any subject in a particular stage will wait before moving to the next 
stage. A consequence of the model is that this quantity does not depend 
upon the length of time a subject has been in the stage already; or Stated 
equivalently, no aging of the subject occurs in any stage. 

Table 3 gives the estimated cumulative distribution function and corre- 
sponding confidence limits for the time in any given stage. These numbers 
represent the proportion of persons who can be expected to have progressed 
to the next stage after 0.5, 1, 2, or 3 years in the stage. The estimates 
obtained by Cowell and Hoskins [2, Part 2, p. 25] are also given for com- 
parative purposes. It should be noted that 11 out of 16 of their values fall 
within our confidence limits. Since we would expect about 15 out of 16 
(that is, 95 percent) it would appear ttiat our results are somewhat inconsis- 
tent with theirs. Furthermore, it should be noted that our estimates are all 
higher than those of Cowell and Hoskins. 

TABLE 3 

PROPORTION PROGRESSING TO NEXT STAGE IN SPECIFIED TIME 

Stage Time Proporlion 
i i 

la 0.5 20% 
(At-Risk) 1 36 

2 59 
3 74 

lb 0.5 35 
(HIV + ) 1 58 

2 82 
3 93 

2a 0.5 23 
(LAS) 1 44 

2 66 
3 80 

2b 0.5 14 
(ARC) 1 26 

2 45 
3 59 

3 0.5 42 
(AIDS) 1 66 

2 88 
3 96 

Lower ~lund 
i 

13% 29% 
24 50 
42 75 
55 87 

25 46 
44 71 
68 92 
82 98 

18 30 
33 50 
55 75 
70 88 

8 21 
16 37 
30 60 
41 75 

26 58 
45 83 
70 97 
84 99 

*Cowell and Hoskins used data from the U.S. Center for Disease 
Study data to obtain the stage 3 values [2, Part 2, pp. 3 and 11]. 

Upper Bound Co, well and Hoskins 

10% 
55 
75 
80 

15 
41 
61 
75 

5 
10 
51 
58 

26* 
45* 
70* 
80* 

Control in lieu of the Frankfurt 

Cowell and Hoskins [2, Part 2, p. 12] assumed the maximum length of 
observation periods throughout in order to offset the length of time from the 
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onset of the stage to entry into 'the study: This will have the effect of de- 
creasing the intensity function and the proportion progressing to the next 
stage. This should explain the downward bias in their results from ours. It 
should be noted that our model is memoryless and requires no assumption 
about the time-in-stage before entering the study. 

Table 4 gives the expected time to death of persons in any stage and 95 
percent confidence bounds on these expected times. For computational rea- 
sons, the method used to calculate confidence bounds here is based on the 
assumption of asymptotic normality of these estimators rather than asymp- 
totic normality of 121~3 as in the previous calculations. Consequently, these 
confidence bounds will be slightly inconsistent with those developed pre- 
viously but should still give the reader some measure of the degree of reli- 
ability of the life expectancies. 

TABLE 4 

LIFE EXPECTANCY OF A PERSON IN ANY STAGE 

Stage Life Expectancy Lower Bound Upper Bound Cowell and Hoskins ° 

la (At-Risk) 9.6 7.5 12 -- 
lb (HIV + ) 7.3 5.5 9.2 11.1 
2a (LAS) 6.2 4.4 8.0 8.8 
2b (ARC) 4.3 2.6 6.0 6.7 
3 (AIDS) 0.93 0.44 1.4 2.1 
*Obtained by addition of components found in Cowell and Hoskins I2, Part 2, p. 12]. 

As mentioned above, Cowell and Hoskins' methodology results in an 
upward bias in the life expectancies as well. 

To this point we have not tested the validity of our constant intensity 
Markov process model. We do this by fitting or predicting the number of 
persons progressing to the next stage of the exposure base in Table 1A and 
comparing the results statistically with those of Table lB. The results of 
these calculations are given in Table 5. 

TABLE 5 

PREDICTED (ACTUAL) PROGRESSIONS BASED ON THE MODEL 

Observation 
Period 

3-6 months 
6-12 months 

12-24 months 
24-36 months 

Stage la 
(At-Risk) 

1.5(1 
4.0(6 

10.3(9' 
2.0(21 

Stage Ib Stage 2a 
(mv+) (LAS) 
2.5(1) 3.8.3) 
8.6(10) 16.9.20 / 

14.5(15) 16.0 14 
4.4(4) 14.014 

Stage2b Stage 3 
(ARC) (AIDS) 

0.8(0) 2.0(4 
5.8(3) 5.0(6 
7.1(10) 5.6(5' 
3.7(4) 0.9(01 
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The fit appears to be remarkably good in the sense that it predicts the 
number of progressions accurately. A chi-squared statistic of 10.1 in com- 
parison with a ×24 variable (14 degrees of freedom, since 20 cells and 5 
parameters, 14 -- 20 - 5 - 1) at any reasonable significance level indicates 
that the model adequately describes the data. 

This conclusion does not mean that the model used here precisely de- 
scribes the physical phenomena underlying the progression of subjects through 
the various stages. The addition of further data in the near future could well 
require further refinements to the model. However, such refinements cannot 
be justified yet on the basis of the data available in this paper. 

Table 6 presents a model multistage "life table" for persons who are in 
stage lb (HIV +).  At each duration, it gives the distribution by stage of a 
cohort of persons who were HIV + initially. The differences between Cowell 
and Hoskins' methodology and ours are reflected in this table as well (see 
Cowell and Hoskins [2, Part 2, p. 26]). 

TABLE 6 

PERCENT DISTRIBUTION BY STAGE AND YEARS SINCE HIV INFECTION 

Years since Stage lb Slage 2a Stage 2b Stage 3 
HIV Infection Dead 

0 
0.5 
1 
1.5 
2 
2.5 
3 
3.5 
4 
4.5 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

(HIV +) (LAS) 

100.0 0.0 
64.9 30.5 
42.2 43.1 
27.4 45.9 
17.8 43.4 
11.5 38.7 
7.5 33.1 
4.9 27.6 
3.2 22.6 
2.1 18.3 
1.3 14.6 
0.6 9.1 
0.2 5.6 
0.1 3.4 
0.0 2.0 
0.0 1.2 
0.0 0.7 
0.0 0.4 
0.0 0.2 
0.0 0.1 
0.0 0.1 
0.0 0.1 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 

(ARC) (AIDS) 

0.0 0.0 
4.4 0.2 

13.2 1.2 
22.6 2.8 
30.7 4.7 
36.7 6.7 
40.5 8.3 
42.5 9.6 
42.8 10.5 
42.0 11.0 
40.3 11.1 
35.3 10.6 
29.6 9.4 
24.0 8.0 
19.1 6.5 
14.9 5.2 
11.5 4.1 
8.8 3.2 
6.7 2.5 
5.1 1.9 
3.8 1.4 
2.8 ] .1 
2.2 0.8 
1.6 0.6 
1.2 0.5 
0.9 0.3 
0.7 0.3 
0.5 0.2 
0.4 0.1 
0.3 0.1 
0.2 0.1 

0.0 
0.0 
0.4 
1.4 
3.4 
6.5 

10.5 
15.4 
20.8 
26.7 
32.6 
44.4 
55.2 
64.6 
72.4 
78.7 
83.7 
87.6 
90.6 
92.9 
94.7 
96.0 
97.0 
97.8 
98.3 
98.8 
99.1 
99.3 
99.5 
99.6 
99.7 
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OBSERVATIONS AND CONCLUSIONS 

The purpose of this paper was twofold. First, the numerical results should 
be of interest to various parties, including insurers, dealing with the issue 
of AIDS. Second, the usefulness of simple parametric survival models was 
demonstrated. Their validity can be tested, standard errors and confidence 
bounds on parameters and related quantities can be calculated easily and 
they have intuitive appeal because of their inherent smoothness. 

In the case discussed in this paper, five parameters were estimated using 
twenty independent pieces of data. In methods such as those used by Cowell 
and Hoskins, in effect, twenty quantities are estimated by twenty indepen- 
dent data points. This makes the results highly sensitive to the data. Par- 
metric models with an inherent smoothing function are more robust under 
small changes to the data. Furthermore, for this data set the parametric model 
implicitly projects beyond the longest observation period (three years). 

The constant intensity model selected in this study is very simple. Al- 
though it is justified on the basis of the data provided, it is probably rea- 
sonable to expect that intensity functions would increase by duration-in- 
stage, that is, that subjects age or deteriorate making progression to the next 
stage more probable with duration in stage. This would require the intro- 
duction of more parameters. Furthermore, the issue of left-hand censoring 
becomes important and difficult to handle. How long a person has been in 
a particular stage prior to diagnosis has a direct effect on the likelihood 
function since it affects the level of the intensity function to be used at the 
time of diagnosis (entry into the study). Adding complexity to the model 
requires the use of more parameters in the model. As more data become 
available, it will be necessary to present the data in a format that will allow 
the user to extract information about the parameters. 

Finally, a few comments regarding the format of the data in this study 
would be appropriate. By providing only information on the subjects' initial 
stage, no contribution is made to inferences about subsequent stages for 
persons who may have passed through several stages of the data. If this is 
done the standard errors of the estimates of the intensities of stages lb, 2a, 
2b and 3 can be discussed and the reliability of the various estimates in- 
creased, I hope that this will be done in subsequent reports. 
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DISCUSSION OF PRECEDING PAPER 

ELIAS s.W. SHIU: " " 

Professor Panjer is to be congratulated for this timely and illuminating 
paper. I wish to follow up on the remark that '.'it is probably reasonable to 
expect that intensity functions would increase by duration-in-stage, that is, 
that subjects age or deteriorate making progression to the next stage more 
probable with duration in stage." As the mode of an exponential distribution 
is at zero, the model implies that, for a patient who has just entered stage 
j ,  it is most probable that he will enter stage j + 1 immediately. 

This observation about the exponential distribution assumption has been 
made elsewhere. In marketing analysis, it has been assumed that purchases 
of a particular brand of goods by a given consumer in successive time periods 
are independent and follow a Poisson distribution with a constant mean. 
Thus, interpurchase times are assumed to be exponential. Chatfield and 
Goodhardt [1, p. 828] criticize this assumption by pointing out that " i t  is 
in fact improbable that a buyer is most likely to buy again immediately." 
One may make a similar statement about claim occurrences in the classical 
collective risk model in which interclaim times are assumed to be exponen- 
tially distributed. 

On December 10-11, 1987; the Council of Professional Associations on 
Federal Statistics convened a group of approximately 100 statisticians and 
data users in Bethesda, Md., for a symposium entitled "Federal Statistics 
on AIDS: Progress, Problems,Prognosis." Participants came from federal, 
state and local public health agencies, private research organizations, uni- 
versities, and industry. At the end of the symposium, one observer noted: 
"Depending on one's perspective, the prognosis for quality statistics on 
AIDS is either optimistic or grim. On the bright, side, a large number of 
first-rate epidemiologists, statisticians, and social scientists are hard at work 
trying to measure important dimensions of the AIDS epidemic and itscon- 
sequences. On the other hand, we know so little about the transmission and 
development of the disease that the uncertainty associated with any forecasts 
is often as large as the forecasts themselves. This is rather frightening" [2, 
p. 8]. I would like to conclude this discussion by suggesting that, by the 
painstaking work of researchers such as Professor Panjer, we shall under- 
stand more and more about AIDS. 

531 
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BEDA CHAN" 

Professor Panjer is to be congratulated for an excellent piece of survival 
analysis illustrating the beauty of parsimonious parametric models. We would 
attempt to discuss the difference between the estimates of the current paper 
and those of Cowell and Hoskins.* 

In Table 3, among estimates based on the Frankfurt Study, five out of 
twelve of Cowell and Hoskins' estimates fall outside the 95 percent confi- 
dence interval of the current paper; one would expect fewer than one out.of 
twelve (that is, 5 percent). In all twelve, Cowell and Hoskins gave a lower 
proportion of progression to next stage and hence a higher expected time in 
one stage. 

The~following interesting property of the exponential distribution may help 
to explain the discrepancy. Let the service time of light bulbs be exponen- 
tially distributed with expected value 1 (year). If all light bulbs were dated 
when they were put on new and when they were dead and replaced, then 
the average service time is 1 (year), as expected. However, the expected 
service time of a randomly inspected light bulb is 2 (years): 1 for expected 
future lifetime because the exponential distribution is memoryless and be- 
cause used is as good as new, and 1 for expected past lifetime by time 
reversal. The light bulbs that last longer are around longer and are more 
likely to be caught at inspection. This average lifetime versus inspected 
lifetime phenomenon could be the key. 

Because the Cowell and Hoskins model considers duration in stage and 
because the Frankfurt Study inspected some but did not catch all HIV + 
patients, their estimates may tend towards the inspected lifetime. In the 
current paper, the exponential model is.assumed, t~ is estimated, and 1/~, 
as time in a stage, is average lifetime. 

*COWELL, M.J. AND HOSKINS, W.H. "AIDS, HIV Mortality and Life Insurance." In The Impact 
of AIDS on Life and Health Insurance Companies: A Guide for Practicing Actuaries, Report of the 
Society of Actuaries Task Force on AIDS. ltasca, II1.: Society of Actuaries, 1988. 
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J.C. MCKENZIE SMITH: 

I congratulate the author for a very timely paper that also illustrates the 
use of Markov processes in an insurance setting. I wish to discuss an alter- 
native to Equation (10) for obtaining Table 6. 

We can definep(t) as a vector of state occupancy probabilities [2] at time 
t and P as the constant matrix of transition probabilities as follows: 

probability of being in stage lb at time t "~ 
probability of being in stage 2a at time t 

p(t) = probability of being in stage 2b at time t 
probability of being in stage 3 at time t 
probability of being dead at time t 

p = 

- 0 . 8 6  0.00 0.00 0.0 0 .0"~ 
0.86 - 0 . 5 3  0.00 0.0 0.0 
0.00 0.53 - 0 . 3 0  0.0 0.0 
0.00 0.00 0.30 1.1 - 0.0 
0.00 0.00 0.00 1.1 0.0 

The diagonal elements of P are the negatives of the intensities shown in 
Table 2(A) to two significant digits of accuracy. The only nonzero nondi- 
agonal elements are those corresponding to transition to the next stage of 
the disease; this is consistent with the author's treatment and the underlying 
data. The columns sum to zero, indicating that no one is lost from the system. 
The elements in the last column are all zero because death is an "absorbing" 
state. Finally, the elements above the diagonal are all zero because it was 
assumed that no recoveries occur. 

The vector pi t )  obeys a differential equation: 

dp(t)/dt = P p( t )  (A) 

The solution to (A), as discussed in [1,2], is 

where 

F(t,s)  

(t  - s ) P  
I 

p( t )  : F(t,O) p(O) (B) 

= I + ( t - s ) P  + [ ( t - s )P]Z /2 !+ . . .  +[( t - s )P]" /nT  
" 1 -  . . . , 

means multiplication Of matrix P by scalar t - s ,  
= the identity matrix, 

(c) 
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and the powers are in the context of matrix multiplication. It turns out that 
F(t,s) has the following properties: 

(1) F(t,t) = I for a i l t  => 0. 
(2) F(s,t) = matrix inverse of F(t,s) for 0 =< s =< t. 
(3) F(t,s) = F z('-') where F = F(0.5,0). 
(4) F(t,s) F(s,r) = F(t,r) for r,s,t  >-_ 0 and therefore 
(5) p(t) = F( t , s )p(s)  for all s -> 0 _-> t. 

From these results, it follows that we can calculate F = F (0.5,0) by 
using as many terms as necessary for convergence in (C): 

i 
0.6493 0.0000 0.0000 0.0000 0.0000 } 
0.3047 0.7654 0.0000 0 .0000  0.0000 

F = 0.0436 0.2174 0.8624 0.0000 0.0000 
0.0020 0.0144 0.1057 0.5837 0.0000 
0.0003 0.0028 0.0319 0.4163 1.0000 

The state occupancy probabilities can be calculated at six-month intervals 
recursively as follows: 

100.0% "1 
0.0% | 

p(O) = 0.0% } 
0.0% .1 
0.0% 3 

{649 } 
30.5% 

;p (0 .5 )  = Fp(O) = 4.4% ; 
• 0 . 2 %  

0.0% 

42.2% } 
43.1% 

p(1.0) = Fp(0 .5 )  = 13.2% ;e tc .  
1 . 2 %  

0.4% 

In general, p(t) = F p ( t - 0 . 5 ) .  These numbers are the same as in Table 
6 except that these are probabilities that sum to 100 percent, whereas the 
Table 6 numbers are expectations that sum to 100. 

The only nonroutine part of this approach is to determine the form of P. 
The rest is straightforward number-crunching. These techniques are de- 
scribed in [1,2] in more detail. Because this is a recursive method, it is 
important to carry as many decimal places as possible to avoid the accu- 
mulation of rounding errors. The results in this discussion were shown to 
one decimal place to be consistent with the author's presentation. 
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In general, the state Occupancy probabilities at n half-years for a life in 
state i at time 0 are displayed in the ith column vector of'the nth matrix 
power of F, wh!ch, may be calculated by taking successive powers of F = 
F(0.5,0). 

Multistate reserves could be calculated by using the results of this paper 
and the techniques discussed in [3]. Such reserves could even incorporate 
recovery assumptions if these became appropriate. However, an insurance 
company would not have sufficiently good information on the number of its 
covered lives in each state to make use of reserves that assume a knowledge 
of the stage of the disease. Reserves based on the knowledge that a person 
has been infected combined with an estimate of face amounts on infected 
lives may be a practical alternative. 

One final caveat is not to try to apply (C) to cases in which P varies with 
time. This case requires special handling, which is discussed in [1]. 
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MARK D.J. EVANS: 

Professor Panjer has developed a statistical model for AIDS survival analysis 
that addresses some problems with the Cowell and Hoskins approach, in- 
creasing the usefulness of their extensive research in this area. There are a 
few areas of Professor Panjer's analysis that merit further reflection. 

The most important concern is the data used for stage 3. Panjer uses the 
Frankfurt data, which studied only 23 individuals. Cowell and Hoskins use 
the CDC data, which not only contain more individuals (33,482) but also 
tabulate the data by date of diagnosis rather than by time in stage. Use of 
the CDC data is clearly preferable. 

The CDC stage 3 progression information is quite reasonably modeled by 
Cowell and Hoskins; it does not fit the exponential distribution used by 
Partier. Unfortunately, this makes inapplicable some of the convenient re- 
lationships developed by Panjer. This could be addressed by assuming 
(somewhat inaccurately) that the CDC data fit an exponential distribution. 
The CDC data imply a stage 3 life expectancy of 2.1 years, which implies 
an intensity function of 0.48, as opposed to the Frankfurt-based value of 
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1.1. Use of the stage 3 data from the CDC study would increase the life 
expectancy estimate calculated by Panjer by about 1.2 years. 

There is a peculiarity in the CDC data, which, although it does not sig- 
nificantly impact any results, does pose some questions. The Cowell and 
Hoskins stage 3 model predicts cumulative mortality of 95 percent and 96 
percent at 8 years and 8.5 years, respectively. The actual results are as 
follows: 

Ob~rvation Patients PatienL'~ 
Period Observed -Expired Percentage 

8 Years 4 2 50% 
8.5 Years 10 6 60% 

At first, this might appear to be a statistical fluke caused by a small amount 
of data. However, constructing binomial distributions based upon the pre- 
dicted percentage of 95 percent and 96 percent demonstrates that if these 
are the true underlying probabilities, the chances of getting no more than 
two deaths at year 8 and no more than six deaths at year 8.5 are about 1 in 
100,000,000. Perhaps there is some problem with the data at these extended 
periods or the earlier victims of AIDS were infected with a less devastating 
strain. 

The stage lb data from the Frankfurt Study also contain some interesting 
characteristics. If we use least squares to fit the data to the function B, + 
BI x 1/t, where t represents time in stage exposed to the interval midpoint, 
we get a "reciprocal" relationship. This results in the following: 

Bo = 0.946 
B~ = -0 .309  

PERCENTAGE WHOSE HEALTH WORSENED 

t Observed Exponential Fit Reciprocal Fit 

3/8 
3/4 
3/2 
5/2 

0.11 
0.56 
0.75 
0.80 

0.28 
0.48 
0.72 
0.88 

0.12 
0.53 
0.74 
0.82 

F test: 

Exponential versus reciprocal fit produces F statistic of 23.2, which is 
greater than Fo.o5:3.2( = 19.2). 
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Note that technically this model should be exposed as follows: 

F(t) -= O, 0 <__ t <_ 0.327 

0.309 
F(t) = 0.946 - - ,  0.327 < t 

t 

These results suggest three conclusions. First, the exponential distribution 
is not the best model for these data. Second, the data are not significantly 
compromised by left-hand considerations. Third, this model suggests that 5 
percent of those in stage lb will never progress. (The 95 percent confidence 
level for 0.946 excludes the value 1, but 1 is included at the 97.5 percent 
level.) 

The data for stages 2a and 2b do not appear to suggest that anything other 
than Professor Panjer's approach would be appropriate. 

In conclusion, although Professor Panjer has made some important ob- 
servations about the limitations of the techniques used by Cowell and Hos- 
kins and presented a model that resolves these problems, his model clearly 
needs to be modified to incorporate the superior CDC stage 3 data. Also, 
this model should make better use of the Frankfurt stage lb data. Unfortu- 
nately, these findings introduce complications into Panjer's development of 
the distribution resulting from the combination of the various stages. 

To overcome the difficulties, I developed a computer model by using 
Markov chain techniques, similar to the approach used by Cowell and Hos- 
kins. The model generates monthly progressions and makes approximate 
adjustments to compensate for the half-month average implicit progression 
delay. 

The table on page 538 is an attempt to reproduce Panjer's Table 6 by 
using the computer model. Note that this computer model produces results 
similar to Panjer's. It produces an HIV+ life expectancy that is within 0.1 
years of Panjer's. 

Next I reran the model, replacing theassumptions for stage lb  and stage 
3 as documented below: 

Models for Each Stage 

Stage lb: 

F( t )  = 0, 0 -< t_<  0.327 
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PERCENTAGE DISTRIBUTION BY STAGE AND YEARS SINCE HIV INFECTION 

Years Since Stage lb Stage 2a Stage 2b Stage 3 
HIV Infection (HIV +) (LAS) (ARC) (AIDS) Dead 

0 
0.5 
1 
1.5 
2 
2.5 

'3" 
3.5 
4 
4.5 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

100.0 
65.1 
42.3 
27.5 
17.9 
11.6 
7.6 
4.9 

0.0 
32.0 
43.6 
45.9 
43.3. 
38.5 
32.9 
27.5 

0.0 
4.9 

13.8 
23.1 
30.9 
36.7 
40.3 
42.1 

0.0 
0.2 
1.3 
2.9 
4.9 
6.8 
8.4 
9.6 

3.2 
2.1 
1.4 
0.6 
0.2 
0.1 
0.0 
0.0 
0.0 
0.0 
0.0 
0 . 0  
0.0 
0.0 
0.0 
0.0 
0.0 
0 . 0  
0.0 
0.0 
0.0 
0.0 
0.0 

22.5 
18.2 
14.6 
9.2 
5.6 
3.5 
2.1 
1.2 
0.7 
0.4 
0.2 
0.1 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

42.4 
41.5 
39.7 
34.7 
29.0 
23.5 
18.6 
14.5 
11.2 
8.5 
6.5 
4.9 
3.7 
2.8 
2.1 
1.5 
1.1 
0.8 
0.6 
0.5 
0.3 
0.2 
0.2 

10.4 
10.9 
11.0 
10.4 
9.2 
7.7 
6.3 
5.0 
3.9 
3.0 
2.3 
1.8 
1.3 
1.0 
0.8 
0.6 
0.4 
0.3 
0.2 
0 . 2 .  
0.1 
0.1 
0.1' 

0.0 
0.0 
0.4 
1.5 
3.7 
6.9 

11.0 
16.0 
21.5 
27.4 
33.4 
45.2 
56.0 
65.3 
73.0 
79.2 
84.1 
88.0 
90.9 
93.2 
94.9 
96.2 
97.2 
97.9 
98.4 
98.8 
99.1 

• 99.4 
99.5 
99.7 

99.8 

S t a g e  2a:  

S t a g e  2 b :  

0.309 
F (t) = 0.946 - - ,  0 .327 < t < 21 

t 

F ( t )  = 1 2 1 _ < t *  

F (t) = 1 - e -°-53' 

F ( t )  = 1 - e -°'3°'  

*Normal male age 35 mortality would reduce the population by 6.8 percent in 21 years, so this 
point was chosen for cutoff. This assumes probabilities are additive, although one could argue they 
are probably multiplicative. 



S t a g e  3: 

DISCUSSION 

F ( t )  = 1 - 0.55' 0 _ < t _  2 

F (t) = 1 - 0.552 × 0.65 ('-2) 2 < t < 3 

F (t) = 1 - 0.552 × 0.65 x 0.75 u--3) 3 < t 

The following results were produced by this model: 

PERCENTAGE DISTRIBUTION BY STAGE AND YEARS SINCE HIV INFECTION 
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Years Since Stage Ib Stage 2a Stage 2b Stage 3 
HIV Infection (HIV +) (LAS) (ARC) (AIDS) Dead 

0 
0.5 
1 
1.5 
2 
2.5 
3 
3.5 
4 
4.5 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

100.0 
67.2 
36.3 
26.0 
20.9 
17.8 
15.7 
14.2 

0.0 
34.9 
50.3 
46.9 
40.3 
33.5 
27.4 
22.3 

0.0 
2.3 

13.3 
23.6 
31.0 
35.8 
38.2 
39.0 

0.0 
0.1 
1.1 
3.2 
6.0 
8.8 

11.4 
13.5 

13.1 
12.3 
11.6 
10.6 
9.8 
9.3 
8.8 
8.5 
8.2 
8.0 
7.8 
7.6 
7.5 
7.3 
7.2 
7.1 
7.0 
6.9 
0.0 
0.0 
0.0 
0.0 
0.0 

18.1 
14.6 
11.8 

7.7 
5.1 
3.4 
2.3 
1.6 
1.2 
0.9 
0.7 
0.5 
0.4 
0.3 
0.3 
0.2 
0.2 
0.2 
6.7 
4.0 
2.3 
1.4 
0.8 

38.5 
37.1 
35.2 
30.4 
25.4 
20.7 
16.6 
13.2 
10.4 
8.2 
6.4 
5.1 
4.0 
3.1 
2.4 
1.9 
1.5 
1.2 
1.3 
3.3 
3.8 
3.7 
3.2 

15.2 
16.4 
17.1 
17.7 
17.1 
16.0 
14.5 
12.8 
11.1 
9.5 
8.1 
6.8 
5.7 
4.7 
3.9 
3.2 
2.6 
2.1 
1.7 
1.8 
2.0 
2.2 
2.1 

0.0 
0.0 
0.1 
0.8 
2.1 
4.3 
7.4 

11.0 
15.2 
19.7 
24.4 
33.7 
42.6 
50.6 
57.8 
63.9 
69.1 
73.5 
77.1 
80.1 
82.6 
84.6 
86.2 
87.6 
88.6 
89.5 
90.2 
90.9 
91.8 
92.8 
93.9 

As mentioned earlier, use of the CDC stage 3 data increases life expectancy 
by about 1.2 years, while use of the reciprocal model results in an additional 
1.6 years increase, giving an HIV + life expectancy of 10 years. 
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(AUTHOR'S REVIEW OF DISCUSSION) 

HARRY H. PANJER: 

I wish to thank each of the discussants for their individual contributions. 
Professor Shiu points out the monotonicity of the probability density function 
of the exponential distribution. Unfortunately, the choice of a more complex 
model cannot be justified on the basis of the data, because the exponential 
models cannot be rejected either simultaneously for all stages combined (as 
is discussed following Table 5) or independently for each stage, as can be 
verified by the reader from Table 5 for each stage separately by using a ×2 
statistic with two degrees of freedom. The exponential distribution should 
be considered a starting point only. As more data emerge, models with more 
parameters can be justified. 

Professor Chan points out the well-known "inspection paradox," which 
may be alternatively described as follows. Suppose that buses arrive at a 
bus stop on average 10 minutes apart (in accordance with a homogeneous 
Poisson process). If an individual arrives at the bus stop, the expected time 
to the next bus is not five minutes. It is still 10 minutes. The explanation is 
simple. The individual is more likely to arrive at the bus stop during a long 
interarrival time than a short one, because the long interarrival times take 
up more of the time scale than the short ones. In the context of our analysis 
of the data in the paper, persons who have short times in stage j are more 
likely to enter the study after stage j has passed. They may contribute to a 
subsequent stage in which the same arguments apply. Consequently, the 
individuals involved in the study will have a longer expected time in the 
initial stage (prior and subsequent to entry) than persons not in the study or 
persons entering in an earlier stage. 

Mr. Smith provides an elegant alternative computational tool for evalu- 
ating various probabilities. These may be of special interest to readers. 

Mr. Evans correctly points out that the CDC data for stage 3 are much 
better than the small data set in the Frankfurt Study. The only purpose of 
our study was to analyze the Frankfurt data. The Frankfurt data are useful 
primarily for information about the incubation period running from infection 
(stage lb) to diagnosis of AIDS (stage 3). 

He also suggests a two-parameter model for matching the distribution 
function. His model apparently fits better, although he does not recognize 
the sample sizes in the different exposure periods in his method of fitting. 
It should be pointed out that any model that includes the exponential model 
as a special case will also provide a better fit than the exponential. However, 
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the principle of parsimony dictates that the data set is not sufficiently large 
to justify a model that is more complicated than the exponential. 

I would like to express my thanks to the reviewers and the many others 
who have expressed interest in this paper. I am finally most indebted to 
Mike Cowell, who prodded me (however gently) to do this study and to 
carry on further studies associated with this tragic epidemic of AIDS. 




