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Concomitant Information in a Bivariate Model
of Claim Frequencies and Severities

Abstract

Bivariate claim data come from a population that consists of insureds who may
claim either one, both or none of the two types of benefits covered by a policy. In
the present paper, we develop a statistical procedure to fit bivariate distributions
of claims in presence of covariates. This allows for a more accurate study of
insureds’ choice and size in the frequency and severity of the two types of claims.
A generalised logistic model is employed to examine the frequency probabilities,
whilst the three parameter Burr distribution is suggested to model the underlying
severity distributions. The bivariate copula model is exploited in such a way that
it allows us to adjust for a range of frequency dependence structures; a method
for assessing the adequacy of the fitted severity model is outlined. A health claims
dataset illustrates the methods; we describe the use of orthogonal polynomials for

characterising the relationship between age and the frequency and severity models.

Key words: Bivariate loss distribution; Frank’s copula; Survival copula; Burr re-

gression; Diagnostics.
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Concomitant Information in a Bivariate Model
of Claim Frequencies and Severities

1 Introduction

In this article we deal with a mixture model of claim frequencies and severity
distributions for the analysis of bivariate loss data. Many studies in the statistical
literature have focused on the fit of both univariate and bivariate loss distributions
(e.g. Hogg & Klugman, 1984; Panjer & Willmot, 1992; Klugman et al., 1998;
Klugman & Parsa, 1999; Watkins, 1999). More sophisticated analyses have also
used regression models for portfolio segmentation purposes (e.g. Beirlant et al.,
1998). Little attention, however, has been given to the case when we can attribute
variability in cause-specific loss outcomes. This is of particular interest when

analysing risk characteristics on specific types of claims.

Consider the analysis of an insurance portfolio where the interest centres on the
estimation of the joint distribution of losses corresponding to two types of claims.
In many practical situations, this loss data comes with associated or concomitant
information on which the losses are thought to depend. In health insurance data,
for example, we may measure the size of drug claims and of “other” claims paid by
the insurance company to /N insureds during a determined amount of time, and
the corresponding joint distribution of these losses may depend on age, gender

and other auziliary variables.

Let X and Y denote the random variables corresponding to the amounts of

two types of claims. The joint cumulative distribution function (CDF) is then
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defined as
H(z,y) =Pr{X <z,Y <y} z,y > 0. (1)

Our goal is to model, fit and calibrate the CDF in Eq. (1) in presence of covariate

information.

Because the insureds may not claim both types of benefits, we define the

frequency probabilities as follows:

Poo = PI'{X = 0, Y = 0}, Po1 = PI'{X = 0, Y > 0},
pro = Pr{X > 0,Y =0}, pu=Pr{X >0,V >0},
po. = Pr{X = 0}, and p.o = Pr{Y =0}.

Notice that po. = poo + Po1, P-0 = Poo + P10 and poo + Po1 + P10 + P11 = 1.

We then define the corresponding severity distributions as follows:

Hy(y) = Pr{Y <y| X =0,Y > 0}, (2)
Hyp(z) = Pr{X <z|X >0,Y =0}, (3)
Hy(z,y) = Pr{X <z, YV <y[X>0,Y >0} (4)

It follows that, if z > 0 and y > 0, the joint PDF in Eq. (1) can be expressed in

terms of the frequency probabilities and the severity distributions as follows

H(z,y) = poo + po1Ho1(y) + proHio(x) + priHu(z,y). (5)

Thus, the estimation of H(z,y) is reduced to the joint estimation of the frequency

and severity models.

In this study, we assume that the distributions Hy,, Hq9, H11 are absolutely
continuous with probability density functions (PDFs) hg1, hio and hi; respec-
tively. Thus, Hig(z) = [y hio(u)du, Hp(y) = [ hoi(v)dv and Hyi(z,y) =
I3 S haa(u, v) dudo.
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2 The mixture model

Let x) and ¥y, be the amounts claimed by the k-th insured, £ = 1, ..., N, and let
z = (1, 21k, 29k, -.-, 2pk) be the corresponding vector of covariates. Define status
indicator vectors as follows:

cook = I(vp = 0,9y, = 0) cork = (g = 0,yx > 0),

crox = I(xr > 0,y = 0), ciig = I(x, > 0,9, > 0).
Here, I(A) denotes the indicator function of the event A. Notice that coox+ o1+

clok + Ci1k = 1.

The likelihood function corresponding to the /V individuals can then be written

as follows:
N . . ) )
L =TT [poo k] ™" [posk hor ()] [pro,e ho ()] ™F [prae har (@, )] HF
k=1
N
= ]I [Pooe] O [por k] Ok [p1o,k] 10K [p11 4] A1k X (6)
k=1
N
X T T [hor (yx)] O [hag ()] 10K [has (i, yi)]11* (7)
k=1
= Lf X Ls.

Thus, the likelihood function can be split into the likelihood corresponding to the
frequency probabilities, denoted here as Ly, and the likelihood corresponding to

the severity distributions, denoted as L;.

The presence of effects of covariates on the frequency probabilities can be
modelled using a generalised logistic model (Cox & Snell, 1989, pp. 155-157), so
that the frequency model has the following form:

exp(,BiTj Z)
exp(Boo zk) + exp(By; zk) + exp (B, zk) + exp (B )

(8)

Dijk =
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where 75 € {00,01,10,11} and By, Bo1s B1o> B11 are the corresponding vectors of

parameters. To avoid redundancy, we set 3, = 0.

Using the probability model defined by Eq. (8), the log of the likelihood in
Eq. (6) is

N
1;(B) =log Ly(B) = > cookl0gpook + otk 10gpork + Ciok 108 Prok + C11,6 108 P11k
k=1
N
= Z Co1,k (ﬁ(ﬂzk) + Cro.k (ﬁlToZk) + C11k (ﬁllek) — log ¥x(B),
k=1

where 8 = (83, 810, 811)7, and 1 (8) = 1+exp(B3,2x) +exp(Bly2zr) +exp(BT,21).

In most situations, however, there will be relatively very few observations of
insureds who do not claim any of the benefits covered by the policy. Although
the maximum likelihood estimates (MLE’s) of the frequency model can be found
by direct maximisation, the model as it stands will tend to be poorly conditioned
whenever (1/N) X4 coox = 0. The result is that the maximum likelihood esti-
mates of the components of 3 tend to be highly correlated and have large standard
errors. A more practical problem is that the probability of zero-claim is set to zero,
i.e. pgo = 0. The problem is solved by removing the event 00 in the frequency
model, namely

exp(,BiTj Z)
exp(B0; 2k) + exp(B1 z4) + exp(B1; 7x)

for ij € {01,10,11}, where 8,; = 0. The log-likelihood for this constrained model

(9)

Pijk =

is:
NI

L (B) =" cork (Boizx) + cron (Blozi) — log vr(B), (10)

k=1
where 8 = (B85,,81)", N' = N — Sil,coox and ¢(8) = 1+ exp(Bg,2) +

exp(B1oz)-
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When it comes to modelling the severity distributions, it is important to con-
sider that the paired positive observations may possess certain degree of corre-
lation; therefore, the form of the bivariate distribution Hii(x,y) must take into
account that each marginal loss might be related to the other. An approach to
create an “appropriate” joint distribution that incorporates dependence among

the variables is via a bivariate copula.

The use of the copula, Cy, is appealing since the elimination of the marginals
through the copula helps to model and understand dependence structures effec-
tively, as the dependence has no relationship with the marginal behaviour of indi-
vidual characteristics. The copula is able to capture a range of global association
between X and Y, X,Y > 0, and does so through a dependence parameter 6.
Because of its flexixibility to model bivaraite loss data, copulas have received con-
siderable attention in recent years. Here we can refer to Frees & Valdez (1998) and
Klugman & Parsa (1999) and the references therein. A good introduction to the
theory of copulas can be found in Nelsen (1999) and in Benes & Stephan (1997).

The definition of joint distribution function Hyi(z,y) with marginals Fy(z) =
Hii(z,00) and Fio(y) = Hii(oo,y) is implicitly defined through the identity
Hii(z,y) = CylFn(x), Fi2(y)]. There are situations, however, when it is eas-
ier to find analytical expressions for the corresponding bivariate survival function,

which can be written as follows

Su(z,y) = Pr{X>2z,Y>y|X>0Y >0}
= Cy[Sn(x), S2(y)]- (11)

Here Soi(x) = 1 — Fy(xz) and Sia(y) = 1 — Fia(y) are the marginal survival

functions.

In this study, we adopt Frank’s (1979) family of two-dimensional archimedean
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copulas which is defined as

Cy(u,v) = —%log (1 + (e )( - )) , e R—-{0}, (12)

where R denotes the ordinary real line. This copula was introduced by Frank (1979)
in a context of probabilistic metric spaces and has been studied by Nelsen (1986,
1999) and Genest (1987). The use of Frank’s copula is appealing since it is able
to capture the full range of dependence; it includes the Fréchet upper and lower

bound copulas as well as the product copula, i.e. the independent structure.

To assess the degree of dependence between the marginals in the copula model,
we use Kendall’s 7 measure of association which is defined as the difference be-
tween the probabilities of concordance and discordance for two independent and
identically distributed pairs of random variables. Genest (1987) and Nelsen (1986)
showed that the Kendall’s 7 corresponding to a member of the Frank family of

Archimedean copulas Cy can be expressed as follows:

79_1——<1——/ —— )

The joint survival function of the paired positive random variables given by

Frank’s copula in Eq. (12) can then be written as

*9521(.2‘) . 79512(y) _
_%IOg (1+ (e }9)(6 1)) 10 #0,
Siu(z,y) = (e — 1)
So1(x) S12(y) :0=0.

(13)

Differentiating the bivariate survival function in Eq. (11), when 6 # 0, with respect

to z and y we find that the corresponding pdf is of the form

Hexp {—0 [521 (37) + 512(2/) - 2Sll (ZL‘, y)]} .
(1—e?) ’

when 6 = 0, we obtain hq1(x,y) = ho1(2)hi12(y), the independent model. Thus, the

hi1(z,y) = hor(x)h12(y) (14)

pdf in Eq. (14) is non-negative for all z,y > 0. Therefore, the bivariate survival
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function defined in Eq. (13) is a valid model with arbitrary marginal survival

functions Sy; and Sis.

In order to model the underlying distributions Hy,, Hyg, Hy; and H;s in the
severity model, we consider the three-parameter Burr family of distributions whose
survival distribution function is specified by S(t) = [1+~(t\)*]~'/, for ¢t > 0 and
A, v, > 0, and by the following pdf:

B (tA) %«
O = ey

(15)

Burr’s loss model is a flexible and tractable family of distributions. It has the
ability to accommodate many shapes of distributions. It contains the Pareto
distribution when o = 1 and the log-logistic distribution when v = 1, while as

1/~ approaches infinity the Weibull distribution is obtained.

To allow for the effects of covariates, and to ensure that the parameters A, ~

and o remain positive, a log link is applied as follows:
A = exp {aTz} , 7Y =exp {sz} , Q=exp {CTZ} ,

where z is the vector of covariates and a, b and c are the corresponding vectors

of parameters.

A similar model for the Burr regression of univariate loss data was proposed
by Beirlant et al. (1998); unlike their approach, which takes into account covariate
information in one of the parameters only, our set up has sufficient flexibility to

vary both the tail and the mode behaviours in presence of risk factors.

The log of the likelihood corresponding to the severity model in Eq. (7) can be

written as follows

ls(v) = l(()s1)(V01) + l%)(Vlo) + lﬁ)(un), (16)
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where
(5) -
o (vo1) = D corkloghor (yu; Vor), (17)
k=1
N
lgf))('/lo) = cho,kloghlo(ﬂck;'/m)a (18)
k=1
N
lﬁ)(l/n) = Y e log b (T, Yk vi1), (19)
k=1
and
v = (vo, Vi, V1), (20)
Vor = (ao1,b01,001),
Vip = (aIOabIO:CIO),
vy = (a1, bar, ca1, 19, bia, €19, 0).

It follows that the MLE’s of v can be obtained by optimising the log-likelihood
functions in Egs. (17), (18) and (19) separately.

Both the frequency and severity models are not linear, so numerical techniques
need to be used in order to find the MLE’s of the corresponding parameters. In
this study, we used the Surv function in the statistical package S-PLUS to create
design matrices. We also made use of the function nlminb to minimise minus
two times the log-likelihood functions in Egs. (10), (17), (18) and (19). In this
study, the covariance matrix will be calculated from the inverse of the observed
information matrices of the MLE’s B and v, denoted here as IB and I, respectively.
For this, we used the mathematical package MAPLE (Char et al., 1991) to obtain
the Hessian matrix and translated the code to S-PLUS. Thus, inferences will be
based on the approximations 8 ~ MVN(B,VB) and v ~ MVN(?,V;), where

V; = I.', V, =I,' and MVN denotes the multivariate normal distribution.

Taking the theory of generalised linear models as a start point, it is desirable
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to determine if all the parameters in the chosen model are needed. The required

hypothesis tests can be combinations taken from the following positions:

e Hj:B3; =0,1i.e. no effects of the j-th covariate on the frequency probabilities.

e Hy:a; =b;j =c; =0, ie. no effects of the j-th covariate on loss rate.

Let M1 and M2 be two nested models. Model M2 has g, parameters and model
M1 has g; parameters, where go > ¢;. Model M1 is nested in model M2 if the
parameters that correspond to specific covariates considered in M1 are contained
in M2. Let @y and wjse be the maximum likelihood estimates of the parame-
ters in models M1 and M2, respectively. The corresponding deviance statistic is
defined as

d = —2 (log Ly (wwn1) — log Laa(Wms))

which has an asymptotic distribution d ~ Xﬁf:qrql. This statistic is then used to
test the hypothesis Hy : w = 0 such that w € M2 — M1, i.e. the parameters that
are contained in M2 but not in M1 have no effects. The hypothesis is rejected at

a significance level p if

2
d> XP;'IZ—(Il :

We turn now to model diagnostics. If T is Burr distributed as in Eq. (15),
by assumption —log S(T) = (1/7v)log[l + v(T'A)?] is unit exponential; therefore,
we could rank the n observed values of u = (1/v)log[1 + v(¢\)?] into the order

statistics u(;) and plot

ntl=y against exp(—u(j)
for j = 1,...,n, where n is the number of observations in each of the severity

models. This is basically a quantile-quantile plot.
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The joint severities of the paired positive claims can be assessed by considering

Gv,w) = Pr{X>v|Y <w}
521(1)) — Sn(v,w)
1-— Slg(’(U) )

We then order the values of v into order statistics v(;) and plot

np+1—73 ) 1
- against — Z G(U(j), Wi Aoty Vo1i Q2155 A12;5 V1255 Q125 9)
ni + 1 ni ;5

for j = 1,...,nq7;, where ny; is the number of paired positive observations. If the
marginal distributional assumptions about the marginals in H;; seem reasonable in
the light of the data, then assessing their joint distribution is essentially assessing

the dependence structure.

3 Example

We analyse a series of N = 19827 health policies in a insurance portfolio. We
are interested in modelling the drug claims paid in one year for the k-th policy,
denoted by zp, and the total amount on all other claims, denoted by y;. We

consider the continuous covariate age and the factor GENDER (male=0; female=1).

To visualise and assess the effects of age in both the frequency and severity
models, we use an orthogonal polynomial model. There are considerable advan-
tages to be gained using orthogonal polynomials. It brings to account one in-
dependent variate at a time, so that the successive terms of the final regression
equation are orthogonal to one another. The likelihood ratio method described
above still makes sense; the significance of a model of certain degree can be de-

termined by comparing the likelihood with and without the variables associated
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with the polynomial. Furthermore, using likelihood techniques, significance of
non-linearity of the relationship can be assessed by comparing the log-likelihood
for a model of higher degree polynomial to the log-likelihood for a model with the
“classic” linear effect (see e.g. Seber, 1977). In S-PLUS, the function poly gener-
ates the basis matrix for representing such a family of orthogonal polynomials; the
primary use of this function is in a model formula, allowing the user to directly

specify a polynomial term in a regression model.

3.1 Frequency Model

We consider first the null model of the frequency probabilities, i.e. the model in
which only the intercept terms appear in Eq. (8). The MLEs and standard errors

are
Bor = 3.94223 (0.18434), B = 6.23657 (0.18275), 1, = 4.57746 (0.18351).

Estimates of each of the probabilities can be obtained by substituting previous
estimates in Eq. (8). Estimating SE’s for these probabilities is a complex problem
since Eq. (8) involves several parameters and their correlation structure must be
taken into account to do so. One simple way to solve this problem is by gener-
ating a sample of multivariate normal random vectors with mean equal to ,B and
covariance equal to the corresponding observed matrix; each vector is evaluated
in Eq. (8) and the Monte Carlo method is applied. We used the S-PLUS function
rmvnorm and evaluated the standard deviation of the simulated probabilities; in
a similar way, 95% confidence intervals (CI’s) can be obtained by using the 2.5%
and the 97.5% percentiles of the simulated probabilities, or simply by evaluating
the Monte Carlo SE’s in the standard normal CI’s.
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Thus, we obtain the following estimators of the frequency probabilities, to-

gether with the corresponding 95% confidence intervals:

Poo = 0.00151 (0.00105, 0.00216), Por = 0.07797 (0.07425, 0.08173),
Pro = 0.77334 (0.76738,0.77918), P = 0.14717 (0.14264, 0.15233).

These point estimators are very similar to the frequency probabilities Carriere (1997)

reported in the study of a similar dataset.

In his article, Carriére also carried out tests about the null hypothesis Hj :
Poo = Po- P-o, the independence of claim frequency; with the implementation of a
bootstrap method, he found strong evidence to reject such hypothesis. Here, under
the frequency model represented in Eq. (8), it is possible to carry out frequency
independence tests in presence of auxiliary information by using some well-known

asymptotic results. It can be shown that such hypothesis tests can be stated as
Hy: AB=0 Vs. H,: AB #0, (21)

where A = (Ii4p, Ii4p, —I14,), and I, represents the (1 + p) x (1 + p) identity

matrix.

To test Hy in Eq. (21), we use a Wald test assuming the usual regularity

conditions. It follows that the test statistic
7% = (AB)"(AV;AT)"(AB)

has asymptotically a x? distribution with p + 1 degrees of freedom under Hy. We
therefore reject Hy at a significance level p if Z> > x3 4 ,.;. Under the null
frequency model, i.e. when p = 0, we found that Z2? = 912.38, which corresponds
to a p-value of 0.00000. Thus, there is strong evidence to reject the hypothesis of

frequency independence.
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Because there are very few zero paired observations, we decided to fit covariate
information to the frequency model in Eq. (9) — we thus fit and test difference in
deviance of nested models against a critical value of X§gs 4—o = 5.99. Table 1
shows the results of a number of main effects models. It is possible to observe in
models 1 to 4 that both variables are marginally and additively significant; it is
also interesting to notice that the inclusion of the polynomial terms improve the
frequency model significantly when compared with the traditional linear model 4.
The inclusion of the 7th and 8th degrees in Models 10 and 11 respectively, do not
show any improvement to the fit though. We therefore decided to take model 9
as the “best” regression equation since it gives the most significant reduction of

deviance.

It is clear that age and gender are important predictors of frequency since
they present very significant effects. The plots of the corresponding fit of the
polynomial regression of age in the best frequency model are shown in Fig. 1;
here, the dashed lines are 95% confidence bands. The fits show that the effect
of age is nonlinear and that the plots widen at the left and right extremes where
less data is available. The coefficients of the remaining parameters in our best
frequency model are displayed in Table 2. We can notice that these coefficients

are individually significant.

In order to assess the differences between groups of insureds, it is informative to
look at the fitted frequency probabilities which can be evaluated through Eq. (9).
The probabilities are displayed in Fig. 2 which allow us to compare the three
events. The panels show the fitted probabilities in function of age and classified
by gender. We can observe that, although GENDER was statistically important, the

shapes do not seem to differ too much between gender groups.
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Table 1: Values of deviance for some nested frequency probability models fitted

to the health policies data.

Model —2x1; Np
1 null 26893.83 2
2 age 26824.97 4
3 GENDER 26830.88 4
4 age + GENDER 26743.34 6
5 poly(age,2) + GENDER 26694.50 8
6 poly(age,3) + GENDER 26659.21 10
7 poly(age,4) + GENDER 26655.79 12
8 poly(age,5) + GENDER 26642.99 14
9 poly(age,6) + GENDER 26637.06 16
10 poly(age,7) + GENDER 26635.77 18
11 poly(age,8) + GENDER 26633.90 20

Np=Number of parameters

Table 2: Estimates of the coefficients and standard errors of the covariates for the

frequency model.

Bo
Parameter Est. S.E.
Intercept —0.985 (0.053)
GENDER 0.573 (0.068)

B1o

Est.

S.E.

1.537
0.245

(0.031)
(0.042)
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Figure 1: Polynomial fit of age for the model poly(age,6) + GENDER.
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Figure 3: Scatter plot of the natural logarithm of z;, = drugs, and y; = othery
where x, yp > 0.

3.2 Severity Model

Before fitting and carrying out tests about the severity distributions, it is useful to
explore the nature of the correlation structure of the paired positive observations.
This initial analysis can provide a feel for the choice of the form in which the
marginals of Hy; associate. For this, we plot the pair (log zx, log yx), for 2, yx > 0,
which is displayed in Fig. 3. This scattered plot shows a locally weighted regression
smooth obtained using the function loess.smooth in the package S-PLUS. We
can observe that the observations show a very modest positive association between

the two types of claims.

At this point, there is weak evidence to assume that there is certain association
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Table 3: Estimates of the coefficients and standard errors of the covariates for the

frequency model.

Parameter 01 10 21 12

log A —4.296 (0.016) —5.103 (0.037) —4.511(0.038) —5.105(0.031)
log v —0.334(0.043) —0.861(0.132) —0.402(0.098) —1.075(0.101)
log « 0.321(0.014) 0.266 (0.033) 0.244(0.030) 0.030(0.022)
0 0.586 (0.109)

between the two types of claims for the non-zero paired observations. This might
suggest that the choice of the severity independent model, namely Hii(z,y) =
Fy (z)Fi2(y), may be adequate. However, it is important to consider that the
inclusion of auxiliary variables in the marginals, as specified by our severity model,
may change the degree of association between both marginals. Such degree can be
assessed through the dependence parameter 6, as indicated above; furthermore, it
is possible to carry out severity independence tests in the presence of covariates
in the form of Hy : § = 0 against H; : # # 0. This will indicate whether the

complication of the copula model is necessary.

The parameter estimates for the null model of the frequency distributions
are displayed in Table 3. We observe that, although the point estimator of the
dependence parameter represents a very modest association, 7; = 0.065, the Wald
test |0/ SE;| = 5.38 suggests the rejection of the severity independence hypothesis.
The dependence between the marginals of Hi; is significant and, therefore, the

parameter 6 must be accounted for.

We can also observe in Table 3 that in general all remaining parameter esti-

mates are individually significant. The only parameter that does not seem to be
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significant is log a9; therefore, if we test Hy : logays = 0, i.e. the underlying
distribution F}, is Pareto, we do not reject such hypothesis. The hypotheses that
state that Hyi, Hip and Fy can be parameterised as either Pareto or log-logistic

can be rejected at a level of significance 0.05.

It is interesting to notice that the parameter estimates corresponding to Hy;
and F5; are alike; likewise the shapes of Hiy and Fis show certain similarities.
This puts forward the hypothesis that the cause-specific severities are the same

given frequency, which can be stated as:
Hy : {hio(z) = far(2)} A {ho1(y) = fi2(y)}

Hy :{hio(z) # fa(x)} V {hoi(y) # fi2(¥)};

under the Burr model described in the previous section, it is equivalent to
Hy:Br =0 VS. H, :Bv #0,

where B = (Isp11), —Is(p+1), Os(p+1)x1)- Here, Ig( 1) represents the 6(p+1) x 6(p+
1) identity matrix, Og(p+1)x1 is the 6(p + 1) zero column and v is the vector of

parameters in the severity model as specified in Eq. (20). Calculating the statistic:
Z? = (Bv)"(BV,B")"!(BD),

yields Z? = 144.01. Using the asymptotic x? distribution with 6(p+ 1) degrees of
freedom, we found that the p-value was very close to zero. Therefore, there is a

preponderance of evidence to reject the equal cause-specific severities hypothesis.

The deviances of the maximised log-likelihoods in Egs. (17), (18) and (19) for
several regression models are presented in Table 4. We first observe that both age
and gender are important for Hy; and that model 9 shows the most significant

deviance reduction for this distribution and, thus, take this regression model as
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Table 4: Values of deviance for some nested models in the severity model.

—2x i Np —2x ¥ Np —2x ¥ Np 6 95% CI for 6

1 null 175878.63 3 19611.28 3 7234544 7 0.585 (0.371, 0.799)
2 age 175651.19 6 19609.62 6 72212.11 13 0.562 (0.348, 0.776)
3 GENDER 174830.79 6 19599.47 6 72224.83 13 0.595 (0.381, 0.808)
4 age+GENDER 174417.09 9 19597.97 9 72069.23 19 0.575 (0.361, 0.789)
5 poly(age,2)+GENDER 174167.16 12 19589.15 12 72026.88 25 0.584 (0.370, 0.798)
6 poly(age,3)+GENDER 174159.85 15 19587.13 15 72010.32 31 0.595 (0.381, 0.808)
7 poly(age,4)+GENDER 174067.81 18 19583.81 18 71991.35 37 0.587 (0.373, 0.801)
8 poly(age,5)+GENDER 174064.65 21 19582.94 21 71987.95 43 0.586 (0.371, 0.800)
9 poly(age,B)+GENDER 174052.71 24 19579.14 24 71980.06 49 0.590 (0.374, 0.806)

( )

10 poly(age,7)+GENDER 174050.37 27 19577.21 27 71974.98 55 0.591 (0.375, 0.807

the best. We also observe that, while Gender’s contribution is significant for Hy,
age seems unimportant, even after adding higher degree polynomials. We then

take the regression model 3 for Hig.

Age and gender are significant in Hy;; here, the regression model 8 shows the
most significant deviance reduction. Notice that we include the same covariates
in Fy; and Fls; in this case, we observed that the polynomial of age turned out to
be significant in both marginal distributions (p-value < 0.0001). We also observed
that, while gender is significant for Hyy, Hip and Fby, its contribution is unimpor-
tant for Fiy (p-value=0.65). This suggests that there is an important discrepancy
between the fits of H;y and F},.

Table 4 also shows estimated dependence parameters and 95% confidence

intervals, based on the approximation (§ — 6) /se; ~ N(0,1), for Frank’s cop-
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Table 5: Estimates of the coefficients and standard errors of the covariates for the

best frequency regression models.

Claterceps  0.335(0.018)  0.419(0.061) 0.315(0.038) 0.001(0.031
— 0.190(0.029) —0.217(0.072)  0.005(0.060) 0.017(0.043
0 0.586 (0.109)

Parameter 01 10 21 12
Qtnterceps —4.694(0.020) —5.027 (0.060) —4.783(0.043) —5.144(0.043)
(GENDER 0.827(0.030) —0.110(0.075)  0.594(0.072) 0.006 (0.061)
bintercept —0.840(0.076) —0.573(0.203) —0.764 (0.150) —1.564 (0.216)
beenper 1.046 (0.092) —0.417(0.266) 0.499 (0.184) 0.237(0.237)
(0.018) (0.061) ) (0.031)
(0.029) (0.072) ) (0.043)

ula model in each of the regression models of H;;. We can observe that, al-
though the estimated dependences represent modest measures of severity associ-
ation (0.062 < 7; < 0.066), none of the confidence bands displayed include zero;

therefore, there is evidence to reject the hypothesis of frequency independence.

Figure 4 displays the polynomials of age fitted in the severity model. The
remaining coefficients of the best regressions obtained above are given in Table 5.
We can observe that the coefficients corresponding to gender in the Fis are not

statistically signifficant.

The diagnostics plots for both the marginal and dependence fits of the severity
model are shown in Figs. 5 and 6. These graphs suggests that the severity model
proposed here gives a good fit to the data.
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Figure 4: Polynomials of age for the best regression models in the severity distri-
butions.

4 Conclusions

We have proposed a regression methodology for bivariate claims using a mix-
ture model of frequency probabilities and Burr distributed severities. We have
paid attention to both the fitting procedure and the model evaluation. Assuming
maximum likelihood theory and some asymptotic results, we have carried out hy-

pothesis tests concerning the choice of covariates and the parametric form of the
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Figure 5: Diagnostic plots for the fitted marginal severity distributions.
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Conditional diagnostics

expected proportion

Figure 6: Diagnostic plot for the conditional distribution of the paired positive
claims.

underlying severities.

A general feeling in the insurance business is that individual characteristics af-
fect frequency distributions much more than severity distributions, and that sever-
ity is mostly independent of the individuals’ type (Doherty, 1995). In the present
study, we have observed that this conception may not be adequate. Our case
study, which considers health claims, which are classified as drugs and “other”,
has proved that auxiliary variables such as age and gender are important predic-
tors for both the frequencies and severities of the claims. Therefore, it is important
to take into account concomitant information not only in the frequencies but also

in the severities of the losses.

The strengths of the dataset we analysed are the comparatively large number
of policies involved and the follow-up period. These strengths enabled us to in-
vestigate the data in more detail and with rather more confidence than studies
with a more modest number would allow. We have shown that the use of polyno-

mial regression to model age avoids the problems that result from inappropriate
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linearity assumptions.

With regard to the severity model, other copula and distribution models could
have been used. Thus, an interesting question would be to see if similar inferences
can be obtained using different specifications. That question can be answered only
by conducting similar research with this and other datasets and in different bi-

variate loss specifications to chart the boundaries of the results we have identified.
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