
Modeling treatment costs associated with a multi-stage pandemic

Michael A. Ekhaus
Gibraltar Analytical

Minneapolis, Minnesota

Email: mekhaus@GibraltarAnalytical.com

Abstract

Abstract: Introduced is an Interacting Particle System (IPS) approach
to modeling a multiple stage pandemic. The model population receives
differing treatments with possibly differing costs depending on the stage
of exposure/infection. The total cost of treatment is a time varying utility
function of the ensemble population for which this approach uses parti-
cle system methods to simulate the cost of maintaining survival of the
population. Interacting Particle Systems are a class of spatial-temporal
stochastic processes suitable for studying the spread of infectious diseases
and other interaction phenomena.

The paper gives a brief background on particle systems with specific
focus on “the contact process”, followed by expanding the contact process
to represent more realistic state transitions.

1 Introduction

Interacting particle systems (IPS) is a branch of modern probability theory
which began in the early 1970’s to rigorously study problems motivated from
Statistical Physics. Subsequently these methods are being applied to problems
in biology, economics, and others fields. In joint work with Sandia National
Laboratories, the author has applied particle system methods to study cyber
conflicts. Roughly speaking, a computer network will experience catastrophic
events if the percentage of computers infected with viruses exceeds a threshold.
Since the infected machines may be under the control of malicious forces, un-
derstanding how to model and predict network events is crucial. In addition, it
is important to understand which strategies are effective in combating attackers
while still allowing computers to perform useful work. Specifically, if nefarious
interests can cause computer networks to effectively spend all their processing
to combat attacks, then the attackers are successful. Similarly, this work begins
with questions about how policies and constraints can effect the outcome and
effectiveness of containing a pandemic outbreak.

There are three broad categories of particle systems: Contact, Voter, and
Exclusion type processes. T. Liggett (see [1], [2]) has written two excellent
treatises on IPSs with particular focus on the mathematical intricacy.

This paper deals with with variations on the now classical “Contact Pro-
cess”. The contact process is a spatial-temporal Markov process exhibiting a
phase transition and depicts the spread of disease in idealized geographical set-
ting via interactions among the models population, which are modeled as sites
on a lattice. The phase transition associated with the contact process is an
abrupt change in the probability that an infection can survive and propagate
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through out the model. This paper intends to extend particle system methods
to more accurately represent factors of pandemics and in general epidemiol-
ogy, while suggesting a method for analyzing the cost of managing a pandemic.
As with all models, these models are still idealizations. This paper takes the
viewpoint, and subsequently models, cost as a time-series in which the accumu-
lated cost increases over the evolution of the pandemic. Currently, there is no
attempt within to study “optimal cost”. Questions of optimality will require
further analysis and should use real data. This paper primarily focuses on mod-
eling methodology. Furthermore, the model does not yet include multiple waves
within a pandemic nor mutation of the disease.

Although the model is preliminary, this work illustrates issues concerning
policy effectiveness in dealing with phenomenon that exhibit phase transitions.
Small changes in policy and input parameters may result in large changes in the
outcome.

2 Motivation from two dependent Markov Chains

We begin by consider a deceivingly simple model: a 2 state Markov chain. Let
the states represent being healthy and being infected. If one is healthy, then
with a certain probability one may become infected and vice verse. Such chains
are useful and serves as a good starting point. What if we’re considering 2
individuals that have some contact with each other, and that the probability of
transitioning from being healthy to being infected depends on the other person’s
health. The individual chains will no longer be Markovian and one is naturally
led to studying the Markov Chain describing the pair of individuals. Following
this line of reasoning, consider 3 individuals which all have contact with each
other. The probability an individual becomes sick should depend on the number
of other individuals which this individual has contact that are infected. More
precisely, it should depend on the density of possible individuals with which
one has contact that are infected. What if we’re considering a large, but finite
population of individuals (N) and that for each individual there is a list of other
individuals with whom this person has contact. A state of this population is
represented by whether each individual is healthy or infected, and results in
2N configurations of the population. Even in cases for which limited contact
among individuals is possible, the resulting Markov Chain will become very
difficult to analyze by the traditional linear algebra approach used for studying
Markov Chains. This is the context for studying the contact process and other
interacting particle systems.

2.1 Background: The Contact Process

The classical contact process (see [1]) is a continuous-time Markov process

with state space {0, 1}Zd

, where Zd is the infinite d-dimensional integer lat-
tice. In order to avoid defining the mathematical machinery for infinite par-
ticle systems, consider a contact process on a finite square lattice denoted by
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L2 = {1, 2, 3, · · ·L} × {1, 2, 3, · · · , L} .
For each x ∈ L2 there are two possible values 0 or 1 (healthy or infected).

An element in {0, 1}L
2

may be identified with subsets of L2. Let A be the set of
all x in L2 that are infected. Transitions for the Markov Chain occur as follows:

• A transitions to A\{x} for x in A with probability δ, and

• A transitions to A ∪ {x} for x not in A with probability ρx(I). Where
ρx(I) is the percentage of neighbors (i.e. density of neighbors) of x which
are infected.

The model may be described by a collection of identical transition diagram
denoted in figure 1.

s s

-

�
I

S

δ

ρx(I)

Figure 1: transition diagram for the contact process

The neighborhood structure for the contact process is traditionally the 4
nearest neighbors associated with the regular square lattice, but recently study
of the contact process on more general graphical structures has become of in-
terest. Since air travel is so prevalent, the graphical structure should allows
long-range connections between the population, whereby one entity can infect
another that is not geographically neighboring. The fundamental mathematical
questions associated with the contact process involve understanding the long
term survivability of the process (i.e. survival of an infectious disease) as a
function of the parameter δ. Often the problem is stated for the infinite square
lattice and the process is defined in terms of Poisson rates. We’ll continue with
the finite setting, and concern ourselves with probabilities of events, rather than
rates at which these events occurs.

An assignment of 0 or 1 to each x ∈ L2 is easily visualized as is bitmap.
Figure 2 shows the evolution of a contact process on a square lattice with each
site having 4 nearest neighbors (wrapping around at the boundaries). There are
22,500 sites in this lattice and scaled time = 1000 indicates that the associated
discrete time Markov Chain was run 22,500,000 iterations (22, 500× 1000) and
δ = 0.6. The process was started from an initial configuration of mostly healthy
sites (shown in green) with a core of infected sites (shown in red).
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Figure 2: 2-d contact process

3 Long-Range Connections: Watts-Strogatz type

graphs

Although the 4 nearest neighbors is a crude idealization of our worlds topol-
ogy, it is a reasonable starting place for considering local interactions due to
its structure and it’s always possible to extend the approach to more realistic
graphs.

As noted, it is important to allow long-range connections between sites. The
topology will be idealized as a Watts-Strogatz type graph (see [3]).

Starting from a finite square lattice, one “rewires” the lattice according to
a probability p ∈ [0, 1) as follows: for each site in the lattice, pick another site
uniformly over all other possible sites and with probability p an edge is added
to the lattice linking these two sites. Watts and Strogatz also removed an edge
in order to maintain a fixed degree for the graph. The graph considered here
does not require a fixed degree and long-range connections are only added. The
neighboring sites of x are those sites which are linked to x by one edge. Note
that the nearest neighbors of x are the original 4 nearest neighbors and any
additional sites achieved by the rewiring.

Starting from the same initial configuration as figure 2 and δ = 0.6, but using
the additional rewiring of the topology as described above with probability 0.1.
The resulting contact process spreads throughout the entire population and
reaches equilibrium in under a scaled time of 200 (see figure 3). Compared this
with the previous scenario in which the contact process as yet to spread to the
entire domain in 5 times the amount of time.

The use of Watts-Strogatz type graphs and other long-range connection
graphs is to model the connectedness of people in the world and has been pop-
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ularized in the media as: Six degrees of separation. The phenomena is usually
described in a positive sense, but when considering a pandemic model this con-
nectedness is a problem. It enhances a virus’ ability to branch and spread
between hosts. This issue will become crucial in the latter part of this paper
when exploring a variety of scenarios.

Figure 3: 2-d contact process with long range connections

4 Multi-Stage Pandemic Model

Several variations on the contact process will be discussed. First our model will
allow a site in the graph (idealized person) to transition between seven states
and allows the process to be non-homogeneous. The additional states will allow
for varying costs to be assigned to treatments and the non-homogeneity allows
(per site) for varying probabilities that treatment is successful. Furthermore,
although seven states is probably not sufficient to model a real world scenario, it
suffices to illustrate our methodology. Readers interested in rigorous analysis of
contact processes in the multi-stage setting are referred to Krone ( [4]). Krone’s
work considers 3 allowable states per site.

The other extensions are non-traditional and make rigorous analysis of the
models, at best, difficult. These extensions impose deterministic policies and
constraints on the stochastic process, thus making description of the transitions
by way of a transition diagram very difficult to read. For this reason, the
traditional extension is presented with a transition diagram followed later by a
section describing the policies and constraints.
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Associated with the paper, this model was simulated allowing each extension
to be independently enforced or not. Whether a policy or constraint significantly
contributes to the behavior depends on the models sensitivity to these parame-
ters, and the interactions between policies and constraints.

4.1 state representation

There are 2 categories of states associated with the model, states that receive
treatment and have a related cost for a site obtaining the state and the other
are non-treatment states.

• S - a state in which a site is susceptible to becoming exposed to the
pandemic.

• E - a state in which a site has been exposed.

• I - a state in which a site having been exposed, now has become infected.

• D - a state in which the site has become inert to the pandemic. Possibly
due immunity or deceased.

• N - a state in which the site has changed the risk of exposure. Possibly as
a result of an anti-viral. Although not currently modeled in this manner,
this state could possibly occur as a result of awareness that an individual
may have about the pandemic. For example, due to awareness, one might
be more careful about contact with others and hence, lower the probability
of exposure. The awareness may be linked back to the percentage of
individuals that are infected and deceased.

• T1 - a state in which the site having been exposed, now receives treatment.

• T2 - a state in which the site having been infected, now receives treatment.
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Although it is arguable that every state has a cost associated with it, the
states are tabulated in table 1 as follows

Table 1: Model State Description

Category Value Color

Non-treatment states

S Green
E Orange
I Red
D Black

Treatment states (having cost)
N DarkBlue
T1 Yellow
T2 Magenta

Table 2 shows the allowable transitions that a site can make and the param-
eters associated with these transitions. Loops are not shown in the diagram.
For example,self transitions, such as S → S are not shown in the diagram.

Table 2: multi-stage contact transition diagram
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A configuration of this process is an assignment of value to each site x in
the graph defined earlier (fixed size L2 and rewiring probability p). As such, a
configuration is a 7 colored bitmap. Note that the long-range connections are not
seen in the representation of the configuration. The set of all configurations, or
the state space, is {S, E, I, D, N, T1, T 2}v(GL(p)), where v(GL(p)) are the sites
of the Watts-Strogatz graph GL(p). The dynamics will be a Markov Chain on
the state space {S, E, I, D, N, T1, T 2}v(G). Simulation for subsequent scenarios
used lattice with 62,500 sites and a Markov Chain had 762,500 states.
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4.2 Pandemic dynamics

Throughout the simulation a rewiring probability of 0.01 and 0.15 were used to
generate the Watts-Strogatz type graph that the pandemic evolves on.

4.2.1 traditional probabilities

Table 3 categorizes all the traditional Markov transitions for this model as to
whether there is a cost associated with the transition and also the probability
used in the simulations. For a visual aid, figure 4 presents a snapshot of this 7-
stage contact process after approximately 4.5 million iterations of the associated
Markov Chain.

Table 3: Transition Table

transition transition probability

Transition with Cost

S → N psn

E → T 1 pet1

I → T 2 pit2

N → N 1 − pns − pne

T 1 → T 1 1 − pt1s − pt1i

T 2 → T 2 1 − pt2s − pt2d

Transitions without Cost

N → S pns

N → E pneρ(I,T2)

S → E pseρ(I,T2)

E → I pei

T 1 → S pt1s

T 1 → I pt1i

I → D pid

T 2 → S pt2s

T 2 → D pt2d

S → S 1 − psn − pseρ(I,T2)

E → E 1 − pet1 − pei

I → I 1 − pit2 − pid

D → D 1

Since the stochastic process has only one mechanism for the spread of infec-
tion (spread via contact) and that mechanism causes a transition to only state
E, it is plausible that the process is “essentially” a contact process if one dis-
regards the state D. The phase portrait for the contact process is completely
understood, but understanding the phase portrait for this 7-stage contact pro-
cess is extremely difficult due to the number of path possibilities. Consequently,
understanding the sensitivity associated with parameters and the overall effect
on the evolution is also extremely complex. For this exposition, the parameters
have been chosen to illustrate a range of possible behaviors resulting from in-
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Figure 4: 2-d multi-stage contact process

teractions among the policies and the constraints. The policies and constraints
are elaborated next.

4.2.2 policy transitions and constraints

Augmenting a particle system model with policies and constraints is important
from many perspectives. First, suppose one had complete knowledge of all
events by which a pandemic could evolve. It’s unrealistic to assume that we
would merely compute our survival probably and let the rest result according
to some complicated roll of the “dice”. In fact, we are dealing with far less than
complete knowledge and would have good reason to control anything that might
help the outcome. In this regard, a pandemic is a conflict/war between species
in which there is no negotiating.

For the purposes of this work, cost of the various treatments is represented by
the occupation density of states associated with treatments and is accumulated
over time. There are several policies and constraints which will be placed on
this 7-stage contact process and we’re interested in exploring the effects on the
process behavior and the accumulate cost functions.

In the IPS literature, focus is usually (but not always) placed on infinite
graphs and long term asymptotic system behavior. As mentioned earlier, we’re
interested in large but finite graphs and also in the short-term transient behav-
ior. In particular, non-equilibrium dynamics and convergence to equilibrium.
To the extent that state “D” represents both immunity and deceased, it is re-
ally to be thought of as the deceased case. As such, it is a goal to converge to
distributions with as small a rate of increase for the deceased density.

In order to introduce that sites are not equally likely to have successful
treatments, a ranking was assigned to x using a uniform [0,1) random variable
(denoted r(x)). Although use of the uniform distribution is probably not realis-
tic, it suffices for our purpose. The ranking r(x) indicates the probability that
treatment is unsuccessful.
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Susceptibility constraint: This constraint modulates the transitions proba-
bilities associated with susceptibility as follows

• replace pt1s → pt1s × (1 − r(x))

• replace pt1i → pt1i × r(x)

• replace pei → pei × r(x)

• replace pid → pid × r(x)

• replace pt2s → pt2s × (1 − r(x))

• replace pt2d → pt2d × r(x)

For example, the higher the susceptibility, the more likely a site is to be-
coming infected and the less likely it is to recovery. This constraint rescales the
transition probabilities accordingly.
Resistance constraint:

This constraint modulates the transitions probabilities associated with tran-
sitions into the infected state, I. The idea is that a site acquires a resistance
to becoming infected as a function of the number of previous times the site has
been infected. The number of times a site has been infected is equated to the
number of times a site as successfully thwarted infection previously. Let res

denote the scaling factor representing resistance. The following probabilities
are rescaled as follows

• Replace pei → pei × {♯times previously infected}−res

• Replace pt1i → pt1i × {♯times previously infected}−res

Treatment policy 1: This policy modulates the transition probabilities asso-
ciated with receiving treatment based on susceptibility as follows

• replace psn → psn × r(x)

• replace pet1 → pet1 × (1 − r(x))

• replace pit2 → pit2 × (1 − r(x))

For example, the higher the susceptibility, the more likely a site is to receive
treatment and transition to state N , but also the less likely the site is to receive
treatments T 1 and T 2.
Availability of treatment constraint: This constraint determines the avail-
ability of treatment for each possible treatment and if a treatment is unavailable
blocks transitions into states associated with the respective treatment. A treat-
ments availability is renewed periodically and the period is an input parameter.
Treatment associated with state N is considered a preventive measure, such as
use of a anti-viral medication, and this policy blocks excessively applying this
treatment. A site x can remain in state N , but the cost function can only
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be incremented if the previous increment is more than a prescribed number of
scaled time periods. That is, treatment associated with state N is effective for
a period of time and one need not apply treatment until after the treatment has
expired.
Treatment policy 2: This policy purposes to have sites take preventative mea-
sure if a local threat exists. The policy is modeled by overriding the probabilistic
nature of receiving treatment associated with state N, providing treatment is
available, based on the existence of local threat of possible exposure. Using a
local region of the 24 nearest neighbors of site x from only the square lattice. If
any of these neighbors are in state I or T 2, the state x transitions to state N .
Local quarantine policy: This policy replaces ρ(I,T2) → ρ(I), effective quar-
antining sites that are infected and receiving treatment (i.e site in state T 2).
There is a simplifying assumption about the world being modeled: if “one” is
knowingly infected, one would seek any available treatment.
Global isolation policy: Since long-range connections allow a pandemic to
branch and spread quickly, this policy aims at utilizing the global density of
infected sites to switch between allowing and disallowing long range connections.
More precisely, if the global density of infected sites exceeds a given threshold,
the policy switches to using only the nearest neighbors from the regular square
lattice and not the Watts-Strogatz portion of the graph.When the density falls
sufficiently, long-range connections are again allowed.

Although this policy is useful in curtailing the branching of infection, it is far
to aggressive because, as simulations showed, this policy disallows long-range
connects far to often. Remember, long-range connections represent interactions
beyond ones immediate connections: air travel, going to a work place, etc.
Augmented global isolation policy: This policy refines the isolation ob-
jectives of the “global isolation policy” without entirely eliminating long-range
connection, but rather augments the global isolation policy with an intermedi-
ate threshold which triggers a random screening process. There is a parameter
that indicates the degree (or depth) of screening. If the infection density were
to rise beyond the intermediate threshold and exceed the original global thresh-
old, then the original global policy goes into effect and disallows all long-range
connections until the infection density is sufficiently reduced.

5 Simulation

For the simulation the lattice was increased from 22,500 sites to 62,500 sites.
Simulation of this model was performed by iteratively picking a random site
uniformly from among the 62,500 sites. Then transition table 2 is used together
with selected policies and constraints to evaluate updating the state at site x. A
rescaling of time, #iterations/62,500, has been used, rather than directly using
#iterations.

For this model, there is no a priori reason to sample the site updated from
other than the uniform distribution, but it is worth noting that one could sample
from a different distribution. Furthermore, the state updates could be have been
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done synchronously, as opposed to asynchronously as was the case. In some
modeling problems synchronized updates are of interest.

5.1 Observations

In general, analysis of such a model will require that one decide which type
of scenarios are of interest and plan to analysis portions of the phase portrait.
There were several parameter sets used in the following scenarios and some
discussion is warranted. Table 4 indicates the wiring probability and the prob-
abilistic parameters associated with traditional transitions indicated in Table
2. Parameter set 1 uses a rather small wiring probability, reminiscent of soci-
ety that is less connected by long range connection and more localized. The
parameter sets with 0.15 wiring probability are to indicated a more modern so-
ciety with a significantly larger degree of connectivity. The choice for rewiring
probabilities was speculatively chosen with the larger being a factor of 15 times
with the thought that our current world might reasonably be that much more
connected than the world might have been in 1918.

Table 4: Parameter Sets

w
ir

in
g

p
ro

b

pse psn pns pne pet1 pei pt1s pt1i pit2 pid pt2s pt2d

parameter set 1 0.01 0.80 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.75 0.002 0.1 0.0001
parameter set 2 0.15 0.80 0.05 0.05 0.20 0.1 0.1 0.1 0.1 0.75 0.002 0.1 0.0001
parameter set 2a 0.15 0.80 0.025 0.05 0.20 0.05 0.1 0.1 0.1 0.375 0.002 0.1 0.0001
parameter set 3 0.15 0.80 0.05 0.05 0.20 0.15 0.1 0.1 0.1 0.75 0.002 0.1 0.0001
parameter set 4 0.15 0.80 0.05 0.05 0.20 0.15 0.1 0.15 0.1 0.75 0.002 0.1 0.0001
parameter set 5 0.15 0.80 0.05 0.05 0.20 0.15 0.1 0.15 0.05 0.75 0.002 0.1 0.0001
parameter set 6 0.15 0.80 0.05 0.05 0.20 0.35 0.1 0.15 0.05 0.75 0.002 0.15 0.0001

Table 5 gives sample outcomes associated with parameter set 1. This param-
eter set was chosen with the intent of being a benchmark for the later parameter
sets. The parameters were chosen so that when approximately 30 percent of the
sites had been infected at some time prior, that the mortality was about 0.5
percent and the time period was roughly several hundred periods. In order sim-
plify the tables, sites have been grouped healthy, sick, and deceased/mortality.
States {S, E, N, T 1} are healthy states, {I, T 2} are sick states, and {D} is the
deceased state 1.

Table 5 gives sample outcomes mostly associated with parameter set 2. This
parameter set was chosen with the intent of representing a society and that has
a significantly larger connectivity and also the allows transitions to state {N}.
Recall that state {N} represent a preventative treatment such as taking an anti-
viral medication. Note that the distribution of healthy, sick, and deceased for

1the percentage of the combined categories should sum to 1.00, but for the sake of honesty,

a error in the code has resulted in the percentages being slightly biased.
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Table 5: Summary I
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scenario-1 1 - - - - - - - 272 0.787 0.201 0.004 0.372 0.003 0.616
scenario-2 1 X - - - - - 106 545 0.802 0.185 0.005 0.223 0.356 0.412
scenario-3 1 X X(-3.0) - - - - 106 500 0.806 0.182 0.004 0.865 0.018 0.109

scenarios 1,2, and 3 have drastically different long term behavior, but are rather
similar when the respective samples reached 30 percent coverage of infection.
Also, coverage of infection should be understood to mean that the set of sites
that have been infected, regardless of whether the sites are currently infected.

Table 6: Summary II
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scenario-A 2 - - - - - - - 184 0.857 0.134 0.001 0.558 0.293 0.141
scenario-B 2 - - - - - - 106 154 0.851 0.140 0.001 0.384 0.001 0.607
scenario-C 2 - X(-3.0) - - - - 106 154 0.883 0.108 0.001 0.780 0.000 0.192
scenario-D 2 X - - - - - 106 223 0.801 0.190 0.001 0.253 0.282 0.457
scenario-E 2 X X(-3.0) - - - - 106 237 0.822 0.169 0.001 0.867 0.013 0.112
scenario-F 2 X X(-3.0) X - - - 106 203 0.767 0.221 0.004 0.803 0.006 0.183
scenario-G 2 X X(-3.0) - X X X(4-1) 106 245 0.826 0.165 0.001 0.870 0.012 0.109
scenario-H 2 X X(-3.0) - X X X(4-2) 106 262 0.811 0.179 0.002 0.870 0.013 0.109
scenario-Ha 2a X X(-3.0) - X X X(4-2) 106 213 0.804 0.186 0.002 0.848 0.016 0.128
scenario-I 2 X X(-3.0) - X X X(5-1) 106 275 0.800 0.189 0.003 0.873 0.012 0.107
scenario-J 2 X X(-3.0) - X X X(10-1) 106 263 0.811 0.180 0.002 0.872 0.013 0.107
scenario-K 2 X X(-3.0) - X X X(10-2) 106 247 0.823 0.167 0.001 0.872 0.013 0.107
scenario-L 2 X X(-3.0) X X X X(4-2) 106 249 0.818 0.170 0.003 0.812 0.007 0.173
scenario-M 2 X X(-4.0) - X X X(10-2) 106 260 0.820 0.170 0.002 0.893 0.011 0.088
scenario-N 2 X X(-5.0) - X X X(10-2) 106 245 0.833 0.158 0.001 0.904 0.008 0.080

scenario-O 3 X X(-5.0) - X X X(10-2) 106 272 0.809 0.181 0.002 0.906 0.009 0.077
scenario-P 4 X X(-5.0) - X X X(10-2) 106 288 0.792 0.198 0.002 0.908 0.008 0.075
scenario-Q 5 X X(-5.0) - X X X(10-2) 2 × 106 518 0.883 0.108 0.001 0.946 0.010 0.037
scenario-R 6 X X(-5.0) - X X X(10-2) 2 × 106 970 0.943 0.047 0.002 0.977 0.010 0.005

These scenarios are too numerous to completely describe here, but there are
several observation which should be made.

• Scenario-A: First, the differences between scenario-1 and scenario-A are
slight but important. Scenario A has non-trivial probability of transition-
ing to state {N}. The transition to exposed state is 4 times greater for
state {S} than for {N}, but the resulting percentage of mortality is greater
than 4 times. This is due to the difference in rewiring probabilities.
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• Scenario-E: Comparing scenario-E with scenario-3, one sees that intro-
ducing susceptibility, resistance, and constrained treatments reduces the
long term difference.

• Scenario-{G,H,I,J,K}: All these scenarios are similar except for dif-
ferences in the isolation policy. The notation (4-1) indicates 2 parts of
the isolation policy. The first number indicates the screening depth and
the second number indicated one set of threshold parameters. That “-1”
represents one choice of thresholds and “-2” indicates a different choice of
thresholds.

• Scenario-L: The important difference between scenario-L and scenario-
H is the use of treatment policy 1. Of course, treatment policy 1

is not the only imaginable policy that reweighs probability of receiving
treatment as a function of susceptibility, but it is interesting to ponder
whether reweighing in this manner effects the overall behavior. It would
appear that using treatment policy 1 dramatically raises the long term
mortality percentage.

• Scenario-{M,N}: These two scenarios increase the screening and resis-
tance parameter. Although these scenarios improve overall mortality, the
effect is not a beneficial as one might have hoped.

• Scenario-{O,P,Q,R}: These 4 scenario attempt to reduce the overall
mortality by adjusting the parameters within parameter set 2 and in-
creasing the available treatments.

5.2 Consideration of Cost

The number of treatment per unit time associated with states {N, T 1, T 2} is
a proxy for the accumulated costs of treatment. For each of the various sce-
narios, cost utility function was compiled during the sample run of the process.
Scenario L is worth comparing to scenario H. Scenario L has 6.4 percent larger
mortality measured over 2000 time periods of the models. Which corresponds
to 125,000,000 iterations of the Markov Chain. The associated cost functions
may be viewed respectively in figures 8 and 7.

Table 7 gives the mortality percentages for scenario L and H at time period
750 and 2000. The differences between the percentage change of each scenario
over the period of time [750, 2000] is “close enough” for our comparison. If one
wanted to have the “same” percent change, then different time intervals need
to be considered.

Table 8 summarizes the total number of treatments at time periods 750 and
2000. It is not possible to complete the cost trade-off without knowing/modeling
the expected cost per each treatment. The point is: policy treatment 1 may raise
the overall mortality but except for percent change associated with treatment
T2, scenario L has lower cost growth than scenario H. Noted that the percent
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Table 7: Mortality Summary

Mortality Comparison
scenario time period 750 time period 2000 percent change

scenario-L 0.149 0.173 16.1 %
scenario-H 0.095 0.109 14.7 %

scenario-Ha 0.117 0.128 9.4 %

change between treatment T2 is rather small in comparison to the other dif-
ference, but cost of T2 is probably expected to be the largest of all treatment.
Treatment Policy 1 should probably not be used for a variety of reasons. For
the purposes of this paper, the cost of mortality is probably higher than any
treatment cost, and as such the 6.4% additional deceased is hard to justify.

Although not directly a treatment cost, another factor needing consideration
is the screening and restricting of the connections associated with the isolation
policy. For example, scenario L closed all long-range connections 36.2% of the
time as opposed to 22% of the time for scenario H. The ratio of the percentage
of time all long-range connections were closed to the time connections were only
screened is 2.5 for scenario L and 2.7 for scenario H. More analysis is needed to
determine the degree to which this increase is due to the use of the treatment

policy 1 or just a statistical fluctuation. If more data on expected cost per
treatment were available, then a detailed analysis of the trade-offs could be
possible.

Table 8: Treatment Summary

Number of Treatments Comparison
scenario time period 750 time period 2000 difference percent change

N
scenario-L 2,059,939 6,014,017 3,954,078 192%
scenario-H 2,457,979 8,406,573 5,948,594 242%
scenario-Ha 1,919,327 6,380,268 4,460,941 232%

T1
scenario-L 1,039,651 2,945,225 1,905,574 183%
scenario-H 1,683,311 5,106,018 3,422,707 203%
scenario-Ha 1,101,328 3,773,227 2,671,899 243%

T2
scenario-L 3,830,001 6,119,557 2,289,556 60%
scenario-H 5,281,653 8,280,921 2,999,268 57%
scenario-Ha 5,440,359 8,730,350 3,289,991 60%

Scenario Ha is a bridge for comparing scenario L and scenario H. Rather than
using the treatment policy 1 the average value of the policy’s effect is used.
Scenario L has 4.5% of its overall deceased that can not be explained simply by
appealing to the fact that 3 probabilities have on average been reduced by 50%.
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6 Moving toward more realistic models

6.1 The H5N1 virus

The Center for Infectious Disease, Research and Policy at the University of Min-
nesota (CIDRAP) has given some initial feedback about this model concerning
use for the H5N1 virus. The comments have been illuminating and useful. A
couple of simple modifications to the software allows easy exploration.

• Concerning the use of the resistance constraint, there is currently no evi-
dence supporting immune boosting in regards to the H5N1 virus.

• Concerning susceptibility of the population: Although there is variability
in contracting the H5N1 virus in the cases to date, it seems unlikely to be
linked to a genetic disposition or a compromised immune systems.

Resulting from this feedback a few scenarios were run with resistance con-
straint turned off and with a simple modification to the software. The code that
implements the susceptibility policy was changed to not modulate the proba-
bilities associated with treatment. It leaves unchanged the code portions that
modify the transition from exposure to infected and infected to deceased. Ta-
ble 9 tabulates the simulations associated with the modifications relating our
discussions concerning the H5N1 virus.

Table 9: Summary of Scenarios from Software Modification for H5N1
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scenario-S 2 X - - X X X 106 266 0.919 0.072 0.001 0.533 0.017 0.443
scenario-T 2 X - X X X X 106 224 0.864 0.125 0.004 0.459 0.029 0.504

6.2 Conclusion

In this paper, a Markov Chain model was presented in which the states of the
Markov Chain represent a large collection of sites representing a population.
The Markov Chain’s transitions represent interactions between sites or entities
within the model. The probability parameters are really conditional probability
marginals (i.e given a site x in a given state and some additional knowledge of
the environment, what is the distribution of events). All modeling environments
should be simpler than the problem needing modeling. Even in this simplified
model the behavior is nontrivial and complex. In order to move toward a large
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scale and more realistic model, one first needs to compute (to the best of ones
ability) the probability marginals that will contribute to and be the propagation
mechanism for updating the state transitions.

In addition, more realistic graphical relationships should be incorporated,
because the relationships among people are not static. However, the Watts-
Strogatz is a good place to start. Although a complete representation of peo-
ples connectedness is not required, some degree of hierarchy of geography into
towns, cities, states, and countries should be incorporated. Then a more realist
modeling of long-range connections should be implemented to incorporate how
people come within contact of one another.

Currently there is essential no real world time scale set in the model. Part
of making the model more realistic should be determining such a time scale. In
order to do this, it is preferred to use real data. For example, the World Health
Organization (WHO) posts on their website information about the H5N1 virus.
As of July 30 2007, there have been 317 laboratory-confirmed cases of the H5N1
virus in humans with a total of 191 deaths (a sobering 60.25 percent). It would
be helpful to use the “time to death” for the 191 victims2. This statistic would
help in setting the time scale for the Markov Chain. Currently, the probabilities
are per update within the model. Consider that one could track sites that have
become infected and how many transitions are required for the site to transition
out of the infected state. One could then fit the data from the observed data of
the real world.

Furthermore, such a model should be made as realistic as possible before
doing analysis of fluctuations, because such an analysis requires a fair amount
of computation.

The model does not currently incorporate any notion of mass hysteria. If the
infection and death rates followed these trajectories for even a short time period,
most people would not leave their homes. Which in effect is constraining local
interactions as well as long range interactions and quarantining the pandemic.
Although, one can introduce into the model mass hysteria, it would beneficial
to do so after get the graphical relationships more realistic, because this leads
to having the branching mechanism of the pandemic more realistic.

Although this paper has not focused entirely on the H5N1 virus, this virus
was a motivating factor for the work. Given the number of unanswered questions
about this virus, it would be valuable to enhance models that could explore the
effectiveness that policies might have on containing a H5N1 pandemic.

Acknowledgment

The author would like to thank Max Rudolph for helpful input during the de-
velopment of this work and also Aaron Desmond and Nick Kelly from CIDRAP.

2CIDRAP has recently directed us on how we may locate some of the information required

to make the model more realistic

17



References

[1] Thomas M. Liggett, Interacting Particle Systems, Springer-Verlag, 1985.

[2] Thomas M. Liggett, Stochastic Interacting Systems: Contact, Voter, and

Exclusion Processes, Springer-Verlag, 1999

[3] Watts D.J. and Strogatz S.H., Nature, 393 (1998) 440.

[4] Stephen M. Krone, The two-stage contact process, Annals of Applied Prob-
ability, Vol. 9, Number 2 (1999) p.331-351

18



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  250  500  750  1000  1250  1500  1750  2000

pe
rc

en
ta

ge
 o

f t
ot

al
 

scaled time

heathy
heathy taking anti-viral

heathy exposed
heathy treatment 1

infected
infected treatment 2

deceased

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 0  250  500  750  1000  1250  1500  1750  2000

nu
m

be
r 

of
 tr

ea
tm

en
ts

N
T1
T2

-0.5
 0

 0.5
 1

 1.5
 2

 2.5

 0  250  500  750  1000  1250  1500  1750  2000

N
ea

re
st

 N
ei

gh
bo

r 
O

nl
y

Figure 5: scenario R
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Figure 6: scenario R (expanded)
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Figure 7: scenario L
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Figure 8: scenario H
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Figure 9: scenario Ha
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Figure 10: scenario S
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Figure 11: scenario T
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