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ABSTRACT 

A debt security can be viewed as a risk-free asset plus or minus various 
contingent claims, which usually can be modeled as options. This paper 
discusses the pricing of bond options and interest-sensitive cash flows by 
discrete state/time models such as binomial lattices. In the literature the 
binomial model developed for the pricing of stock options has been adapted 
to the pricing of bond options. However, some of these adaptations are faulty 
because the put-call parity relationship may not hold for all periods and there 
may exist negative interest rates. This paper presents a binomial model 
without such riskless arbitrage opportunities. A practical feature of the model 
is that it allows the initial term structure of interest rates to be prescribed 
exogenously, so that the model price for each stream of fixed and certain 
cash flows is the market price. The model includes the one recently devel- 
oped by Ho and Lee as a special case. 

1. INTRODUCTION 

The option-pricing theory of Black and Scholes [4] has been described as 
the most important single advance in the theory of financial economics in 
the 1970s. These authors derive a formula for valuing a European call option 
on a nondividend-paying stock by showing that the option and stock can be 
combined linearly to form a riskless hedge. Books such as [13], [16], [25], 
[26], [29], [30], [32], [35], [44] and [59] contain expositions of the theory. 
Examples of applications of option-pricing methodology to insurance and 
pensions can be found in [3], [8], [9], [10], [15], [40], [48], [49], [50], 
[58] and [60]. 

Because debt securities can be viewed as risk-free assets plus or minus 
various contingent claims, which may be modeled as options, many authors 
have attempted to extend the Black-Scholes theory to price debt securities 
and their derivative assets. The mathematics of the Black-Scholes theory has 
been simplified by Cox, Ross and Rubinstein [12] and by Rendleman and 
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Bartter [42] under the assumption that stock-price movements can be de- 
scribed by a binomial lattice. Subsequently, articles discussing the pricing 
of options on bonds and mortgages by means of binomial lattices have 
appeared ([6], [9], [20], [23], [24], [27], [28], [37], [38], [39], [43], and 
[44, Chapter 13]). A problem with some of these binomial models of interest 
rate movements is that they contain arbitrage opportunities. In their discus- 
sion of [9}, Tilley, Noris, Buff and Lord [9, p. 139] point out that the put- 
call parity relationship for European options does not hold in the binomial 
model presented in [9]. 

In the next section we derive conditions that eliminate one-period arbi- 
trages and show that multiperiod arbitrages do not exist if all one-period 
arbitrages are eliminated. We present a binomial model recently developed 
by Ho and Lee [24] in Section III and generalize it in Section IV. 

II. ELIMINATION OF ARBITRAGES 

As defined in Webster's New Collegiate Dictionary, an arbitrage is the 
simultaneous purchase and sale of the same or equivalent security in order 
to profit from price discrepancies. In this paper, we assume that the market 
is frictionless. There are no taxes, transaction costs, or restrictions on short 
sales. Borrowing and lending rates are the same. All securities are perfectly 
divisible. Information is available to all investors simultaneously. Every 
investor acts rationally; that is, he uses all available information and prefers 
more wealth to less wealth. It follows from these assumptions that no ar- 
bitrage is possible. Indeed, an arbitrage opportunity in such an efficient 
market would mean unlimited riskless profit. Thorough expositions on the 
no-arbitrage principle and its importance in financial theory can be found in 
papers ([34], [57]) and in books ([16], [25], [26], [29], [31], [35]). 

We wish to determine conditions that eliminate arbitrages in a financial 
model. Assume that, at the end of one time-period from now, all possible 
outcomes of nature and the economy can be classified into n mutually ex- 
clusive states. (In a binomial model, n =2. )  Because this paper is mainly 
concerned with the pricing of fixed-income securities and their derivative 
assets, a different state of nature simply means a different term structure of 
interest rates. Corresponding to state i, l<i<-n, there is a force-of-interest 
function, 8i('), that determines the values of all default-free and noncallable 
bonds. 

For t = 1, 2, 3 . . . . .  let the present value of a default-free discount bond 
maturing for the value of 1 be denoted by v,. After one time-period, the 
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maturity time of the bond shortens by 1 and its value will be one of v ,_ t .1 ,  

V t _ l , 2 )  V t _ l , 3 : )  . ° . ) Vt_l,n, where 

[fo ] Vt 1,i  = exp - 8i(s)ds ; (2.1) 

see Figure 1. Note that for t =  1, v , _ l a  = 1, for all i. 

FIGURE I 

VI-1,  2 
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To eliminate riskless arbitrage opportunities, we must have the inequalities 

va Min{v,_l,i} -< v, _< Vl Max{1,'t-l,i}, (2.2) 
i i 

for all t, t = 1, 2, 3, . . . , or, more generally, for all sequences of real 
numbers {c,}, 

vlMin{~ctVt-l'il~2CtVt~vlMaxt~t CtVt-l'i 1 ( 2 ° 3 )  

(Buying a negative quantity of an asset is interpreted as shorting that asset.) 
Because (2.3) should also hold for { -  c,}, it is sufficient to consider just one 
of the inequalities in (2.3), say, 
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Suppose that (2.4) does not hold; that is, there exists a sequence of real 
numbers {c,} such that 

~CtVt ~ ]21M~lxt~I (2°5)  

Then, a riskless arbitrage opportunity arises [6, p. 20]: Consider selling, at 
time 0, c, units of discount bonds maturing at time t and using the revenue 
[the left-hand side of (2.5)] to buy discount bonds maturing at time 1. At 
time 1, cash in the mature bonds and use the revenue to close out all posi- 
tions. At time 1 and in state i, the profit of this strategy is 

~a CIVI 
t ~ CtVt l,t~ 

VI t 

which, regardless of i, is strictly positive. Because the riskless profit is made 
with zero net investment, the rate of return is infinite. 

Define 

c --  (c~, c2, c3, c4 . . . .  )~, ( 2 . 6 )  

v = (vl, v2, v3, v,, . . . )r (2.7) 

and, for i = 1, 2 . . . . .  n, 

v, = (~,  v , . , ,  v~.,, v ~ . i , . . .  )r (2.8) 

Putting ~b(v) = cry = Ec,v,, we rewrite (2.4) as 

+ ( ~ )  __. Max{+(vi)}., (2.9) 

Theorem I. Inequality (2.9) holds for all (real-valued) continuous linear 
functionals + if and only if the vector v/v~ is in the convex hull of {v,ll<-i<_n}; 
that is, there exist nonnegative numbers {0ill-<i_<n} such that 

0, = 1 (2.10) 
i=l  
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and 

" v (2 .11)  ~ Oil~ i -7- - - .  
i s !  V 1 

Note that (2.10) is the first component of the vector equation (2.11). The 
" i f "  direction in Theorem 1 is obvious because the functionals ~ are linear, 

+(v/vO = d~(~0y i )  = ~'Oi~b(vi) <- i 

Because the convex hull of the vectors {v, ll<i<n } is compact, the "only 
if" direction follows from a separation theorem for convex sets ([2, p. 1], 
[18, Section 1.6], [54, p. 30], [56, Theorem 2.10]). (If we assume that 
there are only a finite number of discount bonds, then the "only if" direction 
is an immediate consequence of the fact that every closed convex set in R" 
is an intersection of half-spaces [53, Theorem 3.3.7].) Usually the separation 
theorems are proved via theorems of the Hahn-Banach type. For a proof of 
the "only if" direction by means of the Hahn-Banach Theorem and the 
equivalence between compactness and the finite intersection property, see 
the Appendix in [6]. 

It follows from Theorem 1 that arbitrages are eliminated from a one-period 
model only if there exist nonnegative numbers {0~ll<_i<_n} such that 

~ O i =  1 
i - I  

and, for all positive integers t, 

V.._.~¢ 
= ~ 0y, 1.i- (2.12) 

V1 i=1 

Note that the numbers {0~} are independent of t. They may be called risk- 
neutral probabilities ([12, p. 235], [26, p. 62]), arbitrage probabilities [6, 
p. 13], or implied probabilities [24, p. 1018]. They are related to the equiv- 
alent martingale measure of Harrison and Kreps ([21], [35, Section 3.2]). 

The number 0i need not be the probability that state i will occur at time 
1. However, if, for each i, 0~ is the probability that state i will occur, then 
all bonds have the same expected one-period return (that is, no term pre- 
miums exist) and we say that the local expectations hypothesis holds ([11, 
p. 775, p. 795], [24, p. 1022]). 
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Applying (2.12), we can show that, in an arbitrage-free model, yield 
curves cannot be always flat. If the yield curves at time 0 and time 1 are 
flat, then (2.12) becomes 

e ~,t 

e ~ = ~ 0ie-~'~'-~)' (2.13) 
i 

where ~ and ~i are positive constants. However, it can be proved that, if al ,  
az, a3 . . . . .  ak are k distinct real numbers, then, for each set of nonzero 
coefficients {c~iIl_<i<k}, the function 

k 

f ( t )  = E a s e  °'' 
i:: 1 

has at most k - 1  real zeros [41, p. 48, number 75]. Thus, (2.13) cannot 
hold unless there exists a state of nature m with ~,,, = 6 and 0,,, = 1. 

There is another way to see that, in an arbitrage-free model, yield curves 
cannot be flat in all states. Consider two portfolios of bonds. The first one 
consists of a single discount bond. The second portfolio consists of bonds 
whose combined present value and Macaulay-Redington duration are iden- 
tical to those of the first one. If the two bond portfolios are not identical, 
then, under the flat yield curves assumption, the Fisher-Well immunization 
theorem ([51], [52]) assures that the value of the second portfolio will be 
higher than that of the first one as soon as there is a change in the interest 
rate. For a numerical example, see Section 3.3 of [7]. 

As stated in Section I, an objection to the model in [9] is that the put-call 
parity relationship does not hold, giving rise to arbitrage opportunities. A 
numerical example showing how the put-call parity relationship may be 
violated in a two-period setting can be found in [6, p. 5] or [5, p. 886]. 
However, the yield curves in the example are assumed to be flat, and as just 
pointed out, one-period arbitrages exist in such a model. We shall show that 
multiperiod arbitrages will not arise if all one-period arbitrages are eliminated. 

Consider a two-period model as depicted in Figure 2. The {0i} and {+j} 
are the risk-neutral probabilities, such that (2.12), 

v ' - l ' l  - tbl w, 2,1 + ~2 w, 2,z + tb3w, 2,3 (2.14) 
VI,1 
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FIGURE 2 
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and 

v,_~,2 _ qJ,w,_~_,4 + %w,-2 ,5  (2.15) 
]21,2 

hold. Here, w,.~ denotes the value of a discount bond at time 2 and in state 
j paying 1 at time "r + 2. The number j is merely an index; state j at time 
2 need not be the same as state j at time 1. If there are no two-period 
arbitrages, there should be risk-neutral probabilities {~j} such that, for each 
integer t, t>_2, the equation 

122 j 

holds. It seems natural to try setting 

~j = 01d~j, j = 1 , 2 , 3 ,  

and 

(2.16) 

(2.17) 

~j = 02~bj, j = 4, 5. (2.18) 

However, Formulas (2.12), (2.14), (2.15), (2.17) and (2.18) together do not 
imply (2.16). 

The risk-neutral probabilities are not quite the basic building blocks for 
arbitrage-free models. The basic building blocks are the discounted risk- 
neutral probabilities v101, 12102, Vl,ll]/1, Vl,II~J2:, 'Vl,lql3, Vl,21~/4, "121,21]/5, and so 
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on. Linear programming is in the syllabus of the Society of Actuaries Course 
130 Examination; actuarial students may be quite familiar with the Farkas 
lemma, which is a key theorem behind the duality theory of linear program- 
ming. It may be pedagogically useful to derive the existence of the dis- 
counted risk-neutral probabilities in the one-period case by using the Farkas 
lemma. (We return to the problem of multiperiod arbitrages later.) 

Recall definitions (2.6), (2.7) and (2.8). Let V denote the matrix (vz, v2, 
. . . .  v~). There is an arbitrage opportunity if there exists a vector c such 
that 

and 

cry < 0 (2.19) 

c r V  >_ 0 r, (2.20) 

where 0 denotes the zero vector in R' .  Inequality (2.19) says that the initial 
net cost of the bond portfolio is negative, and (2.20) says that the value of 
the portfolio is nonnegative in all states at the end of the period. By the 
Farkas (-Minkowski) lemma ([18, p. 56], [31, p. 131], [33, p. 16], [53, p. 
55], [55, p. 36]), there is no vector e satisfying both (2.19) and (2.20) if 
and only if there is a nonnegative vector x e R" such that 

V x  =- v.  (2.21) 

The first component of the vector equation (2.21) is 

xl + x 2  + . . .  + x ,  = vl. (2.22) 

Considering 

x i  = v lO, ,  i = 1, 2 ,  . . . , n ,  (2.23) 

we see that (2.21) and (2.11) are identical. The number x, can be interpreted 
as the value of a security paying 1 at time 1 if state i occurs and paying 0 
otherwise. Such securities are called p u r e  s e c u r i t i e s  or A r r o w - D e b r e u  s e -  

c u r i t i e s  ([1], [14], [31, p. 90], [36, p. 21], [44, p. 92]). We note that because 
interest should be positive, the sum Zx i should be less than one. 

One might argue that an arbitrage opportunity exists even if the less-than 
sign in (2.19) is changed to a less-than-or-equal-to sign. More precisely, an 
arbitrage opportunity exists if there is a vector c such that 

CTV <-- O, (2.24) 

c T V  >- 0 ~ (2.25) 
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and 

c lV  4= • r. (2.26) 

Inequality (2.26) means that there is a statej in which crvj>O. Harrison and 
Kreps [21, p. 389] call investment strategies satisfying (2.24), (2.25) and 
(2.26) simple free lunches (also see [46]). They may be eliminated from the 
model by the additional condition that the value of each Arrow-Debreu 
security is strictly positive, because 

crv = crVx 

by (2.21) ([26, p. 57], [36, p. 15], [45, p. 202]). Equivalently, one may 
impose the condition that each of the risk-neutral probabilities is strictly 
positive ([21, p. 390], [25, p. 231]). 

We now prove that there are no two-period arbitrages in the model as 
depicted in Figure 2. The general case that multiperiod arbitrages do not 
exist if all one-period arbitrages are eliminated can be proved rnutatis mu- 
tandis (also see [17], [19], [31, Section 10.B], [47] and [59, Section 4.4.4]). 
Consider a bond portfolio worth W at time 0. At time 1, trading is allowed, 
and there is a payout of Di if state i occurs. Let Wj denote the value of the 
portfolio at time 2 and in state j .  As there are no one-period arbitrages by 
assumption, there exist discounted risk-neutral probabilities {xi} and {yj}, 
which are positive numbers, as shown in Figure 3. The initial cost W is 
given by the formula 

W = xlD1 + x2D2 + xw~Wl + X~VzW2 

+ xff3W3 + xzy4W4 + xaYsWs. (2.27) 

Assume that Di_>0, i= 1, 2, and Wj>0,j  = 1, 2 . . . .  5. There is an arbitrage 
opportunity if and only if one of the Di or ~ is strictly positive while W is 
nonpositive. However, this cannot happen because of (2.27). 

The discounted risk-neutral probabilities {x}, {y}, {z}, . . . , which need 
not be unique, satisfy the following relations: 

v , - -  .~x, (2.28) 

vz = '5',.~D', (2.29) 

v, = 2 Y. ~vyz, (2.30) 
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FIGURE 3 
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It is reasonable to require that the term structure of interest rates at time 0 
be input as given. The values v l ,  vz ,  v3 . . . .  should be those currently 
observed in the marketplace, so that, for each stream of fixed and certain 
cash flows, the price determined by the model coincides with the market 
price. Many models of term structure movements do not have this property. 
In the next section, we describe the Ho-Lee model [24], which has this 
property. In Section IV, we present an arbitrage-free binomial-lattice model, 
which contains the Ho-Lee model as a special case. 

1II. HO AND LEE'S BINOMIAL INTEREST-RATE MOVEMENT MODEL 

In this section we discuss a binomial model of term structure movements 
recently proposed by Ho and Lee [24]. This model takes the term structure 
of interest rates at time 0 as exogenously given. Our notation and derivation 
are not quite the same as Ho and Lee's.  

Below are the basic assumptions of the model, which are standard for 
discrete time and discrete state-space models of the perfect capital market. 
In the last section, we have already used some of these assumptions. 

1. The market is frictionless. There are no taxes, transaction costs, or restrictions on 
short sales. All securities are perfectly divisible. Information is available to all 
investors simultaneously. Every investor acts rationally. 

2. The market clears at discrete points in time, which are separated in regular intervals. 
For simplicity, we use each period as a unit of time. 
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3. 

4. 

There exist default-free discount bonds for all maturities t, t=O, 1, 2 . . . . .  (A 
discount bond of maturity t is a bond that pays 1 at time t, with no other payments 
to its holder.) 
At each time n, there are finitely many states of nature. The equilibrium price of 
the discount bond of maturity t at time n and in state i is denoted by P(n, n+t, i). 
We require that, for all nonnegative integers n, t and i, 

0 <-P(n, n+t, i) <_ 1, 
P(n, n, i) = 1 (3.1) 

and 

P(n, z, i) = 0. 

We note that the value of the second argument of the bond price function 
P must always be greater than or equal to the value of the first. In Section 
II, we used the symbols v,, vt-1. i and w,_2, i for P(O, t, 0), P(1,  t, i) and 
P(2, t, i), respectively. 

Initially, by convention, we have state O. We assume that, at time 1, there 
are only two states of nature, denoted by 0 and 1. 

Now, consider time 2. We have two choices. We may construct the model 
as depicted in Figure 4. (In the diagrams in this section, we label the states 
of nature beginning with 0 from bottom up.) Then, as we continue the 
construction, we have 2" states of nature at time n. Computationally, this 
will be cumbersome. Alternatively, we may construct the model as in Figure 
5, so that at time n we have only n + 1 states, which are to be labeled with 
the integers 0 to n. Because this second model is simpler for computation, 
we adopt this approach. 

Since we are labeling the states from 0 to n, we redraw Figure 5 as Figure 
6. In general, we have the lattice in Figure 7. Figures 6 and 7 show that 
there are two types of basic movements (as time passes) in this binomial 
la t t ice--upward (state i to state i + 1) and horizontal  (state i to state i). The 
term "horizontal movement"  should not be taken to imply that the yield 
curve is to remain unchanged as time passes. 

To define the binomial-lattice model, we need to prescribe at each vertex 
(n, i) the value of the risk-neutral probability 0(n, i) and the one-period bond 
price P(n, n + 1, i). (Alternatively, we may prescribe the discounted risk- 
neutral probabilities x(n, i) --- 0(n, i)P(n, n + 1, i) and x'(n, i) = [1 - 0(n, i)] 
P(n, n +  1, i).) Once we have these values, we can use (3.1) 

e ( t ,  t, i) = 1 
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and (2.12) 

P(n, t, i) 
= O(n, i ) P ( n + l ,  t, i + 1 )  

P(n, n + 1, i) 
+ [1 - 0(n, i ) ] P ( n + l , t ,  i), t>__n+l, (3.2) 

to determine the bond prices at all vertexes. If we are not careful in defining 
the values O(n, i) and P(n, n + 1, i), the bond prices at vertex (0,0) are not 
likely to be those currently observed in the marketplace. As pointed out at 
the end of Section II, the bond values {P(0, t, 0)} should be taken as ex- 
ogenously given. 

For simplicity we assume that 0(n, i) = 0, a constant. Thus, (3.2) becomes 

P(n, t, i) 
- O P ( n + l , t ,  i + 1 )  + (1 - O)P(n+l , t ,  i). ( 3 . 2 ' )  

P(n, n + 1, i) 

What are the one-period bond prices {P(n, n + 1, i)}? To derive an appro- 
priate set of one-period bond prices, we first make the assumption that the 
bond prices P(n, t, i) are uniquely defined at each node (n, i) of the binomial 
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lattice. We note that, by (3.1) and (3.2'), the assumption disappears as soon 
as we prescribe the one-period bond prices. 

It follows from the uniqueness assumption that there exist two functions 
h and u such that, for all i, n and t (t>_n + 1), 

P(n, t, i) 
P(n, n + 1, i) h(n, t, i) = P(n + 1, t, i) (3.3) 

and 

P(n, t, i) 
u(n, t, i) = P(n + 1, t, i + 1). (3.4) 

P(n, n + 1, i) 

[Note that h(n, n + 1, i) = u(n, n + 1, i) = 1.] Substituting the left-hand sides 
of (3.3) and (3.4) into the right-hand side of (3.2') yields 

1 = Ou(n, t, i) + (1  - O)h(n, t, i) .  ( 3 . 5 )  

We now assume that the perturbation functions h and u depend only on 
the remaining time to maturity of the bond, that is, (with some abuse of 
notation) we may write 

and 

h(n, t, i) = h ( t - n - 1 )  

u(n, t, i) = u ( t - n - 1 ) .  

Hence, (3.3), (3.4) and (3.5) may be simplified to 

e(n,  t, i) 
h ( t - n - 1 )  = P ( n + l ,  t, i), 

P(n, n + 1, i) 

P(n, t, i) u ( t - n - 1 )  = P ( n + l ,  t, i + 1 )  
P(n, n + l ,  i) 

and 

(3.3') 

(3.4') 

1 = Ou(x) + (1-0)h(x) ,  x = 0, 1, 2, 3 . . . . .  (3.5') 

(Ho and Lee [24] use the symbols ,rr, h* and h to denote our 0, h and u, 
respectively.) 

Applying (3.3') and (3.4') to each other yields two expressions for P(n + 2, 
t, i + 1): 
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and 

P(n, t, i) lU( t_n_ l )h ( t_n_2  ) )  
P(n, n + l ,  i)P(n+l, n+2,  i+  

(3.6) 

P(n, t, i) i)h(t_n_l)u(t_n_2)" 
P(n, n + 1, i)P(n + 1, n + 2, 

(3.7) 

See Figure 8. As (3.6) and (3.7) are equal, we have, for all positive integers 
X, 

u(x)h(x- 1) h(x)u(x- 1) 
= (3.8) 

P(n + 1, n + 2 ,  i+1)  P(n+ 1, n+2 ,  i)" 

Hence, the ratio of ratios 

h(x) / u(x) (3.9) 
h(x-1) u(x-1) 

is independent ofx. Let the value of (3.9) be denoted by k. Then, 

Since u(O) =h(O) = 1, 

h(x)  -_ h(O) k~. 

u(x) ~(0) 

h(x)  _ k ~  (3.10) 
u(x) 

FIGURE 8 

P(n+l,  t, i+!) 

Pin, t, i) 
P(n+l,  t, i) 

P(n+2, t, i+1) 
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Applying (3.5') to (3.10) yields 

1 - Ou(x)  _ k~" 

( 1  - O)u(x )  

Hence, 

1 
u(x) = (3.11) 

( 1  - 0 ) k  ~ + 0 

and 

k ~ 1 
h(x) (1 - 0)/¢ + 0 (1 - 0) + Ok -x" (3.12) 

(In [24] the constant k is denoted by g.) 
Now, the value P(n, t, i), n<_t, can be expressed in terms of 0, k and the 

initial bond prices P(0, t, 0) and P(O, n, 0). For m < t and m < s, 

P(m, t, j)u(t - m - 1) P(m + 1, t, j + 1) 
= (3.13) 

P(m, s, j)u(s - m - 1) P(m + 1, s, j + 1) 

by (3.4'). Similarly, by (3.3'), 

P(m, t, j ) h ( t - m - 1 )  P(m +1,  t , j )  
- ( 3 . 1 4 )  

P(m, s, ] ) h ( s - m  - 1) P(m + 1, s, j)" 

Applying (3.13) i times and (3.14) ( n - i )  times yields 

P(O, t, O) u ( t -  1) u ( t - i )  h ( t - i -  1) 
P(O, n, O) u ( n -  1) " " " u ( n - i )  h ( n - i -  1) 

Since h(0) = P(n, n, i) = 1, 

P(O, t, O) u ( t -  I) u ( t - i )  h ( t - i -  1) 

P(O, n, O) u(n - 1 )  u ( n - i )  h(n - i -  1) 

h(t-n + 1 )  

• " " h ( a )  

h ( t - n )  P(n, t, i) 
h(O) - e(n, n, i)" (3.15) 

h ( t - n )  = P(n, t, i). (3.16) 
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By (3.10), 

P(n, t, i) 
P(O, t, O) u ( t - 1 ) u ( t - 2 )  . . . .  u ( t - n )  k( ' ,)(~ i) 
P(O, n, O) u ( n -  1)u(n-  2) . . . u(1) 

P(O, t, O) h ( t - 1 ) h ( t - 2 )  . . . .  h ( t - n )  k-(' ,)i 
P(O, n, O) h ( n - 1 ) h ( n - 2 )  . . . h(1) (3.17) 

Hence, the price P(n, t, i), n<_t, can be expressed in terms of 0, k and the 
initial bond prices P(0, t, 0) and P(0,  n, 0). For one-period discount bonds, 
we have the simple formula: 

P(n, n + l ,  i) P(0, n + l ,  0) k ~ 
= P(0,  n, 0) (1 - 0)k ~ + 0" (3.18) 

Note that the bond price P(n, t, i) can be written as 
t - 1  

P(n, t, i) = I - I  [ (1-0)P( j ,  j + l ,  i) + 0P(/, j + l ,  i + j - n ) ] .  
j ~ n  

Using (3.18), one can price interest-rate contingent claims such as callable 
and sinking-fund bonds, European and American bond options, interest rate 
floors and caps, interest rate futures, and interest rate futures options. Con- 
sider an interest-rate contingent claim whose price C(n, i) can be uniquely 
defined at each vertex (n, i) of the binomial lattice. Assume that the contin- 
gent claim expires (or matures) at time T, with payoffs given by 

C(T, i) = f(i), i = 0, 1, 2 . . . . .  T. (3.19) 

Also, assume that the contingent claim pays D(n, i) to its holder at time n 
and in state i, l_<n < T, and satisfies its upper bound U(n, i) and lower bound 
L(n, i) conditions, 

L(n, i) <- C(n, i) <_ U(n, i). (3.20) 

If no arbitrage profit is to be realized in holding any portfolio of the contin- 
gent claim and the discount bonds, then 

C(n, i) 
P(n, n + l ,  i) - 0 [ C ( n + l ,  i +  1) + D(n + 1, i+  1)] (3.21) 

+ (1 - 0)[C(n+ 1, i) + D(n+ 1, i)]. 

Formula (3.21), a consequence of (3.2'), is called the risk-neutral pricing 
formula. A proof of (3.21) can be found in Appendix B of [24]. It enables 
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us to price the initial value of a contingent claim by the backward substitution 
procedure. The terminal condition (3.19) specifies the asset value in all states 
at time T. Then, Formula (3.21) is used to determine the arbitrage-free price 
of the asset at one period before expiration. Let that price be C*(T-  1, i). 
Because the actual market price must satisfy boundary conditions (3.20), 
the market price is 

C ( T -  1, i) = Max{L(T- 1, i), 
Min [C*(T-1 ,  i), U ( T - 1 ,  i)]}, 0 _< i _< T - 1 .  (3.22) 

We now apply this procedure repeatedly, rolling back in time. That is, with 
the prices of the contingent claim in all states at time n, {C(n, i)lO<i<_n}, 
we calculate the arbitrage-free prices of the contingent claim at time n - 1, 
{C*(n - 1, i)[O<i<_n - 1}, by Formula (3.21). Then, applying boundary con- 
ditions (3.20), we derive the market prices in all states at time n - 1 ,  that 
is, 

C(n - 1, i) = Max{L(n - 1, i), 
Min[C*(n-  1, i), U ( n - 1 ,  i)]}, 0 -< i _< n - 1 .  

Af le rT  steps, we reach the asset value at n = 0, and this is the initial price. 
A discussion on how to estimate the parameters 0 and k can be found in 

[24, p. 1025]. For a continuous-time version of the model, see [22]. 
There is one problem with the model. The interest rates may be negative 

or unreasonably high. The n + 1 possible one-period interest rates at time n 
are 

1 
1 

P(n, n + l ,  i) 
P(0, n, 0) (1 - O)k" + O 

P(0, n + 1, 0) /6 -~ 

The one-period interest rate 

is negative if 

(1 - 0)  

- 1, O - < i - < n .  (3.23) 

1 
1 

P(n, n + 1, O) 

+ 0k-" < P(0, n + 1, O)/P(O, n, 0). (3.24) 
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Inequality (3.24) may hold if 0 is close to 1 and k is greater than 1. On the 
other hand, if k is less than 1, then, for large n, the right-hand side of 
Formula (3.23) can be approximated by 

P(0, n, 0)0 k a - 1, 0 _ < i  < n ,  
P(0,  n + 1, 0)k" 

from which we see that interest rates may become very high. 
This problem motivated us to seek a refinement of the model, in which 

interest rates are always positive and below a prescribed upper bound. In 
the next section, we present such a model. 

IV. A GENERALIZATION OF THE HO-LEE MODEL 

A binomial model is defined by the values 0(n, i) and P(n, n + 1, i), or 
equivalently, by the discounted risk-neutral probabilities x(n, i) and x'(n, i). 
In this section, we assume that 

0(n, i) = 0(n) (4.1) 

and 

e(n,  n + 1, i + 1)/P(n, n + 1, i) = c(n), (4.2) 

where 0(n) and c(n) are independent of i. Since 

x(n, i) = 0(n, i)P(n, n + 1, i) 

and 
x'(n, i) = [1 - 0(n, i)]P(n, n+  1, i), 

(4.1) and (4.2) are equivalent to the assumption that 

x(n, i + 1 )  = x'(n, j + l )  
= c(n). 

x(n, i) x'(n, j )  

It follows from (3.2) and (4.1) that 

P(m, t, j )  = P(m, m + 1, j)  

{O(m)P(m+l ,  t , j + l )  + [1 - 0 (m)]P(m+l ,  t , j )} ,  m < t. (4.3) 

Another way to express (4.2) is 

P(m, m + 1, j) = P(m, rn + 1, i) [c(m)] J i (4.4) 
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Applying (4.3) and (4.4) repeatedly, we can obtain a formula for P(n, t, i), 
n < t ,  in terms of the one-period bond prices {P(j, j + 1, i)[/=n, n + 1, . . . ,  
t - 1 }  as follows. Consider (4.3) and (4.4) with m = t - 2 .  Since P ( t - 1 ,  t, 
j ) = P ( t - 1 ,  t, i)[c(t-1)]i-i ,  j= i ,  i + 1  . . . . .  t - l ,  we obtain for k=i ,  
i + 1  . . . .  t - 2 ,  

P ( t - 2 ,  t, k) = P ( t - 1 ,  t, i){[1 - 0 ( t - 2 )  

+ 0 ( t  - 2)c(t - 1)]P(t - 2, t - 1, i)}[c(t - 2)c(t - 1)] k-/ 

Applying this procedure repeatedly, rolling back in time, we obtain, for 
n<t,  

P(n, t, i) = P(t -1 ,  t, i){[1 - 0 ( t - 2 )  + o(t-2)c(t-1)]P(t-2,  t - l ,  i)} 
{ [ 1  - 0 ( t -  3) + 0(t - 3 ) c ( / -  2)c(t - 1)]P(t - 3, t - 2, i)} 
• . . {[1 - 0(n) + O(n)c(n + 1)c(n + 2) 

. . . c ( t -  1)]P(n, n + 1, i)}. 

By  defining 

g ( j ,  s )  = 1 - 0(j) + 0(j)c(j+ 1 ) c ( j+2 )  . . . c(s), j < s, 

and 

g(s, s) = 1, 

we can write 

t - 1  

P(n, t, i) = H [gO, t -1 )Po;  j +  1, i)]. (4.5) 
j ~ n  

Apply ing  (4.5) twice yields 

lrI gO; t) 
P(0 ,  t + l ,  0) = P(t, t + l ,  0) ,_4 =.0 

P(0 ,  t, 0) H go; t -  1) 
j=0  

t - 1  

H gO; t) 
i=o (4.6) = P(t, t + l ,  O) ,-2 

H g o ;  t - l )  
j = 0  
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Hence, for n = l ,  2, 3, . . . , 

P(n, n + 1, i) = [c(n)]~P(n, n + 1, O) 
el 2 

I I  g(i, . - 1 )  
P(O, n + 1, 0) [c(n)] i j=o (4.7) 

n - - 1  

P(O, ~, o) I-[ gO, ~) 
j~O 

To obtain the Ho-Lee model, we set 0(n)= 0 and c(n)= 1/k for all n. 
Then 

g(j, s) = 1 - 0 + Ok -s" J ) -  

and (4.7) becomes 

1 

h(s - j )  

P(n, n + 1, i) = P(O, n + 1, O) k_ i h(n), 
v(o, n, o) 

which is formula (3.18). Indeed, deriving the Ho-Lee model in this way 
involves less work than the method in Section IIl. 

We now show that, by restricting the parameters {c(1), c(2) . . . .  }, 
there are no negative or very high interest rates in the model. Note that, 
if c(n)= 1, all one-period bond prices at time n are identical. Further- 
more, since c(n)= 1, we have gO, n)=g(1; n -  1) f o r j < n ,  and Formula 
(4.7) is reduced to 

P(n, n + 1, i) = P(0,  n + 1, 0) (4.8) 
e(O, n, O) 

The right-hand side of (4.8) depends only on the initial yield curve. The 
interest rate 

P(O, ~, o) 
f" = P(O, n +  1, O) - 1 (4.9) 

is called the forward rate for the (n + 1)-th period [29, p. 155]. It can 
be interpreted as the current market forecast of the one-period interest 
rate at time n. In modeling interest rate movements one might want to 
have all one-period interest rates at time n lying within a prescribed 
neighborhood off,,; in other words, one requires that all one-period bond 
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prices {P(n, n + 1, i)lO<_i<_n } lie within a prescribed neighborhood of the 
ratio 

P(O, n + 1, O) 

P(O, n, 0) 

Let M(1), M(2), M(3), . . . be a sequence of numbers,  each of which is 
greater than 1. Suppose that, for n = 1, 2, 3 . . . .  , one wishes to restrict 
the one-period bond prices {P(n, n + 1, i)lO<_i<_n } to be within the interval 

[ P ( O , n + l , O )  M(n) P ( O , n + l , O ) ]  
(4.10) 

kM(n) P(O, n, O) P(O, n, O) 

that is, the following inequalities are required: 
n - 2  

1 1-Igq, n - l )  
_ _  <_ [c(n)] ij=o,,_, . . . .  < M ( n ) ,  i = O, 1, ,n .  (4.11) 
M(n) I I  g(J, n) 

j=O 

We claim that (4.11) holds if c(n) satisfies the inequalities 

1 
M(n) <- [c(n)]" _< M(n). (4.12) 

Note that the number M(n) should be such that the right end-point of the 
interval (4.10) is less than 1 (to avoid negative interest rates) and the left 
end-point of  (4.10) is not too small (to avoid unrealistically high interest 
rates). 

To prove the claim, observe that, for positive numbers a ,  13 and % 

o c + 1 3  1 
1 < ~  < -  i f y  < 1, 

oL + 13y 

and 

1 oL+13 
- < - - < I  i f y  > 1. 
y o~ + 13"y 

Hence, for j = 0, 1, 2 . . . . .  n - 1, 

gO; n - l )  1 
1 < g@ n) < c(n---)) i fc(n) < 1, 
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and 

1 gq, n - l )  
• < < 1  

c(.) gO; ~) 
Chain ing  these inequali t ies  together ,  w e  have  

"-1g(1; n - l )  1 
l < I I  < ~  

j-o gO; 7) [c(,,)]" 

and 

1 ,-lg(], n - l )  
[¢(,,)1--~ < 1-I ,=o gO,~) 

Since (4.12)  is equiva len t  to 

if c(n) > 1. 

if c(n) < 1, 

< 1 i f c (n )  > 1. 

1 
M(n) <- [c(n)]/ < M(n) 

for  j =  - n ,  - ( n - 1 ) ,  . . . , 0,  1, 2, . . . , n ,  Condi t ion  (4.12)  impl ies  
(4.11) as c la imed.  

Can the pa rame te r s  0(0),  c (1) ,  0(1),  c(2) ,  . . . be  chosen  such that the 
expected  va lue  of  the bond  pr ices  {P(n, n + 1, i)lO<-i<-n } with respec t  to 
the r isk-neutral  probabi l i t ies  {0(0), 0(1), . . . , 0 ( n - 1 ) }  is the marke t  
forecas t  P ( 0 ,  n + 1, O)/P(O, n, 0)? This  cannot  be  done except  for  the 
degenera te  case in wh ich  

1 = c ( 1 )  = c ( 2 )  = . . . .  

To see this,  cons ider  the equat ion  

P(O, 3, O) 2 
P ( 0 ,  2, 0) = ,-o ~ P (2 ,  3, i) Pr(i), (4.13)  

where  

Pr(O) = [1 - 0(0)][1 - 0(1)],  

P r (1 )  = [1 - 0(0)]0(1) + 0(0)[1 - 0(1)] 
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and 

Pr(2) = 0(0)0(1). 

If c (1 )~  1, c (2 )~  1 and 0<0(0)<1 ,  then (4.13) can be simplified to 

1 
0(1) = c(2) - 1' 

or 

1 - 0 ( 1 )  = c ( 2 )  
1 - c ( 2 ) "  

Thus, 0(1) cannot be between 0 and 1. 
Write 

P(n, t, i) = e ¢ ' - '~  . . . .  o 

For each fixed pair n and i, the graph of 8(n, n + s ,  i), s>_l is called a 
yie ld  curve.  We now investigate how the yield curve {8(n, n +s,  i)[s_>_> 1} 
depends on the parameters {0(0), 0(1), 0(2) . . . .  , c(1), c(2), c(3) . . . .  }. 
By (4.5) and (4.7), the bond price P(n, t, i) can be written as a nested 
product, which can then be simplified as 

P ( n , t , i ) =  P ( O , t ,  O, [ ~  g(/; [i-/ ] i  
P(O, n, O) gq,  t -  1) J cO ) . (4.14) [._ j=0 [... j =n 

The bond price P(n, t, i) does not depend on the risk-neutral probabilities 
{0q))__n}. This is a surprising result, since P(n, t, i) is derived by back- 
ward induction starting with 

P(t, t, O) = P(t, t, 1) = . . .  = P(t, t, t) = 1. 

The development in Section III provides another view of the last result. 
Recall Formulas (3.3) and (3.4): 

P(m, t, i) 
h(m, t, i) = P(m +1 ,  t, i) 

P(m, m + 1, i) 

and 

P(m, t, i) 
u(m, t, i) = P ( r n + l ,  t, i+1 ) .  

P(m, r e + l ,  i) 
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It is not difficult to check that the horizontal and upward perturbation 
functions are given by 

1 
h(m, t, i) g(m, t - 1 )  

and 

u(m, t, i) = c ( n + l ) c ( n + 2 )  . . . c ( t - 1 )  
g(m, t -  1) 

Thus, the evolution of  the prices of the bond from P(O, t, 0) to P(n, t, i) 
invo lves  none  of  the r i sk-neu t ra l  p robab i l i t i e s  {0(n), 0 ( n + l ) ,  
0(,, + 2 ) , . . .  }. 

For m < n ,  how does 8(n, t, i) behave as 0(m) changes? The derivative 
of 8(n, t, i) with respect to 0(m) is 

Og(n, t, i) _ - 1  O g(m, n - l )  
O0(m) t - n  O0(rn~ logo g(m, t -  1) 

c ( m + l ) . . . c ( n - 1 ) [ c ( n ) . . . c ( t - 1 )  - 1] 
(t - n)g(m, n - 1 ) g ( m ,  t - 1 )  

which is independent of i. If each cO') is less than 1, the yield rate 8(n, 
t, i) is a decreasing function in the risk-neutral probability O(m). On the 
other hand, if each cO') is greater than 1, g(n, t, i) is an increasing function 
in O(m). 

Formula (4.2) can be generalized as 

P(n, t, i + 1 )  '-~ 
P(n, t, i) - J~,,II c(j). (4.15) 

Hence, 

8(n, t, i +  1) - 8(n, t, i) = - -  1 lo& P(n, t, i) 
t - n  P(n, t, i + 1  i 

- • log~ cO'), (4.16) 
t - - n  j=n 

which is independent of i and the risk-neutral probabilities. If each c(j) 
is less than 1, then 

8(n, t, O) < 8(n, t, 1) < . . .  < 8(n, t, n). 
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If each c(j) is greater than 1, then 

~(n, t, O) > ~(n, t, 1) > . . .  > ~(n,  t, n ) .  

These two chains of inequalities provide an explanation to the last two 
statements in the paragraph above. In order to eliminate arbitrages, For- 
mula (4.3) must hold. The risk-neutral probability 0(m) and the yield 
rates B(m + 1, t, .) balance each other according to (4.3). 

Assume that 

lim c(j) = h. 
f -.--) 

Hence, 

lim [g(n, t, i + l )  - ~(n, t, i)] = - log~ X 
t -...-~ ~ 

and 

8(n, ~, n) - 8(n, ~, 0) = - n  logo X. 

As n becomes large, there will be very high interest rates or negative 
interest rates or both unless h = 1. 

In the case of the Ho-Lee model, as c0) = k-~ for all j ,  Formula 
(4.16) becomes 

8(n, t, i +  1) - 8(n, t, i) = logo k, 

which is independent of n, t, i and 0. At each point of time, the yield 
curves of different states are "para l le l "  to each other. Thus the Ho-Lee 
model is not useful in pricing options that depend on the difference of 
interest rates. 

Define 

v(J) = - log~ c(j). (4.17) 

If ",/(j) is convex and decreasing in j with 

lira "Y0') = 0, 
j --..-> 0~ 

then, because of (4.16), the yield curves of different states at time n 
might be expected to be similar in shape to those illustrated in Figure 9. 
This turns out to be true in general. An example of such a function is 
the hyperbolic function 

V0) = b/j, 
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where b is a positive constant. We have found that piecing together a 
quadratic function with a hyperbolic function would produce realistic 
shapes of yield curves. The function 

"v( / )  = 

m[ 
b_ 
J 

/ 2 ] + 1 - + 1 - j < m  

j>_m 

(4.18) 

is quite smooth because it has a continuous first derivative. 

FIGURE 9 

~ ~ J  (n, t, n) 
8(n, t, 1) 

8(n,t, O) 

I I I 
n+l n+2 n+3 n+4 t 

To conclude this section, we present some graphs of the yield curves 
{~(n, n +s, i)]s_>l} produced by our model. We set 0(n)= 0.4 for all n. 
We compute {c~j)}- by using Formula (4.18) with b = 0 . 2  and m = 1 6 .  
Figure 10 is a graph of c(j). The initial yield curve 

- 1  
- -  logo P ( 0 ,  s ,  0) 

S 
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is given in Figure 11. Figures 12, 13, 14, and 15 show some of the yield 
curves ~(n, n +s ,  i) and the forward rates 

f(n, n+s)  = -1logo P(0, n, 0) 
s P(O, n + s ,  O) 

for n = 1, 3, 6, and 10, respectively. 
Figure 16 shows that the yield curve 8(6, 6 + s ,  3) is humped. This 

feature is not obvious in Figure 14. By changing the parameters {0(0), 
c(1), 0(1), c(2) . . . .  }, the model can produce a variety of yield curve 
shapes. 

S 
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v.  CONCLUSION 

We have presented a binomial model of term structure movements, in 
which there are no arbitrage opportunities and the initial term structure is 
given exogenously. In the model, the interest rates can be constrained to 
vary within prescribed bounds. Figures 12-16 show that the model can 
produce realistic shapes of the term structure of interest rates. The model 
can be used to generate interest rate scenarios for simulation and to price 
assets or liabilities whose cash flows are functions of interest rates and time. 

For pricing purposes, one should determine the parameters {0(0), 0(1), 
0(2) . . . .  , c(1), c(2), c(3) . . . .  } with empirical data so that the model price 
of each callable and default-free bond coincides with or approximates its 
market price. See [24, p. 1025]. 

By perturbing the term structure of interest rates at time 0, the model can 
be used to calculate duration and convexity indexes of  interest sensitivity 
for assets and liabilities [9, p. 135]. These indexes, which correspond to 
directional derivatives in multivariate calculus, are useful summary measures 
of the interest rate exposure of cash flows. 
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DISCUSSION OF PRECEDING PAPER 

FARSHID JAMSHIDIAN* ." 

In recent years market participants are increasingly utilizing advanced 
interest rate models to evaluate and hedge their fixed-income portfolios. This 
is due to the growth of the fixed-income market, advances in theory and the 
availability of cost-effective computation. It is now possible to analyze such 
diverse securities as corporate bonds, mortgage-backed securities, swap- 
tions, and even certain insurance liabilities within a unified framework of 
an underlying interest-rate-contingent claim model. 

The paper "Arbitrage-Free Pricing of Interest-Rate Contingent Claims" 
presents a family of such interest rate models. In general terms, these models 
may be called yield-curve binomial models. In such a model an interest- 
rate-contingent claim is evaluated by averaging and discounting its price by 
a backward-induction procedure. The cash flows and optional features are 
taken care of in the manner discussed in Section 3 of the paper. The one- 
period discount factors in the binomial tree are so constructed that evaluation 
of noncallable bonds is consistent with the initial yield curve. 

Working throughout in a discrete-time framework, the paper begins with 
a new and general discussion of the no-arbitrage condition in a multifactor, 
"multinomial" setting. It shows that the multiperiod no-arbitrage condition 
follows from the one-period no-arbitrage condition for which new charac- 
terizations and derivations are presented. It then specializes to the binomial 
model, treating first the Ho-Lee model (ref. [24] in the paper), for which 
some interesting new bond pricing formulas and alternative derivations are 
presented. The Ho-Lee model is then generalized by allowing certain pa- 
rameters to be time-dependent. This results in a larger family of models with 
more flexible shapes for the yield curve. In particular, models with pre- 
scribed lower and upper bounds for future interest rates are constructed. The 
bond-pricing formulas are extended to the general case, and some theoretical 
issues such as the expectation hypothesis are discussed. The paper concludes 
with an example exhibiting graphs of the evolution of the yield curve. 

An important advance introduced by Ho and Lee [24] is the aforemen- 
tioned property of yield curve consistency. The more general models in the 
paper retain this important property. Aside from its theoretical consistency 
(for example, put/call parity), yield curve consistency is important to prac- 
titioners because it enables them to utilize the most important observable 
market, the yield curve. It also resolves a dilemma encountered by classical 
equilibrium interest rate models in which values of a long-dated security 

*Mr. Jamshidian, not a member of the Society, is vice president, financial strategies group, at 
Merrill Lynch Capital Markets. 
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such as a callable bond are often highly sensitive to the short end of the 
yield curve. The yield curve approach is increasingly gaining acceptance 
and popularity. As far as this writer knows, most investment firms employ 
yield curve models. For example, Merrill Lynch uses a yield curve model 
with lognormally distributed short-term interest rates to evaluate corporate 
bonds and other interest-sensitive options. 

My criticism of the paper is not in the results that it presents--for which 
it obviously does a good job--but with issues that it omits. A key distin- 
guishing characteristic of a model is its distributional assumption, that is, 
the statistical distribution of interest rates. It is evident from the results of 
the paper, Equation (4.7), that in the family of models introduced, interest 
rates are binomially distributed (more precisely, a linear transformation of 
the binomial distribution). But this is not pointed out. Moreover, the for- 
mulas in the paper would easily lead to the mean and standard deviation of 
this distribution. These two statistics would go a long way in providing 
intuition for the model and enhancing its theoretical understanding. 

Another criticism, which is applicable to the Ho-Lee paper [24] too, is 
that no discussion of the continuous-time limit of the model is presented. 
This is important because in practice one has to choose a definite time step 
(for example, monthly, weekly, etc.). The questions then arise, how should 
the parameters of the model depend upon the time step? and how do eval- 
uated prices change as the time step is made smaller and smaller? For their 
binomial model for equity options, Cox, Ross and Rubinstein (ref. [11] in 
the paper) addressed this question and showed that, with an appropriate 
dependence of parameters on the time step, their binomial model converges 
to the Black and Scholes model (ref. [4] in the paper). (They also showed 
there is a "pure-jump" Poisson limit.) 

The continuous-time limit of the Ho-Lee model [24] is now well-known. 
(The authors refer to Heath, Jarrow and Morton [22] for a discussion.) It is 
a model in which interest rates are normally distributed. This is not surprising 
given that the normal distribution is a limiting case of the binomial distri- 
bution. (As in the Cox, Ross, and Rubinstein model, it also has a pure-jump 
Poisson limit.) Had the authors pointed out that, say, the short-term interest 
rate is binomially distributed, calculated its mean and the variance, and 
specified the appropriate dependence of parameters on the time step (essen- 
tially the requirement that "c(n)" should approach 1 to the order of the time 
step raised to three halves), then there should have been no difficulty in 
showing that the mean and the variance have limits as the time step ap- 
proaches zero, calculating these limits and concluding by the central limit 
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theorem (or the Demoivre-Laplace theorem) that in the limiting case interest 
rates in their model are normally distributed with certain mean and variance. 
Such a result would imply that the models with interest rates bounded from 
above and below which the authors construct [Equations (4.11) and (4.12)] 
are excluded from the subset of their models that admit a continuous-time 
limit. 

A third criticism is that from the family of the models that are introduced, 
the authors have not singled out a unique choice that should be used in 
practice. Perhaps this should await further experimentation with the quad- 
ratic/hyperbolic combination [Equation (4.18)] and the other choices made 
in their example. 

But I do object to the proposal in the concluding section that the para- 
meters of the model should be estimated from empirical data for callable 
bonds in a manner similar to that proposed by Ho and Lee [24]. 

In the case of the Ho-Lee model there are only two parameters to be 
estimated, whereas the more general model here requires two sequences of 
parameters. The estimation process is therefore bound to be substantially 
more difficult, both numerically and statistically. Second, even for the Ho- 
Lee model it is not clear that this is the appropriate procedure. In view of 
the existence of the continuous-time limit, it seems more appropriate to this 
writer to estimate parameters that are independent of the size of the time 
step. This may be done by setting the risk-neutral probability to 0.5 (which 
causes the fastest convergence to the continuous-time limit) and choosing 
the parameter " c "  (or in Ho and Lee [24] notation "delta") in the manner 
dictated by the existence of the continuous-time limit, namely, c = e x p  
(2crdt3/~), where dt is the time step, and o represents the annualized absolute 
yield volatility. This procedure ties the parameters to the intuitive concept 
of volatility (which is independent of the time step) and is also consistent 
with the way Cox, Ross and Rubinstein (ref. [11] in the paper) propose to 
fix the parameters of the binomial model in the equity case. 

The above criticisms lead to the conclusion that for a discrete-time, bi- 
nomial approach to be complete, the continuous-time limit should also be 
analyzed. Conversely, a continuous-time discussion should be supplemented 
by a computational algorithm, which for complex security structures (for 
example, American options) invariably requires some sort of discretization. 
Ideally, a combined binomial and continuous-time approach should be pursued. 

The family of models introduced by the authors affords this combined 
approach. But there are other attractive alternatives. The aforementioned 
Merrill Lynch model is a yield curve model in which, in continuous-time, 
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the short-term interest rate is lognormally distributed (dependent on a per- 
centage volatility) and in the binomial discrete-time the logarithm of the 
short-term interest rate is binomially distributed. In fact, a general arbitrage- 
free yield-curve framework can be developed in which the distribution of 
the short-term interest rate can be arbitrarily specified (in particular with 
upper and lower bounds) and there is a combined continuous-time and bi- 
nomial development with an efficient computational algorithm for the latter. 
(This theory is based on certain theoretical advances, which, to the best of 
author's knowledge, have not yet appeared.) 

In summary, the authors have made valuable contributions to the theory 
of interest-sensitive contingent claim evaluation by presenting a new and 
general discussion of the no-arbitrage condition and introducing and analyz- 
ing a family of yield curve binomial models in which interest rates are 
binomially distributed and which include the Ho-Lee model [24] as a special 
case. Their analysis has led to new formulas, derivations and discussion of 
various theoretical properties. On the negative side, the paper leaves some 
questions unresolved. The distributional properties and the continuous-time 
behavior of their models are not discussed. Most importantly from a practical 
standpoint, the authors should discuss in more detail how one would go 
about estimating the parameters and finding the most suitable member of 
this family for practical evaluation. 

N.J.  MACLEOD AND J .D.  THOMISON'  

This paper is a useful addition to the large and expanding literature on 
option-pricing and term structure theory. Basic concepts and principles are 
stated and explained with unusual precision. Unfortunately, in passing from 
general conditions to specific models, the authors follow Ho and Lee in 
making (exact) replication of an exogenously given initial term structure a 
fundamental requirement. From a practical perspective, the resulting models 
are defective in several respects. For example, they are nonintuitive; it is 
not immediately clear what the real-life counterparts of certain model pa- 
rameters are. The purpose of our discussion is to outline an alternative 
approach. As an application of that approach, we demonstrate that the mod- 
ification of the Ho-Lee model presented in Section IV of the paper leads to 
a property almost as unpalatable as the one it eliminates. 
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1. An Alternative Approach: Discrete Analogues of Continuous Models 

Continuous models of the term structure usually begin by making explicit 
assumptions with respect to the stochastic process governing the instanta- 
neous spot rate ([1], [4]). A major virtue of these models is that the under- 
lying dynamics are made explicit and amenable to intuition. In [2] we developed 
a discrete (binomial) analogue of the general continuous model. The resulting 
binomial models combine the intuitive appeal of their continuous counter- 
parts with the computational advantage of the discrete formulation. The next 
section provides a brief introduction to this approach; for a fuller treatment 
refer to [2] and [3]. 

Note that the approach is entirely general. No matter how a binomial 
model is developed, it can always be recast, if necessary, in terms of a 
model evolving from an explicit short-term-rate process. In particular, we 
can apply this fact to analyze the short-term-rate assumptions implicit in the 
original Ho-Lee model and in the generalization offered in Section IV of the 
present paper. In each case the long-term behavior of the short-term rate is 
unrealistic--either increasing without limit (original Ho-Lee model) or char- 
acterized by vanishing volatility (modified Ho-Lee model). The first of these 
assertions is established in [2]; the second is demonstrated below. The prob- 
lem with either formulation of the Ho-Lee model is that the implicit short- 
term-rate process does not exhibit anything resembling mean regression. 
Indeed, it is the ease of introducing a mean regression property that gives 
our alternative approach much of its practical value. The property of mean 
regression reflects mathematically the tendency of external factors to act to 
constrain interest rates within certain bounds. Under conditions of constant 
interest rate volatility, models that do not possess the property allow interest 
rates to spread unchecked, which leads to unreasonably high (and low) rates, 
or (if the level of volatility is deliberately set low) an unnaturally compressed 
range of rates in the nearer term. In their modification of the Ho-Lee model, 
the authors have attempted to circumvent the difficulty by forcing volatility 
to decline with time. That this is not a satisfactory resolution is apparent 
when we consider that interest rate volatility is perhaps the single most 
important determinant of the price of an interest-rate-contingent claim. 

Although the alternative approach does not replicate the initial term struc- 
ture exactly, it is relatively easy to make successive adjustments to the model 
parameters (in the simplest formulation these are the ultimate expected short- 
term rate, which is often taken to be equal to the initial rate, a "coefficient 
of elasticity," and a volatility factor) so that the resulting (endogenously 
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derived) initial term structure conforms closely to the actual, observed term 
structure. This process is illustrated in [2]. 

2. Analysis of the Short-Term-Rate Behavior Implicit in the Modified Ho- 
Lee Model 

As the authors note, any one-factor equilibrium binomial model of the 
term structure may be defined by: 

(i) The values P(n, n + 1, i), which represent the price at time n and state 
i of a zero-coupon bond that matures for 1 at time n + 1, 

(ii) The values 0(n, i), and 
(iii) The relation 

P(n, n + T, i) = P(n, n + a ,  i){0(n, i)P(n + l ,  n + T, i + 1 )  

+ [1 - 0(n, i)]P(n + 1, n + T, i)} 

T =  1 ,2 ,  

The continuously compounded 
bond at time n, state i, is then 

yield to maturity for a T-period zero-coupon 
given by 

1 
b(n, n + T, i) = - ~ log, P(n, n + T, i) (2.1) 

and the set of values {8(n, n + T, i)} for T= 1, 2 . . . .  defines the term struc- 
ture at time n and state i. 

In particular, since 

8(n, n + 1, i) = - log~ P(n, n + 1, i), (2.2) 

it is apparent from (i), (ii) and (iii) that the behavior of the term structure 
follows directly from the behavior of 8(n, n + 1, i), the one-period spot rate. 

Given any lattice of one-period spot rates, we can treat the evolution of 
the one-period spot rate over time as governed by a stochastic process of 
the form 

Ag(n,  n + 1, i) = f(n, i) + g(n, i )A I. (2.3) 

where Ag(n, n + 1, i) is the change in the one-period spot rate between time 
n and time n + 1, and A / i s  a random variable that takes the values 1 and 

- 1 (representing upstate and downstate moves, respectively) with respective 
probabilities p and 1 - p .  
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That the functions f(n, i) and g(n, i) can be found for any given lattice of 
one-period spot rates may be seen by considering a single transition in the 
lattice: 

g(n + 1, n + 2 ,  i + 1 )  

8(n, n + l ,  i) ' ~  g(n+ 1, n + 2 ,  i). 

The functions f(n, i) and g(n, i) are simply the solutions of the equations 

8 ( n + l , n + 2 ,  i + l )  = g ( n , n + l , i )  + f(n, i) + g(n, i) 

8(n + l ,  n + 2, i) = 8(n, n +  1, i) + f(n, i) - g(n, i). 

That is, 

f(n, i) = a/218(n + 1, n + 2, i + 1) + ~(n + 1, n + 2, i)] 

- 8 (n ,  n + 1,  i) ( 2 . 4 )  

g(n, i) = 1/2[~(n + I, n + 2, i + 1) - ~(n + 1, n + 2, i)]. (2.5) 

The probability p (which in general may vary with n and i) may take what- 
ever value reflects the user's convictions regarding the relative likelihoods 
of upstate and downstate moves. (It should be noted that p is a true proba- 
bility and is not necessarily equal to the so-called risk-neutral probability 
0(n,i).) 

From (2.3), the mean and variance of AS(n,  n + 1, i) may be expressed 
in terms off(n, i) and g(n, i): 

E[AS(n, n +  1, i)] = f(n, i) + (2p - 1)g(n, i) (2.6) 

Var[A~(n, n +1 ,  i)] = 4p(1 - p ) [ g ( n ,  i)]2. (2.7) 

I fp  is taken to be 1/2, (2.6) and (2.7) take an especially simple form: 

E[Ag(n,  n + 1, i)] = f(n, i) 

Var[AS(n, n + 1, i)] = [g(n, i)] z. 

For purposes of the present discussion, however, it is sufficient to note that, 
whatever the relative probabilities of upstate and downstate moves, the stan- 
dard deviation of the change in the one-period spot rate from time n to time 
n + 1 depends directly upon the value taken by the function g(n, i). 
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Before proceeding to an analysis of the model presented in Section IV of 
the paper, it may be helpful to summarize the principal points of the dis- 
cussion so far. 

(1) Any one-factor, equilibrium, binomial model of the term structure may 
be defined by a lattice of one-period spot rates {8(n, n + 1, i)} and the 
values 0(n, i). 

(2) Any (open or closed) binomial lattice of one-period spot rates 
{8(n, n + 1, i)} may be generated from an initial value 8(0, 1, 0) by 
choosing functions f(n, i) and g(n, i) and applying the relation 

Ab(n, n + 1, i) = fin, i) + g(n, i) z3d. 

Conversely, given any lattice of one-period spot rates, we can identify 
the functions fin, i) and g(n, i), which generate that lattice from its 
initial value 8(0, 1, 0), using (2.4) and (2.5). 

(3) At any time n and state i, the values taken byf(n, i) andg(n, i), together 
with the probability p,  determine the mean value and the standard 
deviation of the change in 8(n, n + 1, i) over the next time increment. 
In particular, the standard deviation of that change depends directly on 
the value of g(n, i); g(n, i) is therefore the fundamental determinant 
of the volatility of the short-term-rate. 

We are now in a position to examine the behavior of the short-term rate 
implicit in the model presented by the authors. In what follows we are 
concerned with the way in which the authors treat short-term-rate volatility. 
The reader who wishes to gain further insight into the model may use (2.2) 
and (2.4) together with Equation (4.7) of the paper to determine how the 
expected change in the short-term rate behaves as a function of time and 
state. 

Equation (4.2) of the paper gives 

P(n, n + l ,  i + 1 )  
= c(n) (2.8) 

P(n, n + 1, i) 

where c(n) is an as-yet-unspecified function that varies with time but is 
independent of the state i of the system. 

Since 

P(n, n + 1, i) = exp { -  8(n, n + 1, i)} for all n, i, (2.8) 
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may be written 

8(n, n + l ,  i+1) - 8(n, n +  1, i) = - log~ c(n). (2.9) 

[Equation (2.9) may also be obtained directly from Equation (4.16) of the 
paper.] 

From (2.5) and (2.9), 

g(n, i) = - ~/2 log~ c(n + 1). (2.10) 

Equation (2.10) indicates that, according to the model, the standard deviation 
of the change in the short-term rate between time n and time n + 1 is inde- 
pendent of the value of the short-term rate at time n. 

The authors point out that their model will allow very high interest rates, 
negative interest rates, or both, unless 

lira c(n) = 1. (2.11) 
I I - - ~  zc 

That is, to prevent the model from developing an unreasonable range of 
interest rates over time (as happens in the original Ho-Lee model where c(n) 
is constant for all n), short-term-rate behavior must be constrained to satisfy 

Jim g(n, i) = 0. (2.12) 

Regardless of the form chosen for c(n), then, the only way to prevent the 
model from generating an unreasonably wide range of interest rates is to 
force short-term-rate volatility to vanish over time. 

The authors complete the development of their model by choosing a par- 
ticular form for c(n). Specifically they put 

- log~ c(n) = y(n) ( 2 . 1 3 )  

where 

b [1 
m 

v(n)  = b 

?l 

+ (1 - n/m) + (1 - n/m) 2] n < m 

11 _>m. 

(2.14) 
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From (2.10) and (2.13), 

g(n, i) = 1/2 ~/(n + 1). (2.15) 

The function ",/(n) therefore defines how short-term-rate volatility behaves 
according to the model. It is difficult to grasp intuitively why short-rate 
volatility should evolve over time according to the pattern given by (2.14). 
In particular, since d',t/dn <0 for all n, the model has the curious property 
that at any time, all future volatility levels will be lower than the current 
level. 

3. Conclusion 

Because one-factor models are governed by the short-term-rate process, 
a model that exhibits unnatural short-term-rate behavior is never entirely 
satisfactory, whatever its other properties. 

Defining the stochastic behavior of the short-term-rate explicitly, how- 
ever, allows us to incorporate realistic interest-rate dynamics in a straight- 
forward manner. The observed term structure may then be used to guide the 
choice of model parameter values. This latter procedure may be viewed as 
a process of graduation that leads to a smoothed representation of the ob- 
served initial term structure. 
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(AUTHORS' REVIEW OF DISCUSSION) 

HAL W. PEDERSEN~ ELtAS S.W. SHIU ANt) A.E. THORLACIUS~ 

We sincerely thank Dr. Jamshidian and Messrs. Macleod and Thomison 
for their discussions on our paper. 

We agree with Dr. Jamshidian that "ideally, a combined binomial and 
continuous-time approach should be pursued." We do not know of the con- 
tinuous-time limit of the model presented in Section IV of the paper. For 
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the interested reader, we note that discussions on the continuous-time limit 
of the Ho-Lee model can be found in [8], [9] and [11]. Also, a brief sketch 
on how the Gaussian continuous-time limit can be obtained for the case of 
constant risk-neutral probabilities and variable {c(n)} is given on page 33 of 
[121. 

Messrs. Macleod and Thomison state that it is unfortunate that we make 
"(exact) replication of an exogenously given initial term structure a funda- 
mental requirement." We answer this objection by first quoting Heath, Jar- 
row and Morton [8, p. 1]: that "the bond price curve implied by the model 
doesn't match the observed bond price c u r v e . . ,  dictates the existence of 
arbitrage opportunities." We think that a good model should be consistent 
with the information observed in the marketplace. Because we cannot make 
the marketplace conform to the model, we had better design the model to 
conform to available market information. It is also in this philosophy that 
we suggest that the model parameters be estimated from empirical data for 
callable bonds. 

Constraining the interest rates forces their volatility to decrease over time. 
To solve this problem, we can restrict the interest rates from only one di- 
rection, that is, avoid negative interest rates. (Ritchken and Boenawan [16] 
have proposed this for the Ho-Lee model.) However, interest rates can be- 
come very high, because, in our model, at each point of time, one-period 
forces of interest in consecutive states differ by a constant amount [see 
Equation (2.9) of Messrs. Macleod and Thomison's discussion]. Note that 
the popular lognormal model ([2], [5], [6]) is a binomial lattice model in 
which the logarithms of one-period interest rates in consecutive states at 
each point of time differ by the same amount. Black, Derman and Toy [2, 
p. 14] wrote: " I f  future short rate volatilities decrease with time, then high 
future short rates become less likely as time goes by. This damping out of 
fluctuations in high short rates is equivalent to mean reversion." 

Messrs. Macleod and Thomison mention their alternative approach [14], 
in which the one-period interest rate is governed by a mean reversion sto- 
chastic process. Cox, Ingersoll and Ross [4] study the instantaneous spot 
rate process ,(t), which satisfies the stochastic differential equation 

dr = K(k -- r)dt + crV~'dW, 

where K, k and o ~ are positive constants and W(t) is the standardized Gauss- 
Wiener process. In the context of an intertemporal general equilibrium asset- 
pricing model, Cox, Ingersoll and Ross [4, (23)] derive a closed-form 
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formula for valuing default-free and noncallable zero-coupon bonds. Several 
authors ([1], [10], [15]) have presented methods for the discretization of the 
square-root spot rate process. Messrs. Macleod and Thomison [14] present 
another way to implement the square-root spot rate process in the framework 
of a discrete-time model. Because a closed-form formula for pricing zero- 
coupon bonds exists for the continuous-time model, it is possible to check 
the validity of a discretization method. 

In a model such as Cox, Ingersoll and Ross's, the yield curve is completely 
determined by the level of the spot rate. As Brennan and Schwartz [3] point 
out, such single state variable models are unlikely to be able to reproduce 
observed yield curves. Messrs. Macleod and Thomison claim that " i t  is 
relatively easy to make successive adjustments to the model parame- 
t e r s . . ,  so that the resulting (endogenously derived) initial term structure 
conforms closely to the actual, observed term structure." Perhaps it is be- 
cause we have not really understood their paper [14] that we think that it is 
not easy for their model to reproduce an observed yield curve. However, 
Cox, Ingersoll and Ross [4, p. 395] have hinted that, by allowing h to be 
time-dependent, an exogenously given initial term structure can be incor- 
porated in the continuous-time model; unfortunately, the practical imple- 
mentation of this extended model is not easy. 

Formulas for forward and futures contracts based on the model developed 
in Section IV of the paper can be found in [13]. 

Again, we thank the discussants for their valuable contributions. We also 
take this opportunity to thank Professor Philippe Artzner and the referees of 
the paper for their many helpful comments. 
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