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INDIVIDUAL RISK T H E O R Y  M O D E L  

P E T E R  S. KORNYA 

ABSTRACT 

In this paper an algorithm is derived for computing the distribution of 
aggregate claims for the individual risk theory model. The procedure is 
an adaptation of the recursive method used in the solution of ordinary 
differential equations. Mathematical arguments are deliberately kept at 
an elementary level. The theory is intended to apply to a portfolio of 
individual life insurance policies with no attempt to generalize to other 
insurance situations. 

Tentative remarks are made on the prospective role of risk theory in 
the individual life model office. These remarks are independent of the rest 
of the paper. 

I. INTRODUCTION 

In this paper a method is given for computing the aggregate claims 
distribution for the individual risk theory model. The computation is pat- 
terned after the recursive method recentl: ,rticulated for the collective 
c a s e .  

The purpose is not mathematical originality or sophistication. Elemen- 
tary combinatorial arguments, many no doubt familiar to the reader, are 
used whenever possible. In this regard it may also be of interest to note 
that the various recursive algorithms for computing aggregate claims 
amount to particular cases of the recursive method used in the power- 
series solution of ordinary differential equations [l]--a method that has 
been known for some time. In probability theory a recursive formula, in 
principle identical with the one used in the Poisson model, was used by 
T. N. Thiele to express sums of powers of observed values in terms of 
his "halfinvariants" [5]. This recursive formula was also used by To N. E. 
Greville and Robert White in a problem involving multiple life contin- 
gencies [41. 

The model pertains specifically to a portfolio of individual life insurance 
policies, although some connections with the collective case are described 
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in Section IV. The simplifying assumption is made that insurance contracts 
expire with the payment of a single claim. On the other hand, one does 
not rely on a basic hypothesis of the collective model--namely, that a 
policy in claim status is immediately replaced by another in the same risk 
category. This hypothesis is much stronger than that of the stationary 
population and does not fit well even in many group cases. The hypothesis 
is clearly inappropriate for a portfolio of individual policies for which 
there is no necessary connection between the volume of new business 
and claims. A further distortion is caused by the fact that new individual 
business is subject to selection and is issued at the relatively younger 
ages, while the bulk of claims will occur at the older ages at ultimate 
durations. Such considerations are part of the problem of expanding one's 
short-term perspective into a long-range dynamic modelmthat is, a theory 
of surplus. Of course such a model is beyond the limited scope of this 
paper. 

The algorithm is developed in Section II. A numerical example is pre- 
sented in Section III. Analogies to the collective model are considered in 
Section IV, and some general observations are made in Section V. 

11. THE ALGORITHM 

In this section H is a portfolio of life insurance policies. Each policy 
is of some face amount n, where n is an integral multiple of some con- 
venient unit such as $1,000 or $10,000. This face amount is payable during 
the coming year with probability q, where q is the mortality rate applicable 
to the cell to which the policy is assigned. In particular, it is assumed that 
this rate has already been adjusted for any differences between policy- 
year and calendar-year mortality. The contract expires with the payment 
of a claim. Interest is ignored. Claims arising from particular policies are 
assumed to be independent; in particular, each policyholder has a unique 
policy. Multiple policies belonging to a policyholder can be aggregated to 
achieve this latter condition, although practical problems, familiar from mor- 
tality studies, will arise. 

We denote by 

an = f ( n )  = f n ( n )  (1) 

the probability that the aggregate claims arising from the portfolio H during 
the coming year will be precisely n units. The generating function o f f ,  
is 

R ( z )  = R n ( z )  = ~ a~z ~ • (2) 
n=O 
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Now the maximum possible amount of claims, although very likely 
quite large, is nevertheless finite. Therefore, R ,  is a polynomial in zmthe 
coefficient of z" indicating the probability of claims of exactly n units. We 
call R,~ the probability-generating polynomial of the portfolio H. 

A problem of some interest is that of determining the probability that 
the aggregate claims arising from H will not exceed some given number 
of units, such as N. Denoting this probability by F(N), we clearly have 

N 

F(N) = Y~ a . .  (3) 

The problem can therefore be restated as that of finding an "efficient" 
method of computing the coefficients of the probability-generating poly- 
nomial. 

Suppose that K is another portfolio with claims arising independently 
of those of H, and let 

Rx(z )  = ~ b.z". (4) 
n = o  

Let c, be the probability that total claims for the combined portfolio 
H tO K will be r units. This result occurs whenever claims for H and K 
are, respectively, m and r - m units. Summing o.ver all combinations, 
we have 

c, = ~ a , .b ,_ , , .  (5) 
r,l~O 

Note that c, is just the coefficient of z" in the (polynomial) product 
R , R x .  Therefore, 

R ~  u x = R u R x  ; (6) 

that is, the probability-generating polynomial of the combined portfolio 
is the product of the generating polynomials of its components. 

In case H is a portfolio with just one policy, we have 

Rn(z)  = p + q z " ,  p = 1 - q ,  (7) 

where n is the face amount of the policy and q is the applicable mortality 
rate. For an arbitrary portfolio H it then follows from equation (6) that 

Rn(z)  = [1 (P + q z " ) ,  (8) 
H 
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where the product is taken over  the entire portfolio H .  
Let  us now tabulate the portfolio by face amount ,  w i t h / 4 ,  denoting 

those policies in H with a face amount  of  n units. We call these H . ' s  
amount classes and allow for the possibility of  amount  classes with no 
members .  

Now by propert ies of the logarithm, 

where 

log R.(z) = ~ log (p + qz") 
H 

(q)] = k Z"' - (9) 

~-. Z n k  - -  

~-, k p 

= S , ( z )  - + S : ( z )  + + S ~ ( z )  - . . . ,  

In practice the polynomial  S,(z) is computed by first computing,  for 
each amount class H. ,  the sum of  kth powers 

(11) 

and then making a contribution - S.k + S - "  to S~(z). • n , k  4~ 

To compute the probabili ty-generating polynomial of  H,  we first prove 
the following: 

LEMMA. I f  the power series 

R(Z) = ~ a,,z" and Q(z) = ~ b,,z" 
n ~ O  n ~ O  

are related by 

R(z) = e °z~ (12) 
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on s o m e  nontrivial (i.e,, o ther  than z = O) interval o f  convergence ,  
then the coefficients o f  Q and  R are related by 

and  
ao = e e° (13) 

'2 a. = - ka._kbk , n ~> 1 . (14) 
n k ~ l  

Proof.  E q u a t i o n  (13) fo l lows  b y  the subs t i tu t ion  o f  z = 0 in equa t ion  
(12). Di f ferent ia t ing  (12) wi th  r e s p e c t  to z y ie lds  

R' (z )  = R ( z ) Q ' ( z ) .  (15) 

W e  then obtain formula  (14) by  equating the coefficients of  z" in (15). 
Our  a lgor i thm is based on the fol lowing (see editor's note below): 

THEOREM. For k = 1, 2, 3 . . . .  let 

Q~(z) = s , (z )  - ~S2(z) + ~S~(z) - . . .  + - -  

R~(z) = eO,~ = ~ a .~z" ,  
a ~ o  

( -  I),  +, 
S~(z) , (16) 

k 

(17) 

and let Fk(N) be the sum  o f  the f irs t  N + 1 coeff icients o f  R~(z), that  
is, 

N 

Fk(N) = ~ a . .~ .  (181 
n=O 

Then 
(i) l im Fk(N) = F ( N ) ,  

(ii) F , ( N )  ~ F~(N) ~ . . . ~ F (N)  ~ . . . ~ F4(N) ~ F2(N) . 

Proof .  By equa t ion  (9), 

(A) l im Q~(z) = log R(z)  

so that  

( B )  i i m  R~(z) = l i r a  e e , ~ ,  = e ,o ,  Rc~, = R ( z )  . 

EDITOR'S NOTE.--An error has been found in the proof of this theorem. The reader should disregard 
the remainder of this section and read the corrected version in the author's review of discussion. 
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This establishes (i). Let  Q(z)  = log R(z ) .  

IfA(z) and B(z )  are power  series, we shall say that A ( z )  <~ B( z )  provided 
that, for any nonnegative integer N, the sum of the first N + 1 coefficients 
satisfies the condition 

g N 

E ao Y, bo. 
n - O  n=O 

We have 

(D) If  atz) ~ B(z) and C(z)  <~ D ( z ) .  

Then 

(DI) A ( z )  + C(z )  <~ B( z )  + D ( z ) ,  

(D2) A ( z ) C ( z )  <~ B ( z ) D ( z )  . 

Assertion (DI) is immediate.  The sum of the first N + 1 coefficients of  
A ( z ) C ( z )  is 

a ,  ,,c, = c,\g:_o an 
n ~ 0  k=O k~O 

N-k 1 

Therefore ,  A ( z ) C ( z )  ~ B ( z ) C ( z ) .  Similarly, B ( z ) C ( z )  = C ( z ) B ( z )  <~ D ( z ) B ( z )  

= B ( z ) D ( z ) ,  so that A ( z ) C ( z )  <~ B ( z ) C ( z )  <~ B ( z ) D ( z )  . 

We also have the relation 

(E) If  A ( z )  <~ B(z), then e A'~' ~ e B'~ . 

This last s tatement can be established by applying (D) to the expansion 

A ( z )  2 
(El)  e A'=, = 1 + A ( z )  + ~ + . . . .  

B ( z F  
e B'=' = 1 + B ( z )  + ~ + . . . .  

Note  that 

(F) Q,(z)  <~ Q~(z) <~ . . . ~ Q(z)  ~ . . .  ~ Q,(z) ~< Q d z )  . 
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This inequality can be established first for the case where the portfolio 
H consists of a single policy; we may then sum over the entire portfolio 
H, using (DI). It then follows from (E) that 

(G) R l ( z )  <~ R 3 ( z )  ~ . . • ~< R ( z )  <~ . . . ~ R 4 ( z )  ~ R 2 ( z )  . 

This establishes part (ii) of the theorem. 
The algorithm now proceeds as follows: 

A.1. Compute the polynomials 

Q~(z) = S,(z)  - ½S~(z) + . . .  + 
( -  1)~ +, 

Sk(z); (19) 

and Qk + i(z) for an odd integer k .  
A.2. Apply the recursive formula (13), (14) to compute the coefficients 

of Rk(z) and R~.,(z). 
A.3. By the theorem the probability F(N) that claims will not exceed N 

units is in the interval 

Fk(N) <~ F(N) ~ F,+,(N), 

where Fj(N) is the sum of the first N + 1 coefficients of R~(z) for 
j = k , k +  1. 

A.4. Increase the value of k, if desired, for greater accuracy. Since most 
values of q are low, a single application of steps A.1, A.2, A.3 for, 
say, k = 5 will generally yield results that are quite accurate (with 
respect to the assumptions). In any case, few applications of step 
A.4 are likely to be required. 

II1.  A N  E X A M P L E  

In this section we apply the algorithm derived in Section 1I to calculate 
the aggregate claims distribution of a portfolio of 322 policies ranging in 
face amount from 1 to 5 units. The example is intended strictly as a 
conveniently verified simple illustration. 

Table 1 shows the classification of the portfolio into amount and mor- 
tality classes. Table 2 lists the coefficients of the polynomials Q~(z) defined 
by equation (19). Table 3 indicates values of Fk(N), the sum of the first 
N + 1 coefficients of eQg~ calculated by equations (13) and (14). For early 
values of N we actually calculate eaFk(N) for a convenient value of a. 
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This device circumvents arithmetical operations with minuscule quantities 
when the expected number of claims is large. Actual calculations were 
made to a greater number of significant figures than indicated. 

After reading Section IV, the reader is invited to show that, assuming 
the Balducci hypothesis, the first column of Table 3 describes the aggregate 

T A B L E  I 

C L A S S I F I C A T I O N  O F  M O D E L  P O R T F O L I O  BY 

M O R T A L I T Y  A N D  A M O U N T  C L A S S E S  

FACE AMOUNT DEATHS PER THOUSAND 

IN UNITS 0,94 1,91 5.01 13.20 34.07 

. . . . . . . . . . . . .  12 23 2 14 20  
! 0 6 7 0 

3 1 r i i i i i i i i l l  o 3 13 31 o 
4 . . . . . . . . . . . .  19 32  24  5 31 
5 . . . . . . . . . . . .  6 14 I 36  22 

E x p e c t e d  number  o f  c la ims  = 4.118 

E x p e c t e d  units o f  aggregate  c l a i m s  = 14.215 

T A B L E  2 

COEFFICIENTS OF THE POLYNOMIALS Q~(z) 

n Ql(z) Q2(z) ' Q31z) Q4tz) Q~IO 

D . . . . . . . . . . . .  

l . . . . . . . . . . . .  

2 . . . . . . . . . . . .  

3 . . . . . . . . . . . .  

4 . . . . . . . . . . . .  

5 . . . . . . . . . . . .  

6 . . . . . . . . . . . .  

7 . . . . . . . . . . . .  

8 . . . . . . . . . . . .  
9 . . . . . . . . . . . .  
I0 ........... 
II ........... 
12 ........... 
13 ........... 

14 ........... 

15 ........... 

16 ........... 
17 ........... 
18 ........... 
19 ........... 

20 ........... 

21 ........... 

22 ........... 

23 ........... 

24 ........... 

25 ........... 

-4 .2240129 
0 . 9 5 8 0 8 1 3  
0 . 1 2 4 7 8 8 2  
0.4858726 
1 . 3 6 0 2 6 5 0  
1 . 2 9 5 0 0 5 8  
0 . 0 0 0 0 0 0 0  
0.00(30000 
0.0000000 
0.0000000 
0.0000000 
0 . 0 0 0 0 0 0 0  
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0 . 0 0 0 0 0 0 0  

-4.1695513 
0 . 9 5 8 0 8 1 3  
0.  I 1 1 0 2 2 0  
0.4858726 
! .3595622 
1 . 2 9 5 0 0 5 8  

- 0 . 0 0 2 9 4 3 6  
0.0000000 

- 0 . 0 2 0 1 0 1 9  
0.0000000 

- 0.0169467 
0.001301300 
0 . ~  
0.0000000 
0.0000000 
0.0000000 
0 .000~00  
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0 .00000~  
0.0000000 
0.0000000 

- 4.1706954 
0 . 9 5 8 0 8  ! 3 
0 . 1 1 1 0 2 2 0  
0 . 4 8 6 1 7 6 5  
1.3595622 
1 . 2 9 5 0 0 5 8  

- 0 . 0 O 2 9 3 7 8  
0.0000000 

-0.0201019 
0 . 0 0 0 0 2 5 3  

-0.0169467 
0.0000000 
0 . 0 0 0 4 5 8 5  
0.0000000 
0.0000000 
0.0003506 

0.0000000 
0,0000000 
0.0000000 
0.0000000 
0.0000000 
0.00001300 

0,0000000 
0.0000000 
0.0000000 
0.0000000 

-4.1706664 
0 . 9 5 8 0 8 1 3  
0 .  I I 1 0 2 2 0  
0.4861765 
1.3595544 
1 . 2 9 5 0 0 5 8  

- 0 . 0 0 2 9 3 7 8  
0.0000000 

- 0 . 0 2 0 1 0 2 0  
0 . 0 0 0 0 2 5 3  

-0.0169467 
0.0000000 
0.0004583 
0.0000000 
0.0000000 
0 . 0 0 0 3 5 0 6  

- 0 . 0 0 0 0 1 1 9  
0.0000000 
0.0000000 
0.0000000 

- 0 . 0 0 0 0 0 8 7  
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 

- 4.1706672 
0 . 9 5 8 0 8 1 3  
0 . 1 1 1 0 2 2 0  
0.486 i 765 
1.3595544 
1 . 2 9 5 0 0 6 0  

- 0 . 0 0 2 9 3 7 8  
0.0000000 

- 0 . 0 2 0 1 0 2 0  
0.OOOO253 

-0.0169467 
0.0000000 
0 . 0 0 0 4 5 8 3  
0.0000000 
0.0000000 
0.0003506 

-0.0000119 

0.0000000 
0.0000000 
0.0000000 

- 0.O000084 

0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000002 
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F R O M  M O D E L  P O R T F O L I O  

N 

0 . . . . . . . . . . .  

I . . . . . . . . . . .  

2 . . . . . . . . . . .  

3 . . . . . . . . . . .  

4 . . . . . . . . . . .  

5 . . . . . . . . . . .  

6 . . . . . . . . . . .  

7 . . . . . . . . . . .  

8 . . . . . . . . . . .  

9 . . . . . . . . . . .  

10 . . . . . . . . . .  

I !  . . . . . . . . . .  

12 . . . . . . . . . .  

13 . . . . . . . . . .  

1 4  . . . . . . . . . .  

15 . . . . . . . . . .  

1 6  . . . . . . . . . .  

17  . . . . . . . . . .  

18 . . . . . . . . . .  

1 9  . . . . . . . . . .  

2 0  . . . . . . . . . .  

21 . . . . . . . . . .  

2 2  . . . . . . . . . .  

2 3  . . . . . . . . . .  

2 4  . . . . . . . . . .  

2 5  . . . . . . . . . .  

2 6  . . . . . . . . . .  

2 7  . . . . . . . . . .  

2 8  . . . . . . . . . .  

2 9  . . . . . . . . . .  

3 0  . . . . . . . . . .  

31 . . . . . . . . . .  

3 2  . . . . . . . . . .  

3 3  . . . . . . . . . .  

34 . . . . . . . . . .  

3 5  . . . . . . . . . .  

3 6  . . . . . . . . . .  

37  . . . . . . . . . .  

38 . . . . . . . . . .  

3 9  . . . . . . . . . .  

~,1 . . . . . . . . . . .  

~,2 . . . . . . . . . . .  

~,3 . . . . . . . . . .  

i 
~,5 . . . . . . . . . .  

17 . . . . . . . . . .  i 

~9  . . . . . . . . . .  ! 

a 

! 
1 
I 
I 
I 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

: F I ( ~ D  :F2( N ) :F3(l~ :F~(N) I : F s ( N )  
I 

.041974 .041976 .039795 
.077922 
.101152 
•131078 
•207721 
.119082 
•152628 
•181075 
.221389  
•277981 
.334435 
.379795 
.425094 
.479399 
.536760  
.586552 
•629137 
•671821 
.715590 
.755432 
.788703 
.817922 
.845599 
.870925 
.892290  
.909952 
.925297 
.938899  
.950429  
.959783 
.967433 
.973880 
.979271 
.983619  
.987063 
.989830  
.992078  
.993874  
.995274 
.996362 
.997216  
.997885 
,998402 
.998794  
.999094  
.999323 
.999497  
.999628 
.999725 
.999798  

.042022 

.082283 
• 106235 
• 137282 
.217852 
• 125028 
.159991 
• 189359 
.231087 
.290075 
,348555 
.395O01 
.441140 
.496607 
•555156 
.605392 
.647890 
,690379 
.733914 
.773227 
.805592 
.833771 
.860379 
.884570 
.904703 
.921111 
.935259  
• 9477 ! 7 
.958148 
.966470 
.973187 
.978797 
.983434 
.987110 
.989971 
.992240 
.994059 
.995489 
.996581 
.997415 
,998059 
.998556 
.998931 
.999210 
.999418 
.999575 
.999692 
.999777 
.999839 
.999885 

• 082189  
.106114 
.137138 
.217627 
• 124897 
• 159824 
.189167 
• 230861 
•289793 
.348215 
.394621 
.440733 
.496162 
.554663 
.604867 
,647354 
.689838 
,73336O 
.772666 
.805043 
.833244 
,859873 
.884083 
.904245 
•920690 
•934873 
,947363 
.957827 
,966185 
.972937 
.978577 
•983242 
,986945 
• 989831 
• 992120 
,993959 
,995404 
• 996511 
.997357 
•998012 
.998518 
.998900 
.999185 
.999399 
.999560 
.999680 
.999768 
.999832 
.999879 

.041976 

.082192 

.106117 

.137142 

.217633 
• 124900 
• 159828 
.189172 
.230867 
.289800 
• 348224 
• 39463 I 
.440744 
.496174 
.554677 
.604882 
.647369 
.689853 
.733376 
.772683 
.805060 
.833261 
• 859889 
.884099 
.904261 
.920705 
.934887 
.947377 
.957840 
.966197 
.972948 
.978587 
.983251 
.986953 
• 989838 
.992126 
.993964 
.995409 
.996516 
.997361 
• 998015 
.998520 
.998902 
.999187 
.999400 
.999561 
.999681 
.999768 
.999832 
.999879 

• 082192 
.106117 
•137142 
•217633 
• 124900 
.159828 
•189172 
• 230867 
.289800 
.348223 
• 39463 I 
.440744 
.496174 
.554676  
.604881 
.647368 
.689853 
•733376 
• 772683 
.805060 
.833260 
.859889 
.884099 
.904260 
.920704 
.934887 
.947376 
.957840 
.966197  
.972947 
.978586 
.983250 
.986952 
.989837  
.992126 
.993964 
.995409  
.996515 
.997361 
•998015 
.998520  
.998902 
.999187 
.999400  
.999561 
.999680 
.999768 
.999832 
.999879  

831 
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distribution of claims for the portfolio under the collective Poisson model, 
with the Poisson parameter equal to the aggregate force of mortality. Thus 
the collective Poisson model can be regarded as the "first approximation" 
to the individual model. 

IV. PARALLELS WITH THE COLLECTIVE CASE 

A. It is now assumed that the reader is familiar with the Society's study 
note on risk theory [3]. It is straightforward to verify that the generating 
function of the frequency distribution, 

f ( x )  = p*"(x )  - -  , (20) 
.=o n[ 

of a compound Poisson process is 

where 

R ( z )  = eO" ,  (21) 

Q(z)  = h P ( z )  - k (22) 

and P(z )  is the generating function of p(x) .  We define 

l o g f  = Q(z)  (23) 

and note that if g is the frequency function of another compound Poisson 
process, then so is f * g, and 

l o g ( f  *g)  = log f +  l o g g .  (24) 

Intuitively, the convolution operation * corresponds to combining port- 
folios. If I = l (x)  denotes the frequency function of the compound Poisson 
process for the e m p t y  portfolio, 

then 

i(O) = 1 ,  (25) 

l(x) = O, x > O , 

f * !  = l , f  = f ,  (26) 

so that I(x) acts as unity if convolution is thought of  as multiplication. 
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Define l / f  to be the function whose generating function is 

llR(z) = e -O(z) , 
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(27) 

where (27) is evaluated using the recursive relation given in equations (13) 
and (14). Then 

f * (I/j") = 1.  (28) 

Letting 

f ig  = f *  (l/g) , (29) 

we can define a "division" with respect to the convolution operation, 
with the caveat that l / fneed  not be a probability distribution. Calculations 
is this system can be performed by addition and subtraction of power 
series by virtue of formula (24). (The reader who is so inclined can for- 
mulate this discussion in terms of isomorphic Abelian groups.) 

The algorithm is Section III can now be regarded as calculating suc- 
cessive values of the sequence f~/g~, where f~ and gk are frequency func- 
tions of certain compound Poisson processes, the quotient is with respect 
to convolution, and 

lim ~ / g k )  = f i g .  (30) 

The distribution of aggregate claims for the individual model is the 
q u o t i e n t f l g ; f a n d  g are distributions of compound Poisson processes with 
parameters h and p(x),  where 

h. = ~o 2 y , (31) 
Hy X 

h = ~ h~, (32) 
x = l  

and 
p(x) = hJh. (33) 

Here, in the outer sum in (31), D indicates that the sum is taken over 
all divisors o fx  such that x/y is odd ( fo r  f )  and even ( for  g). 

B. Formula (20) may be generalized as 

f(x) = ~ s(n)p*~(x), (34) 
n~o 
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where s(n) is an arbitrary distribution on the collection of nonnegative 
integers--usually referred to as a counting distribution. If S(z) is the gen- 
erating function of s(n), then it is easily verified that 

R(z) = S(P(z)). (35) 

Frequently, s(n) is a standard a priori distribution-that may make it 
possible to evaluate f(x) in terms of (the experimentally determined) p(x). 
For example, if S(z) satisfies the first-order differential equation 

then 

dS 
A(z)--;- + B(z)S(z) + C(z) = O, 

az 

dR 
a(P(z))--7- + B(P(z))P'(z)R(z) + C(P(z))P'(z) = 0 ,  

az 

(36) 

(37) 

which can be regarded as a first-degree differential equation in R(z). If 
the functions A(z), B(z), and C(z) are not "too complicated," then it may 
be practical to solve equation (37) by the method of undetermined coef- 
ficients, which, together with an initial value, will recursively produce 
the coefficients of R(z). For example, if 

A(z) = 1, B(z) = - h ,  and C(z) = 0 ,  (38) 

then we obtain the recursive relation (14) corresponding to the compound 
Poisson process. 

As a second example, consider the relationship for certain constants a 
and b 

s(n)= (a + ! ) s ( n -  1), (39) 

satisfied by the Poisson, binomial, negative binomial, and geometric dis- 
tributions, whose corresponding recursive formula was derived by Harry 
H. Panjer [2]. Given this relationship, then, equivalently, 

A(z) = az - 1, B(z) = a + b, and C(z) = 0 ,  (40) 

and solving equation (37) yields a recursive formula for the distribution 
of aggregate claims. Other variations on this theme, such as a recursive 
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formula of the type in (39) but operative for only n >~ N, for a given N, 
can often be handled by suitable choices of A(z), B(z), and C(z). 

C. The essence of this section is not, of course, an attempt to derive 
all-inclusive general formulas. Rather, it is hoped that the reader is con- 
vinced that the devices employed in this discussion are not special "tricks" 
but represent general techniques. What has been done is to use to ad- 
vantage, in a rather elementary way, to be sure, the structural similarity 
between different mathematical systems---a fundamental principle of 
mathematics. 

V. REMARKS 

In this section a number of admittedly subjective remarks are made on 
the possible role of risk theory in an individual life model office. A note- 
worthy fact is that the aggregate claims distribution in the individual model 
reflects all the mortality information about the underlying portfolio, in 
the sense that, starting with only the aggregate claims distribution, it is 
in theory possible to reconstruct the entire scheme of amount classes and 
mortality rates. This result, which can be verified by proving an appro- 
priate unique factorization theorem for polynomials, points to a central 
role for the aggregate claims distribution. 

Short-term models incorporating only the mortality risk can be con- 
structed along the lines of Section III. Such a model could, for example, 
be of use in monitoring from year to year the ratio of actual to expected 
claims and would serve as a test of the appropriateness of the company's 
mortality tables. Short-term predictions of the probable fluctuations in 
claims and the resulting impact on cash flows could also be based on such 
a model. 

A very difficult problem is the construction of long-term models within 
a risk-theoretic framework. A starting point could be a counterpart of 
ruin theory for the individual case; however, in the author's opinion the 
parallel should not be too finely drawn. From a technical point of view, 
the author believes that methods of finite combinatorics can be used to 
greater advantage than in collective risk theory. From a fundamental point 
of view a realistic long-range model will need to incorporate at least the 
traditional ingredients of the expense and investment risk and federal 
income taxes. It is at this point that one is truly in the middle of uncharted 
waters ! 

The point of view is frequently_expressed that, for practical purposes, 
the mortality risk is negligible in proportion to the investment and expense 
risk and accounts in part, no doubt, for the meager use of risk theory in 
corporate modeling. This conclusion is based on the sound premise that 
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the probability of a catastrophic mortality loss precipitating insolvency is 
small and is overshadowed by other, much more immediate, risks. The 
conclusion, however, contradicts the fact that, after all, the mortality risk 
is the fundamental risk that is covered by life insurance, and does not 
explain the considerable importance generally attached to reinsurance. 
The paradox is resolved by adopting a going-concern rather than a sol- 
vency perspective. Large swings in claims may not necessarily bring on 
insolvency but will wreak havoc with cash flows and the orderly operation 
of the company. Reinsurance costs are more appropriately viewed as the 
price to be paid for smoothing year-to-year claim costs rather than in- 
surance against a remote contingency for which a stop-loss type of ar- 
rangement would be much more efficient. One must therefore look at the 
entire claims distribution curve rather than just the extreme fight tail--a 
somewhat different emphasis from that of traditional risk theory. 

The preceding remarks are only tentative opinions. Their intent is to 
stimulate interest in the risk theory aspects of  model offices for individual 
life companies. The development of such a model is proposed as a research 
problem, with the frank admission that one cannot at this time even ask 
the right questions with sufficient precision. 
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DISCUSSION OF PRECEDING PAPER 

DAVID C. MC INTOSH: 

Mr. Kornya's succinct and elegant paper appears likely to become set 
reading for students preparing to take the Society's examination in risk the- 
ory. It is therefore particularly unfortunate that the paper's central theorem 
should contain a serious mathematical error. 

The error occurs in the purported proof of statement (D2). Given 

N - k  N - k  

~] a.~< ~] b. for a l ike{O,  1 . . . . .  N},  
n~O n=O 

it does not follow that 

' ) ck a. ~< ~ ck b. 
k=O \ n = O  k=O \ n = O  

for arbitrarily chosen real numbers Co, c~ . . . . .  cN. Mr. Kornya seems to 
be assuming that Co, Cl . . . .  , C;v are all nonnegative, a condition which 
does not apply to the coefficients of the polynomials Qk(z). 

In fact, if we consider a portfolio with only one member, it is evidently 
false that 

[Ql(z)] 2 ~< [Q2(z)] z, 

even though it is true that 

Ql(z) <~ Q2(z). 

Consequently, statement (D2) is invalid in the situation where Mr. Kornya 
wishes to apply it. (The partial ordering of real power series is that defined 
by Mr. Kornya for use in his proof.) 

Of course, statement (D2) is merely an incidental step in the purported 
proof of statement (E). Statement (E) is not true for arbitrarily chosen real 
polynomials A(z) and B(z), and afortiori it is not true for real power series 
in general. In order to see this, consider 

837 
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1 7 
A(z)  --- loge2.7 - ~ z  + ~ z  2, 

B(z)  = 1. 

It is evident that A(z)  <~ B(z), since 2.7 < e and 7A6 < 1/2. However, the 
third partial sums of coefficients of e a~) and e n~z) are, respectively, 2.86875 
and e. Therefore, since 2.86875 > e, it is not true that e A~-') ~< e Bt~). 

In order to determine whether part (ii) of Mr. Kornya's theorem is or is 
not true, it is necessary to establish whether or not statement (E) is true in 
the case where A(z)  = Qk(Z) and B(z)  = Qj(z) for some positive integers k 
and j .  This would require analysis of the particular polynomials Qk(z),  the 
series Rk(z),  and the sums Fk(N). Mr. Komya 's  reasoning, involving general 
power series, simply is not valid. 

In fact, it is not difficult to show that, for a given N, the sequence Fk(N) 
falls into the desired pattern of alternately monotonic convergence toward 
F(N) when k />  N (see below for a proof). Unfortunately, this result is too 
weak for the application that Mr. Kornya wishes to make. For that appli- 
cation it is necessary that the alternating pattern should be followed for all 
k i> 1, even when N is a large amount. Mr. Kornya's numerical example 
suggests that the stronger result may indeed be true, but it remains unproved. 

To prove the relatively weak result, let us adopt the following notation 
for a portfolio H: for each h ~ H, write 

n h = Face amount of policy h (a positive integer); 

qh = Probability of claim under policy h; 

Ph = 1 -- qh; 

rh = qh/Ph. 

For each positive integer m, 

a m ( Z )  

R(z) 

hd-/ h ~ /  

= = S , . ( z )  
t ~ O  m ~ l  m 

= S i n ( z )  
m I m 

for al lk>~ 1. 
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Therefore, for all positive integers k, 

= R(z)  exp Sin(z) R d z )  ,,,= l m 

= exp ~ ~ R(z)  x 
m ~ k + 1 m h d t  

exp - ~ r~h Z mnh • 
m ~ k +  1 m hd-/ 

Now, R(z)  = ao + a l z  + . . .  + a~z a' + terms of greater order than z k. 
Using the methods described on pages 179-81 of Ahlfors [1], it can be 
shown that 

exp - ~ ~ z ' " h  
m=k+l m hd~ 

terms of greater order than ~ ,  

= 1 +  

and hence that 

Rk(z) = exp ~ 
m=k+l m hal-/ 

X 

(a o + a l z  + . . .  + ak za' + terms of greater order than zk). 

Therefore, for all N ~> 1 and for all k i> N, 

It follows, by considering the alternately monotonic convergence to zero of 
the sequence 

,,: Z (-1)°+'Z¢, 
r a ~ k  + 1 m h ~  

that the sequence Fk(N) follows the desired alternating pattern of conver- 
gence to F(N) when k >t N. 

As a final comment,  it is worth noting that the various series in Mr. 
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Kornya's paper are divergent if qh > 1/2 for some policy h e H. Extremely 
high risks must therefore be excluded from the portfolio before applying the 
algorithm described in the paper. 
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DONALD P, MINASS1AN: 

If R ( z )  - ~ anZ n is the generating function for the number of unit claims, 
n=O 

N 

then F(N) ~ ~ a,, is the probability that the number of unit claims does 
n=O 

not exceed N. Further, if Rk(z)  =-- e ° ~ )  - -  ~.~ an,kZ n and if Fk(N) ---- 
n~O 

N 

~ .  an,k, the question has arisen whether we can have monotonic conver- 
n=O 

gence, that is, specifically whether 

Fi(N) <~ F3(N) ~< . . . ~< F(N) ~< . . . ~ F4(N) ~ Fz(N) ,  (1) 

since Fk(N) can readily be calculated for small k (see Kornya's paper). For 
future reference, this result would follow from 

R l ( z )  <<- R3(z) ~< . . . ~< R(z)  <~ . . . ~ R4(z) <~ R2(z), (la) 

where ~< is as defined below. 
In this discussion we show (A) that the general answer is no (counterex- 

amples are provided) and (B) that there is a monotonic convergence theorem 
but the algorithm is somewhat more complicated, and convergence slower, 
than is the case with the original Kornya algorithm. We omit empirical 
studies of the latter result, but hope that the algorithm will be so tested by 
others. 

A .  C o u n t e r e x a m p l e s  to Fo rmu la  (1) 

We present the development of this result, rather than simply the result 
itself, because it was the inspiration for Part B of this discussion. 
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We repeat a definit ion used by Korrtya, 

Definition. If  A(z) =- ~ a.z ~ and B(z) -- ~ bnz ~, then we say A(z) 
n - O  n - O  

N N 

B(z) if, for every nonnegat ive integer N. we have ~ a .  ~ ~ bn. 
n 0 n O  

N 

(The motivat ion is that in the series for R(z) =- ~'~ anz n the probabili ty F(N) 
n - O  

N 

that the number  of  unit claims does not exceed N is ~'~ an.) 
n = 0  

PROPOSITION 1. Let A(z), B(z), and ~ be as in the definition. Then A(z) ~ 
B(z) if  and only if, as power series, A(z)/(1 - z) ~s B(z)/(1 - z), where 
~ .  (s for "s trong")  means that each coefficient of  A(z)/(l - z) does not 
exceed the corresponding coefficient of B(z)/( l - z). In fact, a much stronger 

N 

result holds." for any fixed nonnegative integer N, ~ an does not exceed 
n ~ O  

N 

~ bn in the original series A(z) and B(z) if  and only if  the Nth coefficient 
n 0 

of A(z)/ (1 - z) does not exceed the Nth coefficient ofB(z)/( l  - z). 

N 

Proof. The Nth coefficient of  A(z)/(1 - z) is precisely ~'~ a.; similarly 
r! 0 

for B(z)/(1 - z). 

COROLLARY I. I f  Oi(z) and 0 /2 )  are any m'o power series, then as power 
series e Oi~:~ <~ eOJ ~:~ if  and only if 

exp [Qi(z) + z + (z2/2) + (z3/3) + . . . ] 

exp [Qj(z) + z + (z2/2) + (z3/3) + , , ,  ] 

(2) 

(where in general eC~")-~ ~ [C(z)]"/n!; we assume we are within the radius 
t! =0  

of convergence for  C(z), so order of  terms is immaterial). 

Proof. The expression on the left is 

eQi~:) - log¢l - :) = eOi~:)/eiog, i - :~ = eQi~:~/(l _ z). (2 ')  

Similarly this is for the expression on the right. 
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Now consider Ql(z) and Q3(z), with definitions as in Kornya's paper. 
While it is true that Ql(z) <~ Q3(z), the crucial question respecting formula 
(1) above is whether e t21~z) ~< e t23(z). By Corollary 1, this holds if and only 
if formula (2) holds where we take Qi(z) - Ql(z) and Q~(z) =- Q3(z). We 
further note (calculational details omitted): 

LEMMA. I f  C(z) -- ~ ciz i is any power  series inside its radius o f  conver- 
i=o 

gence and i f  e ctz) =- ~ ei zi, then 
i=o 

eo = e ¢° 
el = (1 + cOeCO 

e2 = (c~ + 2!c2)e"O/2! 

e3 = (c 3 + 6ctc2 + 3!c3)eC°/3! 
e4 = (c 4 + 12c~c2 + 24clc3 + 12c 2 + 4!c4)eco/4!. 

(3) 

(Note: at this point we require only the expression for e2; we include the 
rest for future reference.) 

Now let A(z) --  aiz' represent the exponent on the left-hand side of 
i=o 

formula (2), where Ql(z) replaces Qi(z), and let B(z) -- ~ biz i represent 
i=o 

the exponent on the right, where Q3(z) replaces Qj(z). Were e Qltz) 
e Qa~z), then formula (2) would hold, where Ql(z),  Qa(z)replace Qi(z), Qj{z). 
So, by the lemma, 

" e  2 for e Oj~z)'' does not exceed "e2 for eO3(zP'; i.e., (4) 

Now assume a portfolio of insureds where each insured has precisely one 
unit of insurance. Then Q j(z) lacks the quadratic tenn. Hence (compare 
Komya) a 2 (which is the coefficient from adding (z2/2) to the quadratic 
ternv--cf, formula (2)) is 1/2. Also, in this case b I = al = 1 + Y. (q/p); b 2 

= 1//2 _ _  1/2 ~ (q/p)2; and bo - ao = t/2 ~ (q/p)2 _ 1A ~, (q/p)3. Multiplying 
both sides of formula (4) by 2e -a° and using the expressions above, we see 
that (4) is equivalent to 
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[1 + ~i,(q/p)]2 + 1 ~<{[1 + ~ (q/p)]2 + 1 _  ~,(q/p)2} × (4') 

exp [),2 ~ (q/p)2 _ ',3 ~ ( a l p ) 3 ]  . 

Now assume one insured (so each E above reduces to one term), and let 
q/p = l--perhaps inadmissible in view of convergence-of-series problems, 
but we remedy this below. 

We obtain 

5 ~< 4e 1/6, (4") 

which is not true, since 5 > 4e 1/6. Hence, by continuity arguments, if we 
take q/p slightly less than 1, which is admissible, formula (4") is still vio- 
lated and our counterexample is established. In fact, checking (4') above, 
we can have any number of insureds in our counterexample as long as 
precisely one insured has q/p sufficiently close to (but less than) 1, and all 
remaining insureds have q/p sufficiently close to zero (still assuming that 
each insured is insured for one unit). 

In fact, a second--and perhaps more serious--counterexample is provided 
under the same assumptions (each insured is insured for one unit; one insured 
has q/p close to l, and all remaining q/p's are close to zero). In this case it 
will be seen that e4 (see formula (3) above) with respect to Rl(z) - e O~(z) 
e x c e e d s  e4 for R2(z) - -  eQ2(z); SO RI(g ) ~ R2(7, ) does not hold--a serious 
contradiction of the desired formula (la) above. I shall not provide com- 
putational details here; the reader can recreate them (or I will mail them to 
interested parties). In fact, in this case Komya has found that R(z) is not 
even caught between Rl(z) and R2(z). 

B. A Monotonic Convergence Algorithm 

First we point out that if, as power series, A(z) <<- B(z) and C(z) ~ D(z), 
then A(z) + C(z) <~ B(z) + D(z) (proof is immediate), and if  all coefficients 
in all series are positive, then A(z)C(z) ~ B(z)D(z). The proof is on page 
828 of the Komya paper, where the author also shows the following: 

LEMMA. I f  A(z) and B(z) are power series with positive coefficients and if 
A(z) <- B(z), then e Atz; <<. e ate) (assuming that both A(z) and B(z) are inside 
their radius of  convergence). 



8 4 4  D I S T R I B U T I O N  O F  A G G R E G A T E  C L A I M S  

Now assume for the moment that all coefficients in the exponents of (2) 
are positive except for the constant term (see Kornya's definition of Qi(z)).  
We discuss the validity of  this "posit ivi ty" assumption below. Let Ai(z)  and 
Aj(z)  represent the power series for the exponents of (2). Now, for any two 
power series, C(z) <~ D(z )  if and only if kC(z)  <~kD(z) for any positive 
constant k. Thus e a;~-') <~ eaJ t~) if and only if, for any real r, e r + Ai(z) 
e r + aj~z). Hence, by taking r large enough, we may assume that the constant 
terms of r + Ai(z) and r + Aj(z)  are positive. Hence, by our assumption 
that all other coefficients of Ai(z) and Aj(z)  are positive, we may assume that 
all coefficients o f  Ai(z)  and Aj(z) below are positive. Now, following Kornya 
we note that 

Q~(z) <~ Q3(z) ~< . . .  <~ Q(z)  <~ . . . < -  Q4(z) <~ Q2(z), (5) 

and hence 

Al(z ) ~< A3(z ) ~< . . .  ~< A(z)  <~ . . . < ~  A4(z ) ~ A2(z) (5') 

in view of the additive property of <~; (recall that each Ai(z) = Qi(z) - log 
(1 - z)). Thus, since we assume that each coefficient of each Ai(z)  is 
positive, we have, from the Lemma, 

e Al (z )  ~ e A3(z) ~ . . . ~ e A(z) ~ . . . ~ e A4(z) ~ e A2(z) ,  ( 6 )  

or, equivalently, using the Kornya notation (Ri(z) - e Q i ~ z ) ) ,  

Rl ( z )  R3(z) R(z)  R4(z) R2(z) 
- -  <~ <~ . . .  <~ ~< . . .  ~< ~ - -  ( 6 ' )  
1 - z I - z 1 - z 1 - z ! - z 

This yields our algorithm. For, expanding upon the steps in the Kornya 
paper (p, 829), we proceed as follows: 
A. 1. Compute the polynomials Qk(z) and Qk + t (z) for odd integer k. 
A.2. Apply the recursive formula (given by Kornya) to compute the coef- 

ficients of Rk(z) and Rk+ t(z). 
A.3. Calculate the coefficients of Rk(z)/( l  - z) and Rk+l(z) / ( l  -- z),  a 

straightforward computation if we recall that the Nth coefficient of A(z) /  

( 1  - z) for any A(z )  -- anz n is ~ an. Note that the sum of the first 
n = 0  n ~ 0  

N coefficients of R(z ) / ( l  - z) is, by definition of <-, caught between the 



DISCUSSION 845 

s u m  o f  the  f i rs t  N c o e f f i c i e n t s  o f  R k ( z ) / ( 1  - -  z)  and  R k + l ( Z ) / ( l  - z) for  

each nonnegative integer N. 
A.3 . '  Calculate the s u m  of the first i coefficients of  Rk(Z)/(1  --  z)  and 

Rk ÷ l(z)/(1 - z) for a l l  i = O, 1, 2 . . . . .  N (recall that the subscript 

for the constant term is zero). Thus, if R ( z )  - ~ rnz  ~, and recalling that 
n=O 

i 

the ith coefficient of  R ( z ) / ( 1  - z )  is ~ r~, we have bounded respectively 
n~O 

r o , r  o + (r o + r l ) - -  2r o + r l , ( 2 r  0 + r~) + (r  o + rt  + r2) -~ 3r0 + 
2rl + rE . . . . .  (N + l)ro + Nr~ + . . . + rN. From this we can 
calculate the desired bounds, that is, for r o, r0 + rl ,  ro + r~ + r 2, etc., 

N 

where ~ r~ is the probability that the number of unit claims does not 
n=O 

exceed N. We calculate these bounds by adding (actually subtracting) the 
inequality bounds for R ( z ) / ( 1  - z) .  For example, if a ~< r 0 ~< b and c ~< 
2ro + r~ <~ d, then c - b ~< ro + r~ ~< d - a,  etc. Similarly, we may 
calculate bounds for ro + rl + r2, ro + rl + rE + r3, . • • , ro + r~ 
+ r 2 . . .  + r N. 

A.4. Increase the value of k, if desired, for greater accuracy. 

Of  course, subtracting the above inequalities diminishes accuracy; i.e., 
convergence is slowed. At least, however, the accuracy loss accumulates 
"ari thmetical ly" instead of  "geometr ica l ly ."  Thus, if our original bounds 
on the sums of the coefficients o f R ( z ) / ( l  - z )  are  very tight (as the computer 
study in the Kornya paper suggests is possible), we may get reasonable 
accuracy--particularly when the number of insureds is not too great and 
mortalities are reasonably low. Elementary hand computation shows, for 
example,  that six-decimal-place accuracy in the bounds for R ( z ) / ( l  - z)  

might achieve two- or three-decimal-place accuracy in the bounds for R ( z ) - -  

accuracy sufficient for many applications. 
Finally, how reasonable is the supposition that all coefficients in the power 

series for each Qi( z )  - log (1 - z) are positive (except the constant term)? 
Recall that we assumed this in our algorithm. 

First, if this is n o t  so, we can continue dividing by 1 - z until we find 
an n such that all coefficients (first degree and higher) for 

eQi(z) 

(1  - z )  n 
_ _  ~ e Q ~ z ) - n  log(l-z)  = eQi(z)+nz+(nz2/2)+ . . .  (7) 

are positive. Indeed, we can find a single n that works for a l l  Qi ( z )  and for 
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Q(z) ,  since the Qi(z) converge uniformly to Q(z)  and since the coefficients 
of Q(z)  are bounded (the series for Q(z)  converges for z = 1) if---as assumed 
tacitly by Kornya---each q/p < 1; thus, with only a finite number of q/p 's ,  
the q /p ' s  are bounded away from 1. 

Having found such an n, we find, in order, bounds for R(z) / ( l  - z)", 
R(z)/(1 - z ) " -  i . . . . .  R(z) / (  l - z), R(z) ,  using the methodology described 
above. Now clearly the speed of convergence lessens "geometrical ly" as n 
increases, so we do not wish n to be very large! 

Second, returning to the desirable case n = 1, we can point to some fairly 
realistic situations where all coefficients (except the constant term) for each 
Qi(z) - log (1 - z) and for Q(z)  - log (1 - z) are positive. 

Except for the constant term, the largest (in absolute value) possible neg- 
ative coefficient in any  Qi(z)  is 

2 4 6 

(8) 

whose absolute value is less than that of 

2 
1 q 

(8') 

Now let L be the largest q/p,  and, using the formula for summing a 
geometric series, the absolute value of (8') does not exceed that of 

I 2 . 1 
--  ~(ML )/(1 - t 4)  ~ - ~ M L  2, ( 8 " )  

where M is the total number of policyholders. (We assume that L is reason- 
ably small, s o  L 4 is relatively insignificant.) Now suppose that L ~ 0.001 
(as would be the case at most younger ages for annual q), and suppose that 
the maximum number of units of insurance is 100 (the unit might be $10,000, 
so that an insured can buy up to $1,000,000 face value). The worst that can 
happen for any Qi(z) is that all the negatives accumulate in the coefficient 
for z 2°°. This is "wors t "  because the (q/p)2 terms--by far the worst cul- 
prits--must be included among coefficients for z 2c, where c = 1, 2 . . . . .  
100 under our assumption of  a maximal 100 units of insurance; further, the 
coefficients of the - l o g  (1 - z) series (which, we recall, is added to the 
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series for Qi(z)) hardly decrease beyond this point. They are 1/2o0, IAo~, V20z, 
etc., whereas the coefficients of the Qi(z) series decrease "geometrical ly."  

Now when we add the log series to Qi(z), the coefficient of  z 2°° is in the 
worst case (½00) - VzML 2 under our assumptions. Thus, under the as- 
sumption L <~ 0.001, we can have 10,000 policyholders (M) and still all 
coefficients in the series expansion of Qi(z) - log ( 1 - z), save the constant, 
will be positive. Obviously, other "mixes"  can be had. For example, if we 
increase the unit claim size, we can increase the number of policyholders. 
Projected declines in mortalities help our case: for the typical pools of in- 
sureds with ages in the twenties or thirties, we could have 100,000 or perhaps 
1,000,000 policyholders without violating the required positivity. This is 
particularly true if we note that the above derivation was a worst-case scen- 
ario in that all the negativity went to the "highest"  power of z, here z 2°°. 
This will probably never arise in practice. Indeed, one could, in a computer 
study for a particular pool of insureds, "spread"  the (q/p)i's to their re- 
spective coefficients. It would probably suffice to so assign only the (q/p)Z's 
and (q/p)l 's,  the dominant terms in the coefficients of Qi(z), and then add 
in the - log (1 - z) series to see whether any term (save the constant term) 
had a negative coefficient. My guess is that for most pools of  insureds we 
would have satisfactory results at all but the advanced ages, particularly if 
unit claim size were large. 

E L I A S  S . W .  SH1U: 

Mr. Kornya is to be complimented for an elegant paper. I would like to 
make several comments. 

The algorithm in Section II works very well when the values of q are 
small. However, if there is a q with value greater than ½, then the algorithm 
breaks down, since the logarithmic series 

( - l)k+ txS,/k 

diverges for x > 1. As the logarithmic series converges rapidly only for 
small x (cf. [4], sec. 6.5), it might be advisable to evaluate Rn(z) as 

q large q small 

where the first product contains relatively few factors and the second product 
can be computed efficiently using the algorithm. 

There is another modification I would like to suggest. Since 
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one needs only to apply the algorithm to find 

In this case one can state a stronger theorem. Instead of the result 

one has 

lira Fk(N) = F ( N ) ,  
k---.~ 

&(N)= F(N) 

for each k I> N/min {n}. 
To understand this paper, I found it instructive to consider the special 

case where each policy has identical face amount, that is, H = Hn for some 
n. The problem then becomes the evaluation of the coefficients of the po- 
lynomial 

Interesting algorithms for this problem can be found in [8]. Following the 
method in this paper, consider 

g(t) = e l°g g(t). 

Equation (9) of the paper becomes 

log  /,  log(, +q,) 
k 

t*. 
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If one defines 

St = ~ 
H 

then (cf. [5], p. 92, eq. [34]) 

g(t) = exp (Sit)  exp (-$2t2/2)  exp ($3t3/3) . . . 

= (1 + S i t  + $2t~/2! + . . . ) (1 - $2t2/2 

+ $2t4/222! - . . . ) . . .  

= ~ am tm , 
ma.O 

where 

am = ~ ( _  1)k2+~ . . . .  S~' $2 k2 S~ m 
kl, k2 . . . . .  km~,O lk lk l  ! 2~2kz! " " " m~mkm! 

k l + 2 k 2 +  . . .  +mkra=m 

It is pointed out in Section IV that if a function S satisfies a simple 
differential equation, then the coefficients of the power series of S(P(z))  can 
be computed recursively. If S(x)  = x ~, et arbitrary, then the resulting re- 
cursive formula is called the J.  C,  P .  Mi l ler  f o r m u l a  in the computer science 
literature (I2]; [3], Theorem 1.6c; [6], pp. 445-46). Formulas such as equa- 
tions (19) and (23) of  [7] and equations (8) and (9) of [1] are particular cases 
of  the J. C. P. Miller formula. The lemma in Section II presents the recursive 
formula for the coefficients of the power series of S(P(z)) ,  where S(x)  = 
e~; this result also appears as problem 6 on page 43 of [3] and exercise 4 
on page 450 of [6], with the answer given on page 561. Several interesting 
recursive formulas are given in [1 ]. 

This paper has provided an interesting introduction to the manipulation of 
generating functions and power series. For the readers who wish to take a 
second  course  on this topic, I would recommend section 4.7 of [6] and 
chapter 1 of [3], 
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BEDA CHAN AND PROMOD K. SHARMA*: 

Mr. Kornya presented a new, interesting, and useful algorithm for the 
distribution of aggregate claims. In this discussion we review two traditional 
algorithms. 

The traditional way of computing the aggregate claims distribution is by 
convolution [l]. We use the example in Setion III of Mr. Kornya's paper 
for illustration. 

For Table l of the paper, let 

nij = Number of policies in row i, column j; 
qj = Mortality rate for policies in column j; 
Nij = Number of claims arising from nij; 
S = Total amount of claims. 

Then 

Nij ~ Binomial (nij, qj), 

and 

5 5 

s- EZiN,j. 
i - l j - i  

The aggregate claims distribution computed by convolution is given in the 
second column of Table 1 of this discussion. In our computation, we modify 
* Mr. Sharma, not a member of the Society, is an honor actuarial science student at the University 
of Western Ontario. 
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the APL programs supplied in [3]. Our figures agree completely with Mr. 
Kornya's Table 3, last column. 

m 
In convoluting two probability vectors {Pil ~ Pi = 1, Pi ~ 0} and 

n 
{ q j | ~  qj = 1, qj >~ O} using APL ,  an (m + 1) × (n + 1)matr ixisformed.  

j=O'= 

In a small-size example such as the one illustrated here, the matrix has grown 
too large to fit into the workspace after a few convolutions. We solve this 
problem by truncating the probability vectors. The truncation error is held 
under control by the following propositions. Proposition 1 states that the 
error of a truncation is bounded by the sum of the truncated tails. Proposition 
2 gives a bound on the size of the tail of  a binomial distribution. 

m n 
Proposition 1. L e t  p = {Pi}i=o ~ Pi  = 1, Pi  ~ 0}, q ~ {qJ~ --~0':~ qj = | '  qj  

t> 0}, f f  = {p,[i = 0 . . . . .  ~ with ~ <~ m}, and t l  = {qj~ = 0, 

. . . .  "~ with ~f <~ n}. 
Then 

and 

(P*q)k ~> (P*'q)k 

m+n ~ n 
Y~ [(P*q)k - (~'*i/)k] ~< Pi + ~ q j .  

k~O i ~ + 1  j = ~ + l  

Proof. Straightforward, by using the definition of  convolution and the fact 
that p and q are probability vectors. 

Proposition 2. 

y. pk (1 - p) , -k  
k=r 

p F ( n  + 1) 

= F(r)F-(n - r + 1) 
xr - I (1  _ x )n-rdx  < pr . 

Proof.  The equality is from [2; p. 173, problem 45]. The inequality re- 
quires using (1 - x) n-r  ~< 1 for 0 ~< x ~< p, and integration. 

One traditional way of approximating the aggregate claims distribution is 
by fitting a normal distribution. Note that 
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5 5 5 5 

E(S)  = • Y. iE (N  o) = E Y. iniyqj = 14.21462, 
i=1  j = l  i=1 j = l  

5 5 

Var (S) = X X i 2 Var  (Nij) 
i ~ l  j = l  
5 5 

= • X i2niyqj(l -- qj) 
i=1  j = l  

= 56.9594007622. 

The approximation by a normal distribution with matching mean and vari- 
ance is displayed in column 3 of Table 1 of this discussion. 

We share Mr. K o m y a ' s  view that risk theory computation should be ap- 
plied more often. One reason for its infrequent use is probably the volume 
of computation needed for convolution. Indeed, in a small-size example such 
as the one considered here, FORTRAN requires a long time for looping and 
APL requires very large workspace for huge matrices. Our solution here is 
to truncate the probability vector. Mr. Kornya 's  elegant solution is to con- 
struct a sequence Fk squeezing the true distribution F. If a rough, quick 
answer is desired, one may use the normal approximation. Compare columns 
2 and 3 in Table 1, 
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TABLE 1 
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Aggregate 
Claims 

0 
1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 

20 
21 
22 
23 
24 

25 
26 
27 
28 
29 

30 
31 
32 
33 
34 

Cumulative 
Distribution 

by Convolution 

.015442 

.0302366 

.0390382 

.0504517 
•0800628 

•1249 
.159828 
.189172 
.230867 
.2898 

•348223 
.394631 
.440744 
•496174 
•554676 

.604881 
~647368 
.689853 
•733376 
.772683 

.80506 
•83326 
•859889 
•884099 
.90426 

.920704 

.934887 
•947376 
•95784 
.966197 

•972947 
•978586 
•98325 
.986952 
•989837 

Cumulative 
Distribution 
by Normal 

Aproximation 

.345938D - 01 
• 46O239D - 0 i 
• 603081D - 0 i 
• 778487D - 0 I 
• 990138D-01  

• 124109D 03 
• 153345D 00 
• 186816D 03 
• 224468D 03 
.266088D 00 

• 311293D 03 
.359540D 00 
.410139D 03 
.462282D 03 
.515082D 03 

.567618D 03 
• 618984D 00 
.668333D 00 
• 714920D 03 
.758135D 03 

.797526D 03 

.832807D 00 

.863858D 00 

.890711D 00 

.913530D 03 

.932584D 03 

.948218D 03 

.96O823D 03 
• 970809D 03 
.978583D 03 

• 984529D 00 
.988999D 00 
• 992303D 03 
• 994696D 03 
.996404D 03 

Aggregate 
Claims 

35 
36 
37 
38 
39 

40 
41 
42 
43 
44 

45 
46 
47 
48 
49 

50 
51 
52 
53 
54 

55 
56 
57 
58 
59 

6O 
61 
62 

Cumulative 
Distribution 

by Convolution 

.992126 
•993964 
.995409 
• 996515 
•997361 

•998015 
.99852 
.998902 
.999187 
.9994 

• 999561 
• 99968 
.999768 
.999832 
.999879 

• 999914 
.999939 
.999956 
.999969 
.999978 

.999985 

.999989 
• 999993 
•999995 
• 999996 

.999997 
• 999998 
• 999999 

Cumulative 
Distribution 
by Normal 

Approximation 

.997601D 03 
• 998426D 00 
.998983D 00 
.999354D 03 
.999596D 03 

.999752D 00 
• 999850D 03 
.999911D 00 
.999948D 03 
.999970D 03 

.999983D 03 
• 999991D 00 
.999995D 03 
.999997D 00 
.999999D 03 

.999999D 03 

. I ~ D  01 

.100000D 01 

.100300D 01 

.100303D 01 

.100(K~D 01 

.100000D 01 
• 100030D 01 
.100303D 01 
.100000D 01 

.100000D 01 
• 1 0 ( 0 ) O D  01  
• I ~ D  01  
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( A U T H O R ' S  R E V I E W  O F  D I S C U S S I O N )  

P E T E R  S. K O R N Y A :  

I would like to thank the discussants for their stimulating comments .  
I am indebted to Mr.  Mclntosh for pointing out the error in the proof  o f  

the theorem and for  giving me the opportunity to correct it. The reader should 
disregard the theorem in Section II and replace it with the following: 

THEOREM, Suppose that q<~ ½ for each policy in the portfolio H and 
f o r k  = 1 , 2 , 3  . . . .  let 

and 

1 ( -  1) k+l 
Q~(z)  = S1 (z) - ~ S 2 ( z )  + . . . + ~  Sk(z) ,  ( 1 6 a )  

Q(z) = lira Qk (z) = log R(z), (16b)  
k- - .~  

Rk(z) -: e a~=' = ~ a,.k z n, (17) 
n = 0  

N 

fk(N) = ~]  [a,.k}, (18) 
n - - 0  

k + l  

e -  k + l  " 

then 

IF(N) - Fk(N)I ~ e ' - - 1  (i)  

and 

lira Fk (N) = F(N).  (ii) 

Proof. If  A(z) and B(z) are power  series, say that A(z) <~ B(z) provided 
that, for any nonnegative integer N, the sum of the first N + 1 
coefficients satisfies 

N N 

Z a. b.. (A) 
N = O  n ~ O  
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Also define IA(z)l to be the power series 

IA(z)l = ~ la.lz". 
n=O 

855 

(B) 

Then it is easily shown that 

A(z) <~ ~4(z)J, (CI) 

IA(z) + B (z)l -< IA(z)l + IB(z)l, (C2) 

Ia(z) BU)I ~ IA(z)l IB(z)l. (C3) 

If IA(z)l ~< Ia(z)l and IC(z)l ~< IDU)I, (C4) 

then IAU)I IC(z)l <~ IB(z)l IV(z)l, 

and, using equations (13) and (14), we have the following: 

(C5) 

Note that an arbitrary constant can be regarded as a power series with all 
but the first term equal to zero. Then, using (C1), (C2), (C3), (C4), and 
(C5), we have the following: 
Ia(z) - Ok(z)[ 

-- I E 2 ( - ' ) " '  q ( -  

~', i ~,  (--1)k÷J q 1 2n(k +j) 
j= I k ' ~  (D) 
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k + l  k + l  

k + l  

q <~ 1/3 is used in the last step. Now note that 

IR(z)l = IRx.(z) e Q'=) - Qk(=)l <~ IRk(z) I elQ¢=)-Qk(=)l, (E) 

so that 

F(N) ~< F k (N)e ~. (F) 

Similarly, 

Fk(N) <~ F(N) e~; (G) 

therefore, 

Fk(N) - F(N) ~< (e" - 1) F ( N )  <~ e ' -  i (H) 

and 

F ( N )  - F k ( N )  <~ (1 - e-') F(N) ~< 1 - e ' "  ~< e ~ -  1, (I) 

from which (i) follows. Statement {ii) is an immediate consequence of (i). 
The algorithm now proceeds as follows: 

A. 1. Choose a value of  k for which the magnitude of error 

e ' ~ -  l 

is sufficiently small. A value of k = 5 will, for a typical insurance portfolio 
of several hundred thousand policies, generally yield results accurate to the 
fifth decimal place. 
A.2. Compute the polynomial Qk (z) and apply the recursive formulas (13) 
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and (14) to compute the coefficients of Rk(z). By the theorem, a conservative 
estimate for the distribution of aggregate claims is 

F(N) <~ Fk(N) + e e -  1. 

Dr. Minassian has pointed out that it is not necessarily true that 

FI(N) ~< F3(N ) ~< . . . ~< F(N) ~ . . .~  F4(N ) ~< F2(N). (J) 

His counterexamples saved me from heroic attempts to prove the original 
version of  the theorem. As far as the algorithm is concerned, however, the 
inequality (J) is not really necessary--all  that is needed is an efficient bound 
on the error ]F(N) - F~(N) I. There is no need to modify the algorithm 
described in Section II. 

Dr. Shiu and others point out that values of q must be small for the 
algorithm to work well. Although q < i,~ is the absolute requirement for 
convergence, the values of q should be considerably smaller for efficient 
convergence. The algorithm is intended to apply to a typical insurance port- 
folio with a one year horizon where the q's are generally quite small. Taking 
k = 5, for example, the algorithm evaluates the claims distribution to within 
six decimal places for a portfolio of 322,000 policies distributed according 
to the example in Section III. His suggestion to partition the portfolio into 
subportfolios can be extended to partitioning by other categories, such as 
male/female, standard/substandard, etc. The suggested modification for which 

F(N) --- Fk(N) (K) 

is, I believe, of limited practical importance because of the large value of k 
generally required. In the example just cited, one needs k = 14,215 just to 
ensure equality up to the expected amount of claims. The suggested algo- 
rithm is in fact tantamount to an exact evaluation of the coefficients of the 
polynomial R(z). 

Dr. Shiu lists many excellent references, to which I would like to add one 
more. The algorithm described in Section II is really nothing but Newton's 
formula for the relationship between the coefficients and the sums of powers 
of the roots of a polynomial. 

Dr. Chan and Mr. Sharrna give an alternative method of computation by 
direct convolutions, with truncation of the tail end of the distribution to cut 
down on the volume of computation. This method, I suspect, still involves 
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a considerable amount of computation in order to suitably approximate port- 
folios with a substantial number of policies. In such a case, their suggestion 
of using the normal distribution may work quite well in view of the con- 
vergence of the binomial to the normal distribution. A useful result would 
be a practical bound on the degree of error in the normal approximation to 
the aggregate claims distribution. 


