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ABSTRACT 

This paper is an attempt to examine transmission and incubation period 
models. The number of HIV+ persons in the population is estimated. This 
estimate is applied to insurance company data in order to estimate the risk 
exposure of an individual company and the resulting reserve needs based on 
prior infections only. 

1. INTRODUCTION 

Recently a large number of papers and reports dealing with the potential 
impact of the AIDS epidemic on the insurance (especially life) industry have 
been published in various counties. These include Cowell and Hoskins [9] 
and Reese [36] in the U.S.A., Kolbye [24] in Denmark, The AIDS Working 
Party [41, 42] in the United Kingdom, Mann et al. [28] in Australia, and 
Castellino and Bridel [8] in Canada. These papers and reports generally 
provide information on the current state of knowledge of scientific work in 
the area of AIDS, forecast the number of cases over some future period, 
report on current and proposed legislation affecting the insurance industry, 
and recommend appropriate action by insurers for pricing insurance products 
and underwriting new insurance applicants. The report of the Society of 
Actuaries Task Force on AIDS [40] includes a number of papers of interest 
to insurance applications. 

The scope of this paper is more limited than that of the papers cited above. 
In this paper we are primarily concerned with the risk of human immuno- 
deficiency virus (HIV) infection in the population of persons who are cur- 
rently insured. Whereas previous papers were concerned with adjustments 
to premium levels and changes to underwriting standards for future insureds, 
we focus on the additional risk due to infection that already exists amongst 
policyholders and that has not yet emerged in the form of death (or health) 
claims. This is a risk that was unanticipated at the time of issuance of 
insurance policies, at least until recently. 

In order to recognize the emergence of future AIDS claims arising from 
the current book of business, it may be necessary to set aside a portion of 
a company's surplus to systematically fund this additional liability. An anal- 
ogy may be drawn between this liability and an Incurred But Not Reported 
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Liability (IBNR). If the claim is deemed to have been "incurred" at the 
time of infection rather than the actual time of death (or disablement), all 
"incurred" claims require appropriate funding. Although an infected insured 
does not become an actual death claim until death occurs, a recognition of 
increased risk suggests that an increase in reserves (or some appropriation 
of surplus) is warranted. The additional liability may be an increase in ex- 
isting policy reserves or a separate allocation of surplus. Nation-specific or 
state-specific insurance regulations will dictate the form of the increase in 
reserves. 

A number of factors need to be considered in estimating the increased 
risk to a given insurer. These include the rate of HIV infection in the pop- 
ulation; the lengths of the latency period, the incubation period and infective 
period; the level and rate of growth of reported AIDS cases in the general 
population; the level and rate of growth of AIDS-related death claims; the 
relative size of AIDS-related death claims as compared to other death claims; 
and the changes in the above factors that have occurred as a result of in- 
creased awareness, education and underwriting practices. 

The following sections of this paper address these factors and develop a 
general methodology as well as give some numerical results. It is anticipated 
that the actuary will be able to use and adapt the techniques given in this 
paper to his or her own situation. 

2. TRANSMISSION MODELS FOR HIV INFECTION 

After a susceptible individual becomes infected with the HIV, the individual 
will become infectious (able to pass the infection to others) after some latency 
period. This latency period is believed to be very short (less than one month), 
because antibodies are detectable in the blood a few weeks after infection [2, 
25]. The possibility of longer latency periods has been suggested by Ranki et 
al. [34] on the basis of observed seroconversion in stored serum samples ob- 
tained from individuals in high-risk groups. When antibodies are detectable in 
the blood, the individual is deemed to be "seropositive." 

The incubation period is the period from infection (or perhaps seroposi- 
tivity) until overt symptoms appear and a diagnosis of AIDS is made. Med- 
ical studies indicate that the incubation period has a mean length of several 
years, rendering the latency period more or less insignificant insofar as 
modeling is concerned. In Section 3, models for the incubation period are 
discussed in more detail. 

In comprehensive survey papers, /sham [17] and Anderson [1] discuss 
mathematical models of the spread of HIV infection. In this section, we 
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depend heavily on these outstanding papers, which contain many references 
to other work that may be of interest to the reader. 

In the analysis of the increase of the number of infectives, the latency 
period is usually ignored for convenience. Following the notation of Isham 
[17], we let a fixed population (or subpopulation) of n individuals at time t 
consist of X(t)  susceptibles and Y(t) infectives, so that X(t )  + Y(t) = n at 
all times t. If the population mixes homogeneously, then the number of 
contacts between an infective and a susceptible must be proportional to both 
X(t)  and Y(t) and the number of infectives is governed by the differential 
equation 

dY(t____)) = aX( t )Y( t ) ,  (2.1) 
dt 

which has the simple solution 

nY(0) 
Y(t)  = Y(O) + In - Y(0)]e -"~c (2.2) 

Equation (2.2) describes an S-shaped logistic curve and is essentially equiv- 
alent to that described by CoweU and Hoskins [9]. If the initial number of 
infectives is assumed to be small in relation to the population size, then for 
small values of t, the number of infectives can be approximated as 

Y(t) --. Y(O)e ~" ,  (2.3) 

which shows that in the early stages of an epidemic, the number of infectives 
grows exponentially. 

A convenient statistic often quoted in connection with HIV infection is 
the "doubling time" of the epidemic, the number of years required for the 
number of infecteds or the number of observed AIDS cases to double. For 
the early stages of an epidemic satisfying (2.1), the doubling time of in- 
fecteds is constant. The doubling time of HIV infection in the U.S.A. and 
Europe has been estimated at approximately one year [29,30]. De Gruttola 
and Lagakos [10] discuss the interpretation of varying doubling times of 
observed AIDS cases with particular reference to the effects of changing 
models of the incubation period and of observed changes in the doubling 
time. 

In the above development, no account was taken of the possibility that 
infectives will leave the infective class because of death, because of diag- 
nosis and subsequent changes in behavior, or possibly because infectivity 
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decreases over time. If it is assumed that individuals leave the infective class 
at some rate v, then the differential equation governing the number of in- 
fectives becomes 

dY(t) 
dt = o.X(t)Y(t) - vY(t) .  (2.4) 

This equation is discussed extensively in Bailey [3] and was solved approx- 
imately by Kermack and McKendrick [22]. If we again assume that the 
number of infectives is small initially, the number of infectives is still ap- 
proximately exponential in the early stages of the epidemic. 

Y(t)  ~- Y(O)e ( .... ")' (2.5) 

The beauty of this result becomes apparent in later sections, in which we 
estimate the rate of exponential growth and not the individual parameters n, 
o~, and v separately. 

Isham [17] generalizes this model to one more appropriate to a closed 
group of male homosexuals. If each susceptible acquires new sexual partners 
at rate K and becomes infected by any given infective partner with probability 
13, and the population mixes homogeneously, then the number of infectives 
is governed by the differential equation 

dY(t)  _ ~K X( t )Y( t ) ,  (2.6) 
dt n 

which is approximately exponential for small values of t 

Y(t) = Y(O)e ~ ' .  (2.7) 

Furthermore, if infecteds are removed (voluntarily or otherwise) from the 
class of infectives in accordance with an exponential distribution of time in 
the infective class and play no further part in the spread of the disease, then 
the differential equation governing the number of infectives is 

dY( t )  = fl~C X( t )Y( t )  - llY(t), (2.8) 
dt N(t)  

where N(t)  = X( t )  + Y(t) .  When Y(t)  is small in the initial stages of the 
epidemic, the behavior of the epidemic is given by 

Y( t )=Y(O)e  (~--')' .  (2.9) 
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Anderson et al. [2] and van Druten et al. [43] generalize the models to allow 
each withdrawal to be either in the class of AIDS patients or remaining 
seropositive but not infectious. Bailey and Estriecher [3] allow for differ- 
ences between infectives who will ultimately develop AIDS and the remain- 
der who will remain seropositive indefinitely. Anderson et al. [2] also allow 
for migration to the infective class and death due to AIDS and other causes 
by using a system of five differential equations involving eight parameters. 
Anderson [1] also considers models in which an infected may move to a 
noninfectious state and return to being infectious but at a new rate. In the 
early stages of the epidemic an exponential model is still justified. 

Isham [17] also considers heterogeneity amongst homosexual males by 
assigning a distribution to the rate of sexual activity, which may be expressed 
as a rate per unit time or a rate per sexual partner, with a further distributional 
assumption made about the length of sexual partnerships. Anderson et al. 
[2] explore the numerical ramifications of these more complex models. For- 
tunately, the behavior of the epidemic in the early stages is still exponential. 

With respect to heterosexual transmission, Knox [23] considers transmis- 
sion rates between twelve "behavior classes." Keissling et al. [21] and 
Stannat et al. [38] report on simulation studies based on assumed transmis- 
sion between six groups, including bisexuals, homosexuals, heterosexuals, 
and prostitutes. Gonzalez [14] et al. divide individuals by sexual preference 
and consider intravenous drug use. 

Finally, the most comprehensive models appear to be those of Dietz [11], 
which use 29 variables involving 42 parameters! 

By now the reader will be aware that all the models presented up to this 
point are deterministic and not stochastic. Isham [17] shows that because 
the rate of spread of infection is nonlinear in the number of infectives, the 
deterministic model does not give exactly the behavior of a corresponding 
stochastic model. However, if the number of initial infectives is sufficiently 
small, the deterministic model gives a good approximation to a stochastic 
model [3, ch. 5]. Isham points out that different stochastic models may have 
the same deterministic approximation and that knowledge of the behavior of 
the mean of the process gives little guidance as to the stochastic nature of 
the process. Nevertheless, in this kind of study we are forced to make some 
not-yet-verifiable assumptions about the stochastic nature of the epidemic. 
This is done in later sections. 

In the remainder of this paper, we assume exponential growth of the 
number of infectives. This implies that with respect to infection in the pop- 
ulation, no changes in the rate of transmission due to changes in sexual and 
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drug use habits can be reflected. In the early stages of the epidemic, this is 
probably not an unreasonable first approximation. Because of the long in- 
cubation period, changes in transmission rates would not be apparent in the 
number of reported AIDS cases for some years. 

3. INCUBATION AND INFECTION PERIOD MODELS 

The time from infection to the development of AIDS is generally referred 
to as the incubation period. A variety of models have been developed re- 
cently based on medical studies. Lui et al. [27] used a Weibull distribution 
for transfusion-related infections and obtained a mean incubation period of 
4.5 years. This study was criticized because of length-biased sampling, which 
was not recognized in the estimation procedure. Rees [35] used fit normal 
distributions heuristically, obtaining a mean of fifteen years. BIythe and 
Anderson [4] compare the properties of the Weibull and gamma distributions 
and conclude that using these distribution in this context will lead to similar 
results. Consequently, the choice between these distributions is not critical. 
Medley et al. [30] fit Weibull and gamma distributions to transfusion-related 
infections and recognize length-biased sampling. Using the Weibull distri- 
bution, they found a mean incubation period of 8.8 years for females and 
5.6 years for males in the 5-59 age group. The mean of the combined group 
is 6.4 years. Kalbfleisch and Lawless [19, 20] reexamine the same data and 
conclude that the estimates of Medley et al. [30] for the incubation period 
are unreliable when the incubation period and the infection rate are estimated 
simultaneously. 

The above studies are generally based on infections caused by blood trans- 
fusions. It has been argued that the incubation period for this group should 
be shorter than for other types of transmission because of the large amount 
of initial contamination associated with the transfusion of a large quantity 
of blood. On the other hand, it also has been argued that intravenous drug 
users should have a shorter incubation period due to impairment of the 
immune system as a result of drug use. 

Based on a German study [6] of a mixture of drug users, homosexual 
males, female prostitutes and bisexuals, Panjer [33] obtains a mean incu- 
bation period of 6.4 years. This is consistent with Medley et al. [30], who 
obtained the same mean for blood transfusees. The model developed by 
Panjer [33] uses an incubation time that is the sum of three exponential 
random variables. A random variable that is the sum of exponential random 
variables has a generalized Erlang distribution. The three exponential random 
variables represent the time between diagnoses of intermediate stages: (1) 
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from seropositivity to lymphadenopathy syndrome (LAS), (2) from LAS to 
AIDS-Related Complex (ARC), and (3) from ARC to AIDS. Panjer [33] 
found that exponential distributions with means 1.2 years, 1.9 years and 3.3 
years, respectively, adequately describe the observed data in the three stages 
of infection. 

In the remainder of this paper, we use the model of Partier [33] and the 
gamma model of Medley et al. [30] for estimating the number of infecteds 
in the population. More details about the distributions are given in the next 
section. 

4. ESTIMATION OF THE NUMBER OF HIV INFECTIONS 

4.1 Development of Formulas 
In this section, we use the exponential growth model for the number of 

infectives, the generalized Erlang incubation period model of Panjer [33], 
and the gamma incubation period model of Medley et al. [30]. 

Let M(t) be a Poisson process representing the random number of persons 
becoming seropositive before time t. We denote its mean by F(t) and its 
intensity function by 

d 
",/(t) = ~ r(t). 

The Poisson assumption is a particularly convenient assumption. It means 
that the numbers of infections in disjoint intervals are stochastically inde- 
pendent and Poisson distributed. The Poisson assumption is not verifiable 
because we have only one sample path of the observed process. 

Let G(t) be the probability distribution function of the "incubation pe- 
riod." It denotes the probability that a person who has just become sero- 
positive will have developed AIDS within t years. 

Let N(t) be a Poisson process denoting the random number of persons 
developing AIDS before time t. We denote its mean by A(t). The Poisson 
process is also used by Medley et al. [30] and other previous authors. Then 
it can be shown that N(t) is also a Poisson process with mean function 

! 

A(t) = f v(s)G(e-s)ds (4.1) 
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(see, for example, Ross [37]). If we assume an exponential growth model 
for the number of infectives, that is, 

v(t) = /3e '~ e', (4.2) 

then the expected numbers of persons developing AIDS before time t becomes 

A(t) = i ~e~+~ G(t-s)ds = ~e" i e~" G(t-s)ds. (4.3) 

Let - 00 = to<tl<t2< . . .  <tin denote the end points of time intervals 
and let ni denote the number of reported AIDS cases in the time interval 
(t~_l, t i);i  = 1 , 2  . . . .  , m w i t h n  = n~ + nz + . . .  + rim. 

We use the maximum likelihood method to obtain estimates & and ~ of 
the parameters o~ and/3, respectively. Because of the independence of the 
numbers of AIDS cases in disjoint time intervals, the likelihood function is 
written as 

L = fi__A,"' e a, (4.4) 
i = 1  F/i! '~ 

where Ai = A(t~) - A(t~_~) is the expected number of cases in time interval 
(t~_ ~, t~). Then the log-likelihood e may be written as 

e ~ ~ ni log A, - A(t,,). (4.5) 
f = l  

The maximum likelihood estimates (MLEs) & and/3 are the values of o~ and 
/3 that maximize e.  

Using (4.3),  the fo l lowing  derivates may  be obtained after some 
simplification: 

de 
= n - A(tm) (4.6) Oa 

0 Z = ~, n i OA, 0A(t,,) (4.7) 
~/3 , ~  /x, 0t3 013 

Oze 
- A(t,,,) (4.8) 

0 d  
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02~ ~ { n i {~/~i~2 I~, 02/~il ()2A(/m) (4.9) 
0/32 = i-1 -~-~2 \ 0/3 1 + A, ~ j 0/32 

02~ 0 
OBO--'--a = 0/3 A(t.,). (4.10) 

Using the convenient substitutions u(/3 ; t) = A(t)e -~' and 1,(/3 ; t) = 

~-~u(/3 t). we obtain 

Oe ~ ~(~ " ti) -- u(/3 " t i_ l )  
O--~ = ni ' " - e~u(,/3 ; G) (4.11) 

; t i )  - ; t i _ , )  

Setting (4.6) and (4.11) to zero yields the likelihood equations 

& = l o g n  - l o g u ( ~ ; t m )  

and 

(4.12) 

u([3 ; t,) - p(f3,_,) u(f3 ; t.,) 
2, n i (4.13) 
i=l U(~ ; ti) -- U(f3 ; t i_ l )  = 1 1 - ~  , tm ). 

Equation (4.13) can be solved numerically fo r / )  and the result substituted 
into (4.12) to obtain &. 

The asymptotic variance-covariance matrix of (&,/3) can be approximated 
as the matrix 

i 
02£ 02 £ ] - x  
0o?- O/3oa 
02£ 02£ 

0/30o~ 0/3 2 

evaluation at a = a and/3 = /3. Because 

oze 0 
Oa 2 -- Oa A(tm)'  

the first entry into the matrix is 

02£ ] 

(4.14) 
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Similarly, the second and third entries are 

0 2 £  . . 

: e . . ( O ; t . , ) .  

The fourth entry is more complex and can be evaluated numerically by 
using (4.9). 

The MLEs and covariance-covariance matrix can be used to determine 
the MLEs and standard errors of all desired quantities. 

A. Generalized Erlang Model 

The generalized Erlang distribution of incubation times developed by Pan- 
jer [33] has the distribution function 

G(t) = 1 - ~ 3je -Èj' (4.16) 

where 6j = FI 

where 

Finally 

and 

/xk . Substituting (4.16) into (4.3) yields 

A(t) = e%(/3 ; t )  (4.17) 

' 6i }1 u( /3 ; , )  = e ~' 1 - ~ /3 + /~j 

v(/3 ; t) = tu(/3 ; t) = e t~ ~ #16/ 
j=1 (# + ~j): 

a~(/3 ; t )  
w(/3 ; t )  - 

o/3 

= tv ( / 3 ; 0  - te t~ : 
j=,  ( f l  + ~j): 

#A + 2e" .,2 i/3 +  jY" 

(4.18) 

(4.19) 

(4.20) 
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B. Gamma Model 
One of the models considered by Medley et al. [30] is a gamma distri- 

bution with the distribution function 

i dx (4.21) 
xp- le-qx 

C(t) = q" r(p--5- 
0 

for the incubation period. From (4.1), it follows that 
/ \ p 

A(t) = [ q ] e '~+~' = e"u(/3"t) (4.22) 

where 

u(/3 ; t )  = e t3t . (4.23) 

Hence, it follows that 

v(/3; t) = u(13 ; t) ( t  P ) (4.24) q+/3  

and that 

w(/3;t)=u(/3;t)[(t  + P 
q + /3 (q + /3)2 (4.25) 

Although we do not give numerical values of asymptotic covariances in the 
next section, the above formulas may be of interest to the reader. 

4. 2 Numerical Results 
In this section we experiment with numerical values for the parameters of 

the generalized Erlang and gamma distributions suggested by previous re- 
search. This is done in order to study the sensitivity of the results to varying 
distributional assumptions. The generalized Erlang model of Panjer [33] with 
parameters /xl = 0.86359, /.,~ = 0.53478 and /z3 = 0.30000 has a mean 
of 6.3612 years and a standard deviation of 3.9936 years. The Weibull model 
of Medley et al. [30] for all ages combined has a mean of 6.4059 years and 
a standard deviation of 2.8294 years and for adults (5-59 years) has a mean 
of 8.2307 years and a standard deviation of 3.6585 years. 
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In Table 1, results are given for the above generalized Erlang distribution 
and for the gamma distribution with means and variances based on the values 
of Medley [30]. For comparative purposes, we also use the generalized 
Erlang model with a mean of 8.2307 years by adjusting all parameters pro- 
portionally. Table 1 gives the maximum likelihood estimates of the number 
of HIV infecteds (including diagnosed AIDS cases) up to mid-1987 based 
on data available in early 1988. Due to delays in reporting times, values for 
the last half of 1987 were still unreliable at the time of the analysis. 

TABLE 1 

ESTIMATES OF NUMBER OF HIV INFECTEDS (1 JULY 1987) 

Incubation Period Model Gamma Generalized Erlang 

Mean 6.4059 8.2307 6.3612 8.2307 
Standard Deviation 2.8294 3.6585 3,9936 5.1672 

U.S.A. 
No. of AIDS Cases 
No. of HIV Infections 
Infection Growth Rate 

Canada 
No. of AIDS Cases 
No. of HIV Infections 
Infection Growth Rate 

Australia 
No. of AIDS Cases 
No. of HIV Infections 
Infection Growth Rate 

44,714 
858,013 
0.62379 

1,285 
28,260 

0.66216 

558 
26,164 

0.89493 

44,714 
1,548,164 

0.62379 

1,285 
51,921 

0.66216 

558 
52,614 

0.89493 

44,714 
513,750 
0.62379 

1,285 
16,297 

0.66216 

558 
12,099 

0.89492 

44,714 
801,026 
0.62379 

1,285 
25,684 

0.66216 

558 
20,093 

0.89492 

A number of observations can be made from Table 1. First, the predicted 
number of HIV infecteds varies dramatically between the four models. The 
generalized Erlang model produces estimates that are roughly half of those 
of the gamma model with roughly the same mean, primarily because the 
generalized Erlang distribution has a larger standard deviation, resulting in 
a flatter distribution. A larger proportion of the distribution is in the region 
being fitted, resulting in a smaller proportion in the region being forecast. 
Second, the choice of the mean has a significant influence in the forecast of 
the number of infecteds. The standard errors associated with the estimates 
of Medley et al. [30] are quite large, making each of the gamma model 
estimates quite plausible. Similar comments hold for the generalized Erlang 
model and the estimates of Panjer [33]. An increase in the mean, of about 
30 percent, while holding the coefficient of variation constant, causes esti- 
mates of the number of infecteds to increase by about 80 percent in the case 
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of the gamma distribution and about 60 percent in the case of the generalized 
Erlang distribution. 

The corresponding estimates coming from other sources are of the order 
of 1,000,000 for the U.S.A.,  50,000 for Canada, and 50,000 for Australia. 
For Canada and Australia, these would appear to be at the upper end of our 
four estimates but cannot be rejected. For the U.S.A. the estimate of one 
million falls roughly in the middle of the four estimates. 

The variation in these estimates indicates that any single estimate should 
be viewed with considerable suspicion. Sensitivity of the estimate to changes 
in model assumptions should accompany any estimates. Furthermore, con- 
fidence intervals of any estimates should be given because they provide some 
indication of the reliability of the estimates. 

An additional point of interest and cause for concern about the data is the 
observed infection growth rate (/3 of Equation 4.2). Although it is stable 
across models for Canada and the U.S.A., it is very different (much higher) 
for Australia. A possible explanation is that in the early years (up to mid- 
1984) the level of unreported cases was significantly higher than that in later 
years when the general level of knowledge of AIDS increased. This hy- 
pothesis is supported by the data for Australia, in which a major jump in 
reported AIDS cases occurs between the first half and second half of 1984. 

When the fitted AIDS cases are compared with the observed AIDS cases 
in Tables 2, 3 and 4, it can be seen that the number of fitted AIDS cases 
exceeds the number of observed AIDS cases in the early and late years, and 
is less than the number of observed cases in the middle years, indicating 
that the actual incidence of AIDS grows at a rate that is slower than would 
be inferred by the models used. A variety of plausible explanations could 
account for this poor fit; they include the following: 

(i) Reporting Variations. If the proportion of unreported AIDS cases varies over the 
period of observation, the shape of the reported cases is distorted. Because the 
number of unreported cases is unobservable, it would be difficult to pursue this 
further except to note that it is entirely plausible and consistent with an increasing 
knowledge of AIDS and its diagnosis over time. External studies may be useful in 
evaluating the level of underreporting. 

(ii) Alternate Incubation Period Models. Models for the incubation period used in this 
paper and other models cited in Section 3 are chosen for mathematical convenience 
and because they fit available data well. Further research may reveal that some 
characteristics of these distributions are inappropriate. 

(iii) Variable Infectivity. Hyman and Stanley [16] discuss the hypothesis that the infec- 
tivity of an infected individual varies over the course of the disease. The amount 
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of free virus increases dramatically in the first few weeks following infection (Fran- 
cis et al. [12], Sulahuddin et al. [39]) and then drops off sharply as the production 
of antibodies is adequate to reduce the number of viruses to a very low level. Over 
the next few years the number of free viruses may increase slowly for some time 
and then more rapidly as the immune system collapses (Lange et al. [26], Goedert 
et al. [13]) when the level of infectivity is again very high. Grant et al. [15], Padian 
et al. [31], and Hyman and Stanley [16] suggest that the chances of infection from 
a single sexual contact are very small (less than one percent) for most of the infection 
but may be dramatically higher in the first few weeks and after fully developed 
AIDS begins. Such levels of variability of infectivity can have a dramatic effect on 
the number of observed AIDS cases in the early part of the epidemic. 

(iv) Variable Transmissions Rates. The majority of observed AIDS cases arise from 
homosexual men, drug abusers, female prostitutes, and blood transfusees. It is 
generally believed that the progress of the disease will be determined by contacts 
amongst the first three groups and between these groups and the balance of the 
susceptible population. The risk of transmission depends upon the nature of the 
sexual contact. Receptive anal intercourse has been recognized as the sexual act 
with the highest risk. Johnston [18] includes many references to studies of homo- 
sexual men and the associated risks of various sexual acts. Intraveneous drug users 
play a significant role in the U.S.A. and some European countries. Clearly, the risk 
of infection from a single occurrence of drug infection with a needle shared by 
another drug user is different than that from a sexual act. The annual transmission 
rate depends upon the number of contacts as well as the risk per single contact and 
the density of the infection in the particular subpopulation under consideration. 
Johnston [18] provides an outstanding overview of the social aspects of AIDS. 

Futher ref inements  to the models  m a y  be justified as more  data become 
available.  

5. APPLICATION TO INDIVIDUAL COMPANIES 

In general ,  the pr imary  risk of  AIDS-re la ted  claims in the future is in the 
homosexual  male population and in the heterosexual populat ion as spread 
from the homosexual ,  drug-using and female  prostitute populat ions.  In order 
to apply  a populat ion-based model  to an insured populat ion,  it is useful to 
assume that key characteristics o f  the two populations are the same.  Because 
drug users are less l ikely to be insured than male homosexuals ,  this as- 
sumption is violated by  at least one subpopulat ion.  However ,  in the simple 
models  of  Section 4, only  two population characteristics were significant, 
namely ,  ot and/3,  the growth parameters .  The parameter  o~ is associated with 
the level o f  H I V  infections, while /3 is associated with the annual rate of  
growth of HIV infections. As a first approximation,  it is probably  reasonable 
to assume that the growth rate/3 in an insured population is the same as that 



TABLE 2 

RESULTS FOR U.S.A." 

] AIDS Cases I AIDS Cases I HIVC ... .  AIDS Cases I HIV Cases 
Year  Ha l f -Year  Ob~rved Fitted Predicted Fitted Predicted 

Gamma Incubation Period Model 

Mean ~ 6,405¢J S.D, = 2.8294 Mean ~ 8.2307, S.D. = 3.6585 

to 1981 

1982 

1983 

1984 

1985 

1986 

1987 
Fotal 

88 
183 
365 
650 

1,229 
1,600 
2,478 
3,234 
4,456 
5,701 
7,063 
8,234 
9,433 

44,714 

1,059 20,327 
388 7,440 
530 10,163 
723 13,882 
988 18,963 

1,350 25,904 
1,844 35,385 
2,519 48,336 
3,441 66,027 
4,700 90,193 
6,421 123,204 
8,771 168,297 

11,981 229,894 
44,714 858,013 

1,059 
388 
530 
723 
988 

1,350 46,739 
1,844 63,845 
2,519 87,213 
3,441 119,133 
4,700 162,736 
6,421 222,298 
8,771 303,660 

11,981 414,801 
44,714 1,548,125 

36,676 
13,424 
18,337 
25,048 
34,216 

Generalized Edang Incubation Period Model 

Mean = 6.3612, S.D. = 3.9936 Mean = 8.2307, S,D. = 5.1672 

:o 1981 

1982 

1983 

1984 

1985 

1986 

1987 
Fotal 

88 
183 
365 
650 

1,229 
1,600 
2,478 
3,234 
4,456 
5,701 
7,063 
8,234 
9,433 

1,059 
388 
530 
723 
988 

1,350 
1,844 
2,519 
3,441 
4,700 
6,421 
8,771 

11,981 

12,171 
4,455 
6,085 
8,312 

11,354 
15,510 
21,187 
28,942 
39,535 
54,004 
73,771 

100,771 
137,654 

1,059 
388 
530 
723 
988 

1,350 
1,844 
2,519 
3,441 
4,700 
6,421 
8,771 

11,981 

18,976 
6,945 
9,487 

12,960 
17,703 
24,183 
33,034 
45,125 
61,641 
84,202 

115,021 
157,120 
214,627 

44,714 44,714 513,750 44,714 801,026 
*Source: "AIDS Weekly Surveillance Report," CDC, February 1, 1988. 
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TABLE 3 

R E S U L T S  FOR C A N A D A *  

Year Quarter Observed Fitted Predicted Fitted Predicted 

Gamma [ncubation Period Mo,dcl 

Mean ~ 6.405~ S.D. = 2.8294 Mean = 8.2307, S.D. = 3.6585 

Io 1979 4 1 
1980 1-4 3 
1981 1-4 6 
1982 1-4 22 
1983 1 14 

2 15 
3 II 
4 14 

1984 1 28 
2 33 
3 40 
4 42 

1985 1 59 
2 74 
3 91 
4 94 

1986 1 90 
2 119 
3 118 
4 133 

1987 1 127 
2 151 

Total 1,285 

9 
8 

16 
32 
12 
14 
16 
19 
23 
27 
32 
37 
44 
52 
62 
73 
86 

101 
119 
141 
166 
196 

1,285 

197 
185 
359 
695 
258 
305 
360 
425 
501 
591 
698 
824 
972 

1,147 
1,353 
1,597 
1,884 
2,224 
2,624 
3,096 
3,654 
4,311 

28,260 

9 362 
8 340 

16 659 
32 1,277 
12 475 
14 560 
16 661 
19 780 
13 921 
27 1,087 
32 1,282 
37 1,513 
44 1,785 
52 2,107 
62 2,486 
73 2,934 
86 3,462 

101 4,085 
119 4,821 
141 5,689 
166 6,713 
196 7,921 

1,285 51,921 
Generalized Erlang Incubation Period Model 

Mean ~ 6.3612, S,D. = 3.9936 Mean = 8 .2307 S.D. = 5.1672 

to 1979 4 1 
1980 1-4 3 
1981 1-4 6 
1982 1-4 22 
1983 1 14 

2 15 
3 11 
4 14 

1984 1 28 
2 33 
3 40 
4 42 

1985 1 59 
2 74 
3 91 
4 94 

1986 1 90 
2 119 
3 118 
4 133 

1987 1 127 
2 151 

Total 1,285 

9 
8 

16 
32 
12 
14 
16 
19 
23 
27 
32 
37 
44 

114 
107 
207 
401 
149 
176 
208 
245 
289 
341 
402 
475 
560 

9 
8 

16 
32 
12 
14 
16 
19 
23 
27 
32 
37 
44 

179 
168 
326 
632 
235 
277 
327 
386 
456 
538 
634 
748 
883 

52 
62 
73 
86 

101 
119 
141 
166 
196 

1,285 

661 
780 
921 

1,087 
1,282 
1,513 
1,786 
2,107 
2,486 

16,297 

52 
62 
73 
86 

101 
119 
141 
166 
196 

1,285 

1,042 
1,230 
1,451 
1,713 
2,021 
2,385 
2,814 
3,321 
3,918 

25,684 
*Source: "Update: AIDS in Canada," LCDC, Ottawa, February, 1988. 
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TABLE 4 

R E S U L T S  F O R  A U S T R A L I A *  
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I I .... .... Year Half-Year Observed Fitted Predicted Fitted Predicted 

Gamma Incubation Period Model 

:o 1982 1 
1983 1 1 

2 5 
1984 1 6 

2 36 
1985 1 62 

2 51 
1986 I , 95 

2 I 128 
1987 1 173 

Folal r 558 

Mean = 6.4059, S.D. = 2.8295 Mean = 8.2307, S.D. = 3.6585 

10 
6 
9 

14 
21 
34 
53 
82 

129 
201 

558 

466 
263 
412 
644 

1,008 
1,576 
2,466 
3,857 
6,034 
9,439 

26,164 

10 
6 
9 

14 
21 
34 
53 
82 

129 
201 

558 

938 
529 
828 

1,295 
2,026 
3,169 
4,958 
7,756 

12,133 
18,981 

52,614 
Generalized Erlnng Incubation Period Model 

Mean = 6.3612, S.D. = 3.9936 Mean = 8.2307, S.D. = 5.1672 

o 1982 1 ! 
1983 1 

5 
1984 6 

36 
1985 62 

51 
1986 95 

128 
1987 173 

Fotal 558 558 12,099 

*Source: NH&MRC'Special Unit in AIDS Epidemiologyand 
1988. 

Clinical Research, 

10 216 
6 122 
9 190 

14 298 
21 466 
34 729 
53 1,140 
82 1,784 

129 2,790 
201 4,365 

10 358 
6 202 
9 316 

14 495 
21 774 
34 1,210 
53 1,893 
82 2,962 

129 4,634 
201 7,248 

558 20,093 
, February 11, 

in the population as a whole. This growth rate should be generally indepen- 
dent of geographical or other subdivisions. If the above arguments are ac- 
cepted, then it is only necessary to estimate the value of ~ for the insured 
population. This can be done for life insurance by comparing the number of 
AIDS-related death claims to the number of AIDS deaths in the population. 

Underreporting of AIDS-related claims occurs in the general population 
as well as in the insured population. If the level of underreporting in the 
two populations is the same, the estimates produced will be of reported cases 
only. Although increased awareness of AIDS should increase the reporting 
level, an increased stigma associated with AIDS may actually decrease the 
tendency to report a claim as AIDS-related. This may be especially true in 
health insurance. In the ACLI/HIAA report on claims paid in 1986, Carroll 



216 AIDS: MODELING THE INSURANCE RISK 

[7] lists the following reasons for understatements  of the number  of AIDS-  
related life and health claims: 

1. "Death certificate may not show cause of death when death has occurred due to 
disease. With relatively few exceptions this is true of New York City. This is 
extremely critical since currently about 25 percent of all AIDS cases reported to the 
CDC in the United States have occurred among New York City residents." 

2. "Disease may not be recognized as AIDS-related." 
3. "Diagnosis may not yet have been made at time of claim (primarily health insurance)." 
4. "Opportunistic disease may be shown as diagnosis or cause of death and not picked 

up by insurer." 
5. "Diagnosis or cause of death may not be precisely stated. For example, pneumo- 

cystis carinii pneumonia (PCP) may be given only as pneumonia, Kaposi's sarcoma 
(KS) as cancer." 

6. "Diagnosis may be intentionally misstated (especially health insurance)." 
7. "Companies have had little financial incentive to determine cause of death for deaths 

beyond the contestable period." 
8. "Companies have had little financial incentive to determine precise diagnosis for 

health insurance benefits which are payable on the basis of a general diagnosis or 
are payable regardless of diagnosis." 

9. "Claim administration systems involving third party administrators, self-adminis- 
tered cases, and other decentralized systems may be such that the company is unable 
to identify AIDS-related claims (primarily group health insurance)." 

10. "Companies may not have established systematic tracking of AIDS-related claims 
prior to 1986. In this regard, some companies indicated that their data covered only 
part of the year; other companies may be retroactively attempting to identify AIDS- 
related claims." 

11. "Company efforts to identify AIDS-related claims may have been inadequate." 

6. RELATIVE SIZES OF AIDS-RELATED CLAIMS 

The risk of  antiselection by  infected persons or persons in high-risk groups 
is apparent.  Evidence of  significant antiselection prompted insurers to dra- 
matical ly reduce nonmedical  limits on life insurance in 1986 and 1987. 

Reese [36] reports that in a survey of life insurance company  AIDS claims,  
average sizes of  AIDS  claims were  larger than the averages for all claims 
by a factor of  seven in 1985 and a factor of  f ive in 1986. In the A C L I / H I A A  
survey of  claims paid in 1986, Carroll [7] notes that the average individual 
life AIDS-related death claim was about four t imes larger than the average 
size death claim. For group life insurance, the AIDS-related death claims 
were about twice as large on average as the average size death claims. 

Note that these numbers  may  overest imate the amount of  antiselection 
because death claims on older policies are smaller .  Policies issued as a result 
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of antiselection should be newer policies. Because more recent issues are 
generally larger, death claims of recently issued polices would be expected 
to be larger than average. For a more accurate comparison, policies should 
be identified by year of issue. Furthermore, at least theoretically, the amount 
of antiselection should be based on the net amount at risk, not the full face 
amount. For recent issues this will not be a major problem, because reserves 
are relatively small at early observations. 

To develop a model for reserving purposes, it is necessary to study the 
distribution of insured amounts by HIV-infection persons. This will vary by 
company because it depends upon many variables affecting the distribution 
of sizes of the insured amounts for non-HIV-infected persons. No attempt 
is made in this paper to develop any specific claim amount model. 

7. ADDITIONAL RESERVE REQUIREMENTS 

The papers discussed in Section 1 of this paper generally approach the 
question of reserving by using forecasts of the excess deaths for each year 
in the future and developing appropriate adjustments to mortality assump- 
tions. In this section we attempt to complement these papers by developing 
a macro model for the aggregate excess AIDS costs that is consistent with 
the models used in Section 4. 

Suppose that the number of infections and the number of AIDS cases are 
Poisson processes as described in Section 4 up to Formula (4.3). Then the 
number of new AIDS cases between any times tl and t 2 is Poisson distributed 
with mean A(t2) - A(tl) by using the notation of Section 4. Furthermore, 
if the time from developing AIDS to death is described by a distribution 
function H(t), then the number of AIDS-related deaths between times tl and 
t2 is also Poisson distributed with mean 

i i X(s)H(t-s)dsdt 
t 1 - -  

d 
where X(t) = ~ A(t). 

Because of the introduction of AIDS testing for larger policy amounts in 
1986 and 1987, the incidence as well as the amounts will be dramatically 
different for policies issued before and after. Consequently, it is important 
to recognize these time periods separately. The number of AIDS-related 
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death claims between t 1 and t 2 arising from infections before to, to < tl < tz is 
Poisson distributed with mean 

t 2 t o 

Similarly, the number of AIDS-related death claims between tl and t2 arising 
from infection after to is Poisson distributed with mean 

t 2 

t I t O 

Let f~(x) and fA(x) denote the distribution of claim sizes in the insured 
population before and after the introduction of HIV testing. Then the AIDS- 
related losses (ignoring reserves) for the time period tl to tz for issues before 
and after testing have compound Poisson distributions (compare Bowers et 
al. [5]) with appropriate Poisson frequencies and claim amount distributions. 
Furthermore, because of the additivity of the compound Poisson distribution, 
the distribution for several time periods combined, for before and after test- 
ing combined, or for several subportfolios combined will remain compound 
Poisson. Panjer [32] discusses these concepts in a different context and 
provides a simple algorithm for evaluating these distributions. 

The use of these distributions allows the actuary to compute both the mean 
and quantiles of the distribution of the ultimate losses due to past infections 
(that is, analogous to an IBNR) to establish a reserve with an appropriate 
safety margin. 

The reserve from past infections can be run off annually by adjusting for 
the difference between actual and expected. If a past infection is viewed as 
an IBNR claim, then a reserve must be established immediately out of sur- 
plus to fund future claims arising from past infections. 

For future infections, mortality and morbidity tables for new issues need 
to be adjusted appropriately to reflect the revised underwriting practices. 

If the approach of extrapolating excess claims in the future (both past and 
future infections) and adjusting reserve factors for all policies is used, an 
inequity will arise as new issues will fund past infections on old policies. 
An applicant could, at least theoretically, obtain a cheaper policy from a 
new company or a new independent block of business than from an existing 
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block of business that includes policies issued prior to the introduction of 
testing. 

For these reasons, the author believes that it is important to separate past 
infections from future infections and that full funding of past infections is 
required immediately, whereas reserving for future issues will be taken care 
of by adjustments to the underlying mortality or morbidity tables. 

Past infections can be funded in full in advance in aggregate or by ad- 
justing mortality factors for old policies. The aggregate approach described 
in this section provides a guidelines as to how much the company 's  reserve 
should increase in total. 
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DISCUSSION OF PRECEDING PAPER 

F U N G - Y E E  C H A N ;  

It is interesting to see the modeling of AIDS as a rate of HIV infection 
followed by an incubation period. Although the infection rate may be en- 
vironmental, subject to societal influence, education, and risk-taking atti- 
tudes, the incubation is biological and should be common to all countries. 
In this paper, Professor Panjer assumes an exponential infection rate. His 
incubation distributions (gamma and Erlang) use the same distribution pa- 
rameters for all three countries: U.S.A., Canada, and Australia. 

I would like to suggest the following reasoning: If the AIDS cases are 
described by the product of an infection factor and an incubation factor that 
is common to different countries, the ratios of observed AIDS cases are the 
ratios of the infection rates of the different countries. These ratios are im- 
portant because they grow exponentially if the observed AIDS cases, or the 
HIV cases, grow exponentially. On the other hand, if the observed AIDS 
cases or the HIV cases grow polynomially with time, say, cubically, then 
the ratios should stay quite flat with time. Given that the infection rates are 
environmental and that environments change only rather slowly, I would 
suspect that these ratios did not change drastically during the past few years. 

We construct in Table 1 three time series of observed AIDS cases using 
the data extracted from Panjer's paper. We can smooth the time series using 
the mean of three adjacent values. The resulting series and their ratios (start- 
ing one observation later and terminating one observation sooner) are given 
in Table 2 and Table 3, respectively. 

TABLE 1 

OBSERVED AIDS CASES IN U.S. ,  CANADA AND AUSTRALIA 

U.S. Canada Australia 

H~lf-Year Half-Year Half-Year ~-. 
Year 1 2 1 2 1 2 

1983 I' 1,299 1,600 29 25 1 5 
1984 i 2,478 3,234 61 82 6 36 i 
1985 ~ 4,456 5,701 133 185 62 51 
1986 t 7,063 8,234 290 251 95 128 
1987 ~ 9,433 278 173 

223 
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TABLE 2 

AIDS CASES SMOOTHED BY [lag(y, - 1) + y + lag(y, 1)]/3 

U.S. Canada Australia 

Half-Year Half-Year Half-Year 

Year 1 2 I 2 l 2 

1983 1792.33 38.34 4.00 
1984 2437.33 3389.33 56.00 92.00 15.67 34.67 
1985 4463.67 5740.00 133.34 175.67 49.67 69,33 
1986 6999.33 8243.33 215.00 246.00 91.33 132,00 

TABLE 3 

RATIOS OF TIME SER/ES 

U.S./Canada Canada/Australia 

Half-Year Half-Year 

Year 1 2 l 2 

1983 46.76 9.58 
1984 45.32 36.84 3.57 2. 65 
1985 33. 48 32. 68 2. 68 2. 53 
1986 32. 56 33. 51 2. 35 1.86 

The U.S.A./Canada ratio shows a slow decline and a stabilized ratio 
around 33 in 1985 and 1986. The Canada/Australia ratio shows a rapid 
decrease and a stabilized ratio around 2.5 about the same time. 

To determine whether the fitted data of Panjer's would show the same 
kind of features, we also compute the means of three adjacent values of 
Panjer's fitted values even though they are already smoothed by formulas. 
They are given in Table 4. We see that the features as noted in Table 3 are 
lost in Panjer's model, which instead shows an overall gentle decline with 
time. 

TABLE 4 

RATIOS OF PANJER'S FITTED SERIES 

U,S.A./Canada Canada/Australia 

Half-Year Half-Year 

Year 

1983 
1984 
1985 
1986 

1 2 

37.68 
37.10 38.26 
36,89 35.78 
34,18 33.59 

1 2 

3.83 
3.50 2.96 
2.68 2.41 
2.20 1.96 
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MICHAEL J, COWELL" 

Professor Panjer's paper is a welcome and significant addition to the 
literature on modeling the spread of the human immunodeficiency virus 
(HIV) in North America. This discussion addresses the topics covered in 
Sections 2, 5 and 4 of the paper. 

The summer of 1989 marked the 100,000th case of AIDS in the U.S. 
reported to the Centers for Disease Control (CDC). The 10,000 mark was 
reached in early 1985, and the 1,000th case was reported in 1982. The CDC 
estimates that "Currently about 1 million persons in the United States are 
infected with HIV" [1]. If this estimate is reasonably accurate, at current 
rates of progression from initial infection to the full-fledged clinical symp- 
toms of AIDS and in the absence of a major medical breakthrough, the 
number of AIDS cases will reach one million sometime in the late 1990s. 

In developing our model of HIV infection and AIDS mortality in 1987 
[2], Walter Hoskins and I concluded that predicting the course of the epi- 
demic depended on knowing the dynamics of the spread of HIV and the rate 
of progression of the disease in a cohort of newly infected individuals. 

In Section 2 of his paper, Professor Panjer explores, with more mathe- 
matical elegance than Walter Hoskins and I, the notion that the spread of 
HIV infection in a homogeneously mixing population may be modeled by 
an S-shaped logistic curve. This assumption is often made in the study of 
"classical" epidemics such as influenza. When we published our report, we 
had no empirical evidence that this assumption would necessarily be valid 
for HIV infection with its long incubation period. 

Information published over the past two years on the changing prevalence 
of HIV infection over time among subjects in the San Francisco Men's 
Health Study and in the New York State Drug Abuse Study lends strong 
evidence to the logistic assumption, at least among these two samples from 
the highest risk groups. Considerably more time will be required to determine 
whether the assumption will continue to be valid as HIV infection spreads 
more widely, and increasingly, into the non-drug-abusing heterosexual 
population. 

In Section 3, Professor Panjer explores the fit of both Weibull and gamma 
distributions to a number of clinical studies of progression from initial HIV 
infection to the development of AIDS. He cites studies with mean progres- 
sion times ranging from 6 to 9 years, seemingly a narrow range, although 
the implications of the difference can be substantial. 
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At the time we were studying this progression, Walter Hoskins and I 
depended largely on the University of Frankfurt data and information newly 
emerging from the San Francisco City Clinic Study. More recent information 
from the latter study, which traces HIV infection through frozen blood sam- 
ples all the way back to 1978, tends to support a mean progression time of 
9 or 10 years. Some lengthening of the incubation period in the past year 
or two has been attributed to the more widespread application of retroviral 
drugs such as AZT. Increasing numbers of HIV-infected individuals are 
being administered such drugs in the earlier stages of infection, before reach- 
ing full-fledged AIDS. This trend, and other advances in treatment, will 
likely lengthen the mean progression time further. 

Also, as more data become available on other than the principal risk 
groups, there is evidence that progression rates may vary considerably by 
such factors as sex, number of exposures to the virus, and health at time of 
initial infection. 

In Section 4, Professor Panjer presents a major breakthrough in the tech- 
nique of "back-estimating" the number of HIV infections from the number 
of AIDS cases and knowledge of the distribution of the progression, a process 
that has been compared to measuring an iceberg by analyzing its tip. 

Walter Hoskins and I constructed a crude "back estimation" method by 
(i) assuming a series of new annual HIV infections, Hz, for the years through 
1986 that followed the logistic assumption of prevalence; (ii) calculating the 
number of new AIDS cases that would follow from the distribution of pro- 
gression; and (iii) solving the resulting system of simultaneous equations to 
produce the number of AIDS cases reported to the CDC. The problem with 
our approach, especially in the early years of the epidemic, was that the 
largest number of new infections is matched to the smallest component of 
progression. The result is thus extremely unstable, with seemingly minor 
changes in the assumed distribution of progression producing widely differ- 
ent estimates of total HIV infections. We concluded that the number of HIV 
infections at year-end 1987 was in the order of magnitude of a million, but 
we could not say with certainty whether it was 600,000 or 1.5 million. 

Using far more robust statistical approaches, Professor Panjer estimates 
as of rnid-1987, under the assumption of 8.2 years mean progression, that 
the number of HIV infections in the U.S. may be as low as 800,000 and as 
high as 1.5 million. The wide variations that can result from seemingly 
minor changes in assumptions about the distribution of progression from 
initial infection to AIDS is well illustrated in his Table 1. An increase of 28 
percent in mean progression time from 6.4 to 8.2 years results in an 80 
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percent increase in the estimate of HIV infections under the gamma distri- 
bution, and a 56 percent increase under the generalized Erlang distribution. 
One point here is that as the mean progression time increases with the more 
widespread application of retroviral drugs, the number of reported AIDS 
cases portends a correspondingly larger number of HIV infections. 

Education continues to be the primary method for controlling the spread 
of HIV infection, although medical intervention is beginning to slow the 
progression of the disease among many who are already infected. Recent 
progress in the perceived effectiveness of retroviral drugs also seems to have 
had a favorable effect on the willingness of groups at high risk of infection 
to have their HIV status tested. The CDC has indicated its intention to 
conduct nationwide sampling of HIV prevalence in the early 1990s. In the 
meantime, those of us responsible for projecting the impact of the epidemic 
on our life and health insurance institutions will have to continue to rely on 
the modeling work available. We are indebted to Professor Panjer for his 
significant contributions to this research. 
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ELIAS S. W. SHIU" 

I wish to comment on Section 2 of this interesting paper. 
The classical principle of mass action, formulated by Guldberg and Waage 

more than 120 years ago, is that the rate of a chemical change is at any 
instant proportional to the product of the effective concentrations of the 
reactants at that instant. Equation (2.1), with X(t) defined as n - Y(t), 

dY(t) 
d--~- = a[n - Y(t)]Y(t) 

may be viewed as a consequence of this principle. This differential equation 
is now part of the course of study for the Course 161 examination ([7], [1, 
p. 531, Exercise 18.18]), and in each of the Course 161 examinations so 
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far, there has been at least one question on the logistic curve. To solve the 
differential equation, observe that 

1 = n n  (,, - y ) y  + . 

For small Y(t), Equation (2.1) is approximately 

dY(t) 
d---7 

from which Formula (2.3) 

Y(t) = r ( 0 )  e °n' 

follows. This formula implies that "in the early stages of an epidemic, the 
number of infectives grows exponentially." I now quote from [2]: 

"The most reliable data on the course of the AIDS epidemic--the total number of 
cases in the U.S. as a function of time--have been compiled by the Centers for Disease 
Control. Analysis of these data has revealed several surprising facts. 

"First, unlike most epidemics, the number of cases of AIDS has not grown exponen- 
tially with time, but rather as the cubic power of time, tL Virtually all epidemiological 
models of infectious diseases, including sexually transmitted diseases, predict exponential 
growth for the early phases of the epidemics, and most of the epidemics that have been 
studied appear to have followed this pattern. Second, when the data for the AIDS epi- 
demic are broken down into subgroups by race and sex, the number of cases in each 
subgroup is seen to have grown at t 3, and the growth in all groups appears to have begun 
at nearly the same time." 

A team of mathematical scientists at the Los Alamos National Laboratory 
has developed a mathematical model explaining the observed cubic growth 
of the AIDS epidemic in the homosexual population ([2], [3], [4], [5]). 
"The Los Alamos model has been very accurate, with predictions that have 
matched within 2-3%" [6, p. 983]. 

Why does AIDS, unlike most epidemics, not exhibit exponential growth? 
Why is Equation (2.1) not applicable to the AIDS epidemic? The main reason 
seems to be the social factors that play a large role in the spread of HIV. 
The behaviors that put people at risk of exposure to HIV are not randomly 
distributed, but tend to be confined to certain segments of the population. 

It is reported in [6] that the Los Alamos group is involved in a project to 
develop user-friendly software that will allow public health workers to use 
the model to better understand the future of the epidemic. For this project, 
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researchers at the University of Illinois are working on the software, the 
Census Bureau is providing data, and the Air Force Academy will be testing 
the package. 
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(AUTHOR'S REVIEW OF DISCUSSION) 

HARRY H. PANJER: 

I thank Professor Chan, Mr. Cowell and Professor Shiu for their thoughtful 
discussions. This paper was prepared originally for the symposium "Insur- 
ance and the AIDS Epidemic" held in May 1988 [1]. The purpose of the 
paper was to provide an overview of epidemiological considerations in mod- 
eling the growth of the epidemic as well as to test the appropriateness of the 
epidemiological models by fitting them to the observed data. 

Professor Chan and Professor Shiu point out the poor fit exhibited by 
assuming exponential growth in the early part of the epidemic. As a con- 
sequence of the poor fit of the exponential growth model in this paper, I 
prepared a subsequent paper [2] in which the growth rate is modeled as a 
power function, referred to as a polynomial growth model. In that paper the 
polynomial growth model exhibited a dramatically better fit than the expo- 
nential growth model. This poor fit has been pointed out by other authors, 
some of which are referenced by Professor Shiu. In [2], it is shown that for 
Canada, U.S.A. and Australia quadratic or cubic growth models for the 
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epidemic fit significantly better than exponential growth models. This ob- 
servation is consistent with the observations made by the authors referenced 
by Professor Shiu. 

Mr. Cowell points out the differences between his earlier paper, the use 
of the discrete version of the back calculation technique, as opposed to the 
continuous version used in this paper. The continuous version in this paper 
can be approximated by a discrete version with short time intervals. One 
further purpose of this paper was to point out the sensitivity of the results 
to the various assumptions involved. This is evidenced by the wide differ- 
ences in the estimates of the number of infections resulting from relatively 
small changes in the incubation model. Consequently, minor differences in 
the method of calculation resulting from the difference in calculation used 
in Mr. Cowell's paper and this paper are insignificant relative to the differ- 
ences resulting from small variations in assumptions. 

It might be of interest to the reader that the methodologies used in this 
paper were also used in the Canadian Institute of Actuaries reports on AIDS 
[3, 4] with a Weibull incubation model. This incubation model was chosen 
because most biomedical researchers have selected it as an appropirate model. 
However, a significant difference between the Weibull model and the models 
of this paper are in the right-hand tail of the distribution where we have very 
little information. 

I am indebted to all three reviewers for their constructive comments on 
this survey paper. 
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