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A GENERALIZATION OF WHITTAKER-HENDERSON 
GRADUATION 

FUNG YEE C H A N ,  LAI K. C H A N , *  AND M A N  HEI YU**  

ABSTRACT 

The Whittaker-Henderson graduation method of minimizing F + h S  with 
fit F of the form Z W x l U x - U ' ~  ° and smoothness S of the form y l X-'u2' is 
investigated for 1 < p -< ~. It is shown that for a given h, the set of graduated 
values u ~ = (u] . . . . .  u~) r is unique and is the solution of the system of 
equations F '  (u) + h S ' ( u )  = 0 r w h e n  1 < p < ~ , a n d  u x is an optimal 
solution of an equivalent linear programming problem when p = ~. Algo- 
rithms for computing u ~ = (u~ . . . . .  u~) r are proposed. The graduated 
values for different p are compared. Some properties of F(u~), S (u  h) and 
F ( u ~ )  + h S ( u  ~) are obtained. The modification to the minimization of F 
(or S) when S (or F) is constrained to be less than or equal to a predetermined 
number is proposed and studied. 

1. INTRODUCTION 

Given a vector of ungraduated (that is, observed) values u" 
(u'; . . . .  ,u~) r and a constant h -> 0, the Whittaker-Henderson ~aduation 
method finds the optimum values u ~' = (u~ . . . . .  u~) r, called the gradu- 
ated values, which minimize 

F ( u )  + kS(u)  over all u =- (u l  . . . . .  u,,) r, 

where F is a measure of the fit of u to u" and S is a measure of the 
smoothness of the values in u. 

The well-known Whittaker-Henderson Type B method presented in the 
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Society of Actuaries Part 5 Study Notes by Greville [5, pp. 49-54] uses the 
square of the e2-norms: 

n n ~ z  

F ( u ) - ~  ~ wx(u~-Ux) 2 and S(u)-=- ~] (AZux) 2, 
x = l  x = l  

where the wx > 0 are the weights assigned to the u", and the AZux are the 
zth differences of Ux. The formula for the graduated values is obtained ele- 
gantly by Greville [5, pp. 49-54] using linear algebra and by Shiu [15] 
using advanced calculus. 

Schuette [14] used the el-norms: 
n - - Z  

F ( u )  = WxlU" - uxl and S ( u )  - • IA%I 
x = l  x = l  

and showed that u x can be obtained by formulating the problem as a lin- 
ear programming problem. 

In Section 2 of this paper, the general case of the ep-norms is solved: 
t I - - Z  

F ( u )  ----- wxlu"- ux~' and S(u)  - ~ [A%,I p 
x = l  x = l  

with 1 < p < ~ .  
In the discussion of Schuette's paper [14], Professor Greville [6] sug- 

gested that " i t  would be most interesting and worthwhile if someone would 
perform the same task for the Chebyshev norm that Schuette has done for 
the e l -norm."  

Before proceeding to the case p = ~, we digress to discuss the definition 
of the ep-norm. The definition of norm is given by Schuette [14]. If y = 

'(Yl, - • • ,Y,,) is a vector of real or complex numbers, then the ep-nor~a of 
"the vector, denoted by Ilyll,,, is defined as 

Ilyllp = ( [ y l F  ° + . . .  + [YnlP) '/p 
for 1 --< p < ~. For the case p = 0% the e~-norm or Chebyshev norm (also 
called the uniform norm) is defined as 

II Y IL = max ly l. 

It is intuitively clear and can be shown analytically that the following 
property holds [cf. 10, p. 248] 

lim II Y lip -- Ily I1= 

The term F ( u )  -- ~] wxlu~, - u"~ is the pth power of the weighted norm 
X = I  

n - - z  

of ux - u~ with weights w x, and S(u)  --- ~] ]A~ux~ is the pth power of 
x = l  
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the norm of AZux . Therefore, in the e=-norm case, F ( u )  and S(u)  should 
be defined as: 

F ( u )  = max ]Ux- Uxl and S( u ) = max lazuxl. 

The weights w~ disappear in the term F ( u )  since 

l im(~] wxlu~-u"~°) 'In = max lux-u"l 
p ~ o o  x =  1 I ~ x ~ n  

which can be seen from the property indicated earlier. 
In section 3 of this paper the ~e:norm problem suggested by Greville [6] 

is solved by formulating it as a linear programming problem. At that 
point, the problem of obtaining graduated values for the well-known Whit- 
taker-Henderson graduation method will have been solved for all ep-norms 
with 1 -<p-<oo.  

The e=-norm case is further generalized to include the weights w~, for 
example, 

F ( u )  -- max w~]u~ - u"[. 
1 ~ x ~ n  

The term max wxlux - u~] is a weighted C-norm of u - ~ ' ,  although it 

does not have the property that 

l im(~] WxlU~-U"~) lie = max wxl~x-u"l. 
P ~  x =  1 I ~ x ~ n  

Although the u~ are usually nonnegative in actuarial applications, we allow 
them to be negative in our studies. Minimizing a nonlinear function of 
several variables under constraints is theoretically and computationally com- 
plicated, because the optimal solution may occur on the boundary (for ex- 
ample, Ux ~ = 0 for some x). In practice, when the ungraduated values u" are 
positive, the graduated values u~ will usually be positive even when the 
nonnegative constraints are not imposed on the Ux. 

In Section 4, it is shown that the solutions have the Monotone Properties: 

F( u ~) + hS( u ~) is a nondecreasing function of  X 
F( u.. ~) is a nondecreasing function of  h 
S( u ~) is a nonincreasing function of  h 

in fact, for 1 < p < o% F ( u  ~) and F ( u  ~) + h S ( u  ~) are increasing and 
S ( u  ~) is decreasing, provided that S ( u  ~) > O. 

Furthermore, (F(uX), S(u~)) is Pareto-optimal (see Gerber [4], 91): 

There does not exist u such that 
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F ( u )  <~ F ( u  ~) and S ( u )  ~ S ( u  ~) with at 

least one inequality being strict. 

Numerical examples are given in Section 5, in which graduated values 
obtained using different p are compared. 

Lowrie [11] extended F and included exponential smoothness in S. In the 
discussion of Lowrie's paper, Chan, Chan and Mead [2] showed that the 
extension also has the Monotone Properties and is Pareto-optimal. 

The Whittaker-Henderson graduation method [16] has a Bayesian statis- 
tical interpretation, which has been advanced by Hickman and Miller [7, 8]. 

Modifications of the graduation problem to the problems 

Min F(u)  under the constraint S(u) ~< c 
u 

and 

Min S(u) under the constraint F(u)  ~< c, 
u 

where c > 0 is a given constant, are given in Section 6. 
Lemmas and theorems which require longer proofs are given in the ap- 

pendices. 

2. -~p-NORM WITH 1 < p < 

Let 1 < p < ~ and h /> 0 be given constants. Consider the following 
problem: 

Min[F(u) + kS(u)] (WH) 
tt  

where 
t l  - -  z 

F ( u )  =- w, [ Ux - u:" ~' and S(E) ~ E I AZux I p. 
x = l  x = l  

We proceed to show that the optimal solution u~ = (u~ . . . . .  ug)T to (WH) 
is the unique solution of the system of equations 

F'(u)  + hS'(u~ = O. T (2.1) 
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LEMMA 2. l" F ( u )  and S( u ) are differentiable at every point  u ~ R '~. They 
are twice differentiable except when u x = u~ or AZux = 0 for  some x f o r  1 
< p < 2, and 

(i) f '  ( u )  --  Oul . . . . .  

s '  ( u )  - . . . . .  

= p[lu, - uT IP - I  s g n ( u l  - uT) . . . . .  

lu. - u " l~ ' -~  sgn(u , ,  - u D l W  

= p t l a = u , I  ~ , - ' s g n ( A = u , )  . . . . .  

IA=u,_=~"-lsgn(A=u,_=)]K, 

where W is the n x n diagonal matrix with diagonal elements w I . . . . .  w,, 
and K is the ( n - z )  x n zth differencing matrix, i.e., K u is the column 
vector (A-'uj . . . . .  AZu,_~)r, and 

1 i f x > O ,  
sgn(x) = 0 / fx  = 0, 

- 1  / fx  < 0. 

(ii) 

u,-u~'~ -2 0 21 ro2F1 " .  " " • , , o W 

F ' ( u )  - LauiauJJ = p (p- ]) 0 "1;.~,- u~t.- 

C " i ' " " "  K 
S"(u) =- [ . ~ j  = p ( p -  1)K r "l&'~k,,-~ -2 

Proof. See Appendix I(a). 
It is clear from (ii) that S"(u) and F" (u )  are nonnegative definite if they 

exist. Therefore, F" (u )  + hS" (u )  is nonnegative definite for every u ,  and 
hence F + kS  is convex on R". 

In fact, since Ix[ p is a strictly convex function, we have 

LEMMA 2.2: F + XS is strictly convex on R ~. 

Proof. See Appendix I(b). 
Based on a documented property of a strictly convex function of several 

variables [3, §2.1], we have 
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THEOREM 2.1: For  a given h >- O, u ~ is an optimal solution to (WH) i f  and 
only i f  F '  ( u  ~) + h S ' ( u  ~) = O.  Furthermore,  this optimal solution is 
unique. 

Since F + kS is strictly convex, the following Newton-Raphson algorithm 
[12, p.288] is used for solving the system of equations (2.1). 

THEOREM 2.2: Let  u ° be an initial value and u k denote the value after k 
iterations. I f  we set 

u k+l --- u k -- [F"  ( u.~ k) + kS"( u...k)]- ' [F '  ( u k) + kS' ( u k)] T, 

and it converges to u ,  then u is the unique solution o f  equation (2.1) 
provided that f o r  each k, IF" (..~k) + kS" (uk)] - I exists. 

Whenp > 2, F" ( u  k) + kS" ( u  k) is nonsingular i fF"  ( u  k) is nonsingular, 
which can be achieved if ~ 4: u" for all x = 1 . . . . .  n. So, in case 
u~-u~ = 0 for some x, we can always change u~ to u~ + • with • 4: O. 

For the case p = 2, Greville's [5] graduated values can be obtained 
immediately from Theorem 2.2. Since 

[F'(u.u) + kS' (u~] r = 2W(u - u-') + 2hKTKu,  

and 

F" ( u )  + h S " ( u )  = 2 W  + 2hKTK, 

and the latter is positive definite and, hence, nonsingular, then for any u °, 

u '  = u ° - [F" ( u  °) + kS" ( u ° ) l - l [ F  ' ( u  °) + hS' (u°)] r 
= u o - [ 2 W + 2 X K r K ] - ~ I 2 W ( u O - u  '~) - 2 X K ' r K ( u O ) ]  
= u o - [ W + X K r K ] - ~ [ ( W + X l f r K ) ( u  o )  - W u " ]  

= u o - u o + ( W + M f r K ) - l W u  " 

"Cw + x h3 - ' W u" ,  

which is independent of u o. 
tt Z k For 1 < p < 2 ,  u~ = Ux or A Ux = 0 for some x will lead to infinity in the 

entries of F" ( u  k) or S" (uk); that is, F" ( u  k) + ks" ( u  k) and [F" ( u  k) + 
ks,, (uk) ] -  1 do not exist. 

An APL program is written for carrying out the iterations in Theorem 2.2 
and is given in Appendix I(b). 

Usually F" ( u k) + kS" ( u k) is a large matrix. Therefore, the square-root 
method or Choleski method (which can be found in Greville [5]) is rec- 
ommended for finding u k÷~ We can find u k÷l by using the above method 
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to solve [F" ( u  k) + hS" (uk)] u k+t = [F" ( u  k) + kS" (Uk)] U k -- 
[F' ( u  k) + hS' (uk)] instead of inverting F" ( u  k) + hS" (u~). 

3. e~-NORM 

In this section, we solve the e~-norm problem raised by Greville [6] by 
formulating it as a linear programming problem. 

The problem then is 

Min [F (u)  + hS(u)l  
~ o -- (WH) 

where 

F ( u )  ~ max w lux-u l and S ( u ) -  max I a % l  . 
1 ~ x ~ n  1 ~ x ~ n  - z 

We will consider the more general form of F ( u ) ,  that is, 

F( u ) - m a x  wx l u:l, 
I ~x~n 

which has F ( u )  -- max lux-u~l as a special case. 
1 ~ . x ~ n  

THEOREM 3.1" Let h and wl . . . . .  w n be given constants. The Whittaker- 
Henderson graduation method with (oo - norm (WH)and u >- 0 is equivalent 
to the linear programming problem, whose optimal solution always exists, 

of: 

Min (f+ ks) (LP) 
~.l .s  

under the constraints 

WxUx - wxu"--<f, 1 x = 1 . . . . .  n, 

-WxUx + w~u~ <-- f ,  

U,kxi s, } 
i=l 

x = 1 , . . . , n - z ,  

-- ~ uikxi ~ s, 
i=l 

(3.1 a) 

(3. I b) 
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ul . . . . .  un, f , s  >- O, 

where [kxi ] = K is the zth difference matrix. I f  ( u ~, fx, sx) is an optimal 
solution to (LP), then u ~ is an optimal solution to (WH) and 

f~ = F ( u  ~) and sx = S(uX).  

Proof. See Appendix II. 
If the Ux are not constrained to be nonnegative in the (LP) formulation, 

they can be replaced by Ux = U x -  ux , where u~ -> 0 and u x -> 0. 
Linear programming is the most widely used mathematical optimization 

model in operations research. Its optimal solution can be easily obtained by 
the simplex method. More about linear programming can be found in the 
Society of Actuaries Part 3 Examination reference, Hillier and Lieberman 
[9]. 

Since the optimal solution of (LP) and, hence, that of (WH) may not be 
unique, the first optimal solution obtained after the linear programming may 
not be a good fit to u .  We can improve the goodness of fit of the solution 
by using quadratic programming. For example, suppose we have obtained 
u ~ as an optimal solution and that F(u)  + hS(u) = M. We can then 
formulate the quadratic programming problem 

Min ~ w~(u x -  u") 2 (QP) 
u , f , s  x = l  

under the constraints (3. la), (3. lb) and the additional constraint 

f +  k s < - M .  

It can be easily seen that any solution of (QP) is a solution of (WH). 
However, for the case with wx = 1 in F(u),  the optimal solution obtained 

at the end of the linear programming is close to u"  (though it may not be 
unique), and no further quadratic programming is needed. 

Another advantage of formulating (WH) as a linear programming problem 
is that one can perform sensitivity analyses. This is analyzing the effects on 
the optimal solution (uh, f~, s~) of one or more of the following changes: 

h---~h + ~h 

tr rt t t  

U x ~ U x + ~U x 

Wx---~ w~ + ~w x. 
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The computational procedures for doing this analysis are given in [9, §5.3]. 
They are based on the final simplex tableau which usually can be obtained 
from the printout of  a linear programming computer package. 

4. M O N O T O N E  P R O P E R T I E S  A N D  P A R E T O - O P T I M A L 1 T Y  

In this section general ep-norms, 1 --- p <-- % are considered. 
THEOREM 4:1 : The Monotone Properties hold and (F( uX), S ( uX)) is Pareto- 
optimal. 
Proof. See Appendix III. 

The Monotone Properties are intuitively clear. They can be used to check 
if some errors were made in the calculations of the u ~ when several h values 
are used. The case p = 2 was proven by Chan, Chan and Mead [1]. 

The Pareto-optimality says that F ( u  x) and S (u  x) are the best values one 
can get. It is impossible to get a smaller value than F(uX), or S(uX), without 
getting a larger value than S(uX), or F(u~).  

5 .  A N U M E R I C A L  E X A M P L E  

The n = 19 ungraduated values and weights given by Miller [13, p.35] 
are graduated using p = 1,2,3,5, and ~ (with F ( u )  = max lUx-u~l and 

1 ~--x~n 

F ( u )  = max wxlUx-Uxl) whenz = 3 a n d h  = 1 , 2 , 3 , 6 ,  10 (see Tables 
I ~ x ~ n  

1-6). The case p = 10 was also calculated; its graduated values are omitted 
because they are quite close to those when p = 5. Notice that the monotone 
properties are satisfied for all cases. 

For the case p = oo with 

F ( u ) -  max wxlu -u' l, 
1 ~ x ~ n  

some initial graduated values obtained at the end of the linear programming 
calculations were quite far from the ungraduated values. Much improvement 
was made after the quadratic programming calculations (see Table 6). For 
the case p = oo with 

F ( u ) -  max lux-u2l, 
1 - - ~ x ~ n  

the graduated values obtained at the end of the linear programming calcu- 
lations are quite close to the ungraduated values. Therefore, we do not need 
quadratic programming to improve the fit (see Table 5). A graphical com- 
parison of some graduation values is given in Figure 1 when z = 3 and h = 3. 



TABLE 1 

G R A D U A T E D  V A L U E S  W H E N  p = 1 A N D  Z = 3 

Ungraduated 
Values Weights 

u~ w x 

l . . . .  

2 . . . .  

3 . . . .  

4 . . . .  

5 . . . .  

6 . . . .  

7 . . . .  

8 . . . .  

9 . . . .  

10 . . . .  
11 . . . .  
12 . . . .  
13 . . . .  
14 . . . .  
15 . . . .  
16 . . . .  
17 . . . .  
18 . . . .  
19 . . . .  

34 
24 
31 
40 
30 
49 
48 
48 
67 
58 
67 
75 
76 
76 

102 
100 
101 
115 
134 

3 
5 
8 

10 
15 
20 
23 
20 
15 
13 
11 
10 
9 
9 
7 
5 
5 
3 
1 

Fit F ( u  ~) 

Smoothness S(u  ~) 

F ( u  ~) + hS(u ~) 

GRADUATED 

k = l  

34.00 
24.00 
31.00 
40.00 
30.00 
49.00 
48.00 
48.00 
67.00 
58.00 
67.00 
75.00 
76.00 
76.00 

102.00 
100.00 
101.00 
112.33 
134.00 

8.01 

415.34 

423.35 

I h = 2  h = 3  k = 6  k = 1 0  

Graduated Values ux x 

34.00 34.00 15.90 
24.00 29.00 24.00 
31.00 31.00 31.00 
37.50 40.00 36.90 
43.50 46.00 41.70 
49.00 49.00 45.40 
48.00 48.00 48.00 
48.00 48.00 51.46 
51.67 51.67 55.78 
58.00 58.00 60.96 
67.00 67.00 67.00 
75.00 73.00 72.01 
76.00 76.00 76.00 
81.92 82.14 81.26 
92.75 91.43 87.79 

100.00 100.00 95.59 
103.67 107.86 104.66 
115.00 115.00 115.00 
134.00 121.43 126.61 

588.83 691.07 833.23 873.01 

76.03 35.41 6.15 0.63 

740.89 797.30 870.13 879.31 

TABLE 2 

V A L U E S  W H E N  p = 2 A N D  Z ----- 3 

22.32 
26.68 
31.00 
35.29 
39.56 
43.79 
48.00 
52.18 
56.73 
61.68 
67.00 
72.7 I 
78.80 
85.27 
92.13 
99.37 

107.00 
115.00 
123.39 

l . .  

2 . .  

3 , .  

4 . .  

5 . .  

6 . .  

7 . .  

8 . ,  

9 . .  

1 0 . .  
! 1 . .  
12 . .  
1 3 . .  
1 4 . .  
1 5 . .  
16_. 
1 7 . .  
1 8 . .  
1 9 . .  

Ungraduated 

Values Weights  
u~ wx 

34 3 
24 5 
31 8 
40 10 
30 15 
49 20 
48 23 
48 20 
67 15 
58 13 
67 11 
75 10 
76 9 
76 9 

102 7 
100 5 
101 5 
115 3 
134 1 

Fit F ( u  x) 

Smoothness S(u  x) 

F ( u  ~) + hS(u ~) 

31.65 
27.57 
30.98 
34.86 
35.95 
45.40 
48.16 
51.38 
61.04 
62.19 
66.86 
72.65 
75.63 
81.75 
94.76 

100.69 
104.18 
114.00 
132.07 

2,905.68 

1,233.80 

4,139.48 

31.17 
28.31 
30.76 
34.28 
36.93 
44.66 
48.21 
52.10 
59.98 
62.68 
67.00 
72.06 
75.98 
82.60 
93.53 

100.11 
105.08 
114.55 
130.36 

3,980.60 

451.84 

4,884.29 

Graduated Values 

30.94 
28.61 
30.68 
34.08 
37.33 
44.30 
48.25 
52.44 
59.53 
62.83 
67.05 
71.86 
76.21 
82.94 
92.93 
99.80 

105.55 
114.89 
129.38 

4,502.81 

236.04 

5,210.92 

I h - - 6  ~ 

30.58 
28.96 
30.64 
33.91 i 
37.761 
43.85 
48.30 
52.87 
58.99 
62.90 
67.10 
71.72 
76.58 
83.30 
92.10 
99.37 

106.20 
115.40 
127.98 

5,164.97 5,488.96 

73.14 30.15 

5,603.83 5,790.45 

h = 1 0  

30.30 
29.12 
30.69 
33.88 
37.93 
43.62 
48.33 
53.09 
58.73 
62.88 
67.11 
71.73 
76.81 
83.44 
91.66 
99.13 

106.53 
115.68 
127.25 

192 



TABLE 3 

GRADUATED VALUES WHEN p = 3 AND z = 3 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

Ungraduated ~ = 2  ~ .=  [ [ 
Values Weights h = 1 3 k = 6 h = 10 

u~r wx Graduated Values u~ x 

34 3 30.91 30.71 30.60 t 30.42 30.29 
24 5 28.00 28.24 28.36 28.53 28.64 
31 8 30.97 30.73 30.63 30.51 30.45 
40 10 34.46 34.14 34.00 33.81 33.71 
30 15 36.14 36.53 36.72 36.98 37.13 
49 20 44.31 43.98 43.81 43.57 43.43 
48 23 48.43 48.43 48.44 48.46 48.47 
48 20 52.64 52.98 53.16 53.41 53.57 
67 15 60.95 60.56 60.37 60.09 59.92 
58 13 62.82 63.07 63.18 63.31 63.38 
67 11 66.39 66.46 66.51 66.60 66.72 

.. 75 10 71.39 71.09 70.96 70.85 70.83 

.. 76 9 74.72 74.97 75.13 75.44 75.68 
•. 76 9 82.24 82.74 82.99 83.33 83.52 
•. 102 7 94.92 94.34 94.03 93.56 93.25 
.. 100 5 101.62 101.22 101.00 100.69 100.51 
. .  101 5 105.46 105.93 106.19 106.60 106.88 
.. !15 3 113.64 114.22 114.57 115.15 115.51 
.. 134 I 130.07 129.36 129.03 128.55 128.22 

Fit F ( u 0  20,117.30 l 24,600.39 27,080.02 30,854.36 33,295.22 

Smoothness S ( u 0  5,832.85 [ 2,593.14 1,572.36 656.18 335.08 

F ( u  x) + hS(u ~) 25,950.15 129,786.68 31,797.11 34,791.46 36,646.05 

TABLE 4 

GRADUATED VALUES WHEN p = 5 AND 2" = 3 

Ungraduated 
l Values 

u~ 

1 . .  34 
2 ]] 24 
3 31 
4 . .  40 
5 . .  30 
6 . .  49 

8 48 
9 67 

10 58 
11 . .  67 
12 .. 75 
13 .. 76 
14 .. 76 
15 .. 102 
16 .. 100 
1 7 . .  101 
18 .. 115 
19 . .  134 

Fit F (u  ~) 

I 
Weights k = 1 [ ~. = 2 

wx 

3 30.12 30.03 
5 28.49 28.60 
8 31.60 31.45 

10 34.33 34.19 
15 36.10 ' 36.27 
20 43.63 43.47 
23 48.56 48.57 
20 53.33 53.48 
15 60.99 60.82 
13 63.27 63.42 
11 66.63 66.90 
10 70.19 70.02 
9 73.31 73.42 
9 82.47 82.70 
7 95.14 94.88 
5 102.57 102.30 
5 106.41 106.65 
3 113.45 113.90 
! 128.85 128.61 

805,039 938,030 

189,265 94,092 

994,904 1,126,215 

Smoothness S ( u 0  

F ( u  ~) + XS(u0 

I 
Graduated Values u} 

29.99 
28.65 
31,36 
34.11 
36.36 
43.39 
48.57 
53.56 
60.73 
63.49 
66.97 
69.94 
73.51 
82.83 
94.73 

102.15 
106.78 
114.15 
1 2 8 . 4 7  

1,016,166 

62,015 

1,202,211 1 

~ , = 3  [ ~ . = 6  I k = l O  

29.92 29.89 
28.72 28.76 
31.22 31.12 
33.99 33.92 
36.50 36.59 
43.26 43.17 
48.54 48.51 
53.70 53.79 
60.60 60.52 
63.58 63.61 
66.94 66.84 
69.83 69.78 
73.74 73.95 
83.03 83.17 
94.49 94.31 

101.93 !01.79 
107.01 107.17 
114.56 114.83 
128.25 128.09 

1,148,252 1,243,603 

38,312 17,718 

1,378,123 I 1,420,780 
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TABLE 5 

G R A D U A T E D  V A L U E S  W H E N  p = co, z = 3 

Ungraduated 
Values Weights* 

wx 

1 . . . .  
2 . . . .  
3 . . . .  
4 . . . .  ; 
5 . . . .  ! 
6 . . . .  I 

~iiii 
9 . . . .  

10 . . . .  
!1 . . . .  
12 . . . .  
13 . . . .  
14 . . . .  
15 . . . .  
16 . . . .  
17 . . . .  
18 . . . .  
19 . . . .  

34 
24 
31 
40 
30 
49 
48 
48 
67 
58 
67 
75 
76 
76 

102 
100 
101 
115 
134 

Fit F ( u  x) 

Smoothness S ( u  x) 

F (u ~) + xs (u ~) 

G R A D U A T E D  

h = l  ~ ~  

Graduated values u~ 

24.94 24.81 ! 24.56 24.39 
27.07 27.41 : 27.68 27.90 
30.32 30.79 31.26 31.64 
34.41 34.78 35.21 35.55 
39.06 39.19 39.44 39.61 
43.99 43.86 43.86 43.79 
48.93 48.60 48.38 48.12 
53.58 53.26 52.92 52.64 
57.94 57.81 57.56 57.39 
62.28 62.44 62.40 62.39 
66.89 67.32 67.51 67.68 
72.03 72.62 73.00 73.29 
77.99 78.52 78.94 79.26 
85.06 85.19 85.44 85.61 
92.94 92.81 92.56 92.39 

101.37 101.20 100.24 99.62 
110.06 110.19 108.37 107.34 
118.73 119.60 116.87 115.58 
127.66 129.62 125.66 124.38 

9.06 9.19 9.44 9.62 9.61 

0.30 0.19 0.1 i 0.06 0.05 

9.36 9.57 9.77 9.98 10.11 

TABLE 6 

V A L U E S  W H E N  p = oo A ND Z = 3 

~ = 1 0  

24.39 
27.91 
31.65 
35.56 
39.61 
43.79 
48.12 
52.64 
57.39 
62.39 
67.68 
73.29 
79.26 
85.61 
92.39 
99.62 

107.34 
115.59 
124.39 

1 . . . .  
2 . . . .  

3 . . . .  
4 . . . .  
5 . . . .  
6 . . . .  

7 . . . .  
8 . . . .  
9 . . . .  

10 . . . .  
11 . . . .  
12 . . . .  
13 . . . .  
14 . . . .  
15 . . . .  
16 . . . .  
17 . . . .  
18 . . . .  
19 . . . .  

Ungraduated 

Values 

34 
24 
31 
40 
30 
49 
48 
48 
67 
58 
67 
75 
76 
76 

102 
100 
101 
115 
134 

Weights* 

wx 

3 
5 
8 

10 
15 
20 
23 
20 
15 
13 
11 
10 
9 
9 
7 
5 
5 
3 
1 

Fit F ( u  ~) 

Smoothness S ( u  x) 

F ( u  ~) + XS ( u ' )  

h = l  ~ h = 1 0  

Graduated Values ux ~ 

34.00 34.00 27.11 27.07 16.40 
24.00 24.00 24.12 24.10 21.75 
31.00 31.00 25.85 25.84 27.10 
39.14 39.14 30.72 30.72 32.45 
30.57 30.58 37.17 37.17 37.80 
48.57 48.57 43.62 43.62 43.15 
48.37 48.37 48.50 48.50 48.50 
48.35 48.35 53.38 53.38 53.85 
66.54 66.54 59.83 59.83 59.20 
58.18 58.18 66.28 66.28 64.55 
67.00 67.00 71.15 71.16 69.90 
75.00 75.00 74.60 74.61 75.25 
75.04 75.04 78.21 78.22 80.60 
76.96 76.96 83.54 83.54 85.95 

100.77 100.77 ! 90.85 90.85 91.30 
101.72 101.73 98.57 98.57 96.65 
101.00 101.00 106.35 106.36 102.00 
115.00 115,00 115.77 115.77 107.35 
134.00 134.00 128.39 128.38 112.70 

8.64 8.70 ] 107.64 107.64 !17.00 

44.77 44.76 1.58 1.59 0.00 

53.41 98.22 112.38 117.18 117.00 

* F ( u )  -~ m a x  w x l u~ - u x l; the  F ( u  ~)of 
l-~t~ 19 

Table 5 is the special case when all wx = I. 
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6 .  M O D I F I C A T I O N S  O F  T H E  W H I T T A K E R - H E N D E R S O N  

G R A D U A T I O N  M E T H O D  

The traditional approach of minimizing F + kS is now modified to the 
minimization of F under the constraint that S does not exceed a predeter- 
mined value c. 

(i) e ~ -  norm case: The problem 

Mini max w x [ u x - u~ [] 
u ; ~ O  1 ~ x ~ - - n  

under the constraints 

m a x  I Azuxl c 

is equivalent to the linear programming problem 

min f 
u > 0  

under the constraints (3.1a) and (3.1b) with s replaced by c. The value c 
should be chosen such that c --- S (u" )  since F(u")  = 0. 

(ii) el - n o r m  case: Schuette [14] formulated the el - n o r m  case as the linear 
program problem 

n~z 

Min w.~(Px + N~) + h ~ (R~ + T~) 
x ~ l  x ~ l  

under the constraints 

K ( P - N )  + I,,_: ( R - T )  = K u "  

where u--' - u --- P - N ,  AZu = R - T  with Px, N:~, Rx, Tx >- O, and ln - z  
is the identity matrix of order n - z .  

The minimization of F under S -< c can be formulated as 

Min ~ wx(Px + N:,) 

under the constraints 
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K ( P  - N) + I,,_ ~ (R - 7") = K u"  and 

Iq--Z 

(Rx + T~)<-c. 
X = I  

197 

(iii) ep-norm case, 1 < p < ~: The problem is 

Min ~ w x l u x - u " ~  ° 
u x = l  

under the constraints 

n- -z  

Z l azux °<-c, 
X = I  

where 

S ( u " )  - c. 

Using a proof similar to that of Theorem 2 of Chan, Chan and Mead [1], 
one can show that the optimal solution is the unique solution to the system 
of n + 1 equations 

F ' ( u )  + 13S'(u) = 0 T, 

S ( u )  = c,  

where 13 is the Lagrange multiplier. 
The problem of minimization of S under the constraint that F -<c for the 

~p -norm cases, 1 <- p -< ~,  can be similarly formulated and solved. 

7. CONCLUSION 

This paper considers the Whittaker-Henderson graduation method with 
general ep -norm, ! -< p -< oo. It has been shown that for 1 < p < 0% the 
set of graduated values u x = (u~ . . . . .  u~) is unique and is the solution of 
the system of equations F '  (u )  + hS'  ( u )  = O r. 

When p = 0% the method can be formulated as a linear programming 
problem. With F ( u )  = max w x lux-Uxl, the optimal solution obtained at 

1 ~ x ~ n  

the end of the linear programming may not be unique and could be quite 
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far from the ungraduated values u " .  The fit can be improved through qua- 
dratic programming.  However ,  with F ( u )  = maxlu X - U"xl, no quadratic 

I ~x~n 
programming is required. 

For 1 -< p < ~,  it is shown that F ( u  ~) + hS (u~),  F (uh ) ,  and S ( u  ~) 
are, respectively, nondecreasing, nondecreasing and nonincreasing functions 
of  k, and that there does not exist a u such that F ( u )  <- F ( u  ~) and S (u )  
-< S ( u  ~) with at least one inequality being strict. 

When 1 -< p -< ~ ,  it is shown that the alternative of  minimizing F (or S) 
subject to S ~ c (or F <-- c) has some of  its properties and solution algorithms 
analogous to the traditional method of  minimizing F + hS. 

APPENDIX l(a) 

Here, 1 < p < oo. Let G: R --* R w i t h  G ( y )  = lYe- Then 

G'(y) = p sgn(y)lyt p- l 

for every y and p, and 

G"(y) = p ( p -  l)lyp ' - z  

except when y = 0 and  p < 2 [3,  p . 2 6 ] .  For  a func t ion  M: R r ----~R s, define 

p_Ml OM, q 

°- . . . . . .  

If 

'mll  "" " mlr l 
M = . . . . . . . . . . . . . . .  , 

L m s ,  - • • m , ,  J 

define M(y_) =-- M y with y ~ R r. Then M'(y) = M. 
If A: Rr ---~ R ~ and B: R s ~ R t, and B(A) is the composite function: Rr--* R', then the 

Chain Rule is 

where 

C'()~) = B'(A(y)).A'(y),  

C(Z) = B(A(y)). 

Proof of  Lemma 2.1 : 

(i) F(u)  can be expressed as B(A(u)), where 



Then 
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a ( u )  = , B(y) = ~ w~y~. 
x = l  

fll'~ - u';p'- 'sgn(u, - u';) 0 ,,1 

" 1  

A ' ( u )  = 0 "'" pJu,, - u"F ° -  Isgn(u,,  - uT,)] ] ' 
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B ' ( y )  = (w I . . . . .  w,,). 

So, by the Chain Rule, 

F ' ( u )  = B ' ( A ( u ) ) A ' ( - u )  
t t  - -  1 t t  = lpl,,,--u';V'-Csg.(u,-,,i') . . . . .  p l , , . - . 2 '  sg,,( , ,°-u.)lw. 

S(u)  can be expressed as B(K(u) ) ,  where K is the ( n - z ) x  n zth differencing matrix 
I I  - -  g 

and B(y) = ~-'. [Yx~ with y ~  R"-:. Then K' (u) = K and B' (y) = [19 (sgn (y,))[y,[P-~, 
X =  I 

. . . .  p (sgn Cv,,_z))]y,,_z[ p -1]. So, by the Chain Rule, S '  (u)  = [ p [ A Z u ~ - ' s g n  (AZu~), 

. . . .  plA Zu._ z[p - l sgn ( A Zu._ z) ]K. 

(ii) The matrix ( F ' ( u ) )  r can be expressed as p ( W ( A ) )  ( u ) ,  where 

a u, F ul 
sgn(u,,  u,,)..J 

L u  - u "F~- , . _ ,, 

Then, by the Chain Rule, 

where 

F"(u)  = p ( p -  I)WA'(u) = p ( p -  I)A'(u)W, 

0] 
A'(~) = u , -  p~-?. lu.-u=V ~-2 

The expression for S " ( u )  can he similarly derived. 

P r o o f  o f  L e m m a  2 .2 :  

For 1 < p < oo, G'(x) = p sgn~x~'-  l is increasing. So G(x)  = [x[p is strictly convex; 
for example, if x* 4: x, then for 0 < 0 < 1 
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Iox* + (l-o)xl , '  < o~*lp + (1-o)~lp. 

Therefore, if u ° 4: ~ ,  then for 0 < 0 < 1, 

F(Ou* + ( l - 0 ) u )  = ~wxlOu* + ( l - 0 ) u x - u ~  

= ~wxlO(u*~-u') + ( l -O)(u~-u")~ 
i = l  

n n 

ft < o Zw~lu~-u~ + (l-O) Zwxl,~-,~P 
i = l  i - I  

= F ( u * )  + ( 1 - 0 ) F ( u ) ,  

that is, F is strictly convex. Furthermore, S is convex since S" is nonnegative definite. 

Consequently, F + kS is strictly convex. 

APPENDIX l(b) 

The following APL program for carrying out the iterations in Theorem 2.2 is illustrated 

by the numerical example (with p = 5, z = 3, h = 6) in Section 5. 

VGRADI[-]]V 
V GRAD IV 

[1] CRy--1 
[2] -'-'~0 X tO = CR 
[3] FF~--P × ( w  + . x ( × IV - u v )  × (llV 

- U V ) * P -  1) + L × (~K) + .  × ( × K + .  × IV) × ([K + .  × I V ) * P -  1 
[4] A~--19 19 p, (~ ( I I V - U V ) *P- 2 ) ,  19, 19 p0 
[5] B~--J0,(~(IK+. x l V ) * P - 2 ) , J 0 0  
[6] FFF~---P × ( P - I )  × ( W +  . × A ) + ( L × ( O K ) +  . × B +  . × K) 
[7] D~---(BFFF) + .  x FF 
[8] GV~--IV~--IV + 0.1 × UV = IVy---IV - D 
[9] F~--- + / W  + .  × (llV - U V ) * P  

[101 S,---+/(IK+. ×IV)*P 
[11] M ( - - F + L ×  S 
[12] CR,- - (F / ID) ->0 .00001  

[13] ---)2 
V 
P~"-5 
L~--6 
J~---16 16 
UV'~--34 24 31 40 30 49 48 48 67 58 67 75 76 76 102 101 100 115 134 
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IV*--36 22 33 38 32 47 50 46 69 56 69 73 78 74 104 98 103 113 136 
K~---16 190-1 3 3  1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
W~--19 190, (19 103 5 8 10 15 20 23 20 15 13 II 10 9 9 7 5 5 3 l), 19 1900 

GRAD IV 

GV 
29.92 
43.26 
66.94 
94.49 
128.25 
F 
1148648 
S 
20156 
F + L x S  
1329589 

28.72 31.22 33.99 36.50 
48.54 53.70 60.60 63.58 
69.83 73.74 83.03 
101.93 107.01 114.56 

Explanation of Symbols 

P = NORM 
L = LAMBDA 
UV = UNGRADUATED VALUES 
IV = INITIAL ITERATION VALUES 
K = ZTH DIFFERENCE MATRIX 

W = WEIGHT MATRIX 
GV = GRADUATED VALUES 
F = FIT 
S = SMOOTHNESS 

APPENDIX I1 

Proof of Theorem 3.1: 
The (LP) problem has at least one feasible solution if f and s are large enough. 

Furthermore, an optimal solution to (LP) always exists because the objective function, 
which is to be minimized, is bounded below [9, p.97]. 

If (u  ~, f~, sx) is an optimal solution to (LP), then by (3. la) and (3. Ib) 

F ( u  ~) < f~ and S(u  ~) <-- s~. 

Suppose that one of the above inequalities, say the first inequality, is a strict inequality. 
Then F ( u  x) + h S ( u O  < f~  + hs~. Since 

F ( u  ~) = max wxlu x -  u~" I >-- wxlu x -  u~l for x = 1 . . . . .  n, 

(3.1a) is satisfied with f = F(u~). This is contradictory to ( u  ~, f~, s~) being optimal. 
So 
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f~ = F ( u  ~) and s~ = S(u~). 

If Uo is an optimal solution to (WH), that is, 

fo +kSo = Min[F(u) + kS(u)], 
u - 0  

wherefo ------ F( u °) and s o =-- S( u°) ,  then 

wxlu ° - u~] ~fo for x = 1 . . . . .  n, 

I Azu°[ <- So f o r x =  1 . . . . .  n--z ,  

and, hence, u o satisfies the constraints (3. l a) and (3.1b) of (LP). Since (u  h, f~, s~) is 
an optimal s~ution to (LP), 

f~ + ash <--fo + hSo. 

But the minimization in (WH) is over all u, 

f~ + hs~ >- fo + hSo. 

Therefore 

L + hs~ = f o +  kSo, 

and u h is an optimal solution to (WH). 

APPENDIX IIl 

Proof of  Theorem 4.1: 
If h > h* --> 0, then 

F ( u  x*) + X*S(u ~*) -< F ( u  ~) + k*S(u ~) -<F(u ~) + kS(uX). (1II.1) 

The second inequality is strict if S (u  ~) > 0 and, hence, the first Monotone Property 
holds. 

By adding the first inequality in (IlL I) to the similar inequality 

F (u" )  + hS(u ~) ---< F ( u  x*) + hS(u~*), 

we obtain 

0 -< ( x -  x*) [S(u ~*) - S(u~)]. 

That is, S (u  ~) -< S (uh*). This and (III.1) imply that F ( u  ~*) -< F(u~). 
Now we proceed to show that for 1 < p < 0% S(u  ~) < S(u  ~*) if S(u  ~) > 0. This 

holds if the first inequality in (11I. 1) is strict. If this is not true, then 

F ( u  ~*) + h*S(u x*) = F ( u  ~) + h*S(u~'), 

and u ~* ¢ u ~, implying that the optimal solution to (WH) is not unique. This contradicts 
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Theorem 2.1. Consider the fact that u ~* ~ u x comes from F' (u  ~) + hS'(u)) = ~0 = 
F'(u ~*) + h*S'(u ~*) (see Theorem 2.1) and the assumption that S(u~)>0. Suppose 
u x~'= uh; then we have h*S'(u ~*) = hS'(u~), which implies that S '(u ~) -- S ' (u  ~*) 
= 0. Since 

S ' (u  ~) = p[lAZu~-~sgn(/XZu~) . . . . .  IZ~u~_~l p -  ~ sgn(A"u~_z)]g ,  

S ' (u  x) = Oimplies that I/VUx~ = 0 fo ra l l  1 -<x--< n - z ; t h a t  is, S(u~) = 0_ which 
contradicts the assumption. 

The first inequality in (III. 1) and S(uX)<S(u *) implies that F(u~)>F(u'*).  
To see that (F(u~), S(u~)) is Pareto-optimal, suppose that u is such that F(u)  < 

F(u~), and that S(u) -< S(u~); then 

F(u)  + k S ( u ) <  F(u  ~) + hS(u~), 

which contradicts the assertion that u x minimizes F(u)  + hS(u). 
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DISCUSSION OF PRECEDING PAPER 

ELIAS S. W. SHIU: 

This paper is an interesting extension of Schuette [7]. The results here 
can be generalized to the case where F and S are formulated by different 
~p-norms. The p for F should be small to diminish the effects of the outliers. 
The p for S should be large so that the graduated sequence is uniformly 
smooth. Thus, the problem is to minimize 

wxlux - uxl + h maxlA z Uy[. 
x y 

For elaboration on the above, see [7], pages 434-45. 
Indeed, the concept of Whittaker-Henderson graduation can be further 

generalized as: Find u which minimizes 

h(u)  = f ( u  - u") + g (Ku) ,  

where f and g are convex functions. In the case where 

f ( x )  = x r W x  

and 

g(x)  = h x r x ,  

we have the classical Whittaker-Henderson type-B graduation. Let us assume 
that the convex functions f and g are twice-differentiable. Then, it may be 
possible to solve the equation 

h ' (u )  = O r 

by Newton-Raphson iterations 

uk+l = u k _ [h" (Uk)]-l [h,(uk)]r,  

where 

and 

h ' (u )  = f ' ( u - u " )  + g ' ( K u ) K  

h"(u) = f ' ( u -  u") + l ( rg" (Ku)K.  

Note that the matrix K need not be a differencing matrix; see Greville [3], 
page 389. 

205 
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In formulating the minimization problem, one should also specify the 
constraints 

0 _ < u x _ <  1, 

if the ux's are probabilities. Furthermore, linear constraints such as 

c(x)u x + d(x)  <- ux ÷ 1 

may be imposed on the graduated values as desired. The problem becomes 
one o f  minimizing 

h(u) ,  ueC ,  (1) 

where C is a closed and convex subset o f  R n. For a differentiable function 
h, a vector r e C satisfies 

h(r) = Min h(u)  (2) 
u~C 

only if 

h ' ( r )  (u  - r) >- 0 for e a c h u e C .  (3) 

In general, (3) does not imply (2) unless h is convex (or pseudo-convex). 
Since minimizing a nonlinear function of  many variables under constraints 

is computationally complex,  how does one minimize (1)? A solution has 
been forwarded eloquently by W. Conley [2]: 

Computer technology has advanced to the point that it is now possible to 
take an entirely different philosophical approach to the statement and the 
solution of mathematical optimization problems. 
In the past, each optimization problem had to be stated in the form of a 
standard model, for example, in a linear problem whether or not this was 
an accurate reflection of reality. This was necessary because only these 
standard models had theoretical solution procedures. If these procedures 
were followed, then a small amount of calculation produced the result. 
However, computers have become so fast and computer time so accessible 
and inexpensive that it is now possible to state any optimization problem 
(linear or nonlinear) as a completely accurate reflection of reality and let 
the computer search all the possible solutions (or a large sample of solutions) 
and produce the optimum regardless of the functional form of the problem. 

Goodness  o f  fit is often considered in conjunction with chi-square testing. 
Taylor [8] shows that it is not correct to use the chi-square test to test the 
goodness o f  fit o f  a linear compound graduation, and the Whittaker-Hen- 
derson method is a linear compound graduation. However,  some recent 
literature (such as [1] and [5]) does not consider this result. For further 
discussion, see [4]. 

The multivariate calculus is a useful tool in many developments. Below 
are two examples. 



DISCUSSION 207 

(i) Assuming differentiability, one may rephrase the first part of Theorem 
4.1 as 

d 
- ~  [F(u(h)) + LS(u(h))] --> 0, (4) 

where u(h) = uh satisfies the equation 

F'(u()Q) + S'(u(X)) = 0 7". 

By the Chain Rule and the Product Rule, 

d 
[F(u(X)) + XS(u(X))] 

= F'(u(h))u ' (h)  + XS'(u(h))u'(h) + S(u(h)) 

(5) 

= O r u ' ( X )  + S(u(h)) -.'(5) 

= S(u(X)). 

Thus we have (4). 

(ii) The problem considered in [6] is the minimization of the quadratic form 

q(u) = ( u - u " )  r W ( u - u " )  + ( u - s )  r V ( u - s )  + (Ku) r (Ku), 

where W and V are diagonal matrices. The minimum vector u is the solution 
to the equation 

q'(u) = O r. 

Since 

q'(u) = 2 [ ( u - u " ) r W  + ( u - s ) r V  + urKrK], 

the result of [6] follows. 
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E.S. ROSENBLOOM:* 

This paper presents algorithms for performing the Whittaker-Henderson 
graduation method of mihimizing F ( u  + S(u)  over all u = (ui, u2 . . . . .  
u,)  r .  In section 2, the authors use the ep-norm with 1 < p < oo to obtain 
the following nonlinear minimization problem: 

Min [F(u)  + k S (u)]  
u 

where 

and 

= 
x = l  

n--Z 

s ( s )  = I Vzu  ' 
x = l  

i i  t t  
(h, p ,  w l, w 2 . . . . .  Wn, u l ,  u2, are fixed constants). 

The Newton-Raphson iterative technique is the algorithm used to find the 
optimal solution to this problem. In this algorithm, a sequence of vectors 
u k is generated using the recurrence relationship 

.UR k + l  = ~.R k --  [ F "  ( u  k) -k- ~. S" (..uRk)] - I  [ F t ( u  k) @ h S' (URk)] T. (1) 

The strict convexity of the objective function ensures that if {u k} con- 
verges to u ,  then u will be the unique optimal solution to the nonlinear 
program. 

The Newton-Raphson algorithm is one of the oldest numerical techniques 
available for minimizing nonlinear functions. It has the advantage that when 
it converges, it converges at a quadratic rate. However, the Newton-Raphson 
method is rarely used today to solve nonlinear problems because it has certain 
drawbacks. 

Formula (1) does not ensure a decrease in the function value at each 
iteration. In other words, it is possible that 

F ( u  k+t) + h S ( u  k+l) > F ( u  k) + h S ( u k ) .  

To remedy this situation the modified Newton-Raphson formula is often 
used: 

*Dr. Rosenbloom, not a member of the Society, is an Assistant Professor with the Department of 
Actuarial and Management Sciences, University of Manitoba. 



u k+~ = u k -  0 k [ F ' ( u  k) + 

where 0 k is a scalar chosen so 

F (U k+l) "Jr- h S 

In one variation, O k is chosen 
0 d k) with respect to 0 where 

DISCUSSION 209 

h S" (uk)] -1 [F' ( u  k) + h S' (uk)] r (2) 

that 

( u  k+l) < F ( u  k) + h S ( u k ) .  

to minimize F ( u  k + 0 d k) + h S ( u  k + 
d k is the search direction 

- [F" ( u  k) + h S" (uk)]  - ~ [F'  ( u  k) + X S' (uk)]  r.  

Another drawback of the Newton-Raphson method is that even with the 
assumption of strict convexity of the objective function F (u )  + h S (u) ,  
the Hessian matrix F" ( u  k) + h S" ( u  k) may be singular. In that case, 
formula (1) would be undefined. 

For large values of n, the most serious drawback of the Newton-Raphson 
method is the enormous amount of computation required at each iteration. 
Even exploiting the fact that the Hessian matrix F" ( u  k) + h S" ( u  k) is 
symmetric, formula (1) requires computing n 2 + n second partial derivatives 
and 2n first partial derivatives. In addition, a system of equations needs to 
be solved in order to obtain the search direction d k. 

To avoid the drawbacks of the Newton-Raphson method a number of 
techniques have been developed over the last twenty-five years. The most 
popular of these techniques are the Quasi-Newton methods. The Quasi- 
Newton methods generate a sequence of vectors {u k} by a recurrence rela- 
tionship of the form. 

u k+~ = u k -  0 k H  k [ F ' ( u  k) + X S ' ( u  k ) ] r .  (3) 

H k is an n x n matrix which may approximate the inverse Hessian matrix 
IF" ( u  k) + h S" ( u  k) ] - l .  0 k is chosen to minimize F ( u  k + 0 d  k) + 
h S ( u  k + 0 d  k) with respect to 0 with d k being the direction - H k [ F '  
( u  k) + X S' ( u  k) ]r.  

In general, the Quasi-Newton methods require considerably less compu- 
tation than the Newton-Raphson methods. They do not require the compu- 
tation of second partial derivatives. In addition, they tend to be more robust 
than the Newton-Raphson methods. 

The various Quasi-Newton methods differ in how the matrix H k is ob- 
tained. Numerical experiments have indicated that the most successful of 
the Quasi-Newton methods is the Broyden-Fletcher-Goldfarb-Shanno algo- 
rithm. In this algorithm, the matrix H k is obtained using the formula 

(l +(qk)r Hk qk) Pk (Pk) r 
nk+l = Hk + (qk)r pk ~ k ) r  q k 

pk (qk)r Hk + H k qk (pk)T 
. . . . .  (4) (qqk)r p k 
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where 

H ° is any positive definite matrix, 

p k  = u k _ u ~ - l ,  and 

qk = [ F '  ( u  k) + X S' ( u  k) ] r _  [ F '  ( u  k-I)  + h S' ( u  k- l )  ]7-. 

A more complete discussion of Quasi-Newton methods and other alter- 
natives to Newton-Raphson can be found in [4] or [5]. 
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(AUTHORS' REVIEW OF DISCUSSION) 

FUNG YEE CHAN, LAI K. CHAN, AND MAN HEI YU: 

Dr. Shiu generalizes F + kS using a formulation which covers a wide 
range of cases. Multivariate calculus can then be applied to the graduated 
values u k and used to derive the monotone properties. 

The problem of minimizing 

wxlux-ux"l ÷ XmaxlAZUyl 
x y 

and other related problems, of  which the norms of F and S are different and 
are e l ,  22 or e®, have been investigated by us in a separate study. 

We agree with Dr. Shiu's comment that, due to the advances of computer 
technology, new approaches in the formulation and solution procedures for 
the Whittaker-Henderson graduation should be explored. Recently, we have 
been working on a statistical data analysis approach of selecting h. 

Dr. Rosenbloom gives a comprehensive description of contemporary tech- 
niques which improve the traditional Newton-Raphson method. 

In his 1974 Part 5 Society of Actuaries Study Note on graduation, Dr. 
Thomas Greville elegantly used linear algebra to formulate and solve the 
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Whittaker-Henderson graduation problem. His work has inspired using mod- 
em mathematics in research work on graduation. This paper and the two 
discussions represent some of the inspiration. 

We would like to take this opportunity to thank Dr. Greville, who has 
contributed so much to the development of graduation methodology. 




