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ABSTRACT 

We consider an HIV+ life that is subject to the various stages of the 
Walter Reed Staging Method with constant forces of mortality and progres- 
sion in each stage. The traditional life insurance functions (such as the net 
single premium for an n-year term insurance or temporary annuity) are found. 
Net single premiums and net annual premiums per $1,000 whole life insur- 
ance are tabulated under various pre-AIDS mortality levels. 

1. INTRODUCTION 

Acquired Immune Deficiency Syndrome (AIDS) is one of the most dev- 
astating diseases to have afflicted humanity in recent times. Because of the 
nature of its transmission, there is a unique social stigma attached to this 
disease. As a result, there is great difficulty in assessing the spread of AIDS 
through the population. 

The impact of AIDS on the financial health of the life and health insurance 
industry in the United States is now being assessed. The Society of Actuaries 
commissioned a task force [16] to investigate the various strategies available 
to insurance companies for dealing with the problems posed by AIDS. This 
task force noted that the outlook on AIDS mortality and morbidity was bleak, 
especially in the near term. In the opinion of some researchers, the earliest 
AIDS vaccine will not be available until the mid-1990s, while a number of 
other researchers feel that no vaccine will become available until the next 
century. 

Because most of the reported AIDS cases are currently confined to the 
homosexual and IV-drug-using populations, one may question the existence 
of an insurable interest. However, since the current AIDS cases result from 
infections occurring 5 to 10 years ago, the currently infected heterosexual 
lives will not show up as AIDS cases until the mid-1990s. As a result, the 
number of reported cases of full-blown AIDS represents only the "tip of the 
iceberg." Of interest to insurers is the extent of the spread of the Human 
Immunodeficiency Virus (HIV) into the much larger (potentially insurable) 
heterosexual population. The Centers for Disease Control ([1] and [17]) 
estimate that the number of HIV+ cases is spreading in the heterosexual 
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community, albeit at a stable rate. Some of these HIV + heterosexuals may 
already have been insured. 

Another problem facing insurance companies is the risk of antiselection. 
This problem can be dealt with, to a large extent, by more stringent under- 
writing standards such as using AIDS antibody tests and lowering AIDS 
testing limits. Unfortunately, AIDS antibody tests are not able to detect 
infections until enough antibodies have been produced. It may take 6-8 
weeks for enough antibodies to be produced, thus allowing some H I V +  
lives to be misclassified within this period (see [16], chapter 2). In a recent 
article, Imagawa et al. [7] found that it may take up to 36 months before 
antibodies to the HIV-1 virus can be detected.* Thus an insurable interest 
exists. 

Clearly, as the disease spreads through the "insurable" heterosexual pop- 
utation, insurance companies will have HIV + lives on their books and the 
proportion of deaths due to AIDS will increase. AIDS thus presents the 
valuation actuary with numerous problems, the major one being that the 
pricing and reserve standards at the time of issue of inforce business did not 
anticipate the AIDS risk. In order to deal with such problems, actuaries need 
to be able to compute the traditional life insurance functions in an AIDS 
environment. The objective of this paper is to provide expressions for some 
of these functions. Such expressions, to the best of the author's knowledge, 
are not available in the actuarial literature. 

2. THE MODEL 

Consider an HIV + life that is otherwise healthy and asymptomatic. One 
method used to describe such a life's possible progression to AIDS is the 
Walter Reed Staging Method (WRSM) described by Redfield et al. [14]. 
The WRSM groups patients who have tested HIV + into four stages along 
the route to full-blown AIDS, rather than grouping patients according to 
their complications. For completeness, we have added two more stages, "at-  
risk" and "dea th . "  These stages (labeled 0 to 5) are described below: 

Stage 0 (At-risk)Healthy persons at risk for HIV + infection, but testing negative 

Stage 1 (HIV + )O~herwise asymptomatic persons testing HIV + 

Stage 2 (LAS) Persons with HIV infection and lymphademopathy syndrome (LAS), 
together with moderate celluar immune deficiency 

*This article was brought to my attention by Scott Holmes, Public Hcalth Epidemiologist, Lincoln- 
Lancaster County Health Department, Lincoln, Neb. 
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Stage 3 (ARC) Patients with HIV infection and LAS, plus severe cellular immune 
deficiency (AIDS-Related Complex, or ARC) 

Stage 4 (AIDS) Patients with AIDS 

Stage 5 (Death) Patients who died "of AIDS." 

Stage 6 (Death) Patients who died in stages 0, I, 2 or 3. 
Patients who died in stage 4 of causes not related to AIDS. 

Cowell and Hoskins [4] and Panjer [12] used the WRSM as the foundation 
of their respective models. They also assumed (1) that the progression of 
the disease through its various stages is sequential and irreversible and (2) 
that death prior to stage 4, that is, full-blown AIDS, is not permitted. Un- 
fortunately, a life can die in stages 0 to 3 (never actually having developed 
AIDS) or in stage 4 of a cause unrelated to AIDS. The mortality in the 
earlier stages may be significantly worse than normal and must be included 
in any model. This fact has been recognized by researchers and is an estab- 
lished part of most mathematical models of HIV + lives; see, for example, 
Dietz [5], Hyman and Stanley [6], Isham [8], May et al. [11], and Wilkie 
[18]. Another death stage (labeled as stage 6 above) has been added to 
accommodate this other type of death. Deaths prior to stage 4 are labeled 
as "immediate transitions" to stage 6; deaths in stage 4 that are not due to 
AIDS are also labeled as transitions to stage 6. 

There are very few mathematical models of the transition dynamics of 
HIV using the WRSM. The only published mathematical models of which 
the author is aware that include these HIV transition stages are the above- 
mentioned papers by Cowell and Hoskins [4] and Panjer [12]. Most models 
deal with the spread of HIV in populations. In these models the assumption 
of constant intensities (or hazard rates) is often used to simplify the math- 
ematics. In the few cases in which time-dependent hazard rates are assumed, 
proportional hazard functions are used for simplicity. 

Like Panjer's model, we use a continuous time Markov process. For 
simplicity, assume a person in stage i is subject to a constant force of 
progression out of stage i into stage i + 1 and to a constant force of mortality 
(out of stage i into stage 6). Once a life leaves a stage, it cannot return to 
that stage. This clearly yields a Markov process. These forces are operating 
simultaneously on the life in a "multiple decrement" environment. Actually, 
the situation is morc akin to life tables with secondary decrements, in the 
sense of Jordan ([9], chapter 15), than to a multiple decrement table. This 
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is because each stage i can be considered as producing its own "multiple 
decrement" table with two forces of decrement, mortality and progression. 

In particular, for i = 0, 1, 2, 3, 4, let P-i be the force of progression from 
stage i to stage i + 1, and ~ be the force of mortality while in stage i, that 
is, immediate transition to stage 6. Since both forces remain constant while 
in any stage, a "memoryless" property exists. This means that the length 
of time already spent in the current stage has no effect on the future length 
of time that the person will remain in this stage. This permits us to speak 
in terms of the future time spent in a stage without having to condition on 
the amount of time already spent in the stage. Let T, be the (future) time 
spent on stage i before entering stage i + 1, and T,: be the (future) time spent 
in stage i before immediate transition to stage 6. Also let G¢) be the future 
lifetime until death (from any cause) for a life currently in stage i. The 
random variable Gd; is well defined and continuous and is given by 

fr: if transition directly to stage 6 
/~d) = ~ + ~a21 if progression to stage i+  1. (1) 

In the sequel we develop expressions for the traditional insurance func- 
tions, for example, net single premiums, actuarial present values of annui- 
ties, reserves, and distribution of loss functions. Throughout, it is assumed 
that insurance is issued to a life in stage i at the time of issue, that is, at 
t=  0. This life is denoted by (i). 

3. LIFE INSURANCE FUNCTIONS 

The approach that is used to derive expressions for life insurance func- 
tions, probabilities, etc., is to derive a system of differential-difference equa- 
tions called the Chapman-Kolmogorov backward equations; see Karlin and 
Taylor ([10], chapter 4, pp. 135-139). Smith [15], in his discussion of 
Panjer's paper, suggested the Chapman-Kolmogorov equations should be 
written in matrix form. The general matrix form of this system of equations 
for t>0 is 

dp(t) = MP(t) + B (2) 

where P(t) is a column vector, M is the infinitesimal generator of the Markov 
transition process in the sense of Karlin and Taylor ([10], chapter 4.4, p. 
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132), and B is a column vector of constants. Smith suggested the solution 
to the homogeneous system, that is, with B = 0, be written in series form as 

P( t ) - -  I +  k P(0) 
k=l  

where I is the identity matrix and P(0) is the initial vector. As this summation 
is absolutely convergent, one may use as many terms as necessary to achieve 
the particular degree of accuracy desired in our computations. Smith pointed 
out that this series solution avoids the "near singularity" problems that may 
result whenever the eigenvalues of M are close. In this case the solution will 
necessarily be approximate. 

If the eigenvalues of M are distinct, or some are equal and M can still be 
factorized as M = U - ~ D U ,  where D is the diagonal matrix of eigenvalues of 
M and U is the matrix of independent eigenvectors of M, then P(t) may be 
written in the form 

P(t) = U- 'A ( t )U  

where A(t) is a diagonal matrix. This solution does not require any 
approximations, 

The solution to the nonhomogeneous equation (2) can be found by using 
well-developed techniques of differential equations; see Rainville and Be- 
client ([13], chapter 13). As noted above, these exact solutions require the 
inversion of matrices and the finding of eigenvectors. The approach used in 
this paper is straightforward and exact and requires no matrix inversions. 
The solutions fully exploit the constant intensities assumption. Since tran- 
sitions to a previous stage are not permitted, we obtain simple recursive 
solutions to the differential equations. These solutions are also easily 
programmable. 

Let po(t) be the probability that (i) will be alive t years from now and be 
in stage j .  Consider the interval (0, t+dt]  as the union of (0, dt] and (dt, 
t + dt]. For very small dt, we have 

p,j(t + dr) = 0 × tx[dt + ~,dtpj+l.j(t ) + (1 - czflt)pii(t) + o(dt) 

where ai = tzi + ~'  and o(x) satisfies 

lira o(x) = O. 
.r~O 96" 
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Transposing the term pij(t) to the left-hand side and then dividing both sides 
by dt and letting d t { O  gives us, f o r j = i ,  i +  1 . . . . .  4, 

It is clear that 

d po(t) 
d----t-- = ~ '  p '  ~ , . , (0  - ~ ,  p o ( O .  (3) 

po(O) = a~i 
pj;(t) = e ~' 

where B~i is the Kronecker delta, that is, 

6~ = {~ i f i  = j  
otherwise. 

The solution to Equation (3) is 

po(t)  = e . . . .  [ ~o 
I_ so ] , y , e  ~ ~ + tzipi~ w(. ) ~ ds (4) 

It can be written as the sum of exponential terms, that is, 

with 

J 

p,,(t) = Y~ p~> e - %  (5) 
k = i  

p~) = O f o r i  > j o r k  > j .  

Substituting Equation (5) into Equation (4) and then comparing the coeffi- 
cients of e-"~', on both sides of the resulting equation gives 

p#•= ] 
0 fo r j  = 0, 1 . . . . .  4 

p~) = - ( ~ p ~ , . k ) / ( a ~  - o~,) for k = i + 1 , . . .  , j  
J 

pit) ~ p~  for i < j. 
k = i +  I 

} (6) 

The p,j(t) 's  are now known. 
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The probability that (i) will die in s tage j  within the next t years is denoted 
by %(t),  where 

qo(t) = f l  p o ( s ) ~  j ds.  

= p~) (1 - e - ~ ' ) .  
k=i 

The probability that a life (i) will die within the next t years will be denoted 
by q,(t), where 

q,(t) = Pr [~  't) _< t] 
,4 

= ~,  q,)(t). 

Using the Chapman-Kolmogorov backward equation, a differential equa- 
tion for q,(t) can be established as follows: 

q~(t + at) = Ix;dr + qi, ~(t)izidt + (1 - aidt)q,(t) + o(dt) ,  

which leads to 

d q~(t) 
d---~ = /x; + ~,q~+~(t) - a,q~(t), (7) 

with boundary conditions 

q,(0) = 0 and q6(t) = qs(t) = 1, t > 0. 

The solution to this differential equation is 

Ii "s~eaS qs(t) = e . . . .  [IX" n t- tz,qi+ i( )J ' ds (8) 

with 

qa(t) = 1 - e - ' ~ '  (9) 

The general form of q~(t) is 

4 

qs(t) = qi + 2 ~o e - ~ '  f°r  O -< i ~ 4, (10) 
j ~ i  
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where the qi 's and ~,j's are constants. After substituting Equation (10) into 
Equation (8) and then comparing the coefficients of  e~J  ' on both sides of  
the resulting expression, we have: 

qi = 1 f o r i  = O, 1 . . . . .  4; 

~44 = - 1 

~j = - ( l~ i~+l j ) / (% - o4) f o r j  _> i + 1; 
4 

~, = - 1 - ~ ~j f o r /  = 0, 1 , 2 , 3 .  
j = i + l  

(11) 

Of interest to actuaries is E[~d)], the life expectancy for a life now in 
stage i. A recursive expression for this expectation can easily be derived as 
follows: let 

o 
ei = E[~'*)], 

Di = {the event that the life progresses to stage i + 1}, 

and the complement  of  D, be given by  

D[ = {the event that the life dies in stage i}. 

For i = 0, 1, 2, 3, and 4, it follows that 

ei = E[ ~a)IDi]Pr[D,] + E[ ~a)ID~]Pr[D~] 

= E[T i + T,+,(d)ID,]Pr[D,] + E[T;ID~]Pr[D~ ] 

1 + e , + t  a~ a~ \ a i ]  

1 + l,*io 
= - -  - -  e,+,. (12) 

ai oti 

This recursive expression can now be used because e5 = 0. 
Suppose the life (i) desires an n-year  term insurance with a face value of 

$1 issued on a fully continuous basis. By fully continuous we mean pre- 
miums are paid continuously until death or for n years,  whichever  is shorter, 
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and the death benefit is paid immediately upon death if death occurs within 
the next n years. How can we determine the net premium and the net pre- 
mium reserve for such a policy? Can we find the distribution of the pro- 
spective loss function? As we will see, the answers are similar to those one 
would expect from traditional life insurance arguments. 

The following notation is used throughout the rest of this paper; the sub- 
scripts i refer to (i) at the present time: 

Ai(t) = net single premium for t-year continuous term insurance 
ai(t) = actuarial present value for t-year continuous life annuity 
Ei(t) = net single premium for t-year pure endowment insurance 
Pi(n) = net annual premium for fully continuous n-year term policy 
d*(t) = present value of t-year continuous annuity certain 
3 = constant force of interest. 

Recall the definition of T,¢~ in Equation (1). The prospective " n e t "  loss 
random variable Li at the t ime of issue of the policy is given by 

{; ~"~ - Pi(n) ~*(T}, d)) if 0 _< ~a) < n; 
L, = P/(n) iI*(n) if H a) > n, 

(13) 

where 

1 - v' 
V = e -~ and ~*(t) = 6 

Note that the term " n e t "  loss is used because this loss is defined with respect 
to the net premium. For the sake of completeness, the random variables Zi(t) 
and Y,(t) are introduced and defined in the spirit of Bowers et al. ([2], 
chapters 4 and 5, respectively), as follows: Zi(t) is the present value of $1 
paid at the time of death of (i), providing death occurs within the next t 
years, 

;r,,,, if 0 _< ~ __- t; 
Zi(t) = if ~,o > t. (14) 

Clearly, 

E [ z , ( t ) ]  = 
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and 

Var [Zi(t)] = X!z}(t) - [.4~(t)] 2 

where.4}2~(t) is calculated asA,(t) but at twice the force of  interest. Similarly, 

, ~ . ( ~ a ) )  if 0 -< ~"~ -< t; 
Y,(t) = [~*(t)  if ~"> > t, (15) 

with 

and 

E[r,(t)]  = ~i(t) 

2 
Var[Yi(t)] = ~ [ai(t) - ~}2)(t)] - [~,(t)] z, 

where ~!2)(t) is calculated as ~i(t) but at twice the force of interest. The 
prospective loss random variable can now be written as 

L, : z,(n) - E(.)v,.(n). 

Using the equivalence principle, that is, E[Li]  = 0, gives us the standard 
expression 

A~(n) (16) 
E(,1) = ~,(n)" 

We now proceed to develop differential equations for.~,(t), ~i(t), and E,( t ) .  

The Chapman-Kolmogorov backward equation applied to ,4i(t) yields 

~,(t + clt) = v~%;& + ~, ,  ,(t)~dt + (1 - ~d t )3 , ( t )  + o(dt)]. 

Since v d' = 1 - &t t  + o (d t ) ,  then 

d ~,(t) 
- ~;  + ~ , ,  l(t) - (8 + ,~,),~,(t), (17) 

dt  

with boundary conditions 

,4,(0) = 0 and .ds(t) - A6 (t) = 1, t _> 0. 
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The solution to this differential equation is 

fo 3~(t) = e -(8*'~')' [~'~ + txi~ti+l(s)]e(~+'~')~ ds 

with 

(18) 

a4 (1 - e-(8"°">'). (19) 24(0 = • + a4 

The general form of.A~(t) is 
4 

Ai(t) = Ai "~- E °Jije-((54 ~j)t for 0 <- i <- 4, ( 2 0 )  
j=i 

where the .4i's and wij's are constants. After substituting Equation (20) into 
Equation (18) and then comparing the coefficients of e-(~+'~ )' on both sides 
of the resulting expression, we have 

0344 = -A4 

O.)ij = - -  (],Li0.)i+ ld')/(O~j - -  O~i) 
4 

j = i + l  

= ,~./(8 + ,~4) " 

= (~" + I.~,A,+,)/(a + o~) i = 0, 1, 2,  3; 

j > - i  + 1; 

i = 0 , 1 , 2 , 3 .  

(21) 

The backward equation for Ei(t) is 

E,(t  + dt)  = 0 x tz 'dt  + v d' E i . l ( t ) t z ,d t  + V dt Ei(t)(1 - a,dt) ,  

and the corresponding differential equation is 

d e , ( t )  
dt = u ~ , + , ( t )  - (,~ + o0E,(t), (22) 
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with boundary conditions 

Eg(0) = 1 and E,(t)  -- F~(t) =-- O, t >_ O. 

The solution to this differential equation is 

f 
t (,% a,).~ 

Ei(t ) = e -(* ~'~*[1 + Iz,E,~ ,(s)e ds] 
0 

with 

The general form of  E~(t) is 

E4(t) = e -(~°"~'. 

(23) 

4 

Ei(t) = E, + ~ %e -(~ '" ,7 ' forO-< i_< 4, (25) 
j=i 

where the Ei 's  and w~j's are constants. Using the same technique as that used 
in deriving the constants given in Equation (21) leads us to 

Ei = 0 because Eg(~) = 0; 

e44 = 1 ; (26) 

eij ~- --([.Liei+l,j)/(O ~ --  O{i) f o r j  _>i + 1; 
4 

e, = 1 - ~ e o f o r 1  = 0 , 1 , 2 , 3 .  
j = i + l  

Finally, the Chapman-Kolmogorov backward equation applied to g,(t) gives 

d / t  + dt) = ~*(dt) + vd'[0 x txflt + g, ,( t) tx,dt  

+ (1 - a,dt)gi(t ) + o(dt)]. 

But E*(dt) =dt  + o(dt),  therefore the fol lowing differential equation results 

d 
= 1 + p.fl,, ,(t) - (3 + al)~,(t), (27) 

dt 

with boundary conditions 

iIi(0) = 0 for i = 0, 1, . . . ,  4 and iT.~(t) - N ( t )  = 0, t -> 0. 

The solution to this differential equation is 

Io -ai(t ) = e -(~+'~')' [1 + /xfli, ,(s)]e (~' '~'~' ds (28) 
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with 

a,(t) = 

The general form of ~(t) is 

~ +  or4 
(1 - -  e-(~+c~)t). 

~,(t)  = "a, + ~ ,  yi:e -(8+~)' for 0 --< i --< 4,  
j=i 

where the ~:s  and yi:'s are constants. These constants are 

~, = 1/(8 + oa) 

~i = (1 "~- ].L,~i+O/(~ J1- 0~) 

"Y,u = -- an 

r u  = - ( ~ i r , + l j ) l ( o ~  - o~) 

4 
Yu = - iTt - ~ "Y~s 

]~i+l 

fo r i  = 0, 1, 2, 3; 

j fo r / ' _> i  + 1; 

f o r /  0 , 1 , 2 , 3 .  

405 

(29) 

(30) 

(31)  

The net level premium can now be found. In fact, the net level premium 
for many different types of insurance plans can be arrived at by using the 
basic functions Ai(t), Ei(t), and ~(t). For example, the net level premium 
for an n-year endowment insurance, issued on a fully continuous basis, is 

~ ( n )  = 2i(n) + E,(n) 
~,(n) 

Next we investigate the distribution and the moments of the loss random 
variable defined in Equation (13). 

4. THE NET PREMIUM RESERVE 

Recall Equation (13) defining the prospective net loss random variable. 
Let Fi(t) be the cumulative distribution function (c.d.f.) of Li at t years after 
the issue of the policy given that (i) is alive at time t, that is, 

F~(x,t) = Pr[Lg -< xlTy) > t]. (32) 
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A graph of the loss over the remaining life of the policy t years after issue 
is shown in Figure 1. The prospective net loss at time t, given that the life 
is in stage j at time t, will be denoted L,j(t), where 

{o , ,~, - p / . ) ~ . ( ~ . , ) i f  o <_ ~, , ,  <_ ,, - ,; 
Lq(t) = Pi(n)d*(n - t ) i f  ~,o > m t. (33) 

FIGURE 1 

PROSeECTWE LOSS RANDOM VARIABLE, L.(t) 

I 
l 
I 

S =  0 I~ 1'1~! S 

-PiO0 h*O~-t) 

X 

Denote its c.d.f, by 

Giy(x,t) = Pr[Lij(t) <- x]. (34) 
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From Figure 1, one can see that 

GJx, O = I 
1 i f x  > 1; 

P r [ ~  d) >__ t,] if v " - '  - P ~ ( n ) W ( n  - t) <_ x <_ 1; 

, P r [~  ~) >_ n - t] if - P,(n)a*(n - t) _< x _< 

. . . . .  P , ( n ) ~ * ( n  - t ) ;  

0 otherwise.  

where tx is the solution to the equation (as a function of s) 

, ,3 _ P , ( n ) ~ * ( s )  = x 

that is, 

tx  = - ~ \ p , ( , , )  + 

Thus 

(35 )  

i 
1 i f x  > 1; 

1 - qi(tx) if v . . . . .  P~(n)~*(n - t) < - x  < 1; 

Go(x , t  ) = 1 - qj(n - t ) i f  - P i ( n ) a * ( n  - t) <_ x <- (36) 

v . . . .  P i ( n ) ~ * ( , ~  - t ) ;  

0 otherwise.  

In our definition of  F~(x, t) ,  the actual stage that the life is in at t ime t is 
unknown,  while in the definition of  Gij(x, t) the stage at t ime t is known to 
b e j .  In order to connect these two probabili t ies,  we must use Equation (37), 
which follows directly f rom the definition of  conditional probabili ty:  

pij(t) 
Pr[(i) is in stage j at tl(i ) alive at t] - 1 - q,(t)" (37) 

This leads us to 

F,(x,  t) = ~ pq( t )  G~j(x, t) .  
j=, 1 - qi(t)  

(38)  
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Using the standard arguments, as found in Bowers et al. ([2], chapter 7), 
the net premium reserve is 

P'o(t) = E[Lo(t)] = 7tj(n - t) - Pi(n)aj(n - t) (39) 

where V0(t) is the net premium reserve given that the life is in stage j at 
time t. If the stage at time t is unknown, then we denote the net premium 
reserve as ~(t) ,  with 

g ( t )  = ~ pij(t)  L(t)" (40) 
j - i  i - -  q i ( t )  

The differential equation for V',)(t) is 

d ~ j ( t )  = Pi(n)  + (a + ai)F'o(t ) - IxjE.j~ ,(t) - tx; (41) 
dt 

: P,(n) + ~ j ( t )  - [1 - Vo(t)l/xj - [ ~ / ' i , j + i f t )  - ~i(t)]lXj (42) 

with boundary conditions Vo(0)=0 and V0(n) =0. As expected, Equations 
(41) and (42) are similar to Equations (7.11.3) and (7.11.5) in Bowers et 
al. ([2], chapter 7), and in an analogous manner, the last two terms in 
Equation (42) are the net amount at risk for dying in stage j and the net 
amount at risk for progressing to the next worse stage, respectively. 

If we had an n-year endowment insurance instead, Equation (41) would 
still be valid, but the boundary conditions would become ~ j (0 )=  0 and 
Vo(n) = 1 and the premium would be different also. 

The results derived thus far are valid for whole life insurances also. They 
can be adapted by simply letting n and t ~ .  Thus, the following results 
will hold: The net premium is 

Pi = ~'--, (43) 

with 

1 = Xi  + 8gi~ for i = 0, 1 . . . .  , 4. (44) 

Note that in stage 4, P4 = ce4. The prospective net loss random variable at 
issue is 

L, = v # '  - Pfl*(T}e)), (45) 

while at time t, given the life is in stage j ,  is 

Lii(t) = v # ' -  pfl ,(~co).  (46) 
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Clearly, for the whole life insurance, 

and 
2 

(47) 

(48) 

independent of t because of the memoryless property of the constant forces 
assumption. 

5. F U L L Y  D I S C R E T E  F U N C T I O N S  

For completeness, fully discrete functions are briefly examined. By fully 
discrete we mean that death benefits are paid at the end of the year of death 
and premiums are paid at the start of the year. As is traditional, the bar at 
the top of symbols is dropped to denote fully discrete functions. For annuities 
due, the bar is replaced with the double dots, for example, di(t). The fol- 
lowing results are easily derived from elementary probabilistic arguments: 
for t = l ,  2, 3, ..., 

4. 

Ai(t)  = vq~ + v Y, Pij Aj( t  - 1) (49) 
j= i  

and 

4 

it,(t) = 1 + v ~ po~tj(t - 1), (50) 
j= i  

where qi=qi(1) [see Equation (7)] and pij=p~i(1) [see Equation (4)]. 
Once Ai(t)  and di(t) are known, the standard arguments similar to those 

in Section 4 above can be used to obtain expressions for such quantities as 
the net annual premium and the reserve. The recursive expression for the 
reserve of an n-year term insurance is 

4 

V0(t ) + P,(n) = vqj + ~ vpjkV~k(t + 1), (51) 
k~ j  

for t = 0, 1, 2 . . . .  , n - 1 with V~j(n) = O. 
By letting t ~ ,  fully discrete whole life insurance functions will result. 

Applying this to Equation (49) yields 
,:1 

A~ = vqi + v ~ p~jAf. (52) 
j= i  
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Note that 

will also hold. 

Ai + diii = 1 (52) 

6. AN EXAMPLE AND CONCLUSIONS 

The estimates of/xi given by Panjer ([12], Table 2) are used to calculate 
the net annual premium for a $1,000 whole life insurance on a fully contin- 
uous and fully discrete basis. They are p.o=0.45, /x~=0.86, /x2=0.53, 
p~3=0.30, and o~4= 1.10. 

In order to proceed, assumptions about ~; must be made. It is assumed 
that p~; satisfies 

Ix,! = Bc  i, for i = 0, 1, 2, 3. (54) 

Since or4 is the force of death from all causes in stage 4, it is not unreasonable 
to assume that the level of the force of death in each of the stages 0 through 
4 increases exponentially until it reaches 1.1 in stage 4. Remember that p.; 
remains level in each stage. Thus Bc 4 = 1.1 and 

iN 

= ( 5 5 )  

0 ifB = 0. 

In what follows, B is allowed to vary between 0 and 0.20 in steps of 0.005. 
The case B--0 implies that deaths can occur only after the life has entered 
stage 4, that is, has developed full-blown AIDS. This is the Walter Reed 
Staging Method and the model used by Panjer. Clearly Panjer's model (B=0) 
is a special case of the model described in this paper. 

Net single premiums for whole life insurance are calculated by using 
Equation (23) for the fully continuous case and Equation (52) for the fully 
discrete case. Once the net single premiums are found, the corresponding 
net annual premiums can be found by using Equations (44) and (53), re- 
spectively. These premiums are displayed in Tables 1-8 and Figures 2-5. 



TABLE 1 

NET ANNUAL PREMIMUM PER $1000  WHOLE LIFE INSURANCE 
AT 5.5% INTEREST ON A FULLY CONTINUOUS BASIS 

0.000 86.73 
0.005 129.89 
0.010 140.79 
0.015 149.21 
0.020 156.48 
0.025 163.07 
0.030 169.21 
0.035 175.01 
0.040 180.57 
0.045 185.93 
0.050 191.14 
0.055 196.23 
0.060 201.20 
0.065 206.09 
0.070 210.90 
0.075 215.64 
0.080 220.32 
0.085 224.96 
0.090 229.55 
0.095 234.10 
0.100 238.6l 
0.105 243.10 
0.110 247.56 
0.115 251.99 
0.120 256.39 
0.125 260.78 
0.130 265.15 
0.135 269.50 
0.140 273.84 
0.145 278.17 
0.150 282.48 
0.155 286.77 
0.160 291.06 
0.165 295.34 
0.170 299.61 
0.175 303.87 
0.180 308.13 
0.185 312.38 
0.190 316.62 
0.195 320.86 
0.200 325.09 

iooo.7', 

120.21 
200.36 
220.42 
235.39 
247.91 
258.95 
268.97 
278.24 
286.92 
295.14 
302.96 
310.46 
317.69 
324.67 
331.43 
338.01 
344.42 
350.68 
356.80 
362.79 
368.67 
374.44 
380.11 
385.70 
391.19 
396.61 
401.95 
407.23 
412.43 
417.58 
422.67 
427.70 
432.67 
437.60 
442.48 
447.31 
452.10 
456.85 
461.56 
466.23 
470.86 

[O00*P 2 

148.45 
268.10 
297.08 
318.15 
335.40 
350.32 
363.64 
375.77 
386.97 
397.43 
407.27 
416.60 
425.48 
433.98 
422.13 
449.98 
457.56 
464.89 
472.00 
478.91 
485.63 
492.17 
498.56 
504.80 
510.90 
516.87 
522.72 
528.46 
534.09 
539.62 
545.05 
550.38 
555.64 
560.81 
565.90 
570.91 
575.86 
580.73 
585.54 
590.28 
594.97 

1000*P 3 

227.03 
453.70 
496.59 
525.35 
547.59 
565.98 
581.79 
595.73 
608.24 
619.63 
630.11 
639.83 
648.91 
657.44 
665.49 
673.11 
680.37 
687.29 
693.92 
700.27 
706.38 
712.26 
717.94 
723.42 
728.73 
733.86 
738.87 
743.73 
748.45 
753.04 
757.52 
761.88 
766.15 
770.31 
774.38 
778.36 
782.26 
786.07 
789.81 
793.48 
797.08 

1ooo°~ 

1100.00 
1100.00 
1100.00 
1100.00 
I100.00 
1100.00 
1100.00 
II00.00 
1100.00 
ii00.00 
II00.00 
Ii00.00 
1100.00 
1100.013 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
llO0.O0 
1100.00 
lIO0.O0 
1100.00 
1100.00 
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TABLE 2 

NET SINGLE PREMIUM PER $1000 WHOLE LIFE INSURANCE 
AT 5.5% [NTEREST ON A FULLY CONTINUOUS BASIS 

0.000 
0.005 
0.010 
0.015 
0.020 
0.025 
0.030 
0.035 
0.040 
0.045 
0.050 
0.055 
0.060 
0.065 
0.070 
0.075 
0.080 
0.085 
0.090 
0.095 
0.100 
0.105 
0.110 
0.115 
0.120 
0.125 
0.130 
0.135 
0.140 
0.145 
0.150 
0.155 
0.160 
0.165 
0.170 
0.175 
0.180 
0.185 
0.190 
0.195 
0.200 

618.29 
708.12 
724.49 
735.93 
745.07 
752,83 
759.63 
765.74 
771.30 
776.42 
781.19 
785.64 
789.82 
793.78 
797.53 
801.10 
804.50 
807.75 
810.87 
813.86 
816.74 

691.86 
789.13 
804.57 
814.69 
822.39 
828.67 
833.99 
838.63 
842.74 
846.45 
849.82 
852.91 
855.77 
858.44 
860.92 
863.26 
865.46 
867.55 
869.52 
871.40 
873.19 

734.93 
833.54 
847.30 
855.95 
862.34 
867.43 
871.66 
875.29 
878.46 
881.28 
883.81 
886.12 
888.23 
890.18 
891.98 
893.67 
895.24 
896.73 
898.12 
899.44 
900.70 

809.17 
894.45 
902.68 
907.51 
910.93 
913.58 
915.73 
917.54 
919.10 
920.47 
921.68 
922.78 
923.78 
924.69 
925.54 
926.32 
927.05 
927.73 
928.37 
928.97 
929,54 

819.51 
822.18 
824.76 
827.25 
829.66 
832.00 
834.26 
836.46 
838.59 
840.66 
842.67 
844.63 
846.54 
848.39 
850.20 
851.96 
853.68 
855.36 
857.00 
858.59 

874.90 
876.54 
878.11 
879.61 
881.06 
882.46 
883.80 
885,10 
886,35 
887.57 
888.74 
889.88 
890.99 
892,06 
893.10 
894,11 
895,10 
896,06 
896,99 
897.90 

901.89 
903.02 
904.11 
905,14 
906.14 
907,09 
908.01 
908.89 
909.74 
910.55 
911.35 
912.11 
912.85 
913.57 
914.26 
914.93 
915.59 
916.22 
916.84 
917.44 

930,09 
930.60 
931.09 
931.56 
932.01 
932.43 
932.84 
933.24 
933.62 
933.99 
934.34 
934.68 
935.01 
935.33 
935.64 
935.94 
936.23 
936.51 
936.79 
937.06 

iooo.~, 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
953.59 
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TABLE 3 

NET ANNUAL PREMIUM PER $1000 WHOLE LIFE INSURANCE 
AT 7 .0% INTEREST ON A FULLY CONTINUOUS BASIS 

B 1000,/; o IO00op i 1000.~ 2 I O(R)*P.~ lO00,P4 

0.000 
0.005 
0.010 
0.015 
0.020 
0.025 
0.030 
0.035 
0.040 
0.045 
0.050 
0.055 
0.060 
0.065 
0.070 
0.075 
0.080 
0.085 
0.090 
0.095 
0.100 
0.105 
0.110 
0.115 
0.120 
0.125 
0.130 
0.135 
0.140 
0.145 
0.150 
0.155 
0.160 
0.165 
0.170 
0.175 
0.180 
O. 185 
0.190 
0.195 
0.200 

82.48 
125.64 
136.63 
145.13 
152.47 
159.13 
165.32 
171.19 
176.80 
182.22 
187.49 
192.62 
197.65 
202.58 
207.44 
212.22 
216.95 
221.63 
226.26 
230.86 
235.41 
239.94 
244.43 
248.90 
253.35 
257.77 
262.18 
266.57 
270.94 
275.30 
279.64 
283.98 
288.30 
292.61 
296.91 
301.20 
305.49 
309.77 
314.04 
318.31 
322.57 

116.17 
196.44 
216.63 
231.69 
244.31 
255.42 
265.51 
274.84 
283.59 
291.86 
299.74 
307.29 
314.56 
321.58 
328.40 
335.02 
341.47 
347.77 
353.92 
359.96 
365.87 
371.68 
377.39 
383.00 
388.53 
393.98 
399.36 
404.66 
409.90 
415.07 
420.19 
425.25 
430.25 
435.21 
440.12 
444.98 
449.79 
454.57 
459.30 
463.99 
468.65 

144.89 
264.97 
294.14 
315.33 
332.68 
347.69 
361.08 
373.27 
384.53 
395.05 
404.94 
414.32 
423.24 
431.78 
439.97 
447.86 
455.47 
462.84 
469.98 
476.92 
483.67 
490.25 
496.67 
502.93 
509.06 
515.06 
520.94 
526.70 
532.35 
537.90 
543.35 
548.71 
553.99 
559.18 
564.29 
569.32 
574.29 
579.18 
584.01 
588.77 
593.47 

224.85 
452.08 
495.08 
523.91 
546.2l 
564.65 
580.49 
594.47 
607.01 
618.43 
628.94 
638.68 
647.78 
656.33 
664.40 
672.05 
679.32 
686.26 
692.90 
699.27 
705.39 
711.29 
716.98 
722.48 
727.80 
732.96 
737.97 
742.83 
747.57 
752.17 
756.66 
761.04 
765.31 
769.48 
773.56 
777.55 
781.46 
785.29 
789.03 
792.71 
796.32 

1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
l 1 O0.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1100.00 
1 lO0.O0 
1100.00 
1100.00 
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TABLE 4 

NET SINGLE PREMIUM PER $1000 WHOLE LIFE INSURANCE 
A T  7.0% INTEREST ON a FULLY CONTINUOUS BASIS 

0.000 
0.005 
0.010 
0.015 
0.020 
0.025 
0.030 
0.035 
0.040 
0.045 
0.O5O 
0.055 
0.060 
0.065 
0.070 
0.075 
0.080 
0.085 
0.090 
0.095 
0.100 
0.105 
0.110 
0.115 
0.120 
0.125 
0.130 
0.135 
0.140 
0.145 
0.150 
0.155 
0.160 
0.165 
0.170 
0.175 
0.180 
0.185 
0.190 
0.195 
0.200 

549.36 
649.98 
668.81 
682.04 
692.64 
701.66 
709.60 
716.73 
723.24 
729.24 

631.96 
743.81 
762.00 
773.98 
783.12 
790.58 
796.93 
802.46 
807.38 
811.81 

681.67 
796.59 
812.99 
823.34 
831.00 
837.10 
842.19 
846.55 
850.38 
853.78 

768.69 
869.82 
879.77 
885.63 
889.78 
893.00 
895.61 
897.82 
899.72 
901.39 

734.82 815.84 
740.05 819.55 
744.98 822.98 
749.63 826.18 
754.05 829.17 
758.26 831.98 
762.28 834.63 
766.12 837.13 
769.81 839.51 
773.35 841.78 
776.76 843.94 
780.[)4 846.00 
783.21 847.97 
786.27 849.87 
789.23 851.69 
792.10 853.44 
794.87 855.13 
797.57 856.75 
800.18 858.32 
802.72 859.84 
805.19 861.31 
807.59 862.74 
809.92 864.12 
812.20 865,45 
814.42 866.75 
816.58 868.02 
818.68 869.25 
820.74 870.44 
822.74 871.61 
824.70 872.74 
826.62 873.84 

856.84 902.87 
859.62 904.21 
862.18 905.43 
864,53 906.55 
866,72 907.58 
868.76 908.53 
870.67 909.42 
872.46 910.26 
874.16 911.04 
875.76 911.78 
877.28 912.48 
878.73 913.14 
880.11 913.77 
881.42 914.37 
882.68 914.94 
883.89 915.49 
885.05 916.02 
886.16 916.52 
887.24 917.01 
888.27 917.47 
889.27 917.92 
890.23 918.36 
891.16 918.77 
892.06 919.18 
892,94 919.57 
893.78 919.95 
894.60 920.32 
895.40 920.68 
896.18 921.02 
896.93 921.36 
897.66 921.69 

942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
942.06 
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TABLE 5 

NET ANNUAL PREMIUM PER $1000 WHOLE LIFE INSURANCE 
AT 5.5% INTEREST ON A FULLY DISCRETE BASIS 

B i 000 "Pu I 0 ( ~  *P1 1000 ° P2 1000 * P~ 1000 * P4 

o.o00 
0.005 
O.OLO 
o.015 
0.020 
0.025 
o.o30 
0.035 
0.040 
0.045 
0.050 
0.055 
0.060 
0.065 
0.070 
0.075 
0.080 
0.085 
0.090 
0.095 
0.100 
0.105 
0.110 
0.115 
0.120 
0.125 
0.130 
0.135 
0.140 
0.145 
0.150 
0.155 
0,160 
0.165 
0.170 
0.175 
0.180 
0.185 
0,190 
0.195 
0.200 

78.86 
115.75 
124.83 
131.77 
137.71 
143.o6 
148.o2 
152.67 
157.1o 
161.36 
165.47 
169.46 
173.35 
177.15 
18o.86 
184.52 
188,11 
191.64 
195.12 
198.56 
201.96 
2o5.31 
208.64 
211.92 
215.18 
218.41 
221.61 
224.78 
227.92 
231.Ol 
234.16 
237.23 
240.29 
243.33 
246.35 
249.35 
252.34 
255.31 
258.26 
261.19 
264.1o 

107.62 
172.86 
188.41 
199.81 
209.22 
217.42 
224.78 
231.52 
237.78 
243.65 
249.20 
254.48 
259.52 
264.36 
269.02 
273.52 
277.88 
282.1o 
286.21 
290.20 
294.10 
297.90 
3Ol.61 
305.25 
308.81 
312.3o 
315.72 
319.o7 
322.38 
325.65 
328.81 
331.94 
335.03 
338.06 
341.07 
344.01 
346.93 
349.80 
352.63 
355.42 
358.19 

131.18 
224.13 
245.02 
259.81 
271.70 
281.82 
29o.71 
2o8.71 
306.Ol 
312.75 
319.o3 
324.92 
330.47 
335.74 
340.75 
345.54 
35o.12 
354.53 
358.76 
362.85 
366.80 
370.62 
374.32 
377.91 
381.41 
384.80 
388.11 
391.33 
394.47 
397.54 
400.54 
403.47 
406.34 
409.15 
411.90 
414.59 
417.23 
419.83 
422.37 
424.87 
427.33 

193.61 
347.81 
373.20 
389.60 
401.96 
411.97 
420.42 
427.76 
434.26 
440.1o 
445.41 
450.29 
454.80 
459.00 
462.92 
466.62 
470,1o 
473.40 
476.54 
479.53 
482.38 
485.11 
487.73 
490.24 
492.67 
495.00 
497.25 
499.43 
5Ol.54 
503.58 
505.56 
507.49 
509.35 
511.17 
512.94 
514.66 
516.34 
517.98 
519.58 
521.14 
522.66 

632.35 
632.35 
632.35 
632.35 
632.35 
632.35 
632.35 
632.35 
632.35 
632.35 
632.35 
632,35 
632.35 
632.35 
632.35 
632.35 
632,35 
632.35 
632.35 
632.35 
632.35 
632.35 
632.35 
632.35 
632.35 
632.35 
632.35 
632.35 
632.35 
632.35 
632.35 
632.35 
632.35 
632.35 
632.35 
632.35 
632.35 
632.35 
632,35 
632.35 
632.35 
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TABLE 6 

NET SINGLE PREMIUM PER $1000 WHOLE LIFE INSURANCE 
AT 5 . 5 %  INTEREST ON A FULLY DISCRETE BASlS 

B 100O*Ao 1000*A 1 1000*A2 1000,A:~ 1000".44 

0.000 
0.005 
0.010 
0.015 
0.020 
0.025 
0.030 
0.035 
0.040 
0.045 
0,050 
0.055 
0.060 
0.065 
0.070 
0.075 
0.080 
0.085 
0.090 
0.095 
0.100 
0.105 
0.i10 
0.115 
0.120 
0.125 
0.130 
0.135 
0.140 
0.145 
0.150 
0.155 
0.160 
0.165 
0.170 
0.175 
0.180 
0.185 
0.190 
0.195 
0.200 

602.03 
689.48 
705.40 
716.52 
725.39 
732.92 
739.53 
745.45 
750.84 
755.81 
760.43 
764.74 
768,79 
772.62 
776.25 
779.70 
783.00 
786114 
789.15 
792.05 
794.83 
797.50 
800.08 
802.57 
804.98 
807,30 
809.55 
811,74 
813,85 
815,88 
817,90 
819,84 
821,72 
823.56 
825.34 
827,08 
828,78 
830,43 
832,04 
833,61 
835.14 

673.66 
768.30 
783.27 
793.08 
800.53 
806.59 
811.74 
816.21 
820.18 
823.75 
826,99 
829.97 
832.72 
835.28 
837.67 
839.91 
842.03 
844.02 
845.92 
847.71 
849.43 
851.06 
852.63 
854.13 
855.56 
856.95 
858.28 
859.56 
860.80 
862.01 
863.15 
864.27 
865.35 
866.39 
867.41 
868.40 
869.36 
870.29 
871.20 
872.08 
872.95 

715.61 
811.29 
824.56 
832.88 
839.01 
843.89 
847.94 
851.41 
854.44 
857.12 
859,54 
861.74 
863.74 
865.59 
867.31 
868.91 
870.40 
871.80 
873.12 
874.37 
875.56 
876.68 
877.75 
878.77 
879.75 
880.69 
881.58 
882.44 
883.27 
884.07 
884.83 
885.57 
886.29 
886.98 
887.65 
888,30 
888.93 
889.54 
890.13 
890.71 
891.27 

787.86 
869.65 
877.43 
881.98 
885.19 
887.67 
889.68 
891.37 
892.82 
894.09 
895,22 
896.24 
897.16 
898.00 
898.78 
899.50 
900,17 
900,80 
901.39 
901.94 
902.47 
902.96 
903.43 
903.88 
904.31 
904.72 
905.11 
905.48 
905.84 
906.19 
906.52 
906.84 
907.15 
907.45 
907.74 
908.02 
908,29 
908,56 
908,81 
909.06 
909.30 

923.84 
923.84 
923.84 
923.84 
923.84 
923.84 
923.84 
923.84 
923.84 
923.84 
923.84 
923.84 
923.84 
923.84 
923.84 
923.84 
923.84 
923.84 
923.84 
923.84 
923.~ 
923.84 
923.84 
923.8a 
923.$4 
923.84 
923.84 
923.84 
923.84 
923.84 
923.84 
923.84 
923.84 
923.84 
923.84 
923.84 
923.84 
923.84 
923.84 
923.84 
923.84 
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TABLE 7 

NET ANNUAL PREMIUM PER $1000 WHOLE LIFE INSURANCE 
AT 7.0% INTEREST ON A FULLY DISCRETE BAS/S 

B lO00*Po 1000*PI t0OO-P2 1000*P3 10(KI*P4 
0.000 
0.005 
0.010 
0.015 
0.020 
0.025 
0.030 
0.035 
0.040 
0.045 
0.050 
0.055 
0.060 
0.065 
0.070 
0.075 
0.080 
0.085 
0.090 
0.095 
0.100 
0.105 
0.110 
0.115 
0.120 
0.125 
0.130 
0.135 
0.140 
0.145 
0.150 
0.155 
0.160 
0.165 
0.170 
0,175 
0.180 
0.185 
0.190 
0.195 
0.200 

74,12 
110.65 
119.72 
126.65 
132.60 
137.95 
142.90 
147.56 
151.99 
156.25 
160.36 
164.35 
168.23 
172.03 
175.74 
179.39 
182.98 
186.50 
189.98 
193.42 
196.81 
200.16 
203.47 
206.75 
210.00 
213.22 
216.41 
219.57 
222.70 
225.78 
228.92 
231.98 
235.03 
238.06 
241.07 
244.06 
247.03 
249.99 
252.92 
255.84 
258.74 

102,78 
167,48 
182,97 
194.33 
203,71 
211.88 
219,22 
225,93 
232,17 
238,02 
243.55 
248,80 
253,83 
258,64 
263,28 
267.76 
272,10 
276.30 
280,39 
284.36 
288,24 
292,02 
295,72 
299,33 
302,87 
306,34 
309.74 
313.08 
316,37 
319,62 
322,75 
325,87 
328,94 
331.96 
334,94 
337.86 
340,77 
343,62 
346,43 
349.20 
351,95 

126.51 
218.82 
239.60 
254.32 
266.14 
276.20 
285.04 
292.99 
300.25 
306.94 
313.18 
319.03 
324.55 
329,78 
334.76 
339.51 
344.06 
348.43 
352.63 
356.69 
360.60 
364.40 
368.07 
371.63 
375.10 
378.47 
381.74 
384.94 
388.06 
391.10 
394.07 
396.98 
399.82 
402.61 
405.33 
408.00 
410.62 
413.19 
415.72 
418.19 
420.63 

189.35 
342.06 
367.19 
383.42 
395.66 
405.56 
413.92 
421.18 
427.61 
433.39 
438.65 
443.47 
447.93 
452.09 
455.97 
459.62 
463.07 
466.34 
469.44 
472.39 
475.22 
477.92 
480.51 
483.00 
485.39 
487.70 
489.93 
492.08 
494.17 
496.19 
498.15 
500.05 
501.90 
503.69 
505.44 
507,15 
508.81 
510.42 
512.01 
513.55 
515.06 

623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623.48 
623,48 
623.48 
623.48 
623.48 
623.48 
623.48 
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TABLE 8 

NET SINGLE PREMIUM PER $I000 WHOLE LIFE INSURANCE 
AT 7.0e/c INTEREST ON A FULLY DISCRETE BASIS 

B 1000 ,A~) 1000*A 1 t00fl*A Z 1000*A3 1000*Aa 

0.000 
0.005 
0.010 
0.015 
0.020 
0.025 
0.030 
0.035 
0.040 
0.045 
0.050 
0.055 
0.060 
0.065 
0.070 
0.075 
0.080 
0.085 
0.090 
0.095 
0.I00 
0.105 
0.110 
0.115 
0.120 
0.125 
0.130 
0.135 
0.140 
0.145 
0.150 
0.155 
0,160 
0.165 
0.170 
0.175 
0.180 
0.185 
0.190 
0.195 
0.200 

531.18 
628.45 
646.63 
659.40 
669.62 
678.31 
685.96 
692.83 
699.09 
704.88 
710.25 
715.27 
720.01 
724.48 
728.73 
732.77 
736.63 
740.32 
743.85 
747.25 
750.52 
753.67 
756.70 
759.64 
762.47 
765.21 
767.87 
770.45 
772.94 
775.35 
777.74 
780.03 
782.26 
784.43 
786.55 
788.61 
790.62 
792.58 
794.50 
796.37 
798.18 

611.05 
719.11 
736.62 
748.14 
756.92 
764.08 
770.16 
775.46 
780.17 
784.40 
788.26 
791.80 
795.08 
798.12 
800.97 
803.65 
806.17 
808.56 
810.82 
812.97 
815.02 
816.98 
818.85 
820.64 
822.37 
824.03 
825.62 
827.16 
828.65 
830.09 
831.47 
832.81 
834.11 
835.37 
836.60 
837.78 
838.94 
840.06 
841.15 
842.22 
843.26 

659.14 
769.84 
785.52 
795.40 
802.69 
808.50 
813.33 
817.47 
821.09 
824.31 
827.20 
829.83 
832.24 
834.46 
836.52 
838.44 
840.23 
841.92 
843.51 
845.01 
846.44 
847.79 
849.08 
850.31 
851.49 
852.62 
853.70 
854.74 
855.74 
856.70 
857.62 
858.52 
859.38 
860.22 
861.03 
861.81 
862.57 
863.31 
864.03 
864.73 
865.40 

743,22 
839,45 
848,78 
854,25 
858,11 
861.10 
863,52 
865,56 
867,31 
868,85 
870.21 
871.45 
872,56 
873,59 
874,53 
875.40 
876,21 
876,97 
877.69 
878,36 
878.99 
879,60 
880,17 
880.71 
881,23 
881,72 
882,20 
882.65 
883,09 
883,51 
883.92 
884,31 
884,68 
885,05 
885.40 
885.74 
886.07 
886.39 
886.70 
887.01 
887.30 

905,04 
905.04 
905.04 
905.04 
905,04 
905.04 
905.04 
905,04 
905,04 
905.04 
905,04 
905.04 
905,04 
905,04 
905.04 
905,04 
905.04 
905.04 
905,04 
905,04 
905,04 
905.04 
905,04 
905,04 
905,04 
905.04 
905,04 
905.04 
905.04 
905.04 
905.04 
905.04 
905.04 
905.04 
905,04 
905,04 
905.04 
905.04 
905,04 
905.04 
905,04 
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FIGURE 2 

NET ANNUAL PREMIUM PER $ I 0 0 0  WHOLE LIFE INSURANCE 
AT 5 .5% INTEREST ON A FULLY CONTINUOUS CASE 
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F IGURE 3 

NET SINGLE PREMIUM PER 21000 WHOLE LIFE INSURANCE 
AT 5 .5% INTEREST ON A FULLY CONTINUOUS CASE 
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FIGURE 4 

NET ANNUAL PREMIUM PER $1000 WHOLE LIFE INSURANCE 
AT 5 .5% INTEREST ON A FULLY DISCRETE CASE 
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FIGURE 5 

NET SINGLE PREMIUM PER $1000 WHOLE LIFE INSURANCE 
AT 5 .5% INTEREST ON A FULLY DISCRETE CASE 
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It is instructive to compare these results with those given in Chapter 2, 
page 894 of the Society of Actuaries AIDS Task Force Report [16]. That 
report lists some estimates of the net single premium per 1,000 for whole 
life insurance issued to a life in stage 0 and one in stage 4. 

5.5% Interest 7.0% Interest 

Stage 0 573 (602") 502 (531") 
Stage 4 876 (924) 849 (905) 

*Denotes minimum value of net single ,remium, that is, at 
B=0. 

The results in parentheses are taken from Tables 1-8; for example, 602 
was taken from Table 2 column 1000.Ao at B = 0. Notice these results are 
consistently higher than those given by the AIDS Task Force. From a mar- 
keting perspective, they are prohibitively high; that is, HIV+ lives are 
practically uninsurable. Comparing the values in Table 1 to those given by 
the Commissioners 1980 Standard Ordinary Mortality Table Male [3] at 5.5 
percent under column 1000 A,, one sees that an HIV + life is equivalent to 
a "normal"  life 80 years old and an AIDS life is equivalent to a "normal"  
life 97 years old! 

It is hoped that this paper will assist actuaries in calculating premiums 
and reserves for lives in the so-called high-risk groups and provide tools for 
analyzing models of the impact of AIDS in an insurance environment. The 
material presented here can be a valuable addition to the Course 150 syllabus 
in the Society of Actuaries Associateship Examination. 
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DISCUSSION OF PRECEDING PAPER 

E.S.  SEAH AND ELIAS S .W.  SHIU: 

Dr. Ramsay is to be complimented for this interesting and thought-pro- 
voking paper. We agree with him that it would be instructive for Course 
150 students to learn about the material presented in the paper. Indeed, the 
first sentence of Dr. Jan Hoem's [3] introductory lecture on Subject 3 at the 
23rd International Congress of Actuaries was: "The mathematics of Markov 
chains can be used to develop a complete theory of the common life con- 
tingencies and their extensions." Below are some alternative derivations for 
several of the results in Section 3. 

Consider Equation (2) in the paper without B: 

-~P(t) = MP(t), (D.1) 

where M is a square matrix and P(t) is a column vector or a matrix. The 
solution to (D.1) is given by 

P(t) = e'gP(O) (D.2) 

= (k=~o tkMk\ -'U.' )e(0).  (D.3) 

For the system of differential equations described by Equation (3) of the 
paper, 

/ -O~o tXo 0 0 0 / 
0 - cxl IxL 0 0 

M = 0 0 - cx2 ~2 0 (D.4) 
0 0 0 - c~3 P.3 
0 0 0 0 - ~4 

We give two methods to compute e 'M. The first method is by means of a 
generalization of the Cauchy integral formula. 

Let C be a positively oriented Jordan curve in the complex plane, and let 
f be a function that is analytic everywhere within and on C. The Cauchy 
integral formula states that, for each z interior to C, 

423 
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1 I f(w)-dw" (D.5) 
f(z) = 2rri w - z 

c 

Formula (D.5) can be generalized to the case of finite dimensional matrices 
[2, Theorem VII.I.10]. Let The an n byn matrix andfbe a function analytic 
in a domain containing the closure of an open set O. Suppose that all the 
eigenvalues of T are in O and that the boundary 00 and O consists of a 
finite number of closed rectifiable Jordan curves, oriented in the positive 
sense. Then f(T) may be expressed as a Riemann contour integral over 00 
by the formula: 

f(T) = 2"rr----i f(w)(wl - T)-~dw, (D.6) 
do 

where I is the identity matrix. Formula (D.6), which is also valid for bounded 
linear operators on Banach spaces, is usually attributed to Riesz, Dunford 
and/or Taylor. However, Bellman [1, p. 104, #43] pointed out that the 
formula can be found in an 1899 paper by H. Poincar& 

If the eigenvalues {hi ,  h2, . . .  , h,,} o f  T are distinct, then 

f(T) = ~ f(hk) E(hk), (D.7) 
k=l  

where E(~.k) is the spectral projection corresponding to the eigenvalue h~ ([2, 
Theorem VII. 1.8], [4, p. 272, Equation (VI.6.10)]). The spectral projection 
can be evaluated by the contour integral 

1 
E(h,) = ~ i  Ic, (wI - T)- 'dw, (D.8) 

where Ck is a closed contour enclosing exactly one eigenvalue of T, hk, in 
its interior, or by the Lagrange interpolation polynomial formula [2, p. 562, 
#6] 

E(h,) = [ I T  -~ ' f l .  (D.9) 
j=, X~ - xj 
j~k  

(The formula 

= Ey(  )fl r -  a; 
k=1 ,=, a~ - Xj 

j ~ k  
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is known as the Sylvester interpolation formula [1, p. 102, #33].) We shall 
apply formulas (D.7) and (D.8) to evaluate tiM) =e  'M. We note that, as M 
is an upper triangular matrix, the eigenvalues of M are its diagonal entries, 
and we assume them to be distinct. 

To apply Formula (D.7), we need to first evaluate ( w l - M )  -~. Let 

D = 

- a o  0 0 0 0 ) 
0 - e q  0 0 0 
0 0 - oL 2 0 0 
0 0 0 - a3 0 
0 0 0 0 - a ,  

and 

N = t 
0 ~o 0 0 0 ) 
0 0 p.~ 0 0 
0 0 0 ~2 0 . 
0 0 0 0 ix 3 
0 0 0 0 0 

Then M = D + N  and 

( w l  - M ) - '  = [ (wI  - D )  - N] -~ 

= ( wI  - D ) - ~ [ I  - N ( w I  - D)-']  -~. 

As the matrix N ( w l - D )  -~ is nilpotent, 

[ I  - N ( w l  - D)- ' ]  -~ = ~ [ N ( w [  - D)-']" 
m = 0  

4 

= 2 [ N ( w l  - D ) - ' ] %  
m=O 

(D.IO) 

(D.11) 
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We note that, if 

A = l 
0 a 0 0 0 / 
0 0 b 0 0 
0 0 0 c 0 , 
0 0 0 0 d 
0 0 0 0 0 

then 

A 2 I O 0 ab 0 0 t 0 0 0 bc 0 
0 0 0 0 cd , 
0 0 0 0 0 
0 0 0 0 0 

A 3 

I O 0 0 abc 0 t 0 0 0 0 bcd 
0 0 0 0 0 , 
0 0 0 0 0 
0 0 0 0 0 

and 

A 4 __~ 

I O 0 0 0 abcd t 0 0 0 0 0 
0 0 0 0 0 . 
0 0 0 0 0 
0 0 0 0 0 



D I S C U S S I O N  

Therefore, the matrices ( w I - D )  -~, ( w I - D ) - ~ N ( w I - D )  - '  . . . . .  
(wl - D) - ~[N(wI - D)- ,]4 are 

1 
0 

w + o: o 

1 
0 

W ~-O£ 1 

0 0 0 

0 0 0 

1 
0 0 

w + ~  2 

1 
0 0 

w + c~ 3 
1 

0 0 
w q-- O~ 4 

0 0 

0 0 

0 0 
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and 

},.L o 
0 0 0 0 

(W "}- C¢.O)(W "]- (2/.1) 

0 0 0 0 (w + o~,)(w + o,~) 

0 0 0 

0 0 0 

0 0 0 

. . . ,  and 

t 0 0 0 
0 0 0 

0 0 0 

0 0 0 

0 0 0 

]&2 0 (w +,~)(w +,~3) 
Ix3 

0 (w + ,~3)(w + a,) 

0 0 

0 (w + ~ ) ( ~  + o,,)(w + ,~)(w +,~3)(w + ,~,) 

0 0 

0 0 

0 0 

0 0 

respectively. 
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Now, let Ck be a small circle in the complex plane centered at -e~k and 
enclosing none of the other eigenvalues of M; then 

i 1 

2-rri ,,,~i w + am 
c~ otherwise. 

Thus the matrices E(-Oto), E ( - a l ) ,  ... , and E ( -  c~4) are 

1 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

OLO- -e  1 ( e o ~  e1)(~2-- e l )  (ao -- e l ) ( a2  -- al}(~3 - e i ) (~0 -- e l ) ( e2  ~ e l ) (e3  -- ~l)(~l~ -- e l )  

0 1 

0 0 0 0 0 

O 0 0 0 0 

0 0 0 0 0 / 
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... and 
. . . . .  ~1"0 ~1" I ~1"2 ~1~3 - 

0 0 0 0 ( ~ o  _ ~ , ) ( ~ x  _ ~ 4 ) ( ~  _ ~ 4 ) ( ~ 3  _ a,) 

0 0 0 0 ~1"1 ~1"2 ~ 3  

(c , ,  - a , ) ( a ~  - a , ) ( m  - ,~,) 

0 0 0 0 ~2~3 
(o,2- o,,)(,~3- ,~,) 

0 0 0 0 0-3 
O~ 3 - -  OL a 

0 0 0 0 1 

respectively. Since P(O) is the identity matrix, 

4 

P ( t )  = e'Mp(O) = e 'm = Z e - , ~ E ( - - a k ) .  
k = 0  

Formulas (5) and (6) of the paper are equivalent to (D.12). 
We observe that, with the definition 

x ® y = x y  T = (x~y/), 

429 

(D.12) 
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we have 

E(-~) = 

E ( - ~ , )  = 

E(-~2) = 

(1) 
0 
0 ® 
0 
0 

IXo 
~to- oq 

1 

0 

0 

0 

f 1 t 
tXo 

Oq - -~ -o  

IXoixdx2 

(~,- ~o)(~- ~o)(~.~- ~o) 
~oix ~ ~x21x3 

(~ ,1  - , ~ o ) ( o , 2  - a o ) ( , ~ 3  - ~ o ) ( ~ , 4  - ~) ! 

® 

(o~- ~)(~ - ~,) 

Oq -- O~ 2 

0 

1 

O~ 2 -- O~ 1 

I xl IX2 
( , ~ 2  - o ~ 1 ) ( o , 3  - ~ ,1 )  

IX1P~21x3 

® 

f 0 

0 

i 

IX2 

Ot 3 - -  Ot 2 

Ix21x3 
(oL 3 - -  o~2)(o~ 4 - -  o~2) 
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and so on. Write 

E ( - % )  = uk ® v~, k = 0, 1, 2, 3, 41 (D.13) 

It is not difficult to check that the sequences {uk} and {vk} are bi-orthogonal, 
that is, 

u/v/ = v / u ,  = a o. ( D . 1 4 )  

The vector u~ is an eigenvector of M and v k is an eigenvector of Mr; the 
corresponding eigenvalue for either case is -c~k. 

Here is an APL program that computes the spectral projection matrices. 

vA ~ ( 1 ~  BIUsV:Z 
[ I ]  
[2] A T h l s  t~unct lon  c a l c u l a t e s  t h e  s p e c t r a l  p r o j e c t i o n s  o f  ~ a t r ' l x  M. 
[31 a At N a l n  d l a ~ o r ~ l  o f  K w l t h  p o e l t l v e  8 1 ~ 8 .  
[4] A B, D l a o o n a l  I m m e d i a t e l y  edx)ve t h e  ~ l n  d i a g o n a l  o f  M. 
[5] A U, Vec tc r  u de f ined  111 ec[Lmtlon (D. 13). 
[6] A V, Vector  v de f ined  I n  equat ion (D. 13). 
[7] R Z, Spect ra l  p r o j e c t i o n .  
[8] 
[9] ' ' 
[10] 'A lpha,  ' ,  10 61A 
[11] ')~/, ' , 10  bIB 
[12] 1,-1 
[13] LOQP, U , - ( - p A ) t ( $ ( , ~ $ ( I - 1 ) t B ) + , \ ( $ ( I - 1 ) t A ) - A [ I } ) ,  1 , ( ( ~ ) - I ) 0 0  
[14] V~(OA)p( ( I -  1)pO), I ,  ( - \ ( I - 1 ) ; B ) * - \ ( I ; k ) - A [ I ]  
[15] ' ' 
[16] 'The spec t ra l  prx~Jectlon o o r r e s p o n d l ~  t o  the e l o e m ~ l u e '  , (10 6q-A[1] } . '  l s '  
[17] 12 61Z~{J - .  ,Y 
[18] ~( ( ~ )  : ' I "1  * 1)/bOCP 

v 

Alpha, O. 650000 1.166281 0. 999042 1.01|294 2.200000 
~ ,  0. 450000 0. 860000 0.530000 0.300000 

The spec t ra l  p r o j e c t i o n  ccr~mpor~UnO t o  t ~  e l g e r e ~ I t ~  "0.650000 I s  
1.000000 0.871618 2.147570 3.090502 0.598162 
0.000QO0 O. 000(]O0 0.000000 O.00OQ00 0.000000 
0.000000 0.000000 0.000000 0.000000 O. 000000 
0. 000000 0. 000000 0.000000 0.000000 0.000000 
0. 000000 O. 000000 0. 000000 0.000000 0.000000 

The s p e c t ~ l  p r o j e c t i o n  c c r r e ~ v ~ l n ~  t o  the  e lgem~ l tm  -1.166281 18 
0.000000 -0. 871618 4. 482132 "16.052202 -4.658580 
0.000000 1.000000 -5.142315 18. 416564 5.344752 
0.000000 0.000000 0.000000 0.000000 0.000000 
0.000000 O. 000000 O. 000000 0.000000 0.000000 
0.000000 0.000000 0.000000 0.000000 0.000000 

The eqpecl~al l : roJec t lon  c~rrlempond11~ 1:o the  e lgmr~ml~  " 0 . 9 9 9 0 4 2  18 
0 , 0 0 0 0 0 0  0 , 0 0 0 0 0 0  - 6 . 6 2 9 7 0 2  "182.512625 "45.591743 
0.000000 0.000000 5.142315 141.565543 35.363142 
O. 000000 O, 000000 1,000000 27. 529536 6. 876891 
0.000000 0.000000 O. 000000 O. 000000 0.000000 
O. 000000 O. 000000 O. 000000 0.000000 0.000000 
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The s ~ c t r a l  
0.O00OO0 
0.000000 
0.000OOO 
0.000GO0 
O. 000000 

p r o J e c t l o n c ~ q 0 o r d l ~  to  the e lgmval tD "1.01|2~4 Is 
0.0000430 O.0OO00O 195.474325 49,625100 
O.000OO0 O.0OO000 "1S9.982107 "40,614685 
0.00004)0 O.0QOOO0 "27,529556 -6,9|8928 
0.000GO0 O.0O~00 1.000000 0,283|70 
0 . 0 0 0 0 0 0  0.000000 0.000000 0.000000 

The i ~ l a r a l  p ro jec t ion  (x : r reqxx~ng  to  tim elgmm~lu8 "2.Zooooo 1, 
O.00000o 0.0000430 0.000000 O.000Oo0 O.O;[70bl 
0.000000 0.000OOO O.O0000O O.0OOOO0 "0,095209 
O. 000000 O. 0QOQOQ O. OO0QOQ O. 0QOQOO O. 11Z05? 
0.000000 O.0OO00O 0.000000 0.0OO000 "0 ,  ii551170 
0.000000 0.0OOOO0 0.OOO00O 0.0OO00O 1 , 0 0 0 0 0 0  

Another way to evaluate e TM is to diagonalize the matrix M. As pointed out 
in the paper, if M=UDU -~, then e'M=Ue'°U -1. The columns of U are 
eigenvectors of M. As M is upper triangular, U can also be chosen to be 
upper triangular. Since M is quite simple, it is not too difficult to find such 
a matrix U. For example, put 

U ~ (uo ul  u2 u3 u~); 

by (D.14), 

U -1 = (Vo v~ v~ v~ v, )  T. 

Next, we consider the system of differential equations defined by (7) of 
the paper. Put 

qo(t) 1 q,(t) 
q(t) = q2(t) 

q3(t) 

q4(t) 
and 

r 

b =  tx 

0/. 4 



Then (7) is equivalent to 

d q ( t )  

which, in turn, is the same as 

Integrating (D. 16) yields 
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: Mq(t) + b, ( D . 1 5 )  

d 
__  - t M  e - t M b .  dt[e q(t)] = (D.16) 

e-'M q(t) - q(O) = 

Since q(0) = 0, we have 

l 

f e-"Mb ds 
0 

: (1 - e - 'M)M- lb .  

q(t) = (e ~ - I ) M - l b .  (D.17) 

Applying formula (D.7), we obtain 

q ( t ) =  Lk=O [ ~ l -e tke - ' °~E(_e tk ) ]b .  

Write 1 = (1, 1, 1, 1, 1) r and note that - M 1  = b. Hence, 

q(t) = 1 - e '~l  

= 1 - P ( t ) l .  

To derive the results on term insurance, temporary life annuities and pure 
endowments, consider the differential equation 

d f ( t )  = (M - 8/)f(t) + c. (D.18) 

If f ( 0 ) = 0  and c = b =  - M 1 ,  then 

f ( t )  = (.210 (t), . . . ,  f~,(t)) r. 

If f(0) = 1 and c = 0, then 

j S t )  = (Eo( t ) ,  . . . ,  E,(t)F. 
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(Here E denotes endowment ,  not the expectation operator or spectral pro- 
jection.) If f ( 0 ) = 0  and c -- 1, then 

f ( t )  = (do(t) . . . .  , ti4(t)) r. 

The eigenvalues of  the matrix M -  81 are - a o -  8, - a l  - 8, - a 2 -  8, 
- a3 - 5, and - o~, - 5. The spectral projections with respect to M -  51 are 
identical to the spectral projections with respect to M.  Thus these vector 
functions can easily be evaluated by applying (D.7). 

We note that, if 

then (D.18) implies t h a t f ( ' r ) =  ( 5 1 - M ) - 1 c .  Consequently,  with "r= + x, we 
have 

and 

(~o  . . . . .  A , )  ~ -- ( s t  - i ) - ' b  

= (I - 8 M - ' )  -1 1 

(ao .... , ~)'= (8: - M) -~ I. 

It is easy to check that Formula (44) of  the paper follows from these two 
formulas. 

The formulas corresponding to 

Ax:~l + 8ti,:,/ - 1 = 0 

can also be obtained. Let 

h( t )  = (ho(t) . . . .  , h4(t)) T, 

where 

Then 

hi(t  ) = / t , ( t )  + Ei(t  ) + 8di(t ) - 1. 

d h ( t )  = ( M  - 8 l )h ( t ) .  
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Since h ( 0 ) = 0 ,  we have h ( t ) = 0  for all t. Consequently, we can also derive 
formulas such as 

and 

[ 5 ( n )  = A i ( n )  + E, ( , , )  _ 1 

g~( t )  = A / , z  - t )  + e , ( H  - t )  - ~ ( , , ) 4 ( n  - t )  = a - a / ( n  - t )  
a i ( ' , )  

We have two final comments. For an insurance policy designed for po- 
tential AIDS patients, should the insurance premium be waived when the 
policyholder reaches stage 4 (or stage 3)? Indeed, some companies would 
even pay out much of the death benefit to a policyholder in stage 4. Our 
last comment concerns Ix;, which is the force of mortality of a person in 
stage 0. It does not seem realistic that the force of mortality of a healthy 
person is constant. 
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J.C, McKENZIE SMITH: 

Dr. Ramsay is to be congratulated for his success in applying mathematical 
theory to real problems. 

The purpose of this discussion is to demonstrate the value of matrix meth- 
ods in performing the calculations. Whether the matrix approach is better 
will depend on circumstances. 

Matrix Methods 

The author's continuous models, (3), (7), (17), (22), (27), and (41), can 
be formulated using Equation (D) (2 in the paper) with appropriate choices 
M and B: 
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dP(t) = MP(t)  + B (D) 
dt 

where B and P are column vectors and M is a square matrix. The general 
solution is [1, p. 40] 

e( t )  = F(t ,s)P(s)  + G(t,s)B 

where F(t,s) = F ( t - s ,  0) = exp[(t-s)M] 

G(t,s) = G ( t - s ,  0) = integral of F(t,r) from r = s to r = t. 

In particular, i f s = t - 1 ,  the result is a recursive equation (R): 

e(t)  = F ( t , r - 1 ) P ( t - 1 )  + G ( t , t - 1 ) B  = F P ( t - 1 )  + GB (R) 

into which form (49) and (51) may be cast directly, without recourse to 
differential equations. This recursive formulation is discussed by Smith [3]. 
In general, the matrix formulation is simpler to express (and, in some lan- 
guages, like APL, simpler to program) but it does necessitate matrix algebra. 

There are two difficulties with solving the differential equation: inte- 
grating F(t, r) and the possible slow convergence of the power series solution. 
The slow convergence problem is easily handled by solving for F(1,0), using 
the power series, and then using F(t ,s)= F(1,0) times itself ( t - s )  times; or, 
better still, by using the recursive formulation directly. 

The integration of F(t,r) can be accomplished by reformulating (D) as a 
homogeneous differential equation as follows: 

d/dt I 
d/dt P ( t ) ) =  (oM O ) ( P ( / ) )  

It is then simply a matter of applying the power series solution [1], [4] to 
get 

+(o 'o) :(o 
which supplies F and G for the recursive equation, which can then be used 
to generate the required values. 
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Simplification for Whole Life 
Things can be simplified greatly for the whole life case. Under continuous 

assumptions, the reserve model (41) for 5.5 percent interest is expressed by 
(D) with B = GU where {1} 

1 
1 

G =  1 

1 
0 

and U = {net premium} and with 

reserve in state 1 at time t 
P(t) = reserve in state 2 at time t 

reserve in state 3 at time t 
reserve in state 4 at time t 
death benefit at time t 

and 

t 0.50854 -0.45000 0.00000 0.00000 0.00000 -0.00500 t 
0.00000 0.93280 -0.86000 0.00000 0.00000 -0.01926 
0.00000 0.00000 0.65770 -0.53000 0.00000 -0.07416 

M = 0.00000 0.00000 0.00000 0.63916 -0.30000 -0.28562 " 
0.00000 0.00000 0.00000 0.00000 1.15354 - 1.10000 
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Each diagonal element of M is the sum of the two forces of decrement 
plus the force of interest. Each term just to the right of the diagonal is the 
negative of the force of progression and each term in the sixth column is 
the negative of the force of mortality. 
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State Force of Force of Force of 
i lnte ms t P r o g ~ i o n  D e m h  , ~  ~ t. i * l M ~ .  j ~ + 2 M~ + 1,6 

0 0.05354 0.45000 0.00500 0.50854 -0.45000 -0.00500 
1 0.05354 0.86000 0.01926 0.93280 -0.86000 -0.01926 
2 0.05354 0.53000 0.07416 0.65770 -0.53000 -0.07416 
3 0.05354 0.30000 0.28562 0.63916 -0.30000 -0.28562 
4 0.05354 0.00000 1.10000 1.15354 - 1.10000 - 1.10000 

Denote by M' the 7-by-7 matrix formed by adding a row of zeros and 
then a column of ones in the first five positions and zeros in the rest: 

t 
0.50854 -0.45000 

0.00000 

0.00000 

M ' =  0.00000 

0.00000 

0.00000 

0.00000 

0.00000 0.00000 

0.93280 -0.86000 0.00000 

0.00000 0.65770 -0.53000 

0.00000 0.00000 0.63916 

0.00000 0.00000 0.00000 

0.00000 0.00000 0.00000 

0.00000 0.00000 0.00000 

0.00000 -0.00500 1.00000 

0.00000 -0.01926 1.00000 

0.00000 - 0.07416 1.00000 

-0.30000 -0.28562 1.00000 

1.15354 - 1.10000 1.00000 

0.00000 0.00000 0.00000 

0.00000 0.00000 0.00000 

Denote by P' the column vector formed by incorporating the premium 
into the state vector: 

p, = 

t reserve in state 0 
reserve in state 1 
reserve in state 2 
reserve in state 3 
reserve in state 4 
death benefit 
net premium 

at time t 
at time t 
at time t 
at time t 
at time t 
at time t 

Equation 2 can now be expressed as 

dP'(t) : M'P' 
dt 

Since the author's model is ageless, it follows that, for whole life, dP(t)/ 
d t=MP( t )+GU=O,  which implies that dP'(t)/dt=M'P'(t)=O, which, in 
turn, implies that P'(t) =P' lies in the null space of M'. 
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To characterize the null space of M', it is only necessary to reduce it to 
row reduced echelon form M" [2, p. 11]: 

M" = 

• 1.00000 0.00000 

0.00000 1.00000 

0.00000 0.00000 

0.00000 0.00000 

0.00000 0.00000 

0.00000 0.00000 

• 0.00000 0.00000 

0.00000 0.00000 0.00000 -0.70812 5 . 4 5 1 5 4 ' ~  

t 

0.00000 0.00000 0.00000 -0.78913 3.93851 

1.000(10 0.00000 0.00000 -0.83354 3.10910 

0.00000 1.00000 0.00000 -0.89445 1.97145 

0.00000 0.00000 1.00000 -0.95359 0.86690 

0.00000 0.00000 0.00000 0.00000 0.00000 

0.00000 0.00000 0.00000 0.00000 0.00000 

The first thing to note is that column 6 contains the net single premium 
(NSP) factors in Table 2 for B = 0.005, per $i rather than $1,000 of face. 
The second thing to notice is that the numbers in the last column are annuity 
factors and, for each row from 1 to 5, (44) holds: 

-(column 6) + 1n(0.055) × (column 7) = 1 

Also, each row is equivalent to the following: 

(reserve) - (NSP) × (death benefit) + (net prem.) 
× (annuity factor) = 0 

which is merely a statement of the prospective reserve formula. To obtain 
the annual premiums for B=0.005 in Table 1, note that the author has 
defined the net premium for each state as the respective ratio of 1000 x (net 
single premium) to the annuity factor, which will result in a reserve of nil 
for each state. This is simply - 1000 times the ratio of the column 6 number 
to the column 7 number: 

1000 x 0.70812 divided by 5.45154 equals $129.89 
1000 × 0.78913 divided by 3.93851 equals $200.36 
1000 x 0.83354 divided by 3.10910 equals $268.10 
1000 x 0.89445 divided by 1.97145 equals $453.70 
1000 x 0.95359 divided by 0.86690 equals $1,100.00 

in agreement with Table 1, line 2. 
For a real policy, the net premium would not change as the life insured 

progressed through the stages of the disease, and the net premium would be 
determined by setting the stage 1 reserve to 0, causing positive net level 
premium reserves in the other stages. 
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The Discrete Case 

The discrete formulas, (51), can be expressed by means of the recursive 
formulation where F and G are defined by 

G ( t , t -  1) = /it 11011 
and 

= G and U = {net premium} 

F(t,t-1) = / 

0,60137 0.22054 0.09649 0.01728 0.00118 0.01101 " |  ~ ) 0,00000 0.39345 0.38949 0,10863 0.00983 0.04648 
0,00000 0.00000 0.51804 0.27712 0.03537 0.11733 = F, 
0,00000 0,00000 0.00000 0.52774 0.12377 0.29636 
0,00000 0.00000 0.00000 0.00000 0.31552 0.63235 
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 ~ 

where F(t) contains reserves for t years remaining, rather than t years from 
issue, as in (51), and where the elements of all rows of F but the last are 
equal to the transition probabilities divided by 1.055 and the last row has 1 
in its diagonal element. The transition probabilities themselves can be de- 
termined by calculating exp ( -M)  where M is as above except that the force 
of interest is zero [4]. 

Equation (R), for whole life, takes the form 

P = F P  + G B  

which is equivalent to 

( F -  I)P + GB = 0 

(where I denotes the identity matrix), which is equivalent to 

F'P'  = 0 
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where 

t 
-0.39863 0.22054 0.09649 0.01728 0.00118 0.01101 -1.00000 '~ 

0.00000 -0,60655 0.38949 0.10863 0.00983 0,04648 - 1,00000 
F' = ( F -  IB)  = 0.00000 0.00000 -0.48196 0.27712 0.03537 0.11733 -1.00000 

0.00000 0.00000 0.00000 -0.47226 0.12377 0.29636 -1,00000 
0.00000 0.00000 0.00000 0.00000 -0.68448 0.63235 -1.00000 
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 .~ 

and 

The row reduced echelon form of F' is F':  

t l.00000 0.00000 0.00000 0.00000 0.00000 -0.68948 5.95639 t 
0.00000 1.00000 0.00000 0.00000 0.00000 -0.76830 4.44451 
0.00000 0.00000 1.00000 0.00000 0,00000 -0,81129 3,61976 

F" = 0.00000 0.00000 0.00000 1.00000 0.00000 -0.86965 2.50035 
0.000013 0.000130 0.00000 0.00000 1.00000 -0.92384 1.46096 
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Since I;"P'= 0 for a whole life, the negatives of the fully discrete single 
premiums are, as before, displayed per unit of face amount in the sixth 
column in agreement with Table 6, line 2. The first five elements in the 
seventh column are annuity due factors satisfying Equation (52) in the paper: 

- (column 6) + (column 7) x 0.055/1.055 = 1 

As before, each of the first five rows expresses the prospective reserve 
formula: 

(reserve) - (NSP) x (death benefit) + (net prem.) 
x (annuity factor) = 0 

and the ratio of the sixth element to the seventh element provides the net 
premium for the respective stage of the disease: 
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1000 × 0.68948 divided by 5.95639 equals $1.15.75 
1000 x 0.76830 divided by 4.44451 equals $172.86 
1000 x 0.81129 divided by 3.61976 equals $224.13 
1000 x 0.86965 divided by 2.50035 equals $347.81 
1000 x 0.92384 divided by 1.46096 equals $632.35 

in agreement with Table 5, line 2. 
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(AUTHOR'S REVIEW OF DISCUSSION) 

COLIN M. RAMSAY: 

I would like to thank Messrs. Seah and Shiu and Mr. Smith for partici- 
pating in the discussion of my paper. 

Seah and Shiu's use of complex analysis would appear to be an "overki l l"  
if viewed only in the context of my paper. However, they have provided us 
with techniques that can be used in more general settings. I was not aware 
of the existence of the matrix analogue of the Lagrange interpolation formula 
as given in their Equation (D.9). 

As far as designing insurance policies with the possibility of the life 
developing AIDS in mind, it does seem reasonable to waive premiums when 
the policyholder reaches stage 4. Such a policy provision will require the 
insurer to charge a larger premium and carry a larger reserve per policy. 

I agree that the assumption of constant forces of the mortality and/or 
progression is somewhat unrealistic. However, this paper was intended to 
develop the mathematics of life contingencies in as simple an HIV +/AIDS 
environment as possible. 

Mr. Smith's comments are well taken. I agree that, in general, the matrix 
formation is simpler to program in matrix-based languages such as APL and 
GAUSS. With these languages, the matrix approach becomes more attractive 
as the size of the matrix increases. 


