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Abstract 
 
Recent articles, such as McCauley-Bell et al. (1999) and Sánchez and Gómez (2003a, 
2003b, 2004), used fuzzy regression (FR) in their analysis.  Following Tanaka et. al. 
(1982), their regression models included a fuzzy output, fuzzy coefficients and an non-
fuzzy input vector.  The fuzzy components were assumed to be triangular fuzzy numbers 
(TFNs).  The basic idea was to minimize the fuzziness of the model by minimizing the 
total support of the fuzzy coefficients, subject to including all the given data. 
 
The purpose of this article is to revisit the fuzzy regression portions of the foregoing 
studies and to discuss issues related to the Tanaka approach, including a consideration of 
fuzzy least-squares regression models. 
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possibilistic regression, term structure of interest rates 
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1 Introduction 
 
Recent articles, such as McCauley-Bell et al. (1999) and Sánchez and Gómez (2003a, 
2003b, 2004), used fuzzy regression (FR) in their analysis.  The former use it to predict 
the relationship of known risk factors to the onset of occupational injury, while the latter 
used it to investigate the term structure of interest rates (TSIR).  Following Tanaka et. al. 
(1982), their models took the general form: 
 

nn xAxAAY ~~~~
110 +++= L (1) 

 
where Y~ is the fuzzy output, Ãi, j=1,2,..., n, is a fuzzy coefficient, and x = (x1, ..., xn) is an 
n-dimensional non-fuzzy input vector.  The fuzzy components were assumed to be 
triangular fuzzy numbers (TFNs).  Consequently, the coefficients, for example, can be 
characterized by a membership function (MF), µA(a), a representation of which is shown 
in Figure 1. 
 

 
Figure 1:  Fuzzy Coefficient 

 
As indicated, the salient features of the TFN are its mode, its left and right spread, and its 
support.  When the two spreads are equal, the TFN is known as a symmetrical TFN 
(STFN). 
 
The basic idea of the Tanaka approach, often referred to as possibilistic regression, was to 
minimize the fuzziness of the model by minimizing the total spread of the fuzzy 
coefficients, subject to including all the given data. 
 
The purpose of this article is to revisit the fuzzy regression portions of the foregoing 
studies, and to discuss issues related to the Tanaka (possibilistic) regression model.  This 
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discussion is not meant to be exhaustive but, rather, is intended to point out some of the 
major considerations.  The outline of the paper is as follows.  We first define and 
conceptualize the general components of fuzzy regression.  Next, the essence of the 
Tanaka model is explored, including a commentary on some of its potential limitations.  
Then, fuzzy least-squares regression models are discussed as an alternative to the Tanaka 
model.   Throughout the paper, the same simple data set is used to show how the ideas are 
implemented.  The paper ends with a summary of the conclusions of the study. 
 

2 Fuzzy Linear Regression Basics 
 
This section provides an introduction to fuzzy linear regression.  The topics addressed 
include the motivation for FR, the components of FR, fuzzy coefficients, the h-certain 
factor, and fuzzy output. 

2.1 Motivation 
 
Classical statistical linear regressions takes the form 
 

 
(2) mixxy iikkii ,...,2,1,110 =++++= εβββ L

where the dependent (response) variable, yi , the independent (explanatory) variables, xij, 
and the coefficients (parameters), βj, are crisp values, and εi  is a crisp random error term 
with E(εi)=0, variance σ2(εi )=σ2, and covariance σ(εi , εj) = 0, ∀i,j, i≠ j. 
 
Although statistical regression has many applications, problems can occur in the 
following situations: 
 
 •  Number of observations is inadequate (Small data set) 
 •  Difficulties verifying distribution assumptions 
 •  Vagueness in the relationship between input and output variables 
 •  Ambiguity of events or degree to which they occur 
 •  Inaccuracy and distortion introduced by linearalization 
 
Thus, statistical regression is problematic if the data set is too small, or there is difficulty 
verifying that the error is normally distributed, or if there is vagueness in the relationship 
between the independent and dependent variables, or if there is ambiguity associated with 
the event or if the linearity assumption is inappropriate.   These are the very situations 
fuzzy regression was meant to address. 
 

2.2 The Components of Fuzzy Regression 
 
There are two general ways (not necessarily mutually exclusive) to develop a fuzzy 
regression model:  (1) models where the relationship of the variables is fuzzy; and (2) 
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models where the variables themselves are fuzzy.  Both of these models are explored in 
the rest of this article, but, for this conceptualization, we focus on models where the data 
is crisp and the relationship of the variables is fuzzy.  
 
It is a simple matter to conceptualize fuzzy regression.  Consider for this, and subsequent, 
examples the following simple Ishibuchi (1992) data: 

Table 1:  Data Pairs 

i 1 2 3 4 5 6 7 8 
xi 2 4 6 8 10 12 14 16 
yi 14 16 14 18 18 22 18 22 

 
Starting with this data, we fit a straight line through two or more data points in such a 
way that it bounds the data points from above.  Here, these points are determined 
heuristically and OLS is used to compute the parameters of the line labeled YH , which 
takes the values , as shown in Figure 2(a).  xy 75.13ˆ +=
 

 
Figure 2:  Conceptualizing the upper and lower bound 

 
Similarly, we fit a second straight line through two or more data points in such a way that  
it bounds the data points from below.  As shown in Figure 2(b), the fitted line in  
this case is labeled YL and takes the values xy 5.11ˆ += . 
 
Assuming, for the purpose of this example, that STFN are used for the MFs, the modes of 
the MFs fall midway between the boundary lines.1 
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1 This approach to choosing the mode was discussed by Wang and Tsaur (2000) p. 357. 



For any given data pair, (xi, yi), the foregoing conceptualizations can be summarized by 
the fuzzy regression interval [Y shown in Figure 3.]Y, U

i
L
i

2 
  

Figure 3:  Fuzzy Regression Interval 
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i -
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discussed by Wang and Tsaur (2000). 
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iY = 1h
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In possibilistic regression based on STFN, only the data points involved in determining 
the upper and lower bounds determine the structure of the model, as depicted in Figure 2.  
The rest of the data points have no impact on the structure.  This problem is resolved by 
using asymmetric TFNs. 
 

2.3 The Fuzzy Coefficients 
 
Combining Equation (1) and Figure 1, and, for the present, restricting the discussion to 
STFNs, the MF of the j-th coefficient, may be defined as: 
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where aj is the mode and cj is the spread, and represented as shown in Figure 4. 
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2 Adapted from Wang and Tsaur (2000), Figure 1. 



 

 
Figure 4:  Symmetrical fuzzy parameters 

 
Defining 
 

 

 
(

 

                                                

{ } { } njcaAcaAcaA
LjjjjjjLjjj ,,1,0,~:~,~

L=+≤≤−== (4) 

and restricting consideration to the case where only the coefficients are fuzzy, we can 
write 
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This is a useful formulation because it explicitly portrays the mode and spreads of the 
fuzzy parameters.  In a subsequent section, we explore fuzzy independent variables. 
 

2.4 The "h-certain" Factor 
 
If, as in Figure 3, the supports3 are just sufficient to include all the data points of the 
sample, there would be only limited confidence in out-of-sample projection using the 
estimated FR model.  This is resolved for FR, just as it is with statistical regression, by 
extending the supports. 
 
Consider the MF associated with the j-th fuzzy coefficient, a representation of which is 
shown in Figure 5. 
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3 Support functions are discussed in Diamond (1988: 143) and Wünsche and Näther (2002: 47). 



 

 
Figure 5:  Estimating Aj using an "h-certain" factor 

 
For illustrative purposes, a non-symmetric TFN is shown, where c and c represent the 
left and right spread respectively.  Beyond that, what makes this MF materially different 
from the one shown in Figure 4, is that it contains a point "h" on the y-axis, called an "h-
certain factor," which, by controlling the size of the feasible data interval (the base of the 
shaded area), extends the support of the MF.

L
j

R
j

4  In particular, as the h-factor increases for a 
given data set, so increases the spreads, c and . L

j
R
jc

 

2.5 Observed Fuzzy Output 
 
An h-certain factor also can be applied to the observed output.  Thus, the i-th output data 
might be represented by the STFN, )e,(yY~ iii = , where yi is the mode and ei is the spread, 
as shown in Figure 6.  Here, the actual data points fall within the interval yi ± (1-h) ei, the 
base of the shaded portion of the graph. 
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4 Note that the h-factor has the opposite purpose of an α-cut, in that the former is used to extend the 
support, while the latter is used to reduce the support. 



 

Figure 6:  Observed Fuzzy Output 
 
 
 

2.6 Fitting the Fuzzy Regression Model 
 
Given the foregoing, two general approaches are used to fit the fuzzy regression model:   
 

The possibilistic model.  Minimize the fuzziness of the model by minimizing the total 
spreads of its fuzzy coefficients (see Figure 1), subject to including the data points of 
each sample within a specified feasible data interval. 

 
The least-squares model.  Minimize the distance between the output of the model and 
the observed output, based on their modes and spreads. 

 
The details of these approaches are addressed in the next two sections of this paper. 
 
 

3 The Possibilistic Regression Model 
 
The possibilistic regression model is optimized by minimizing the spread, subject to 
adequate containment of the data.  The spread is minimized  
 

 

 
0c,|x|ccmin j

n

1j
ijj0 ≥







+ ∑

=
(6) 

Figure 7 shows the first step in the containment requirement, by showing how Figure 5 
can be easily extended to portray the fuzzy output of the model.   
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Figure 7:  Fuzzy output of the model 

 
 
Putting this together with the observed fuzzy output, Figure 6, results in Figure 8, which 
shows a representation of how the estimated fuzzy output may be fitted to the observed 
fuzzy data.   
 

 
Figure 8:  Fitting the estimated output to the observed output 

 
The key is that the observed fuzzy data, adjusted for the h-certain factor, is contained 
within the estimated fuzzy output, adjusted for the h-certain factor.  Formally,  
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Figure 95 shows the impact of the h-factor on the sample data, given h=0 and h=.7. 
 
 

 
Figure 9:  FLR and h-certain model 

 
The result is what one would expect.  Increasing the h-factor expands the confidence 
interval and, thus, increases the probability that out-of-sample values will fall within the 
model.  This is comparable to increasing the confidence in statistical regression by 
increasing the confidence interval.  
 
The possibilistic linear regression model, as depicted by equations (6) and (7), is 
essentially the fuzzy regression model used by Sánchez and Gómez (2003a, 2003b, 2004) 
to investigate the TSIR.6 
 

                                                 
5 Adapted from Chang and Ayyub (2001), Figure 4. 
6 Key components of the Sánchez and Gómez methodology included constructing a discount function from 
a linear combination of quadratic or cubic splines, the coefficients of which were assumed to be TFNs or 
STFNs, and using the minimum and maximum negotiated price of fixed income assets to obtain the spreads 
of the dependent variable observations.  Given the fuzzy discount functions, the authors provided TFN 
approximations for the corresponding spot rates and forward rates.  It was necessary to approximate the 
spot rates and forward rates since they are nonlinear functions of the discount function, and hence are not 
TFNs even though the discount function is a TFN. 
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3.1 Criticisms of the Possibilistic Regression Model 
 
There are a number of criticisms of the possibilistic regression model.  Some of the major 
ones are the following: 
 
• Tanaka et al "used linear programming techniques to develop a model superficially 

resembling linear regression, but it is unclear what the relation is to a least-squares 
concept, or that any measure of best fit by residuals is present."  [Diamond (1988: 
141-2)] 

 
• The original Tanaka model was extremely sensitive to the outliers. [Peters (1994)]. 
 
• There is no proper interpretation about the fuzzy regression interval  [Wang and 

Tsaur (2000)] 
 
• Issue of forecasting have to be addressed  [Savic and Pedrycz (1991)] 
 
• The fuzzy linear regression may tend to become multicollinear as more independent 

variables are collected  [Kim et al (1996)]. 
 
• The solution is xj point-of-reference dependent, in the sense that the predicted 

function will be very different if we first subtract the mean of the independent 
variables, using (xj - ix ) instead of xj. [Hojati (2004), Bardossy (1990) and Bardossy 
et al (1990)] 

 
 

4 The Fuzzy Least-Squares Regression (FLSR) Model 
 
An obvious way to bring the FR more in line with statistical regression is to model the 
fuzzy regression along the same lines.  In the case of a single explanatory variable, we 
start with the standard linear regression model: [Kao and Chyu (2003)] 
 

 

 

(8) m1,2,...,i,εxββy ii10i =++=

which in a comparable fuzzy model might take the form: 

m1,2,...,i,ε~X~ββY~ ii10i =++= (9) 
 

Conceptually, the relationship between the fuzzy i-th response and explanatory variables 
in (9) can be represented as shown in Figure 10. 
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Figure 10:  Fuzzy i-th response and explanatory variables 

 
Rearranging the terms in (9), 
 

 

 

 
 

 

                                                

m1,2,...,i,X~ββY~ε~ i10ii =−−= (10) 
 

From a least-squares perspective, the problem then becomes  

 

 

2
10

1
)~~(min i

n

i
i XbbY −−∑

=
  (11) 

There are a number of ways to implement FLSR, but the two basic approaches are FLSR 
using distance measures and FLSR using compatibility measures.  A description of these 
methods follows. 

4.1 FLSR using Distance Measures (Diamond's Approach) 
 
Diamond (1988) was the first to implement the FLSR using distance measures and his 
methodology is the most commonly used.  Essentially, he defined an L2- metric d(.,.)2 
between two TFNs by [Diamond (1988: 143) equation (2)] 

(12) ( ) ( )
( ) 2

2211

2
2211

2
21

2
222111

)()(

)()()(,,,,,

rmrm

lmlmmmrlmrlmd

+−++

−−−+−=

Given TFNs, it provides a measure of the distance between two fuzzy numbers based on 
their modes, left spread and right spread.7 
 

 
7 The methods of Diamond's paper are rigorously justified by a projection-type theorem for cones on a 
Banach space containing the cone of triangular fuzzy numbers, where a Banach space is a normed vector 
space that is complete as a metric space under the metric d(x, y) = ||x-y|| induced by the norm. 
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The case most similar to the Sánchez and Gómez model takes the form 
 

 

 

mixY iii ,...,2,1,~~~~
10 =++= εββ (13) 

 
and requires the optimization of 

2

,
)~,~~(min iiBA

YxBAd∑ + (14) 

The solution follows from (12), and if B~ is positive, it takes the form: 
 

222 )()()~,~~( L
Yii

L
B

L
Aiiiii i

cyxccbxaybxaYBxAd +−−−++−+=+  

(15) 
 

A similar expression holds when 

2)( R
Yii

R
B

R
Ai i

cyxccbxa +−++++

B~ is negative.  If the solutions exist, the parameters of 
A~ and B~

course, this fitted model has the same general characteristics as previously shown, but 
now we can use the residual sum of d-squares to gauge the effectiveness of model. 

In the case most reminiscent of statistical regression, the coefficients are crisp and the 
task becomes the least-squares optimization problem 

satisfy a system of six equations in the same number of unknowns, these 
quations arising from the derivatives associated with (15) being set equal to zero.  Of 

 

(16) 

Once again, the solution is gi to account t n of b. 
 
Finally, an interesting problem enting the Diamond approach is associated 

ith models of the form 

ral solution, since the LHS, 

e

 

 
 

,
)~,~(min iiba

YXbad∑ + 2

ven by (12), adjusted to take

 when implem

 in he sig

w
 

(17) 
 

for which there is no gene

miXY iii ,...,2,1,10 =++= εββ ~~~~~

iY~

One approach to this problem (Hong et al (2001)) is to replace the t-norm min(a,b) 
the t-norm Tw(a,b) = a, if b=1; b, if a=1; 0, otherwise.  Since T

, is a TF  while the RHS 
involves the fuzzy product 

N

iX~~
1β , whose sides are drumlike.  

 
with 

w(a,b) is a shape preserving 
peration under multiplication, it resolves the problem.  This approach is used in Koissi o

and Shapiro (2005). 
 
Another approach is to use approximate TFNs.  This was done by Sánchez and Gómez 
(2003a), albeit in another context. 
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4.2 FLSR using compatibility measures  
 
An alternate least-squares approach is based on the Celmiņš (1987) compatibility 

(18) 
 

 

 

 
As indicated,  when the 

odes of the MFs coincide. 
 

elmiņš compatibility model, which involved maximizing the compatibility between the 

 
   (19) 

Thus, for example, when there is a single crisp expla  
(2001: 190)] 
 

(20) 
 
 

 m1 are determined using weighted LS regression, and c0, c1, and c01 are 
determined using iteration and the desired compatibility measure. 
 

                                                

measure 
(),(min{max)~,~( XBA µµγ =

representative examples of which are shown in Figure 11.8 

Figure 11:  Celmiņš Compatibility Measure 

γ ranges from 0, when the MFs are mutually exclusive, to 1,
m

C
data and the fitted model, follows from this measure.  The objective function is  

 
natory variable, [Chang and Ayyub
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where m0 and

 
8 Adapted from Chang and Ayyub (2001), Figure 2. 
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An example of the use of the Celmiņš compatibility model applied to our sample data is 
own in Figure 12.9 

 
 

 
The essential characte rves for the 

e broader the width 
of the bounds.  

 

cCauley-Bell et al. (1999) and Sánchez and Gómez (2003a, 2003b, 
004) provide some interesting insights into the use of fuzzy regression.  However, their 
ethodology relies on possibilitic regression, which has the potential limitations 

1.  Since some of these limitations can be circumvented by using 
mportant that researchers are familiar with these techniques as 

ell.  If this article helps in this regard, it will have served its purpose. 

 hydrology," 
Water Resources Research 26, 1497-1508. 

                                                

sh
 

Figure 12:  FLS using maximum compatibility criterion

ristics of the model in this case are the parabolic cu
upper and lower bounds and that the higher the compatibility level, th

 

5 Comment 
 
The studies of M
2
m
mentioned in section 3.
FLSR techniques, it is i
w
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