The Valuation of a Hybrid Pension Plan

Kai Chen Supervisor: Mary Hardy

Acknowledge the UW Institute for Quantitative Finance and Insurance for their support.

August 2005 @ 40th ARC

Outline

- Introduction and Background
- Models and Assumptions
- Numerical Techniques and Results
- Equilibrium Pricing Model
- Comments and Future Work

Introduction and Background

- Two basic kinds of pension plans:
 Defined Benefit(DB) and Defined Contribution(DC)
- In Italy and Australia, the hybrid pension plan is used by some pension fund managers.
- During the year 2002, The State of Florida's 600,000 public employees were given the unprecedented ability to convert their DB pension plan into a DC pension plan.

Introduction and Background

- "Greater of" benefit is composed by DB and DC. It guarantees minimum pension benefits.
- The payoff is same as the exchange option's payoff.
- McGill University offers the hybrid pension plan with minimum DB guarantee.

Description of Benefits(DB)

The DB benefits depend on the current salary at exit time t:

$$D(x,t,T) = \alpha \times S_t \times n \times \ddot{a}_{65}^{(12)} \times_{T-t} E_t$$

D(x,t,T) :The actuarial value at time t α :The accrual rate S_t :The salary at time t n :The years of service $\ddot{a}_{65}^{(12)}$:The annuity factor

Description of Benefits(DC)

The DC benefits depend on the monthly contribution:

$$A(x,t+h,T) = A(x,t,T) \cdot (1+hf_t) + c \cdot h \cdot S_t$$

Where

- *c* :The contribution rate
- *h* :The time interval

Assumptions

Two random variables:

 $ds = \mu(s,t)dt + \sigma(s,t)dZ_s$ $df = \mu(f,t)dt + \sigma(f,t)dZ_f$

Let $dZ_s dZ_f = \rho_{sf} dt$, we get

$$df = \mu(f,t)dt + \sigma(f,t)(\rho_{sf}dZ_{s} + \sqrt{(1 - \rho_{sf}^{2})dZ_{f}})$$

Simulation Process

Use the risk-adjusted stochastic difference equations:

$$s_{t+h} = s_t + (\alpha_s + b_s f_t - \lambda_s \sigma_s s_t^{\gamma_s - 1.0})h + \sigma_s s_t^{\gamma_s - 1.0} \sqrt{h} Z_s,$$

$$f_{t+h} = f_t + (\alpha_f + b_f f_t - \lambda_f \sigma_f f_t^{\gamma_f - 1.0})h + \sigma_f f_t^{\gamma_f - 1.0} \sqrt{h} (\rho Z_s + \sqrt{1 - \rho^2} Z_f),$$

Numerical Results

- First use Sherris' (1995) scenarios and compare with Sherris' (1995) results.
- Generate 10,000 paths to simulate the rate of salary growth and the crediting rate. The contribution rate is 15%.
- Consider the difference between two accounts

Max(D(x,t,T) - A(x,t,T),0)

6 Scenarios

	Parameter Values					Initial Values	
Scenario	α_s	b_s	σ_s	λ_s	γ_s	s_0	f_0
1	0.072	-1.2	0.08	0.0	1.0	0.06	0.10
2	0.072	-1.2	0.08	0.0	1.0	0.06	0.10
3	0.072	-1.2	0.08	0.0	1.0	0.06	0.10
4	0.072	-1.2	0.08	0.0	1.0	0.06	0.135
5	0.072	-1.2	0.08	-0.1	1.0	0.06	0.135
6	0.072	-1.2	0.08	0.0	1.0	0.06	0.135
	Parameter Values						
		Para	ameter	Values			Discount
Scenario	α_f	$Para b_f$	ameter σ_f	Values λ_f	γ_f	ρ	Discount Rate
Scenario 1	$\frac{\alpha_f}{0.1296}$	Para <i>b_f</i> -0.96	ameter σ_f 0.2	Values λ_f 0.168	$\frac{\gamma_f}{1.0}$	ρ 0.00	Discount Rate 0.1
Scenario 1 2	$\frac{\alpha_f}{0.1296}$ 0.1296	Para <i>b_f</i> -0.96 -0.96	ameter σ_f 0.2 0.2	Values λ_f 0.168 0.168	$\frac{\gamma_f}{1.0}$ 1.0	$\rho \\ 0.00 \\ 0.5$	Discount Rate 0.1 0.1
Scenario 1 2 3	α_f 0.1296 0.1296 0.1296	Para <i>b_f</i> -0.96 -0.96 -0.96	ameter σ_f 0.2 0.2 0.2	Values λ_f 0.168 0.168 0.168	$\frac{\gamma_f}{1.0}$ 1.0 1.0	ρ 0.00 0.5 -0.5	Discount Rate 0.1 0.1 0.1
Scenario 1 2 3 4	α_f 0.1296 0.1296 0.1296 0.1296 0.1296	Para -0.96 -0.96 -0.96 -0.96 -0.96	ameter σ_f 0.2 0.2 0.2 0.2 0.2	Values λ_f 0.168 0.168 0.168 0.000	$\frac{\gamma_f}{1.0}$ 1.0 1.0 1.0 1.0	ρ 0.00 0.5 -0.5 0.00	Discount Rate 0.1 0.1 0.1 0.1
Scenario 1 2 3 4 5	α_f 0.1296 0.1296 0.1296 0.1296 0.1296	Para -0.96 -0.96 -0.96 -0.96 -0.96 -0.96	ameter σ_f 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Values λ_f 0.168 0.168 0.168 0.000 0.000	$\frac{\gamma_f}{1.0}$ 1.0 1.0 1.0 1.0 1.0	ρ 0.00 0.5 -0.5 0.00 0.00	Discount Rate 0.1 0.1 0.1 0.1 0.1 0.1

Cost of Max of DB and DC Accounts

	New Entrant I and Standard End for Stoch	Expected Cost (a rrors of Retirem astic Valuation	as a Percentage ent Benefit Opt Simulation Sce	of Salary) tion Features narios				
Stochastic Scenario	Age at Entry							
	20	30	40	50	55			
1	16.3	17.2	16.8	15.6	16.1			
	(0.1)	(0.1)	(0.1)	(0.1)	(0.0)			
2	16.4	17.2	16.6	15.4	16.0			
	(0.1)	(0.1)	(0.1)	(0.1)	(0.0)			
3	16.8	17.3	16.9	15.8	16.4			
	(0.1)	(0.1)	(0.1)	(0.1)	(0.0)			
4	32.0	32.5	26.6	19.9	17.3			
	(0.4)	(0.2)	(0.2)	(0.1)	(0.0)			
5	31.9	32.2	26.6	19.8	17.3			
	(0.4)	(0.4)	(0.2)	(0.1)	(0.0)			
6	20.9	21.8	19.9	17.2	15.8			
	(0.1)	(0.1)	(0.1)	(0.1)	(0.0)			

Note: Percentages equal the monthly expected cost of the benefits as a percentage of monthly salary using 10,000 simulations. The standard error of the expected cost is shown in parentheses.

Cost of Guarantee

Table 3.3: The Mean Cost and Standard Error as a percentage of salary						
Entry Age	20	30	40	50		
Scenario	Mean(StErr)	Mean(StErr)	Mean (StErr)	Mean (StErr)		
1	0.2116	0.8700	1.795	1.809		
	(0.04312)	(0.1661)	(0.2946)	(0.2446)		
2	0.1190	0.5345	1.184	1.378		
	(0.02454)	(0.1035)	(0.1951)	(0.1838)		
3	0.3063	1.239	2.096	2.325		
	(0.06256)	(0.2349)	(0.2903)	(0.3816)		
4	0.0486	0.2267	0.6541	0.8801		
	(0.01688)	(0.07474)	(0.1728)	(0.1644)		
5	0.0767	0.3536	0.8939	1.060		
	(0.02627)	(0.1098)	(0.2178)	(0.1903)		
6	0.1159	0.5315	1.168	1.354		
	(0.03061)	(0.1279)	(0.2331)	(0.2110)		

Remarks

- Need more information to choose the scenario
- Parameters look outdated
- The market is incomplete. DC and DB accounts are not traded.
- Mixture of P-Measure and Q-Measure
- Consider the equilibrium model

Equilibrium Pricing Model

- The equilibrium approach plays a very important role in modern finance. It can be used in the incomplete market.
- Many major pricing models can be derived by the equilibrium approach, such as CAPM, B-S option pricing formula and CIR model.
- The equilibrium approach considers the utility function and agent's consumptions.

Equilibrium Model

• Use power utility function:

$$u(x) = x^{\beta} / \beta, \beta < 1, \beta \neq 0$$

• The price of the option:

$$P = \frac{E^{p}[u'(S_{t}) \cdot Payoff_{t}]}{E^{p}[u'(S_{0})]}$$

Updated Parameters

 Based on last 50 years Canadian data from *Report on Canadian Economic Statistics 1924-2003*

• We use updated parameters

$$\mu_s = 0.055, \sigma_s = 0.033,$$

$$\mu_f = 0.07, \sigma_f = 0.1,$$

$$\rho_{sf} = 0, r = 0.05, c = 0.15$$

The distribution of the mean cost under Nature's Measure

Comments

- The cost under Nature's measure can be expressed as the equilibrium price with appropriate parameter selection.
- The highest cost of guarantee occurs for employees with entry age 40.
- The cost under Nature's measure should be lower than the equilibrium price.

Future Work

- The relationship between Nature's measure, equilibrium approach and Q-measure.
- Risk management on this hybrid pension with minimum DB guarantee.

Thank You!

August 2005 @ 40th ARC