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INCREASING AND INCREASING 
CONVEX BAYESIAN GRADUATION 

JAMES D. BROFFITI" 

ABSTRACT* 

It is well accepted that, for ages 30 and above, human mortality rates 
increase with age, yet no established graduation method makes direct use of 
this knowledge. Such a method is offered in this paper. Under the constant- 
force-of-mortality assumption, Bayes estimates (graduated values) are de- 
veloped for the force of mortality. Smoothness of the graduated values is 
obtained by imposing one of two possible restrictions on the model --  either 
that the force of mortality is increasing or that it is increasing and convex. 
This is accomplished by defining a prior distribution that assigns all of its 
probability to the set of parameters that satisfies the restriction. The resulting 
graduated values will automatically satisfy whichever smoothness restriction 
was assumed in the model. 

Readers interested in obtaining a computer program to do these gradua- 
tions should send a self-addressed, stamped mailer and a 5.25-inch double- 
sided double-density diskette to the author at his Yearbook address. Diskettes 
will be returned with four files containing information, data used in this 
paper, FORTRAN 77 source code, and the corresponding compiled execut- 
able program, which will run on an IBM PC or compatible system. 

I. INTRODUCTION 

The construction of mortality tables traditionally has been viewed as a 
two-stage process: (1) initial mortality rates are calculated and (2) these rates 
are smoothed by using a graduation technique. Several graduation methods 
have been proposed, but they often are geared to smoothing the data with 
little or no consideration for a suitable statistical model of the process that 
generated the data. Although these techniques have served us well, in recent 
years it has been recognized that graduation may be formulated as a problem 
in the statistical estimation of unknown parameters. 

*I give my thanks and praise to God for providing the tools to do this work. 
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Let qx, - - • , qx+k-~ be the mortality rates at ages x, . . . , x + k - 1  for 
a particular population. We take the view that graduation is the process of 
s imu l taneous l y  estimating the k unknown parameters qx, . • • , q x , k - J .  Be- 
cause of the vast amount of information that is often available from previous 
studies, a Bayesian analysis is suggested as the most appropriate estimation 
method. Three items are needed for a Bayesian analysis: (1) a likelihood 
function, (2) a prior distribution for the unknown parameters in this likeli- 
hood, and (3) the observed data. These three elements are blended to obtain 
the conditional probability distribution of the parameters given the observed 
data, that is, the posterior distribution. The Bayes estimate is then taken as 
a measure of the "midd l e "  of the posterior distribution. Readers wishing to 
review these concepts should consult a text on mathematical statistics such 
as Hogg and Craig [10]. 

Throughout this paper we make the simplifying assumption that the force 
of mortality, MY), is constant over unit age intervals. Thus for j  = 1 , . . . ,  k 

~(y) = 0y, x + j - 1  <- y < x + j ,  (1.1) 

and therefore, 

qx+j-1 = 1 - exp( -0 j ) .  (1.2) 

Notice that the subscript of q denotes age, while the subscript of 0 indexes 
the age intervals. 

We find it convenient to take 0 = (01, • • • , Ok) as the basic parameter 
to be estimated, and in this paper Bayes estimates will be developed for O. 
Then the mortality rate qx+i-1 is estimated by substituting the estimate of 0 i 
into (1.2). 

One goal of graduation is to obtain a " smooth"  sequence of estimates. 
In a statistical approach this can be accomplished by including smoothness 
assumptions as a part of the model. These assumptions should characterize 
smoothness adequately, but also should be simple enough to make compu- 
tation of the estimates feasible. 

We shall obtain smoothness by restricting 0 to lie within certain subsets 
of the full parameter space, f~ = {0; 0 -< 0 i < 0~, i = 1 . . . . .  k}. The 
two different subsets that will be considered correspond to characteristics 
displayed by the force of mortality. Let R~ = {O; 0 < 01 < . . . < Ok}. 
Assumption (or restriction) (/) designates 0 e R~. Such O's will be called 
" increasing."  If 0 is increasing, it follows that qx < - - - < q~+k-~. It is 
well accepted that human mortality rates increase with age, after some piv- 
otal age in the late twenties. Thus we should be safe in applying restriction 
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(I) for x _> 30. Graduations over this age range have sometimes been criti- 
cized for not providing increasing mortality rates. Restriction (1) will auto- 
matically produce graduations that are increasing. 

Additional smoothness may be obtained by further restricting 0 to lie in 
the set 

R~c = { 0 ; 0  < O, < ®,0  < 02-0~ < . . .  < 0~-  Ok ,}, 

which is a subset of RI. If 0 • R~c, then, in addition to being increasing, the 
elements of 0 have increasing increments or first differences. Such O's will 
be called "increasing convex."  The restriction 0 • Rm will be referred to 
as assumption (IC). As with assumption (I), assumption (IC) should not be 
imposed over age ranges that dip below 30. 

If the upper limit of life, ~o, is finite, then by necessity,/zCv ) ~ + ® as 
y ~ co. Restriction (IC) simply forces/z(y)  to approach + ® in a smooth 
convex fashion. A simple illustration is given by de Moivre's law, where 
~(y) = 1/(,,,-y). 

Although the mortality rates must be increasing when 0 • (IC), they may or 
may not be convex. For example, let k = 3 and notice that 01 = (0.10, 0.20, 
0.31) and 02 = (0.10, 0.20, 0.32) belong to R~c. Corresponding to 0a, A2qx 
< 0, but for 02, A2qx > 0, where qx, qx+~, and q~.,-z are computed according 
to (1.2). 

Let 0 e R denote a general restriction. If we believe 0 • R, then the prior 
distribution of 0 should assign probability one to the set R. In section III 
we shall define prior distributions for which P[ 0 • R] = 1. It will then 
follow that P[  0 e RJData] = 1, that is, the posterior distribution also has 
support R. If R is a convex set (both R~ and R~c are convex sets), any 
reasonable measure of central tendency of the posterior distribution also will 
belong to R. We may then be assured that our graduated value of 0 will be 
in R and thus satisfy the smoothr!ess requirement. 

The estimation of monotone parameters is usually called isotonic esti- 
mation. Much research has been done on this problem from a non-Bayesian 
viewpoint. The interested reader is referred to the book by Barlow et al. [1]. 
Hildreth [9] and Dent and Robertson [7] have considered the estimation of 
increasing concave parameters. 

Previous research in Bayesian estimation of increasing parameters may be 
found in Smith [12] and Broffitt [3-5]. Readers also may wish to refer to 
the Bayesian graduation technique developed by Kimeldorf and Jones [11]. 
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Their analysis was based on multivariate normal distributions, and they ob- 
tained smoothness by specifying large positive correlation coefficients among 
neighboring mortality rates in the prior distribution. Some refinements of 
this procedure were suggested by Hickman and Miller [8]. 

II ,  T H E  L I K E L I H O O D  F U N C T I O N  

We are interested in mortality rates between ages x and x + k. Suppose N 
lives come under observation at some point within this age interval. Let 
x+si be the age at which observation of life i begins, and x+tl be the age 
at which observation ceases. This cessation of observtion may be caused by 
death, voluntary withdrawal, the attainment of age x +k,  or termination of 
the observation period. Under a model that assumes independent random 
times to death and withdrawal, the likelihood function, L, is given by 

L ~ II ~(x+ti)-exp - ~(y)dy , (2.1) 
i ~  i = 1 x + s i 

where ~ denotes the subset of subscripts corresponding to those lives that 
died and A ~ B denotes that A is proportional to B, that is, A = cB. (For 
further elaboration, see Broffitt [2, 3], Steelman [13], and Chan and Panjer 
[6].) 

Assumption (1.1) may be utilized to simplify (2.1). Letting dj equal the 
number of deaths observed between ages x + j -  1 and x +j ,  

k 

1-I p~(x + t,) = rl odL 
i ~  j ~1 

Also, let eii equal the amount of time, measured in years, that life i was 
under observation between ages x + j  - 1 and x + j .  Then 

~,[ Ix  '''~ )dy] ~ , ~  ~(y = eij  Oj 
i=1 + s i  i= l  j = l  

k 

: E ej0j, 
j = l  
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N 

where ej = ~ e u is the total number of years the N lives were under 
i = l  

observation between ages x + j  - 1 and x + j .  Thus (2.1) simplifies to 

L(0) • 11 e-eJ°i . (2.2) 
j=1 

The unrestricted maximum likelihood estimator of 0j is ~ = d/ej, which 
corresponds to the well-known result in reliability theory that when lifetime 
is exponentially distributed, the hazard rate is estimated by total failures 
divided by total time on test. In our problem ej wi l l  be referred to as 
"exposure."  

Finally, we note that the Bayes estimators to be developed are not partic- 
ular to the mortality rate problem, but apply whenever the likelihood has 
the same form as (2.2). For example, suppose 0j . . . . .  Ok are the param- 
eters for k independent Poisson distributions. If a sample of size e i is taken 
from the jth distribution and the sample total is dj, then the likelihood is 
given by (2.2). 

III. P R I O R  D I S T R I B U T I O N S  A N D  E S T I M A T O R S  

The following notation will be useful: g(xla,b ) will denote the gamma 
probability density function (pdf), bax a- 1 e x p ( -  bx)/F(a), for x > 0, and 

k 

g(x l a ,b  ) will  denote rlg(xilai ,bi) ,  where x = (xl, . . . , xk), a = 
i = 1  

(al . . . . .  ak), and b = (bl . . . . .  bk). We shall use prior(-) and post(-) to 
denote the prior and posterior pdf's. Also, let u(O be a k-dimensional vector 
with a 1 in the ith position and zeros elsewhere. 

Conjugate Prior 

For a general restriction, 0 e R, consider the prior pdf given by 

prior(O) = g(Ol~,~)/p(R ), 0 c R 

= 0, elsewhere, 
¢ 

where the scaling constant is p(R) = J~ 

(3.1), we have 

(3.1) 

g(Ola,c)dO. Combining (2.2) and 

post(O) ~ L(O)-prior(O), 
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and thus 

post(0) = g(Ola, a)/p(R), 0 ~ R (3.2) 
= 0, elsewhere, 

where % = gj + dj, Xj = ej + ej, and p(R) = g(0[~,h)d0. By comparing 

(3.1) and (3.2), it is clear that (3.1) is the conjugate prior pdf. 
If the Bayes estimator is the posterior mean, denoted by 0/~(R) = 

(0~(R) . . . .  , ~(R)) ,  then 

O~i (R) = fR Oi g(OI°'X)dO/p(R)" (3.3) 

Since 0g(0la, x ) = (et/X)g(Ola + 1,X), (3.3) reduces to 

Of(R) = O~'[p<O(R)/p(R)], (3.4) 

where 02 = 0~(1~) = oLi/hi is the unrestricted Bayes estimator of 0i, a~") = 

Ot + U (/) and p<O(R) = JR g(°l~i)'X)d°" 
/ .  

The fundamental result given in (3.4) expresses the Bayes estimator 0~!(R) 
in a seemingly simple form. It is obtained by multiplying the unrestricted 
Bayes estimator by a ratio of "s imilar"  probabilities. In applications, p(R) 
and, consequently, pti) (R) can be quite difficult to compute. For assumption 
(/), FORTRAN programs for calculating p(R~) were provided by Broffitt [3, 
4]; however, the CPU time required can become prohibitively large as k and 
41, • • - ,  ak increase. In the earlier paper, selection of the prior parameters 

and c was by trial and error, which also required time-consuming com- 
putations. For these reasons we shall abandon the conjugate prior in this 
paper and opt for what previously has been called the additive prior. Al- 
though it is possible to compute the mean of the resulting posterior, this also 
poses computational difficulties; hence we shall shift from the posterior mean 
tO the posterior mode. With these modifications, the calculations become 
extremely fast and the graduations appear to be quite good. 
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Additive Prior." Restriction (I) 

Under restriction (I) we find it convenient to reparameterize.  Let 

01 = 4~1 

02 = ~1 + 4'2 (3.5) 

Ok -- ~bl + do2 + - - -  + ~bk. 
The parameters dO2, • • • , ~bk represent increments in the O's. Clearly the O's 
are increasing if and only if their increments or first differences are positive. 
The transformation (3.5) is one-to-one between the sets {0; 0 < 01 < . . • 
< Ok < ®} and {d#; 0 < d0~ < ®, i = 1, . . . , k}, and the Jacobian of this 
transformation is 1. 

The importance of  considering the Jacobian may be seen.in the following 
result. Suppose fx(X) is the pdf of  the random vector X, and we wish to find 
the pdf  of  the random vector Y, which is given by Y = g(X). If the trans- 
formation from X to Y is one-to-one,  so that X = g _ l ( y ) ,  and J is t he  
Jacobian of  the transformation, then the pdf  of  Y is given by 

fv(Y) : fx(g -~ (Y))I/I- 
(See Hogg and Craig [10, section 4.5].)  If the Jacobian is a constant function 
of  y ,  then the pdf  of  Y is proportional to the pdf  of  X. ' 

In our problem J = 1, so that the pdf  of 0, which may represent either 
a prior or posterior distribution, may be obtained from the pdf  of  d0 as 

f o ( 0 , - - . , 0 k )  = f ,  ( 0 1 , 0 2 - - 0 , , - - . , 0 k - - 0 k . - , ) -  

Also, the pdf of  do may be obtained from that of  0 as 

f ,  (do, . . . .  , dok) = fo (do1, do, + do2, • - - , d0, + • . • + ~bk). 

Thus we can work with either set of  parameters and easily switch from 
one to the other by simply substituting according to (3.5). 

The procedure is first to find the Bayes estimate of  do and then use  (3.5) 
to calculate the corresponding estimate of  0. 
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Let the prior pdf of ~ be given by 

prior(6) = g(61a,r).  

From (2.2) and (3.5), 

post(6) 
k 

lq O~J e-~J°J, g(6ia,r ) 
j = l  

k 

17 O~J ~ J - '  e-bJ~J, ~j  > O, j = 1 , . . .  , k,  
j = l  

(3.6) 

where 0j = qb, + . . .  + qbj and bj = 1) + ej + . . .  + e, .  

Under assumption (/), let ~ ' ( / )  = (d~¢(/) . . . . .  ~b~(/)) and 0~(I) -- 
(~ ( / )  . . . .  , ~ ( / ) )  denote the Bayes estimates of 6 and 0. We take qb'(/) 
to be the mode of post(6),  and according to (3.5), we define ~(1) = 
J 

~b~(/). While ~b'(/) is the posterior mode of 6 ,  0°(/) is not the posterior 
i=1 

mode of 0. Rather, it is a transformation of the posterior mode of ~b ac- 
cording to the reparameterization (3.5). 

On examination of (3.6), it is evident that if any of d, + a , ,  a2, • • • , ak 
is less than 1, then the posterior mode is on the boundary of the support of 
post(qb). For example, if a2 < 1, post(6)  can be made arbitrarily large by 
taking qb2 close enough to zero. In order to avoid this undesirable situation, 
we shall require al > 1, i = 1, . . . , k. 

The estimate 6~(/) is obtained by solving 

a 
- - l n p o s t ( 6 )  = 0, i = 1 , . . . , k .  
aqbi 

This system of equations reduces to 

d d 2 + a, - 1 bi = 0, i = 1 . . . . .  k, (3.7) 
j = ,  oj ,I,, 

where 0j = ~1 + • • • + qbj. The solution is quite easy to find by using a 
numerical iteration procedure. Examples are provided in Section V, and the 
iteration technique is described in the Appendix. 
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Additive Prior: Restriction (IC) 

Under restriction (IC) the increments of  the O's must be increasing as well 
as positive. For this case the reparameterization is: 

02 = ~1 + ~2 

03 = ~1 + 2~2 + llJ3 

04 = ~1 + 3~2 + 2~3 + ~ ,  (3.8) 

0, = ~, + (k -1 ) t~  2 + ( k - 2 ) ~ 3  + . . .  + t~k. 

The increments of  the O's are 

V 0 ;  = ,l,2 + . . .  + ,1,;, j = 2 . . . .  , k,  

which are positive and increasing as long as ~/ > 0, j = 2 . . . . .  k. The 
transformation given by (3.8) is one-to-one between the sets 

{0; 0 < O, < ®, 0 < 0 2 - 0 ,  < . . .  < 0 , - 0 ~ _ ,  < ®} 

and {gr; 0 < t~i < Q0, i = 1, . . . , k}, and, as before,  the Jacobian is 1. 
We may now proceed in a manner analogous to that used for assumption 
(I). 

Let the prior pdf  of  @ be given by prior(C) = g (~ la , r ) .  Then 

k 

post(~) = 17 0~J e-ej6 " g (¢ [a , r )  
j= l  

k 

~ l l  o~J ¢~J-l e - c &  ¢j > O, j = l . . . .  , k,  ( 3 . 9 )  
j= l  
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where 

0j = k~J1, j = 1 

) 

= , ,  + Y~ ( j  - i + 1 ) , , ,  j = 2 . . . . .  k ,  
i=2 

and 

cj = r, + e, + . . .  + ek, j = 1 

k 

= rj + ~ ( i - j+l )e~ ,  j = 2 . . . . .  k. 
i=j 

The posterior mode, tl~(IC), is obtained by simultaneously solving 

O 
- - l n p o s t ( ~ )  = 0 ,  i = 1 , . . . , k .  

This system reduces to 

k 

(dJOj) + ( a , -  1)/t~, - c, = 0, 
j = l  

i = 1  

(3.10) 

k 

(4/Oj)(j-i  + 1) + (a,-1)/t~i - -  C i = O ,  i = 2 , . . . ,  k. 
j=i 

For the reason cited in the discussion of assumption (I), we again shall use 
only values of a for which a, > 1, i = 1 . . . . .  k. After obtaining WJ(1C), 
(3.8) is used to compute the estimate of O, On(IC), as 

~ ( ~ , c )  = ~ q c ) ,  j = l  

(3.11) " 

j = 2 , . . . , k .  
J 

t~,(IC) + ~ ( j - i +  l)t~(IC), 
i=2 

IV. SELECTING THE PRIOR PARAMETERS 

Before computing the Bayes estimates, it is necessary to specify values 
for the prior parameters a and r. We begin by considering characteristics of 
location and spread of the prior distribution of 0. These will be used to 
determine a and r.  
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Let 0 P = (0~ e . . . . .  0~') be our prior guess for tl~e value of O. If the 
restriction is 0 • R, then the value selected for 0 v must be a point in R. In 
practice 0 e generally will be based on a previous graduation or an established 
mortality table. Slight adjustments of such tabulated values might be required 
to ensure that O e • R. 

Let v/e = Vat (0i) and v e = (v, e . . . . .  re). While specification of 0 p 
defines the level of mortality expressed by prior knowledge, specifying v e 
defines the precision of this prior knowledge. Decreasing the values in v/" 
implies a greater confidence in prior information, so the graduation, that is, 
0B(-), should be drawn closer to 0 e. 

The elements of v e also must satisfy certain relationships. For restriction 
(/), we must choose ¢" so that v, e < . . . < vk e. This is clear from (3.5) and 
the fact that the elements of 6 are stochastically independent in the prior 
distribution. This does not seem to be a severe restriction because it is natural 
for the variablity of 0i to increase as its expectation increases. Also, we have 
less experience for the very old ages, and thus our prior information is 
probably less certain. Accordingly, we should insist that the prior variances 
be larger at these older ages. 

Under assumption (IC), the requirement for v v is more stringent. This is 
caused by the coefficients of the ~ 's  in the reparameterization (3.8). A simple 
example illustrates this point. Let k = 3, and suppose we try v e = (0.010, 
0.011, 0.013). Then Var(~j) = 0.010, Var(t~2) = 0.001, and Var(~3) = 
-0 .001  which, of course, is inadmissible. The point is that we must be 
cautious in selecting v e. The values chosen must be such that ~l . . . . .  ~k 
are legitimate random variables. 

Let v f  = Var (0f), where 0f  = di/e i is the unrestricted maximum like- 
lihood estimator of 01. One way to achieve balance between the precision 
of the prior information and the precision of the data is to set vi e = m- ,v~. 
The value of m must be specified by the graduator. Increasing m places more 
emphasis on the data, and decreasing m places more emphasis on prior 
knowledge. 

For v~ we shall use the approximation (see Broffitt [4, p. 30]) 

v f  - [exp(~) - l]/e,. (4.1) 

From (4.1) we see that setting ~ = mvy may violate the monotonicity 
constraint placed on ¢" by either restriction (I) or (It). That is, in going 
from one age to the next, the increase in 0/e should be quite small but the 
variability in ei may be substantial. Thus we should not expect that v~ < 
. . .  < 1 , '  M. 
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This difficulty may  be resolved by merging the k conditions, v[" = 
m ,v~., i = 1 . . . . .  k, into a single condition, 

k k 

v~/ = m Y. v/M. (4.2) 
i=1 i=1 

Together with specification of  the value of  4 ,  i = 1 . . . .  , k, this provides 
k + 1 conditions for determining a and r.  In order to obtain a unique solution, 
we further simplify the problem by assuming 41 = • • • = ak. This common 
value will be denoted by a .  

First consider assumption (/) and let d~ e = (~bf, . . . , ~b~) be defined by 
= ~bf + . . . + ~b~,j = 1, . . . , k. Then d~ 1' is the prior guess for ~b 

corresponding to the choice o f  0 e as the prior guess for 0. Because the Bayes 
estimate of  dp is the posterior mode,  it seems logical to set ~b e equal to the 
prior mode of  ~b, that is, 

= - 1 ) / r i ,  i = 1 , . . . , k .  

Thus Var(¢/) = od~ = (qb,-e) 2 ed(ot - 1) z, and (4.2) becomes 

k k 

Ot.,/(Ot--1) 2 .  ~ ,  h i (qbP)  2 = m ~.. v~, ( 4 . 3 )  
i=1 i = l  

where h i "=- k - i + 1. Now solve (4.3) to obtain 

= 1 + u + N/u(2 + u), (4 .4)  

where 

The sign of  the square root in (4.4) is positive, because we require a > 1. 
Finally r; is calculated as 

r i : ( o r  - -  1)/qb/e, i = 1 . . . .  , k. (4.6) 
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Under assumption (IC) we m a y  proceed in an analogous manner .  In this 
case let ~ = (~e,  . . . , tlr~'~) be defined by  

= tlr~, j = l 

J 
= ~ + ~ ( j - i + l ) ~ , j  = 2 . . . . .  k. 

i = 2  

Then set ,tiP' equal to the prior mode  of  ~ so that $e  = (~ _ 1)/ri, i = 
1 ,  . . . , k. Corresponding to (4.3) we  obtain 

k k 

O~(Ot -- 1) 2 .  £ h i (~/ )  2 = rn ~ ,v~., 
i = 1  i = l  

where,  in this case, 

h i = k ,  i =  1 

k - i + l  

= ~ j2, i : 2  . . . . .  k. 
j = l  

Thus the solution for a is as given in (4.4) but with 

and r,. calculated as 

(4.7) 

r ,  = - = 1 , . . .  ,k .  (4.8) 

After a suitable choice has been made for 11 e,  the graduator  need only 
select m and then calculate ct (recall ct = al = . . .  =ak)  and ri, i = 
1 . . . .  , k. Under restriction (/) these steps are completed by  using (4.5),  
(4.4),  and (4.6). Under restriction (IC) the correct expressions are (4.7),  
(4.4); and (4.8). Care must be exercised to use the appropriate definition of  
hi; it is different under restrictions (13 and (IC).  

We should refrain from attaching too much significance to the numerical 
value of  m. It is true that m = 1 places more emphasis  on prior knowledge  
than does m = 2, but it is not clear how to measure  the weight  m = 1 
places on prior knowledge relative to the data. 
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In an attempt to measure the weight of the data relative to prior knowledge, 
we define the statistic w as 

where 

k 

W ~ E Wi/k~ 
i=l 

w ,  = - - + - 

(This measure was suggested by my colleague Robert V. Hogg.) Notice that 
we (and therefore w) is between 0 and 1. The closer 0/B(.) is to 0~, the closer 
wi is to 1, and the closer 0~(') is to 0, -e, the closer w; is to 0. If ~(-)  is 
halfway between ~ ,  and 0~, or if 0F = 0~, then w; = 1/2. In summary, 
w = 1/2 indicates equal weighting between prior knowledge and data; w < 
1/2 indicates more weight, on prior knowledge; and w > 1/2 indicates more 
weight on the data. 

Because of the nature of the restriction and the jagged pattern displayed 
by 0 M, it may be impossible for w to be greater than 1/2. For example, since 
under restriction (IC),  I~J(IC) must be increasing convex, no matter how 
large m is made, it may be impossible to draw O~(IC) "c lose"  to ff~. By 
assuming 0 e R~c, we are imparting a good deal of prior knowledge into the 
estimation process, knowledge not about the level of mortality but rather 
about the pattern of mortality. 

We conclude this section with a generalization of the technique described 
above for selecting a and r. Rather than having a common value, ,x, for 
each a,, partition a into n groups and let the a 's  within the jth group have 
a common value, otj. Let kj be the number of a 's  in the jth group, so that 

J 

k, + . . . + k,, = k, and let gj = E k~, j = 1 . . . .  , n,  and go = O. 
i=1 

Thus 

% = agj_,~,  = . . .  = agj, j = 1 . . . .  , n .  

To specify the prior parameters a and r, we must specify n + k values. 
This will be done by using the k conditions resulting from selecting 0 e, and 
the n conditions 

gj 

E v ~ ' = m j  E v ~ , j  = 1 . . . .  , n .  (4.9) 
i :g j_ l  +l i=gj_l +l 
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i = g j -  1 

This method for selecting a and r provides the opportunity to assign different 
weights to the prior information over different age ranges. 

Under assumption (/), 

= 

+1 iffil i = 1  

= ~ hij Var(qbl)-  g~l  hi ,  j -1 War(tbl) 
i=1  i=1  

= g ~ '  (hij  - hi .  j-l) War(+/) + txy/(otj - 1) 2 
i = 1  

where 

~Z 
Z h;.j (~bf) 2, (4.10) 

i =gj-  1 + 1 

hij = g j  - i + 1, i = 1 . . . . .  gj, j = 1 , . . . , n .  

It will be convenient to use the following notation: 

Zti = ~ hij (tb,-e) 2, j = 1 . . . . .  n 
i=g j_ l+ l  

T~. = ~ v~i , j =  1, . . . , n 
i=gj_l  +l 

T3i = 0 ,  j = l  

g~ '  (h;j h;. j_,) Var(cb,-), j 2 . . . . .  k. 
i=1  

Then, using (4.10), (4.9) becomes 

and therefore, 

T3j + %/(% - 1) 2 T,j = miT2j, 

% = 1 + uj. + ~ / u j ( 2  + uj), 



130 CONVEX BAYESIAN GRADUATION 

where 

uj = r , j / [ 2 ( m j T ~ -  T3j)]. 

Since uj = (% - 1)z / (2%),  uj must be positive. This imposes a lower bound 
on mj,  that is, mj > T3j/Ta. After obtaining %, ri is computed as 

r i = ( o r  7. - -  1)/d~, i = gj_~ + 1 . . . .  , g j .  

The values ml, • • • , m, must be selected sequentially. Once a value has 
been chosen for m~, the quantities ~xl, re, i = 1 . . . . .  g l ,  and T3.2 are 
computed. Next a value for m2 is chosen and OL2, r~, i = gl + 1 . . . .  , g2, 
and T u are computed. This process continues until a and r have been 
determined. 

Under restriction (IC) the same procedure is used but with the following 
definitions of hij , Txj, T3j, and r i" 

hij = g j ,  i = 1, j = 1 , . . . , n  

gj-i+ 1 

= 2 
l = l  

t =g]_ l + l 

T3j = O, 

--_ g ~ a  (hi j  _ h i , j - x )  Var(~ i ) ,  
i = 1  

P , i  = 2 . . . . .  gj ,  j = 1 , . . . , n  

j = l  . . . .  , n  

j - - 1  

j = 2 , . . . , k  

= (c~j - 1 ) / t ~ , i  = g j . - 1  "[- 1 , . . .  , g j ,  j = 1 . . . . .  n. 

V. EXAMPLES 

The examples are based on a set of data that represent male ultimate 
(duration _> 16) experience for premium-paying policies with face amounts 
between $10,000 and $24,900. (I am indebted to Dr. Robert Reitano and 
the John Hancock Mutual Life Insurance Company for supplying the data.) 
The prior values, 0 P, are based on a graduation from an earlier mortality 
study. The policies in this study were similar to those policies comprising 
the current data set. 

The basic data, together with four graduations under assumption (I) and 
four graduations under assumption ( IC) ,  are listed in Tables 1 and 2. The 
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values of et and w corresponding to these eight graduations are displayed in 
Table 3. Plots of the prior values, maximum likelihood estimates, and grad- 
uations are displayed in Figures 1 to 8. For each assumption, the four grad- 
uations were obtained by varying the value of m. The values used for m 
were not necessarily intended to represent practical choices, but rather to 
demonstrate the range of results that is possible. 

TABLE 1 

DATA AND GRADUATED VALUES OF 0 UNDER ASSUMPTION (D 

A ~  d • ~ 0 M m ~ 1 

35 . . . . . . .  3 1771.5 0.0012308 0.00169 0.00098 
36 . . . . . . .  1 2126.5 0.0012808 0.00047 0.00103 
37 . . . . . . .  3 2743.5 0.0013609 0.00109 0.00111 
38 . :  . . . . .  2 2766.0 0.0014811 0.00072 0.00122 
39 . . . . . . .  2 2463.0 0.0016213 0.00081 0.00137 
40 . . . . . . .  4 2368.0 '0.0017816 0.00169 0.00158 
41 . . . . . . .  4 2310.0 0.0019519 0.00173 0.00179 
42 . . . . . . .  7 2306.5 0.0021423 0.00303 0.00204 
43 . . . . . . .  5 2059.5 0.0023628 0.00243 0.00229 
44 . . . . . . .  2 1917.0 0.0026134 0.00104 0.00256 
45 . . . . . . .  8 1931.0 0.0028942 0.00414 0.00298 
46 . . . . . . .  13 1746.5 0.0031951 0.00744 0.00335 
47 . . . . . . .  8 1580.0 0.0035362 0.00506 0.00360 
48 . . . . . . .  2 1580.0 0.0039377 0.00127 0.00385 
49 . . . . . . .  7 1467.5 0.0044097 0.00477 0.00421 
50 . . . . . . .  4 1516.0 0.0049422 0.00264 0.00457 
51 . . . . . . .  7 1371.5 0.0054850 0.00510 0.00503 
52 . . . . . . .  4 1343.0 0.0060382 0.00298 0.00548 
53 . . . . . . .  4 1304.0 0.0066017 0.00307 0.00608 
54 . . . . . . .  11 1232.5 0.0072663 0.00892 0.00716 
55 . . . . . . .  11 1204.5 0.0080523 0.00913 0.00825 
56.~ . . . . .  13 1113.5 0.0090710 0.01167 0.00962 
57 . . . . . . .  12 1048.0 0.0101210 0.01145 0.01075 
58 . . . . . . .  12 1155.0 0.0111823 0.01039 0.01184 
59 . . . . . . .  19 1018.5 0.0122548 0.01865 0.01308 
60 . . . . . . .  12 945.0 0.0133386 0.01270 0.01397 
61 . . . . . . .  16 853.0 0.0145047 0.01876 0.01497 
62 . . . . . . .  12 750.0 0.0158753 0.01600 0.01594 
63 . . . . . . .  : 6 693.0 0.0174514 0.00866 0.01701 
64 . . . . . . .  i 10 594.0 0.0192848 0.01684 0.01870 

d is the observed number of deaths. 

m = 5 m = 25 m = l 0  in 

0.00091 0.00088 0.00093 
0.00095 0.00091 0.00093 
0.00103 0.00098 0.00093 
0.00113 0.00105 0.00093 
0.00128 0.00118 0.00093 
0.00154 0.00153 0.00169 
0.00179 0.00179 0.00173 
0.00210 0.00215 0.00223 
0.00231 0.00229 0.00223 
0.00254 0.00243 0.00223 
0.00320 0.00346 0.00412 
0.00360 0.00383 0.00412 
0.00377 0.00392 0.00412 
0.00392 0.00400 0.00412 
0.00416 0.00414 0.00412 
0.00439 0.00427 0.00412 
0.00472 0.00447 0.00412 
0.00503 0.00464 0.00412 
0.00552 0.00495 0.00412 
0.00744 0.00795 0.00892 
0.00866 0.00905 0.00913 
0.01016 0.01053 0.01116 
0.01116 0.01131 0.01116 
0.01213 0.01205 0.01116 
0.01360 0.01410 0.01526 
0.01428 0.01455 0.01526 
0.01512 0.01521 0.01526 
0.01579 0.01562 0.01526 
0.01649 0.01603 0.01526 
0.01807 0.01752 0.01684 

e is the number of years of observation at the indicated age; see definition 
01" is the prior value of 0. 
IP q is the maximum likelihood estimate of 0. 
The corresponding mortality rate is defined in (1.2). 

before (2.2). 



TABLE 2 

DATA AND GRADUATED VALUES OF 0 UNDER ASSUMPTION (IC) 

~(ic) 

Age d e ~ (pc m = I m = 50 m = 250 • m = 10 ~° 

35 . . . . . . .  3 1771.5 0.0012308 0.00169 0.00098 0.00090 0.00091 0.00099 
36 . . . . . . .  1 2126.5 0.0012808 0.00047 0.00104 0.00094 I 0.00093 0.00099 
37 . . . . . . .  3 2743.5 0.0013609 0.00109 0.00113 0.001031 0.00099 0.00099 
38 . . . . . . .  2 2766.0 0.0014811 0.00072 0.00127 0.00119 [ 0.00116 0.00099 
39 . . . . . . .  2 2463.0 0.0016213 0.00081 0.00143 0 . 0 0 1 3 9  0.00136 0.00128 
40 . . . . . . .  4 2368.0 0.0017816 0.00169 0.00162 0.00161 0.00161 0.00157 
41 . . . . . . .  4 2310.0 0.0019519 0.00173 0.00181 0.00185 0,00186 0.00187 
42 . . . . . . .  7 2306.5 0.0021423 0.00303 0.00203 0.00210 0.00213 : 0.00216 
43 . . . . . . .  5 2059.5 0.0023628 0.00243 0.00227 0.00237 0.00242 0.00246 
44 . . . . . . .  2 1917.0 0.0026134 0.00104 0.00255 0.00266 0.00271 0.00275 
45 . . . . . . .  8 1931.0 0.0028942 0.00414 0.00285 0.00297 0.00302 0.00305 
46 . . . . . . .  13 1746.5 0.0031951 0.00744 0.00317 0.00330 0.00333 0.00334 
47 . . . . . . .  8 1580.0 0.0035362 0.00506 0.00353 0.00364 0.00366 0.00364 
48 . . . . . . .  2 1580.0 0.0039377 0.00127 0.00394 0.00400 0.00399 0.00393 
49 . . . . . . .  7 1467.5 0.0044097 0.00477 0.00442 0.00439 0.00435 0.00423 
50 . . . . .  . .  4 1516.0 0.0049422 0.00264 0.00495 0.00484 0.00473 0.00452 
51 . . . . . . .  7 1371.5 0.0054850 0.00510 0.00550 0.00529 0.00513 0.00481 
52 . . . . . . .  4 1343.0 0.0060382 0.00298 0.00606 0.00576 0.00553 0.00511 
53 . . . . . . .  4 1304.0 0.0066017 0.00307 0.00663 0.00624 0.00595 0.00617 
54 . . . . . . .  11 1232.5 0.0072663 0.00892 0.00731 0.00711 0.00699 0.00731 
55 . . . . . . .  11 1204.5 0.0080523 0.00913 0.00812 0.00811 0.00810 0.00845 
56 . . . . . . .  13 1113.5 0.0090710 0.01167 0.00916 0.00921 0.00925 0.00958 
57 . . . . . . .  12 1048.0 0.0101210 0.01145 0.01024 0.01035 0.01043 0.01072 
58 . . . . . .  . 12 1155.0 0.0111823 0.01039 0.01132 0.01149 0.01161 0.01186 
59 . . . . . .  .1 19 1018.5 0.0122548 0.01865 0.01241 0.01264 0.01280 0.01299 
60 . . . . . . .  i 12 945.0 0.0133386 0.01270 0.01352 0.01381 0.01399 0.01413 
61 . . . . . . .  I 16 853.0 0.0145047 0.01876 0.01470 0.01502 0.01522 0.01527 
62 . . . . . . .  12 750.0 0.0158753 0.01600 0.01606 0.01631 0.01650 0.01640 
63 . . . . . . .  6 - 693.0 0.0174514 0.00866 0.01761 0.01772 0.01784 0.01754 
64 . . . . . . .  : 10 594.0 0.0192848 0.01684 0.01942 0.01935 0.01938 0.01868 

d is the observed number of deaths. 
e is the number of years of observation 
0" is the prior value of 0. 

at the indicated age; see definition before (2.2). 

0 ~ is the maximum likelihood estimate of 0. 
The corrresponding mortality rate is defined in (1.2). 

TABLE 3 

V A L U E S  O F  ot A N D  w C O R R E S P O N D I N G  T O  T H E  G R A D U A T I O N S  IN T A B L E S  1 A N D  2 

(0 (tc) 

m ~ w m ~ w 

1 2.311827652 0.28 1 2.332941843 0.18 
5 1.467399490 0.35 50 1.131267399 0.21 

25 1.188084363 0.42 250 1.056737850 0.26 
10 "* 1.000002728 0.55 10 ~° 1.000002760 0.30 

132 
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An inspection of Figures 1 to 8 verifies the expected result: Decreasing 
m draws O~(.) closer to O e and therefore increases smoothness. Although no 
examples are reported with m < 1, if small enough values were chosen for 
m, we would not be able to distinguish between 0a(-) and 0 ~'. 

Increasing m decreases the influence that the prior values, 0 e, have on 
the graduation. If we have little confidence in the prior values, then a large 
value should be used for m. Setting m = 101° allows the prior values to be 
completely overwhelmed by the data. To verify this, 0f,. was replaced by 

+ .01, i = 1 . . . .  , 30 ,  and ~ ( I )  and O~(IC) were recomputed with m 
= 101°. The resulting graduations were identical to those reported in Tables 
1 and 2 for m = 101°. This indicates that the graduations in Figures 4 and 
8 are effectively independent of the prior values. Although taking m large 
enough will eliminate the influence of IF' on the graduation, it will not 
eliminate the influence of the restriction. It must always be true that 0~(/) c 
R~ and OB(IC) ~ R~c. (The graduations with m = 101° appear to violate this 
requirement, but that is because the data in the tables are limited to five- 
place accuracy.) 

Suppose a graduation previously had been done for ages 34 and below, 
and we wanted the graduation for ages 35 through 64 to join it in a smooth 
manner. By "smooth"  we may simply mean that ~(-)  > 0o c, where 0o a = 
- ln(1 - q3C4) and q3G4 is the graduated value of q34- This may be accom- 
plished by a respecification of our model. Under restriction (I) let 

0 0 = (I)0 

Ol = ~o + +1 

Ok = % + d01 + . . .  + d0k, 

where % is a fixed quantity specified by the graduator and would normally 
be set equal to 0o a. The prior on 4~ = (~bl, • . . , d0k) is still g(~b[a,r), so 
the posterior is again given by (3.6), but with 0j = 4)0 + . . .  + d~j. 
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J 
Correspondingly,  the Bayes estimate of  0j is 07(/) = d;,o + ~ 4,/a(/), where 

i = 1  

[ ~ ( / ) ,  • . • , diCk(I)] is the posterior mode. The method for selecting a and 
r may be used just as before with the one exception that d0~ e = ~ - d0o 
rather that ~ .  

Under restriction (IC) the reparameterization is 

O0 = 40 

01 = 4o + % 

02 = % + % + 42 

03 = 4o + % + 242 + % 

0 k = 4 o + 4 ,  + ( k -  1 ) , 2 + ( k - 2 ) , 3 + . . . + , ~ ,  
where % denotes the value specified for 0o. The posterior is given by (3.9) 
except 

0j =-'-4o + 41, j = 1 

i 
= *o + 41 + ~ (J - i + 1)41, j = 2 , . . . , k ,  

i = 2  

and the Bayes estimate is 

~(IC)  = 4o + tl~l(1C), j = 1 

J 

= 4o + ~ ( / C )  + ~ (/' - i + 1) tl~(IC), 
i = 2  

j = 2 , . . . , k ,  

where (tl~(IC), . . . , d~k(IC)) is the posterior mode. The previously described 
method for choosing a and r is applicable, but with ~ defined as 0f - 40- 

In order to demonstrate this technique and the more general method o f  
selecting a and r ,  one additional graduation was computed.  Assumption (I) 
was used with 0o = 0.00119,  n = 2, k I = 24, k2 = 6, m I = 30, and m 2 
= 23 (the lower bound for m2 was 22.45). For this graduation w = 0.38,  
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and the results are displayed in Figure 9. Specifying 01 ) 0.00119 caused 
an increase in the graduated values at the lower end of the age scale, and 
picking m 2 close to its lower bound drew the graduated values closer to 0 P 
at the upper end of the age scale. 
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APPENDIX 

Let fi(x) = ~ In post(x), i = 1 . . . . .  k, where post(.) may represent 

either the posterior density of ~b under assumption (/) or the posterior density 
of ~ under ( IC) .  The goal is to find x so that 

f,.(x) = 0, i = 1 . . . . .  k. (A.1) 

Although the equations (A.1) differ slightly under the two restrictions, the 
iterative technique is the same, so in the following discussion it will not be 
necessary to distinguish between the restrictions (I) and (1C). 

For a i > 1 and xi  > O, i = 1 . . . . .  k ,  we obtain from either (3.7) or 
(3.10) the results 

d 
~ f , ( x )  < o,  

02 
abc~ f,.(x) > O, 

f/(x) > 0 for X i sufficiently close to O, 

and 

f/(x) < 0 for x i sufficiently large. 

Thus for fixed x ~ , . . . ,  Xi_l ,  Xi+l, . . . ,  Xk ,  f / (x )  is a decreasing convex 
function of xi  and there is a unique solution for xi  in f~(x) = 0. Although 
this does not prove that the system (A.1) has a unique solution, there have 
been no multiple solutions or convergence problems detected in practice. 

Because the system (A.1) is well-behaved, it was possible to design the 
iterative procedure so that it does not require matrix manipulations. The 
starting value of the interation process is the prior value ¢b e or dt" (depending 
on which restriction is used) denoted by x (°) = (xt °) . . . .  , x(k°)). Succes- 
sively, for i = 1 . . . .  , k, a new value is computed for x,-. This new value 
is labeled x! 1), and after calculating x~ ~) . . . .  , x~ ~), the current solution for 
(A.1) is denoted as 

x! °~ -- (xt '~ . . . . .  x!'), x ! % , . . . ,  x~°)). 
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The first iteration is completed after determining x~ 1}. At this point the cur- 
rent solution is denoted by 

x~') = x p  = x~°~ = (xt ~) . . . . .  x p ) .  

In general, after completing j + 1 full iterations, the current solution is de- 
noted by any of x o÷ % Xo0+ 1), or x~l. 

The second iteration is completed by successively computing new values 
forxl for i = 1 . . . .  k. This process is repeated until enough iterations have 
been done to obtain convergence. After computing a new value for x; in the 
(j + 1)th iteration, the current solution is 

xp  = ( x p % . . . ,  x p ' ~ ,  x~!, . . . .  , x~) ,  

and after computing x p  11 the current solution is denoted by 

xO+,~ = Xo0+,~ = x p  = ( x 0 + , ~ , . . .  , x p %  

The value x,q +~ is calculated by using Newton's method, that is, 

~ + ' )  = x,~) - ~ ( x , ~ , )  
f'/(x,021)' (A.2) 

0 
where fi(x) = ax--] .f/(x). If (A.2) produces a nonpositive value, then 

x,0÷~) is defined by x0+,) = .5~). 
At the completion of each iteration, convergence is checked by comparing 

the percentage change in each x~ with a specified tolerance. That is, the 
process is stopped after iteration j if 

max [100Ix,q-') - x~,)l/~-')  ] <_ tolerance. 
I ~ i ~ k  

For the examples in section V, tolerance = 0.01, so that a change of .01 
percent or less in each x~ is required to stop. The resulting number of iter- 
ations required for the graduations in Figure 1 to 9 were, respectively, 13, 
22, 28, 67, 17, 114, 206, 643, and 28. 
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Plots of 8 u ,  IF', and liB(/) for m = 5 
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Plots of 0 ~, [~', and 0°(/) for m = 25 
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Plots of 0 M, 0 P, and 0~(/) for m = 10 la 
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FIGURE .5 

Plots of B M, B e, and IP(IC) for m = 1 
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FIGUP.E 6 

Plots of ~ ,  0 e, and ~(/C) for m = 50 
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FIGURE 7 

Plots of 0 M, 0 p, and Oa(IC) for m = 250 
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FIGURE 8 

Plots of 0 u ,  0", and Oa(IC) for m = 101° 

~ = A  
W ( I C )  = V 

40 50 

AGE 

60 

? 

/ 

70 

145 



< 

FIGURE 9 

Plots o f  O u ,  0 e, and On(/) f o r k ,  = 24,  k 2 = 6,  0o = 0 .00119,  m,  = 30, and m 2 
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DISCUSSION OF PRECEDING PAPER 

THOMAS N. HERZOG: 

Professor Broffitt deserves thanks for considering an interesting and im- 
portant actuarial problem, as well as providing us with a lucid exposition of 
his work. 

I just have a few questions/comments that I would like to raise to extend 
the discussion. 

In many practical insurance problems, the result should be the construction 
of a predictive distribution (see Herzog*) of a set of random variables given 
the observed data. For example, in the calculation of net premium rates, the 
result should be the predictive distribution P(X,, X z , . . . ,  X,,I observed 
data), where n is the number of policies insured and Xi is the net gain or 
loss on the i-th policy. So, the net premium rate for year t + 1 could be a 
function of the results observed during year t. Thus, the posterior distribution 
of the graduated values is not the final product, but rather an intermediate 
result. Consequently, I think that for many practical actuarial problems (for 
example, the calculation of premium rates, reserve requirements, and so 
on), point estimates of mortality parameter are, by themselves, of little use. 

If the actuary does not desire to use the full predictive distribution ap- 
proach but is familiar with the process generating the mortality data, then 
he or she may often do just as well to use a simple graphical procedure to 
graduate mortality rates, rather than a more sophisticated mathematical one. 
In this simplistic fashion, the actuary can ensure that the mortality rates are 
monotonically increasing with age. 

For 30-year term FHA-insured single-family mortgages, the annual claim 
termination rates decrease monotonically after the third policy year. By using 
a simple transformation, one can apply "increasing graduation" methods to 
mortgage guarantee insurance problems as well as life insurance problems. 

(AUTHOR'S REVIEW OF DISCUSSION) 

JAMES D. BROFFITT: 

I am grateful to Dr. Herzog for his kind remarks and for providing a 
discussion of my paper. 

I cannot disagree that the predictive distribution of future net gains or 
losses is of primary interest. However, pragmatically I believe we are a long 

*HERZOG, T.N., An Introduction to Bayesian Credibility, Part 4 Study Note. New York: Casualty 
Actuarial Society, 1985. 
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148 CONVEX BAYESIAN GRADUATION 

way from using such a distribution as the sole basis for setting premiums 
and reserves in life insurance. It is difficult to imagine that a life actuary 
would ever exclude a life table from his or her toolbox. 

Graphical graduation is a simple technique that allows the imposition of 
restrictions (such as increasing rates) on the graduated values. Over the years 
a good deal of energy has been devoted to developing "mathematical" 
graduation, and some of these methods may produce results that are inferior 
to graphical graduation. However, this does not mean that research on math- 
ematical graduation should cease or that such graduations should not be used 
because graphical graduation is simpler. There are some disadvantages to 
graphical graduation, and once programmed, a mathematical graduation is 
simpler to produce than a graphical one. This is the case with my technique. 
After the data are entered into a file, a few keystrokes and a few seconds' 
wait provide a table of the graduated values. 

As Dr. Herzog points out, the techniques presented can easily be applied 
to other restrictions. For example, to estimate decreasing rates, one merely 
needs to index the data in reverse order so that the first subscript refers to 
the smallest rate and the last subscript denotes the largest rate. 

In closing, I wish to express my appreciation to the Committee on Papers 
for making many helpful suggestions and, in particular, to J.C. McKenzie 
Smith, who checked my calculations. 


