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Abstract

Prior work indicates that a regime-switching stochastic model with
randomized regime parameters creates a more plausible set of extreme
paths than do the usual stochastic interest rate models. Generalizing
the Black-Karasinski model by randomizing the mean reversion target
provides an example. Better to understand such models, as well as to
calibrate their parameters without trial and error runs of a stochastic
model, we use an asymptotic expansion to estimate the moments of the
integrated stochastic process over time. Mention is made of a family of
related asymptotic expansions that could be of wider interest.

1 Background

A previous paper [1] motivated and introduced a stochastic process for interest
rates that generalizes the Black-Karasinski model by making the mean-reversion
target in the Black-Karasinski a random variable. That paper contained an
expression for the mean (and, implicitly, higher moments) of the resulting inte-
grated interest rate distribution at a �xed point in time but failed to simplify
that expression into closed forms.
This paper develops a technique for approximating the moments in closed

forms, simpli�es some expressions in [1] and corrects a confusing error.
The stochastic process (introduced at (2.6.1) in [1]) is:

d ln (rt) =
h
1� (1� F )dt

i24 1X
j=0

1[j;j+1)(t) ln(Tj)� ln(rt�dt)

35
+(1� F )dtDtdt+ (1� F )dt �

p
dtNt (1.1)
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where

rt is the interest rate we want to model over time.

F is an annualized mean reversion factor between 0 and 1.

dt is a discrete time-step interval.

1[j;j+1) (t) is the indicator for t to be in a regime, a random

interval [tj; tj+1)

ftj+1 � tjg1�j are i.i.d. random variables with common law

gamma(�; �); the inter-arrival intervals for regime-switches.

t1 is independent of ftj+1 � tjg1�j and distributed as a randomly
chosen point within a gamma(�; �) interval, and t0 = 0, so

the process begins at a random time within the �rst

regime.

fln(Tj)g1�j are i.i.d. normal random variables, independent of

the ftj+1 � tjg0�j , making fTjg1�j a set of i.i.d. lognormal
mean reversion targets for the interest rate, thus

characterizing each regime by a randomly chosen mean

reversion target (T0 is a �xed initial target value during

the �rst regime).

Dt is an annualized drift-compensation function available to be

determined up front as part of the model.

� is an annualized volatility parameter.

fNtg0�t are i.i.d standard normal random variables independent

of all the other random variables in the process.

For a continuous model just think of dt ! 0 in (1.1), replace
p
dtNt with

a standard Wiener process dWt and use the Taylor expansion of (1� F )dt,
ignoring dtdWt, dt2 and higher, to get

d ln(rt) =

8<:� ln (1� F )
24 1X
j=0

1[j;j+1)(t) ln(Tj)� ln(rt)

35+Dt

9=; dt+ �dWt

(1.2)
The usual Black-Karasinski would be this continuous case, but with �xed mean-
reversion target instead of this random one. See [7], for example.
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[1] integrated the discrete time-step case to:

ln(rt) = ln(r0) (1� F )t + �
p
dt

t
dtX
s=1

Nt�(s�1)dt (1� F )sdt

+ ln(T0)
h
(1� F )(t�t1)+ � (1� F )t

i
+

1X
j=1

ln(Tj)
h
(1� F )(t�tj+1)+ � (1� F )(t�tj)+

i

+dt

t
dtX
s=1

Dt�(s�1)dt (1� F )sdt (1.3)

(the slightly more complicated expression (2.6.2) in [1] reduces to (1.3) upon
ignoring the set of sample paths of measure zero for which some model time-
step t coincides with a random regime-switch point in time tj .)
The problem posed at the conclusion of [1] was to �nd closed forms for the

mean and (by implication) higher moments of the random variable rt. These
would facilitate calibration and interpretation of the model along the lines al-
ready performed in [1] for the traditional mean-reverting lognormal model with
�xed reversion target T :

d ln(rt) =
h
1� (1� F )dt

i
[ln(T )� ln(rt�dt)]

+ (1� F )dtDtdt+ (1� F )dt �
p
dtNt (1.4)

This integrated to

ln(rt) = ln(r0) (1� F )t + �
p
dt

t
dtX
s=1

Nt�(s�1)dt (1� F )sdt

+ ln(T )
h
1� (1� F )t

i
+ dt

t
dtX
s=1

Dt�(s�1)dt (1� F )sdt (1.5)

(see (2.2.4) in [1]) and is analogous to (1.3.) above.
In this traditional mean-reverting lognormal model with �xed reversion tar-

get T , requiring that the model interest rate series display an observed volatility
(after mean reversion) of �2obs, based perhaps on historically observed volatility
of (ln rt � ln rt�dt), and an observed variance Vobs of integrated rates rt across
sample paths for a �xed t in the model, based perhaps on historically observed
variance of the distribution of rt over a long period of time, produced a re-
quirement that the annualized volatility parameter value � and the annualized
mean-reversion parameter value F in the model satisfy,

F = 1�
�
1� �2obsdt

ln (Vobs + T 2)� ln(T 2)

� 1
2dt

and (1.6)

� =
�obs

(1� F )dt
(1.7)
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For the continuous model dt! 0, the identity lim�!0 (1 + a�)
1=�
= ea applied

to (1.6) produces

F = 1� e� 1
2�

2
obs [ln(Vobs+T

2)�ln(T 2)]
�1

(1.8)

for the value of the annualized mean-reversion factor F required to reproduce
Vobs and �2obs. (1.6)-(1.8) correct errors in formulae (2.3.5) and (2.3.6) in [1],
which erroneously con�ated the roles of Vobs and �2obs.
Another application of (1.4) developed in [1] determined the drift compen-

sation function Dt required in the traditional mean-reverting lognormal model
with reversion target T to produce the intuitively desirable relationship

E [rt] = r
(1�F )t
0 T [1�(1�F )

t] (1.9)

where r0 is the starting value of the interest rate in question. According to
(2.2.8) and (2.2.10) in [1] the condition that (1.9) be true is that the drift-
compensation function Dt be given the (perhaps) surprising form:

Dt = �1
2
�2

(1� F )dt

1 + (1� F )dt
h
1 + (1� F )2t�dt

i
, or (1.10)

Dt = �1
4
�2
h
1 + (1� F )2t

i
in the continuous case. (1.11)

Derivation of results corresponding to (1.6)-(1.11) in the case of randomized
mean-reversion targets, (1.1) or (1.2), requires knowledge of the variance and
higher moments of the random variable rt for that case. Such knowledge will
also allow �tting to higher moment conditions analogous to those that led to
(1.6)-(1.8). This will be valuable because empirical evidence to be reviewed in
a later paper suggests that the historical distribution of interest rates displays
lower 4th and 6th moments than the lognormal that results from integrating
a mean-reverting lognormal model with �xed mean-reversion target, while the
historical volatility of interest rates displays higher 4th and 6th moments than
the volatility of the lognormal model with �xed mean-reversion target.
The balance of this paper will derive closed-form approximations for all of

the moments of the random variable rt in the case of randomized mean-reversion
targets (1.1) or (1.2). A family of related approximation techniques that could
be of wider interest to actuaries and �nancial engineers is mentioned, as well.
We will concentrate on the discrete time-step model (1.1) since we can pass to
(1.2) at any point by taking the limit as dt! 0.

2 Integration for the Moments

Moments for the mean-reverting lognormal model (1.4) with �xed mean-reversion
target T fell out easily in [1] because the expression for ln(rt) given at (1.5) is just
a (complicated) sum of constants and constants times standard normal random
variables, so ln(rt) is a normal random variable and rt is a lognormal random
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variable, with � and �2 parameters determined by the constants in (1.5). The
resulting expressions are complicated but tractable. The standard expression

E
h
(rt)

l
i
= el�+

1
2 (l�)

2

(2.1)

for the moments of a lognormal thus becomes available, with complicated � and
� parameters determined by the constants in (1.5). This was the basis for the
results in [1] and in section 1 above about the mean-reverting lognormal with
�xed mean-reversion target T .
This approach does not go through for the model (1.1) with random mean-

reversion targets because the expression for ln(rt) given at (1.3) is not just a
sum of constants and constants times normal random variables. The terms

ln(Tj)
h
(1� F )(t�tj+1)+ � (1� F )(t�tj)+

i
have expressions involving the random variables tj+1 and tj , which are sums of
gamma inter-arrival intervals for regime-switches, exponentiated and multiplied
by the normal random variables ln(Tj). The term

ln(T0)
h
(1� F )(t�t1)+ � (1� F )t

i
involves a random variable t1 that is a random time within the �rst gamma
regime. The cut-o¤ at t in the (t� tj)+ expressions ensures that the moments
of the exponentiated expressions exist, but it adds to the challenge of actually
calculating them. What to do?
First, condition on the random variables ftjgj�1. Then the expression for

ln(rt) given at (1.3) is just a (complicated) sum of constants and constants times
normal random variables, including both fNjg and fln(Tj)g. Conditional on
ftjgj�1, then, ln(rt) is normal and rt is lognormal, with complicated parameters
involving the random variables (1� F )(t�t1)+ andn

(1� F )(t�tj+1)+ � (1� F )(t�tj)+
o
j�1

:

This doesn�t buy us much, because the unconditioned expectations will require
a formidable analysis to unravel expectations involving those complicated para-
meters, derived from the gamma inter-arrival structure for regime-switches.
But next, anticipate the empirical conclusion to be presented in a later paper

that rt has smaller high moments (hence less tail weight) than a lognormal.
In that case, an Edgeworth expansion for ln(rt) might provide a reasonable
approximation for the moments of rt along the lines of (2.1). In section 5 we
derive that expansion and approximation. The �rst few terms are

E
h
(rt)

l
i
� el�+

1
2 (l�)

2

�
1 +

l4

4!

�
�4 � 3�4

��
(2.2)

� el�+
1
2 (l�)

2

�
1 +

l4

4!

�
�4 � 3�4

��
1� 3

4!
(l�)

2

�
+
l6

6!

�
�6 � 15�6

��
(2.3)
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and the general expression is

E
h
(rt)

l
i
=

= el�+
1
2 (l�)

2

(
1 + lim

N!1

NP
j=2

l2j

(2j)!

�
�2j � (2j)?�2j

�N�jP
n=0

(�1)n (2n)?
(2n)!

(l�)
2n

)

(2.4)

where (2n)? = (2n� 1) (2n� 3)���(1) and �, �2, and �2j are the mean, variance,
and higher central moments of ln(rt). We hope to be able to calculate these
moments by conditioning on ftjgj�1. Already, we have been able to exclude
the odd central moments of ln(rt) that would otherwise appear in (2.2)-(2.4)
because, conditional on ftjgj�1, ln(rt) is normal and has odd central moments
equal to 0, so the unconditioned odd central moments also must be 0.
We have not yet made an estimate of the approximation error in (2.2)-

(2.4) so it remains unclear how many terms are needed for good convergence.
One would expect that 4th or 6th moment terms should pick up most of the
departure from lognormality given the the thin tails and broad shoulders that
characterize the historical distribution of ln(rt), but that needs to be veri�ed
in future work. Section 5 mentions some variants of the technique that could
improve convergence if need be. They might be of interest in their own right
to actuaries and �nancial engineers for wider application.
The parameter � that we need in (2.2)-(2.4) is E [ln(rt)]. Conditioning on

ftjgj�1 (1.3) is just constants and normals so

E [ln(rt)] = ln(r0) (1� F )t + ln(T0)
n
E
h
(1� F )(t�t1)+

i
� (1� F )t

o
+�TE

24 1X
j=1

h
(1� F )(t�tj+1)+ � (1� F )(t�tj)+

i35
+dt

t
dtX
s=1

Dt�(s�1)dt (1� F )sdt

= ln(r0) (1� F )t + ln(T0)
n
E
h
(1� F )(t�t1)+

i
� (1� F )t

o
�T

n
1� E

h
(1� F )(t�t1)+

io
(= telescoped

+dt

t
dtX
s=1

Dt�(s�1)dt (1� F )sdt (2.5)

where �T stands for the common mean of fln(Tj)g, the expectation of the
indicated sum telescopes along with the sum by monotone convergence, and
the sum telescopes (eliminating all but the �rst of our troublesome random
variables involving tj) because on almost all paths tj � t for some j and all
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thereafter, making the summands 0 from that point on. We�ll see later that

the remaining expectation E
h
(1� F )(t�t1)+

i
is essentially a constant times a

value of a Laplace transform that we can calculate. (2.5) is the same as (2.6.5)
in [1], which is as far as we got in that paper.
For the variance and higher central moments of ln(rt) that we need in (2.2)-

(2.4), condition on ftjgj�1 so that (1.3) is just constants and independent nor-
mals and use (2.5) and the fact that central moments of a normal distribution
are (2n)?�2n where again (2n)? = (2n� 1) (2n� 3) � � � (1):

E
h
fln(rt)� E [ln(rt)]g2n

i
=

= (2n)?E

248<:�2dt
t
dtX
s=1

(1� F )2sdt + �2T
1X
j=1

e2j

9=;
n35

= (2n)?E

248<:�2dt (1� F )2dt 1� (1� F )2t1� (1� F )2dt
+ �2T

1X
j=1

e2j

9=;
n35 (2.6)

�2T stands for the common variance of fln(Tj)g, for each j the random variable
ej is de�ned by �

ej =
n
(1� F )(t�tj+1)+ � (1� F )(t�tj)+

o
(2.7)

and we summed the geometric series that occurred. For a given application of
(2.2)-(2.4) we will need only a �nite number of n, maybe even just n = 1, 2 and
3, so it is not only correct but probably practical as well to expand the f gn
expression in (2.6) as a binomial. Then the only probabilistic calculations we
will need in order to pass from conditional to unconditioned values in (2.6) are
to evaluate terms of the form

E

240@ 1X
j=1

e2j

1Am35 . (2.8)

arising in the expectation of the binomial expansion of (2.6).
The di¢ culty in evaluating the expectations (2.8) is that, as mentioned

earlier, fejgj�1 are not normal or otherwise friendly random variables, rather
they are complicated outcomes of the gamma inter-arrival structure for regime-
switches. For m > 1 we also face a bewildering array of cross-terms (products
involving di¤erent values of tj) that would seem to defy closed form evaluation.
But we can reduce the m > 1 cases in (2.8) to combinations of things close

to the m = 1 case because ej and ei are uniformly correlated for i 6= j in the
sense of the following lemma, that will be proved in section 4.5. The constants
�a1;:::;ak that occur will be given closed form expression (4.5.8) that can be
calculated (and, obviously, they are symmetric in the subscripts).
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Lemma:

E
�
e2a1j1

� � � e2akjk

�
= �a1;:::;akE

�
e2a1j1

�
� � � E

�
e2akjk

�
when no two of fj1; :::; jkg

are equal, independent of fj1; :::; jkg . � (2.9)

Consider, for example, what (2.9) does for the case m = 2:

E

264
0@ 1X
j=1

e2j

1A2
375 = E

24 1X
j=1

e4j +
1X
j=1

e2j

( 1X
i=1

e2i

!
� e2j

)35
= E

24 1X
j=1

e4j

35+ �1;1 1X
j=1

E
�
e2j
�
E

" 1X
i=1

e2i

!
� e2j

#
, by (2.9)

= E

24 1X
j=1

e4j

35+ �1;1 1X
j=1

E
�
e2j
�(
E

" 1X
i=1

e2i

#
� E

�
e2j
�)

= E

24 1X
j=1

e4j

35+ �1;1E
24 1X
j=1

e2j

(
E

" 1X
i=1

e2i

#
� E

�
e2j
�)35

= E

24 1X
j=1

e4j

35+ �1;1
8><>:
0@E

24 1X
j=1

e2j

351A2

� E

24 1X
j=1

e2jE
�
e2j
�35
9>=>;

(2.10)

where monotone convergence justi�es moving expectations across the in�nite
sums.
Similarly, but already more complex, for m = 3:

E

264
0@ 1X
j=1

e2j

1A3
375 =

= E

26666666664

1X
j=1

e6j + 3
1X
j=1

e4j

( 1X
i=1

e2i

!
� e2j

)

+
1X
j=1

e2j

8>>>><>>>>:

 1X
i=1

e2i

" 1X
k=1

e2k

!
� e2i � e2j

#!

�e2j

" 1X
k=1

e2k

!
� e2j

#
+ e4j

9>>>>=>>>>;

37777777775
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E

264
0@ 1X
j=1

e2j

1A3
375 =

= E

24 1X
j=1

e6j

35+ 3�2;1
8<:E

24 1X
j=1

e4j

35E
24 1X
j=1

e2j

35� E
24 1X
j=1

e4jE
�
e2j
�359=;

+�1;1;1

0@E
24 1X
j=1

e2j

351A3

� 3�1;1;1E

24 1X
j=1

e2j

35E
24 1X
j=1

e2jE
�
e2j
�35

+�1;1;1E

24 1X
j=1

e2j
�
E
�
e2j
��235+ �1;1;1E

24 1X
j=1

e2jE
�
e4j
�35

= E

24 1X
j=1

e6j

35+ 3�2;1E
24 1X
j=1

e4j

35E
24 1X
j=1

e2j

35� �3�2;1 � �1;1;1�E
24 1X
j=1

e4jE
�
e2j
�35

+�1;1;1

8><>:
0@E

24 1X
j=1

e2j

351A3

� 3E

24 1X
j=1

e2j

35E
24 1X
j=1

e2jE
�
e2j
�35

+E

24 1X
j=1

e2j
�
E
�
e2j
��2359=;

(2.11)

A general formulation for any m for the corresponding con�guration of

E

240@ 1X
j=1

e2j

1Am35
has eluded me, but it is clear that for any speci�c m a chain of combinations
such as (2.10) or (2.11) will reduce that expectation to a combination of terms
of the form

E

24 1X
j=1

e2nj
nQ
k=1

�
E
�
e2kj
��nk35 , where nX

k=1

knk � m� n (2.12)

with constants, including the constants �a1;:::;ak . Expressions (2.10) and (2.11)
already give the required combinations for the cases m = 2 or 3 most likely to
be required in practice. Note particularly that in (2.12) it is always the case
that k � n.
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The goal is to evaluate the expectation (2.12). Our results will allow eval-
uation of the slightly more general expectation (2.13) where we do not restrict
ourselves to even powers. Indeed, in the proofs in section 4 it will be essential
to allow odd powers (or at least the power one).

E

24 1X
j=1

enj
nQ
k=1

�
E
�
ekj
��nk35 (2.13)

Section 3 will set up the machinery for and then state results to be proved
in section 4 that reduce the evaluation of expectations of the form (2.13) to the
evaluation of Laplace transforms of the inter-arrival gamma distribution and its
equilibrium distribution, together with the distribution function for the equilib-
rium distribution. This will allow the evaluation of expectations of the form
(2.8) using (2.10), (2.11) and the corresponding expressions for higher values
of m if needed for accuracy. This in turn will allow evaluation of the central
moments of ln(rt) using (2.6). These central moments, together with (2.5),
�nally will allow a closed form approximation to the moments of rt selecting
the approximation from (2.2)-(2.4) depending on the accuracy desired.

3 Set Up and Statement of Results

3.1 De�nitions and Notation:

Let d1;d2; :::;dj ; :::be i.i.d inter-arrival intervals with common law d. It is
necessary to deal with the model assumption that the �rst model inter-arrival
interval re�ects a random starting point within the �rst i.i.d. inter-arrival in-
terval. (At time 0 we have no way of knowing how far along we are in the
current regime.) To handle this, de�ne �d0 by the relationships 0 � �d0 �
d1 and �d0 ' (d1 � �d0) using the notation ' to mean "equal in law." Let
�d stand for the common law of �d0 and (d1 � �d0). Then �d follows the "equi-
librium distribution" corresponding to the distribution of d (see lemma (3.7) to
follow).
Now we can establish the 0 of the time parameter at the random point �d0

within d1. De�ne �d1 = d1 ^ (�d0 + t)� �d0 and

t0 = 0

t1 = �d1

t2 = �d1 + d2

� � �
tj = �d1 + d2 + :::+ dj

so tj � tj�1 = dj for j > 1 and t1 � t0 = t1 = �d1.
For a given time t de�ne the random variable J=min fj : tj � tg (a "stopping

regime") and the indicator random variables f1j<Jgj�1de�ned by 1j<J = 0 for
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j � J and 1j<J = 1 for j < J. Finally, model the fact that the time t occurs
somewhere within the last inter-arrival interval by de�ning �dJ = t � tJ�1 and
�dJ+1 = tJ � t so that

d1;d2; :::;dJ

envelops [0; t] and is the minimal sequence to do so because

t = �d1 + d2 + :::+ dJ�1 + �dJ

where d1 and dJ hang over the edges in the sense that d1 = �d0 + �d1 and
dJ = �dJ + �dJ+1.
To save repetition whenever a speci�c case of (2.13) is unambiguously in-

tended, for any expression x let �(x) stand for xn
nQ
k=1

E
�
xk
�nk so that (2.13) is

abbreviated to E

24 1X
j=1

� (ej)

35.
Finally, de�ne a constant G so that E

h
(1�G)d

i
= E

h
�
�
(1� F )d

�i
. That

is, letting Ld(x) be the Laplace transform of the density for d evaluated at x
and L�1d (y) be its inverse (inverse function, not inverse transform) evaluated at
y, then de�ne

(1�G) = exp
n
�L�1d (E

h
�
�
(1� F )d

�i
)
o
, so (3.1)

(1�G)d = exp
n
�dL�1d (E

h
�
�
(1� F )d

�i
)
o

E
h
(1�G)d

i
= Ld

n
L�1d (E

h
�
�
(1� F )d

�io
E
h
(1�G)d

i
= E

h
�
�
(1� F )d

�i
(3.2)

3.2 Main Results

The goal is to evaluate the expectation (2.13).
Theorem:

E

24 1X
j=1

enj
nQ
k=1

�
E
�
ekj
��nk35 =

= K
n
E
h
�
�
(1� F )�d^t

�i
� P

�
�d �t

�
�
�
(1� F )t

�o E h� �1� (1� F )d�i
1� E

h
�
�
(1� F )d

�i +
+E

h
�
�
1� (1� F )�d^t

�i
� P

�
�d �t

�
�
�
1� (1� F )t

�
(3.3)

where the constant K is

K = 1�E
��
E
h
�
�
(1� F )d

�i�J�2
j J > 1

�
�
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Lack of a closed form for the distribution of the stopping regime J, or at
least for its Laplace transform, will make it impossible to calculate with theorem
(3.3). However, theorem (3.3) as a general result for all F , n, and fnkgk�n will
allow a proof for a more tractable corollary from a computational standpoint.
Corollary:

K = 1� (1�G)t
E
h
(1�G)��d^t

i
� P

�
�d �t

�
(1�G)�t

E
h
(1�G)�d^t

i
� P

�
�d �t

�
(1�G)t

� (3.4)

(1�G) is computable using (3.1) so corollary (3.4) eliminates the need to
know the distribution of J or its Laplace transform. Putting this value for K
back into theorem (3.3) we can evaluate (2.13) as
Theorem:

E

24 1X
j=1

enj
nQ
k=1

�
E
�
ekj
��nk35 =

=

0@1� (1�G)t E
h
(1�G)��d^t

i
� P

�
�d �t

�
(1�G)�t

E
h
(1�G)�d^t

i
� P

�
�d �t

�
(1�G)t

1A �
�
n
E
h
�
�
(1� F )�d^t

�i
� P

�
�d �t

�
�
�
(1� F )t

�o E h� �1� (1� F )d�i
1� E

h
�
�
(1� F )d

�i +
+E

h
�
�
1� (1� F )�d^t

�i
� P

�
�d �t

�
�
�
1� (1� F )t

�
(3.5)

�

Asymptotically this gives a more digestible result
Corollary:

lim
t!1

E

24 1X
j=1

enj
nQ
k=1

�
E
�
ekj
��nk35 =

=
E
h
�
�
(1� F )�d

�i
E
h
�
�
1� (1� F )d

�i
1� E

h
�
�
(1� F )d

�i + E
h
�
�
1� (1� F )�d

�i
(3.6)

�

Corollary (3.6) has an intuitive interpretation. The numerator re�ects a
common factor within all of the ej prior to the last regime. The �rst factor in the
numerator re�ects a part of that common factor stemming from an overhang into
the last regime. The denominator comes from summing an in�nite geometric
series that re�ects factors within the ej that vary with j. The �nal term picks

12



up an e¤ect that persists into the limit from the truncation of ej in the last
regime when t <1.
All the additional complexity in theorem (3.5) captures the e¤ects of stop-

ping the process at t: (a) on almost all paths the geometric series has only a
�nite number of terms and (b) there is a non-zero residual likelihood that no
regime change occurs.

3.3 Computation

Every element of theorem (3.5) or corollary (3.6) can be computed, as well
as every element of expression (4.5.8) below for the �a1;:::;ak of lemma (2.9)
needed in (2.10)-(2.11), if we know the probability distribution function for �d
and the Laplace transforms Ld, L�d and L�d^t for the densities of d, �d and �d^ t.
All expressions of the form E [xv] for v one of those random variables can be
evaluated as Lv [� ln (x)]. The constant 1�G is de�ned in terms of L�1d (see
(3.1)).
In practical applications we are likely to know the distribution function

for �d and the Laplace transforms Ld, L�d and L�d^t. For example, with our
gamma (�; �) assumption for d, the Laplace transform is well-known or can be
integrated directly

Ld (x) =
1

� (�)��

Z 1

0

e�xtt��1e�
t
� dt

=
1

� (�)��
� (�)

�
�

�x+ 1

��
= (1 + �x)

��

L�1d (y) =
1

�

�
y�

1
� � 1

�
.

The random variable �d follows the equilibrium distribution corresponding to

d, i.e. �d has non-negative support and d ' �d+ �d
0

, where �d ' �d
0

, but obviously
not independent.
Lemma: The probability density function of �d is given by

f�d (x) =
P [d � x]

E [d]
(3.7)

Proof: This is a well known property of the equilibrium distribution proven
by conditioning on the value of �d

0 ' �d.

f�d (x) =

Z 1

0

f�d0 (y) fd (x+ yjd � y) dy

=

Z 1

0

f�d (y)
fd (x+ y)

P [d � y]
dy, an integral equation for f�d (x) .

13



Since
Z 1

0

P [d � x] dx = E [d] (integrate by parts) guess that the solution

for the integral equation is

f�d (x) =
P [d � x]

E [d]
, which works. �

In our case,

P
�
�d � t

�
=

Z 1

t

P [d � s]

E [d]
ds = 1� �

�
�+ 1;

t

�

�
� t

��

�
1� �

�
�;

t

�

��
after an integration by parts, using incomplete gamma functions. L�d^t is given
by

L�d^t (x) =
1

E [d]

Z t

0

e�xsP [d �s] ds+ e�xtP
�
�d �t

�

=
1

��x

�
1� e�xt

�
1� �

�
�;

t

�

��
� (1 + �x)�� �

�
�;
(1 + �x) t

�

��
+e�xt

�
1� �

�
�+ 1;

t

�

�
� t

��

�
1� �

�
�;

t

�

���
after an integration by parts. Letting t!1 gives

L�d (x) =
1

��x

h
1� (1 + �x)��

i
These formulae allow us to calculate all of the values in theorem (3.5), corol-

lary (3.6), and expression (4.5.8) so we can calculate (2.12) and all �a1;:::;ak and
with them all of the values in section 2 leading to the calculation of approximate
values (2.2) to (2.4) for any moments of the random variable rt.
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4 Proofs of the Main Results

Theorem (3.3) is the key. We show in section 4.2 how assuming theorem (3.3)
opens the rest of the doors. Then in section 4.4 we prove theorem (3.3) itself.
Sections 4.1 and 4.3 provide some some required preliminary results about the
interarrival structure. Finally, section 4.5 proves lemma (2.9).

4.1 Lemmata for Corollary (3.4)

Lemma:
t1 ' �d ^ t where " ' " means "equal in law" (4.1.1)

Proof: By de�nition (see section 3.1)

t1 = �d1 = d1 ^ (�d0 + t)� �d0
so t1 = (d1 � �d0) ^ t

but by de�nition d1 � �d0 ' �d �

Lemma:

J = 1, t1 = t (4.1.2)

Proof: By de�nition

J = 1, t1 � t

and (4.1.1) implies t1 � t

so J = 1, t1 = t �

Lemma:
P [J = 1] = P

�
�d � t

�
(4.1.3)

Proof: By (4.1.2.)

P [J = 1] = P [t1 = t]

= P
�
�d ^ t = t

�
by (4.1.1.)

= P
�
�d � t

�
�

Lemma: For any constant G:

E

24 1X
j=1

n
(1�G)(t�tj+1)+ � (1�G)(t�tj)+

o35 =
= 1� P

�
�d � t

�
� (1�G)t

n
E
h
(1�G)��d^t

i
� P

�
�d � t

�
(1�G)�t

o
(4.1.4)
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Proof: On almost all paths, tj � t for some tj and all thereafter causing
the sum to telescope. By monotone convergence the expectation also telescopes:

E

24 1X
j=1

n
(1�G)(t�tj+1)+ � (1�G)(t�tj)+

o35 =

= E
h
1� (1�G)(t�t1)+

i
= 1� P [J = 1]� P [J > 1]E

h
(1�G)t�t1 jJ > 1

i
conditioning on J

and using (4.1.2)

= 1� P [J = 1]� (1�G)t P [J > 1]E
h
(1�G)�t1 jJ > 1

i
= 1� P [J = 1]� (1�G)t

n
E
h
(1�G)�t1

i
� P [J = 1]E

h
(1�G)�t1 jJ = 1

io
conditioning on J again

= 1� P
�
�d � t

�
� (1�G)t

n
E
h
(1�G)��d^t

i
� P

�
�d � t

�
(1�G)�t

o
by (4.1.3), (4.1.1), and (4.1.2) �

4.2 Assuming Theorem (3.3) to be true

For this section we assume theorem (3.3) to be true for all choices of F , n, and
fnkgk�n. Note that for all such choices the random variables d, �d, ftjgj�1,
and J remain the same. They characterize the interarrival structure which we
assume to be set once and for all throughout all of this work.
Proof of corollary (3.4). Consider the case of theorem (3.3) when n = 1,
n1 = 0 and F takes the value G given by (3.1) for some other general choice of
F , n, and fnkgk�n. Using de�nition (2.7) on the left hand side and putting
the expression for K right into the statement, theorem (3.3) reads:

E

24 1X
j=1

n
(1�G)(t�tj+1)+ � (1�G)(t�tj)+

o35 =

=

�
1� E

��
E
h
(1�G)d

i�J�2
j J > 1

��
�

�
n
E
h
(1�G)�d^t

i
� P

�
�d �t

�
(1�G)t

o E h1� (1�G)di
1� E

h
(1�G)d

i +
+E

h
1� (1�G)�d^t

i
� P

�
�d �t

� �
1� (1�G)t

�
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E

24 1X
j=1

n
(1�G)(t�tj+1)+ � (1�G)(t�tj)+

o35 =

=

�
1� E

��
E
h
(1�G)d

i�J�2
j J > 1

��
�

�
n
E
h
(1�G)�d^t

i
� P

�
�d �t

�
(1�G)t

o
+1� E

h
(1�G)�d^t

i
� P

�
�d �t

�
+ P

�
�d �t

�
(1�G)t

Substitute the expression from (3.2) into the right hand side:

E

24 1X
j=1

n
(1�G)(t�tj+1)+ � (1�G)(t�tj)+

o35 =

=

�
1� E

��
E
h
�
�
(1� F )d

�i�J�2
j J > 1

��
�

�
n
E
h
(1�G)�d^t

i
� P

�
�d �t

�
(1�G)t

o
+1� E

h
(1�G)�d^t

i
� P

�
�d �t

�
+ P

�
�d >t

�
(1�G)t

Rearrange and simplify to isolate

1� E
��
E
h
�
�
(1� F )d

�i�J�2
j J > 1

�
=

= 1 +

E

24 1X
j=1

n
(1�G)(t�tj+1)+ � (1�G)(t�tj)+

o35� �1� P ��d �t��
E
h
(1�G)�d^t

i
� P

�
�d >t

�
(1�G)t

and substitute the expression from (4.1.4) into the numerator

= 1� (1�G)t
E
h
(1�G)��d^t

i
� P

�
�d � t

�
(1�G)�t

E
h
(1�G)�d^t

i
� P

�
�d >t

�
(1�G)t

proving corollary (3.4)
Proof of Theorem (3.5). Substitute the expression from corollary (3.4) into
the statement of theorem (3.3).
Proof of Corollary (3.6). Take limt!1 in the statement of Theorem
(3.5). Note, (3.2) and 0 < (1 � F ) < 1 imply that 0 < (1 � G) < 1 so
limt�!1 (1�G)t = 0.
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4.3 Lemmata for Theorem (3.3)

Lemma:

As joint distributions
�
J, �dJ

	
'

�
J, �d1

	
where " ' " means "equal in law"

(4.3.1)

Proof: Consider the i.i.d. inter-arrival intervals with common law d

d1, d2, ... , dJ

de�ned in section 3.1 to envelop the interval [0; t]. Model it as arising from a
larger sequence of i.i.d. inter-arrival intervals with common law d

d00, d
0
1, ... d

0
k, ..., d

0
M0 , d0M0+1, d

0
M0+2, ... , d

0
M0+J�1, d

0
M0+J

where d00 starts at some large negative value �T of the time parameter and

M0 = max

(
m :

mX
k=0

d0k < T

)
. Then d0M0+1 is the interval containing 0 and

d0M0+J is the interval containing t where J is as de�ned in section 3.1. Ignoring

the set of paths of measure zero on which
M0+1X
k=0

d0k = T ,

lim
T!1

�
d0m+1,d

0
m+2, ... , d

0
m+j�1, d

0
m+j jm =M0, j = J

	
'

' fd1, d2, ... , dj�1, dj jj = Jg

as joint distributions enveloping the interval [0; t] because in section 3.1 we
established 0 at a random point within d1 and in the limit on the left the
de�nition of M0 accomplishes the same thing within d0m+1.
Alternatively, model

d1, d2, ... , dJ

as arising from a di¤erent sequence of i.i.d. inter-arrival intervals with common
law d

d00M00�1,d
00
M00�2, ..., d

00
M00�J+1, d

00
M00�J, d

00
M00�J�1, ... ,d

00
k , ...,d

00
1 , d

00
0

where d000 ends at some large positive value t + T of the time parameter and

M00 = min

(
m :

m�1X
k=0

d00k > t+ T

)
. Then d00M00�1 is the interval containing 0

and d00M00�J is the interval containing t. Ignoring the set of paths of measure

zero on which
M00�1X
k=0

d00k = t+ T ,
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lim
T!1

�
d00m�1,d

00
m�2, ... , d

00
m�j+1, d

00
m�j jm =M00, j = J

	
'

' fd1, d2, ... , dj�1, dj jj = Jg

as joint distributions enveloping the interval [0; t] because in section 3.1 we
established 0 at a random point within d1 and in the limit on the left the
de�nition of M 00 accomplishes the same thing within d00m�1.

But conditional on j = J we have M
00 � j � 1 = max

(
m :

mX
k=0

d00k < T

)
so

running backwards and interchanging the roles of 0 and t there is a symmetry
with the �rst case that can be expressed as

fdj , dj�1, ... , d2, d1jj = Jg '

' lim
T!1

n
d
00

m�j ,d
00
m�j+1, ... , d

00
m�2, d

00
m�1jm =M00, j = J

o
' lim

T!1

�
d0m+1,d

0
m+2, ... , d

0
m+j�1, d

0
m+j jm =M0, j = J

	
' fd1, d2, ... , dj�1, dj jj = Jg

as joint distributions enveloping the interval [0; t].
Furthermore, under this symmetry �dJ+1 on the left (as de�ned in section

3.1) corresponds on the right to �d0 (as de�ned in section 3.1). Therefore, using
the de�nitions of �dJ and �d1 from section 3.1�

�dJ, J
	
=
�
dJ � �dJ+1, J

	
'
�
d1 � �d0, J

	
=
�
�d1, J

	
�

Lemma: The common law of �dJ and �d1 is

�dJ ' �d1 ' �d ^ t (4.3.2)

Proof: directly from (4.3.1) and (4.1.1) since t1 = �d1 by de�nition in section
3.1 �
It is important to note that while �d1 and �dJ have a common law, they are

not independent. The relation

t = �d1 + d2 + :::+ dJ�1 + �dJ,

not to mention the possibility that J = 1, entangles their distributions and leads
to most of the complexity in theorem (3.3) and theorem (3.5). The following
lemmata, however, provide enough independence to prove theorem (3.3) and
resolve (12.13).
Lemma:

J = 1, �dJ = �d1 = t (4.3.3)

Proof: By (4.1.2), (4.3.1) and the de�nition t1 = �d1 �
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Lemma: Conditional on J = j0 > 1 the following are each sets of indepen-
dent random variables�

J,�d1
	
,
�
�d1;d2; :::;dj0�1

	
,
�
d2; :::;dj0�1; �dj0

	
and

�
J,�dJ

	
(4.3.4)

Proof: Independence of the �rst three sets, conditional on J = j0 > 1,
follows directly from the independence of fd1, d2, ... , dj0g and the de�nitions
of �d1, J and �dJ in section 3.1. Independence of

�
J, �dJ

	
, conditional on J > 1,

follows from (4.3.1) and the independence of
�
J, �d1

	
conditional on J > 1. �

Lemma: Conditional on J = j0 > j � 1 the indicator random variables
f1j<Jgj�1 de�ned in section 3.1 satisfy

1j<J is independent of fdj+1; :::;dj0�1g . (4.3.5)

Proof: Directly from (4.3.4) upon noting that by de�nition 1j<J is deter-
mined completely by

tj = �d1 + d2 + :::+ dj �

De�nition: With ej as de�ned at (2.7) de�ne

�ej = (1� F )�
�dJ ej (4.3.6)

Lemma: �ej can be expressed as follows:

�ej = (1� F )dj+2+:::+dJ�1
�
1� (1� F )dj+1

�
for j < J� 1,

�eJ�1 = (1� F )��dJ � 1, and
�ej = 0 for j � J (4.3.7)

Proof: Directly from the de�nition of J in section 3.1, de�nitions (2.7) and
(4.3.6), and the relation t� tj = dj+1 + :::+ dJ�1 + �dJ �

4.4 Proof of Theorem (3.3)

The proof is inspired by the proof of Wald�s equations in [2].
When J = 1, the exponents (t � tj)+ and (t � tj+1)+ appearing in the

de�nition of ej at (2.7) are 0 for all j � 1 making each term of E

24 1X
j=1

� (ej)

35
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vanish, so

E

24 1X
j=1

� (ej)

35 = P [J > 1]E

24 1X
j=1

� (ej) jJ > 1

35
= P [J > 1]E

24 1X
j=1; 6=J�1

�
�
(1� F )�dJ

�
� (�ej) jJ > 1

35+
+P [J > 1]E [� (eJ�1) jJ > 1] , using (4.3.6),(4.3.7)&(2.7).

= A+B (4.4.1)

Work on A �rst. Use (4.3.7) to justify the introduction of indicator random
variables:

A = P [J > 1]E

24 1X
j=1; 6=J�1

�
�
(1� F )�dJ

�
� (�ej) jJ > 1

35
= P [J > 1]E

24 1X
j=1; 6=J�1

�
�
(1� F )�dJ

�
1j<J� (�ej) jJ > 1

35 , by (4.3.7).

= P [J > 1]
1X

j=1; 6=J�1
E
h
�
�
(1� F )�dJ

�
1j<JjJ > 1

i
E [� (�ej) jJ > 1] , by

monotone convergence, with (4.3.7), (4.3.4) and (4.3.5) for independence.

= P [J > 1]E

248<:
1X

j=1; 6=J�1
�
�
(1� F )�dJ

�
1j<JE [� (�ej) jJ > 1]

9=; jJ > 1
35 , by

monotone convergence.

= P [J > 1]E

248<:� �(1� F )�dJ�
1X

j=1; 6=J�1
1j<JE [� (�ej) jJ > 1]

9=; jJ > 1
35

= P [J > 1]E

248<:� �(1� F )�dJ�
J�2X
j=1

E [� (�ej) jJ > 1]

9=; jJ > 1
35 because the

indicators kill all terms beyond J� 1 and the J� 1 term was

removed earlier.

A = P [J > 1]E

248<:
J�2X
j=1

E [� (�ej) jJ > 1]

9=; jJ > 1
35E h� �(1� F )�dJ� jJ > 1i ,

by (4.3.4) for independence

(4.4.2)
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Now use (4.3.7) to conclude that for j � J� 2

E [� (�ej) jJ > 1] = E
h
�
�
(1� F )dj+2+:::+dJ�1

�
1� (1� F )dj+1

��
jJ > 1

i
= E

h
�
�
(1� F )dj+2+:::+dJ�1

�
jJ > 1

i
�

�E
h
�
�
1� (1� F )dj+1

�
jJ > 1

i
=

�
E
h
�
�
(1� F )d

�i�J�2�j
E
h
�
�
1� (1� F )d

�i
, by

the section 3.1 de�nition of fdjg to be i.i.d. with law d
(and with no dependence on J.)

Substitute this expression into (4.4.2) and pull the E
h
�
�
1� (1� F )d

�i
factor

out of the sum and the expectation giving

A = P [J > 1]E

248<:
J�2X
j=1

�
E
h
�
�
(1� F )d

�i�J�2�j9=; jJ > 1
35 �

�E
h
�
�
(1� F )�dJ

�
jJ > 1

i
E
h
�
�
1� (1� F )d

�i
Sum the geometric series

J�2X
j=1

�
E
h
�
�
(1� F )d

�i�J�2�j
=
1�

�
E
h
�
�
(1� F )d

�i�J�2
1� E

h
�
�
(1� F )d

�i
and pull the 1� E

h
�
�
(1� F )d

�i
factor out of the expectation giving

A = P [J > 1]E
��
1�

�
E
h
�
�
(1� F )d

�i�J�2�
jJ > 1

�
�

�E
h
�
�
(1� F )�dJ

�
jJ > 1

i E h� �1� (1� F )d�i
1� E

h
�
�
(1� F )d

�i
= KP [J > 1]E

h
�
�
(1� F )�dJ

�
jJ > 1

i E h� �1� (1� F )d�i
1� E

h
�
�
(1� F )d

�i
(4.4.3)

where

K = 1� E
��
E
h
�
�
(1� F )d

�i�J�2
j J > 1

�
as in the statement of theorem (3.3).
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But conditioning on J = or > 1,

P [J > 1]E
h
�
�
(1� F )�dJ

�
jJ > 1

i
=

= E
h
�
�
(1� F )�dJ

�i
� P [J = 1]E

h
�
�
(1� F )�dJ

�
jJ = 1

i
= E

h
�
�
(1� F )�d^t

�i
� P

�
�d � t

�
�
�
(1� F )t

�
, by (4.3.2) for the �rst

expectation, (4.1.3) for the probability, and (4.3.3) for the second

expectation.

Substitute this expression into (4.4.3) to get

A = K
n
E
h
�
�
(1� F )�d^t

�i
� P

�
�d � t

�
�
�
(1� F )t

�o E h� �1� (1� F )d�i
1� E

h
�
�
(1� F )d

�i
for the �rst term in (4.4.1). A similar conditioning on J = or > 1 eliminates J
from the second term B making up (4.4.1):

B = P [J > 1]E [� (eJ�1) jJ > 1]

= P [J > 1]E
h
�
�
1� (1� F )�dJ

�
jJ > 1

i
,

by (2.7), the de�nition of J in section 3.1, and the relation t� tJ�1 = �dJ. So

B = E
h
�
�
1� (1� F )�dJ

�i
� P [J = 1]E

h
�
�
1� (1� F )�dJ

�
jJ = 1

i
= E

h
�
�
1� (1� F )�d^t

�i
� P

�
�d � t

�
�
�
1� (1� F )t

�
, for the same

reasons as in the expression for A.

Using (4.4.1) the expressions for A, B and K that we have derived establish
theorem (3.3) �

4.5 Proof of Lemma (2.9)

Lemma:

E
�
e2a1j1

� � � e2akjk

�
= �a1;:::;akE

�
e2a1j1

�
� � � E

�
e2akjk

�
when no two of fj1; :::; jkg

are equal, independent of fj1; :::; jkg . � (2.9)

Proof: This proof is more easy to grasp now, with the material in sections
4.1, 4.2, 4.3 and 4.4 in hand, than it would have been when the lemma was
stated. If J = 1 then lemma (4.1.2) and the de�nition (2.7) of ej make the
lemma trivially true so we can assume J > 1. Assume j1 = max fj1; :::; jkg.
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Then applying lemma (4.3.7) and de�nition (4.3.6) to e2a1j1
, but de�nition (2.7)

and the de�nition of tk in section (3.1) to e
2ai
ji

for all i > 1,

E
�
e2a1j1

� � � e2akjk
jJ > 1

�
=

= E
�
(1� F )2a1�dJ (1� F )2a1(dj1+2+:::+dJ�1)

�
1� (1� F )dj1+1

�2a1
�

�
kY
i=2

��
(1� F )dji+1 � 1

�2ai
(1� F )2ai(d2+:::+dji) (1� F )2ai�d1

�
jJ > 1

#
,

which by lemma (4.3.4)

= E

"
(1� F )2a1�dJ

kY
i=2

(1� F )2ai�d1 jJ > 1
#
�

�E
�
(1� F )2a1(dj1+2+:::+dJ�1)

�
1� (1� F )dj1+1

�2a1
jJ > 1

�
�

�E
"
kY
i=2

�
(1� F )dji+1 � 1

�2ai
(1� F )2ai(d2+:::+dji) jJ > 1

#
.

(4.5.1)

So if we recursively de�ne

�a1;:::;ak = �a1;a2+:::+ak�a2;:::;ak where the recursion starts with

�a;b =
E
h
(1� F )2a�dJ (1� F )2b�d1 jJ > 1

i
E
h
(1� F )2a�dJ jJ > 1

i
E
h
(1� F )2b�d1 jJ > 1

i for any a; b.
(4.5.2)

then successively for a1, a2, ... , ak we can just reverse the process from (4.5.1)
back to the statement of the lemma. �
But we want a computable version of �a1;:::;ak , so there�s more work to do.

Conditioning on J = or > 1 and using (4.3.2), (4.1.3), and (4.3.3), for any a; b

E
h
(1� F )2a�dJ jJ > 1

i
=

E
h
(1� F )2a�dJ

i
� P [J = 1]E

h
(1� F )2a�dJ jJ = 1

i
= E

h
(1� F )2a�d^t

i
� P

�
�d � t

�
(1� F )2at ,

(4.5.3)

each term of which can be computed by the recipes in section 3.3.
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In exactly the same way

E
h
(1� F )2b�dJ jJ > 1

i
=

E
h
(1� F )2b�dJ

i
� P [J = 1]E

h
(1� F )2b�dJ jJ = 1

i
= E

h
(1� F )2b�d^t

i
� P

�
�d � t

�
(1� F )2bt .

(4.5.4)

The numerator of (4.5.2) requires a little more. Assume for convenience
that a � b (the result has to be symmetric anyway)

E
h
(1� F )2a�dJ (1� F )2b�d1 jJ > 1

i
=

= E
h
(1� F )2a�dJ (1� F )2b[t�(�dJ+dJ�1+:::+d2)] jJ > 1

i
= (1� F )2bt E

h
(1� F )2(a�b)�dJ jJ > 1

i
�

�E
h
(1� F )�2b(dJ�1+:::+d2) jJ > 1

i
by (4.3.4)

= (1� F )2bt
n
E
h
(1� F )2(a�b)�d^t

i
� P

�
�d � t

�
(1� F )2(a�b)t

o
�

�E
��
E
h
(1� F )�2bd

i�J�2
jJ > 1

�
(4.5.5)

by conditioning on J = or > 1 and (4.3.2), (4.1.3), and (4.3.3) for the �rst
expectation, and by (4.3.4) for the second expectation. We�ve seen something
like that last factor before.
Analogous to (3.1) de�ne H by

(1�H) = (1� F )�2b (4.5.6)

so as in (3.2)

E
h
(1�H)d

i
= E

h
(1� F )�2bd

i
and by corollary (3.4)

E
��
E
h
(1� F )�2bd

i�J�2
jJ > 1

�
=

= (1� F )�2bt
E
h
(1� F )2b�d^t

i
� P

�
�d �t

�
(1� F )2bt

E
h
(1� F )�2b�d^t

i
� P

�
�d �t

�
(1� F )�2bt

using (4.5.6)

(4.5.7)
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So

�a;b =
1

D

n
E
h
(1� F )2(a�b)�d^t

i
� P

�
�d � t

�
(1� F )2(a�b)t

o
where

D =
n
E
h
(1� F )2a�d^t

i
� P

�
�d � t

�
(1� F )2at

o
�

�
n
E
h
(1� F )�2b�d^t

i
� P

�
�d �t

�
(1� F )�2bt

o
, by (4.5.2)-(4.5.5)

and (4.5.7), and

�a1;:::;ak = �a1;a2+:::+ak�a2;:::;ak recursively. (4.5.8)

. These �a1;:::;ak of lemma (2.9) can be computed using the formulae of section
3.3 so that they can be available to calculate (2.8) along the lines of (2.10)-(2.11).

5 Derivation of the Approximation Series

The only remaining loose end is to justify the series (2.2)-(2.4) suggested to
approximate the moments of rt. These follow from an Edgeworth expansion of
the probability density function for ln (rt). Section 5.1 will present the general
Edgeworth expansion. Section 5.2 will apply it to the approximation of the
moments of rt.

5.1 Edgeworth expansion

The Edgeworth usually gets presented in terms of Hermite polynomials, taking
advantage of their orthogonality properties. For example, see the development
in [8]. For this presentation, we work directly with Fourier transforms because
the nature of the approximation will be more transparent and the polynomials
will disappear almost as soon as they arise anyway as we move toward the
moments we need.
We�ll de�ne our Fourier transforms as

f̂ (t) =

Z 1

�1
e�itxf (x) dx, so

f̂ (n) (t) = (�1)n in
Z 1

�1
xne�itxf (x) dx

= i�n\(xnf) (t) , and (5.1.1)

\�f (n)� (t) = intnf̂ (t) (5.1.2)

When fX (x) is the probability density function for a random variable X

f̂
(n)
X (0) = i�nE [Xn] when the expectation exists. (5.1.3)
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If � (x) is the standard normal probability density function

� (x) =
1p
2�
e�

1
2x

2

, then (5.1.4)

b� (t) = e�
1
2 t

2

is well-known (integrate by parts) and (5.1.5)b�(n) (0) = i�nn? follows, where we de�ne (5.1.6)

n? = (n� 1) (n� 3) � � � 1 for n even and (5.1.7)

n? = 0 for n odd, and 
1b� (t)
!(n)
t=0

= n? by (5.1.5) and (5.1.6) (it can only di¤er (5.1.8)

from (5.1.6) by signs and the reciprocal of

(5.1.5) can produce only + signs.)

Let W be any random variable with mean 0 and variance 1; let fW (x) be
its probability density function. Then

dfW (t) =

"dfW (t)

 
1b� (t)
!# b� (t)

=

8<:
1X
n=0

1

n!

"dfW (t)

 
1b� (t)
!#(n)

t=0

tn

9=;b� (t) , by Taylor�s expansion
so

fW (w) =
1X
n=0

1

n!

"dfW (t)

 
1b� (t)
!#(n)

t=0

i�n�(n) (w) , by (5.1.2) (5.1.9)

Use Leibniz�s rule on the derivative, keeping the �rst term isolated to prepare
for a trick"dfW (t)

 
1b� (t)
!#(n)

t=0

=

 
1b� (t)
!(n)
t=0

+

nX
j=1

n!

j! (n� j)!
dfW(j)

(0)

 
1b� (t)
!(n�j)
t=0

.

Here�s the trick:

0 =

"b� (t) 1b� (t)
!#(n)

t=0

=

 
1b� (t)
!(n)
t=0

+
nX
j=1

n!

j! (n� j)!
b�(j) (0) 1b� (t)

!(n�j)
t=0

,

so subtracting"dfW (t)

 
1b� (t)
!#(n)

t=0

=

nX
j=1

n!

j! (n� j)!

�dfW(j)
(0)� b�(j) (0)� 1b� (t)

!(n�j)
t=0

.
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ButW is mean 0 variance 1 so by (5.1.3)"dfW (t)

 
1b� (t)
!#(n)

t=0

=
nX
j=3

n!

j! (n� j)!

�dfW(j)
(0)� b�(j) (0)� 1b� (t)

!(n�j)
t=0

.

Now use (5.1.3), (5.1.6) and (5.1.8) to provide expressions for the derivatives"dfW (t)

 
1b� (t)
!#(n)

t=0

=
nX
j=3

n! (n� j)?
j! (n� j)! i

�j �E �Wj
�
� j?

�
.

Put this expression into (5.1.9)

fW (w) = � (w) +
1X
n=0

1

n!

nX
j=3

n! (n� j)?
j! (n� j)! i

�n�j �E �Wj
�
� j?

�
�(n) (w)

and change the order of summation, emphasizing the limit so as to prepare for
a change of variables

fW (w) = � (w) + lim
N!1

NX
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1

j!

�
E
�
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�
� j?

� NX
n=j

(n� j)?
(n� j)! i

�n�j�(n) (w) .

Now change n+ j for n

fW (w) = � (w) + lim
N!1

NX
j=3

1

j!

�
E
�
Wj

�
� j?

�N�jX
n=0

n?

n!
i�n�2j�(n+j) (w)
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1
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�
E
�
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�
� j?

� bN�j
2 cX

n=0

(2n)?

(2n)!
i�2n�2j�(2n+j) (w) ,

by (5.1.7) where
�
N � j
2

�
is the largest integer in

N � j
2

.

= � (w) + lim
N!1

NX
j=3

1

j!

�
E
�
Wj

�
� j?

� bN�j
2 cX

n=0

(2n)?

(2n)!
(�1)n+j �(2n+j) (w) .

(5.1.10)

The derivative can be evaluated directly from the de�nition (5.1.4) of �,
either laboriously or more expeditiously using Faá di Bruno�s formula (see [5])
for the chain rule of higher derivatives. Either way the result is

�(2n+j) (w) =

264n+b
j
2cX

k=0

(2n+ j)! (2k)?

(2n+ j � 2k)! (2k)! (�1)
2n+j�k

w2n+j�2k

375� (w) .
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The polynomials in the brackets are the Hermite polynomials. Substitute into
(5.1.10) and simplify the signs

fW (w) = � (w) + lim
N!1

NX
j=3

1

j!

�
E
�
Wj

�
� j?

� bN�j
2 cX

n=0

(2n)?

(2n)!
(�1)n �

�
n+b j2cX
k=0

(2n+ j)! (2k)?

(2n+ j � 2k)! (2k)! (�1)
k
w2n+j�2k� (w)

This is the Edgeworth expansion forW. Remember thatW is mean 0 variance
1. For a more general random variableY = �W+� a simple change of variables
gives

fY (y) =
1

�
�

�
y � �
�

�
+ lim
N!1

NX
j=3

1

j!

��j
�j
� j?

� bN�j
2 cX

n=0

(2n)?

(2n)!
(�1)n �

�
n+b j2cX
k=0

(2n+ j)! (2k)?

(2n+ j � 2k)! (2k)! (�1)
k

�
y � �
�

�2n+j�2k
1

�
�

�
y � �
�

�
,

where �j is the j-th central moment of Y.

(5.1.11)

(5.1.11) is the Edgeworth expansion for the probability density function of
a general random variable Y. This is the nexus of a lot of possible alternatives
so before moving on to use it in section 5.2 for our current application it is
worth pointing out some of the sights. If we had chosen to make the Taylor�s
expansion at (5.1.9) around some point other than t = 0 we would have arrived
at an expression that, upon a certain optimization of the point t, is known
to statisticians as the saddlepoint approximation ([8]) and to actuaries as the
Esscher approximation ([3] and [4]).
If we had chosen to set up the expression at (5.1.9) using the Fourier trans-

form b of some other probability density  rather than b� of the standard normal
�, then we would have arrived at an expression involving  

�
y��
�

�
, a di¤erent

polynomial (or some other function) re�ecting derivatives of  (Faá di Bruno�s
formula [5] could come in handy), and the di¤erence between standardized cen-
tral moments of Y and the central moments of  . Thus  would serve as a
kind of model for fY with an approximation analogous to (5.1.11) building o¤
departures of the moments of fY from those of  . Depending upon the situ-
ation, a judicious choice for  could a¤ect dramatically either the convergence
of the approximation or the expanatory power of the expansion, or both. For
heavy-tail situations (not what we have in the present application) a logistic  
might be suggested. In applications involving regime-switching, likely candi-
dates for  include the gamma, the inverse Gaussian, and the inverse logistic

29



(de�ned by analogy with the inverse Gaussian) all of which are implicated in
various waiting times.
Considering the power that the Esscher has shown in actuarial and �nancial

applications (see [6], for the primal example of the latter) this nexus of possible
models ought to be a rich mine for actuaries and �nancial engineers looking for
computable and/or explanatory models.

5.2 Approximation for the Moments of rt
Take Y in (5.1.11) to be ln (rt) and use it to create an expression for the l-th
moment E

�
rlt
�
of rt.

E
�
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= E

h
el ln(rt)

i
= E

�
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=

1Z
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elyfY (y) dy
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Now complete the square in the exponent, just as if you were �nding the mo-
ments of the ordinary lognormal
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�2n+j�2k9>=>; e�
1
2 (
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dy

and make the usual change of variables z = y��
� � l�
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1
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and expand the binomial, applying (5.1.3), (5.1.6), and (5.1.7) to evaluate the
resulting integrals against � (z)
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1
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2
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2n+j�2k�2m

9>=>; .
Cancel factors where possible and distribute powers of l and � to logical terms
across all the sums
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1
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9>=>; ,
make the change of variables m� k for m, and reverse the order of the summa-
tions
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2
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j=3
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�
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�2m

mX
k=0

(2k)? (2 (m� k))?
(2k)! (2 (m� k))! (�1)

k

9>=>; .
(5.2.1)

Remarkably, the sum over k is 0 for each m > 1. This is by inspection for
odd m but a true holiday venture to prove algebraically for even m. Luckily
there�s a trick to avoid the algebra. Use Leibniz�s rule, (5.1.6) and (5.1.8) to
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evaluate

0 =

"b� (t) 1b� (t)
!#(2m)

t=0

= (2m)!
2mX
s=0

(s)? (2m� s)?
(s)! (2m� s)! i

�s

= (2m)!
mX
k=0

(2k)? (2 (m� k))?
(2k)! (2 (m� k))! i

�2k, by (5.1.7).

Therefore (5.2.1) reduces to

E
�
rlt
�
= el�+

1
2 (l�)

2

8><>:1 + lim
N!1

NX
j=3

lj

j!

�
�j � j?�j

� bN�j
2 cX

n=0

(2n)?

(2n)!
(�1)n (l�)2n

9>=>; ,
which is the approximation series that we sought. For the application at (2.2)-
(2.4) we had �j = 0 for odd j so we were able to express both the limit and the
sum in terms of even integers.
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