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ABSTRACT 

The method involves resampling (with replacement but without random 
numbers), numerical convolutions for sums and quotients, and estimation of 
confidence intervals for trend in average size claim. Starting with an original 
sample of comprehensive major medical claims (per claimant) for each of 
two calendar years, we use. numerical convolutions for sums to generate 
distributions of average size claim (per claimant) for resamples of various 
sizes from each of the two calendar years. We also use numerical convo- 
lutions for quotients to generate distributions of trend (in average size claim 
per claimant) from the first to the second of the two calendar years, to note 
certain stabilities in standardized versions of these distributions, and to es- 
timate confidence intervals for the underlying trends. 

I. INTRODUCTION 

Suppose for a given accident year, we have n claims with severities 
t i i s 

Xl, X2, X3, . . . ,  Xn ;  

and suppose for a later accident year, we have m claims with severities 
p t t t 

YI, Y2, Y3 . . . .  , Y,,,- 

If the coverage is a type for which inflationary trends are significant, we 
might want to estimate the trend from the earlier to the later of the given 
accident years. 

An estimate i of the true trend a~ in severity could be obtained from the 
ratio of the average claim severities in the later accident year to the average 
claim severities in the earlier accident year; namely, 

! .  
i =  m ~" 1. 

/ 1  i = l  

11 
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If the given accident years are s years apart, then the annual trend might 
be estimated by 

(1 + - 1. 

While useful, t is a single-point estimate for the true severity trend ~ and 
gives no indication of the uncertainty involved in the estimate. To try to 
measure the degree of statistical uncertainty involved in this estimate, we 
begin by reinterpreting our data. 

Instead of considering the set of values 

( x 3 , o , , 2  . . . . . .  

to be the experience for the earlier of the given accident years, we treat it 
as a sample I of n claims drawn from the population of all claims that could 
have occurred in that accident year. 

We let the empirical distribution f x  of severities X for the earlier of the 
two given accident years be expressed as 

f x  = (xi, P,),-1.2 ...... ', 

where n' is the number of different severities in the set (x~)~= 1. z ...... 

xj < Xk fOr j < k 

andpl is the relative frequency ofx~ for i=  1, 2 . . . .  , n'. Clearly, n>_n'. 
Similarly, the set of values 

(Y~)i- 1.2 . . . . . .  

can be treated as a sample z of m claims drawn from the population of all 
claims that could have occurred in the later of the two given accident years; 
and we let the empirical distribution f r  of the severities Y for that accident 
year be expressed as 

f r  = (Yi, /~i)i=1.2 . . . . . .  ., 

where m' is the number of different severities in the set (Y~)i=l. 2 . . . . . .  

yj < ykfor j < k 

andp~ is the frequency ofy~ for i =  1, 2, ..., m'. Clearly, m>_m'. 

~This sample is referred to as the original sample for this accident year. 
2This sample is referred to as the original sample for the later of the two given accident years. 
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We can estimate the distributionfr of resample point estimates T for the 
true severity trend ~ as follows: 
(1) Sample n times from the distributionfx, summing the results and divid- 

ing by n, to obtain a possible average size claim, a, from the earlier of 
the two given accident years 

(2) Sample m times from the distribution fy, summing the results and di- 
viding by m, to obtain a possible average size claim, b, from the later 
of the two^given accident years 

(3) Calculate t = (b/a)-1,  which is a trial resample point estimate of the 
true severity trend ~. 

Repeating steps (1) through (3) many (say v) times produces^an approx- 
imation to the distributionft of possible sample point estimates T of the true 
severity trend 6. 

We now describe this classical simulation process in more detail. After- 
ward, we offer a more efficient method (the generalized numerical convo- 
lution) for obtaining the distribution of resample point estimates. 

I I .  B O O T S T R A P P I N G  F O R  T R E N D  IN A V E R A G E  S I Z E  C L A I M  

A. Resampling (with Replacement) Using Random Numbers 

The cumulative empirical distributions for the two given accident years 
are 

( ) xi, Y, p~ and yj, p~ , 
k ~ l  i~1 ,  2 . . . .  , n' k ~ l  j ~ l ,  2, ..., rn' 

respectively. The resampling (with replacement) from the original samples 
involve the following steps: 
(1) Generate a uniform [0,1] random number, r, and determine i such that 

Z~,= 1 Pk is the smallest cumulative probability greater than r. Look up x i 
and add it to an accumulator. 

(2) Repeat step (1) n times. 
(3) Divide the resulting accumulation by n, to obtain the average size loss 

per claimant, and call the result a. 
(4) Perform steps (1) through (3) again, but use E~=lpk instead of E~,=lp~ 

and Y1 instead of xi in step (1), and m instead of n in steps (2) and (3), 
and call the result b. 
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(5) Calculate t = (b/a)- 1, which is a resample point estimate t for the true 
trend O. 

(6) Repeat steps (1) through (5), say, v times. 
Let the frequency distribution of the resulting values of 1 + 1" be labelled 

asfl+~- and represented as 

(1 + t,, r , ) , . , .  2 . . . . . .  ., 
t 

where v'  is the number of different point estimates obtained in step (5), 
and rk iS the frequency of  l + t k  for k = l ,  2, .. . ,  ~'. Nowfl+~-, once gen- 
erated, can be used to estimate the standard error in trend or other such 
statistics. This procedure is referred to as bootstrapping. 3 

To use this approach, it is helpful to know how large ~ should be to 
produce a reasonably good representation of the distribution of 1+  T if 
were chosen to be infinity. Table 1 shows results of this approach using 
U = 103, 104 and 105 trial resample point estimates and m =n  = 64; the ac- 
cident-year pair is 1983-84. The last column of Table 1 shows results from 
an almost exact representation of the distribution f l ~ -  of 1 + T if ~ were 
chosen to be infinity. 4 

This resampling procedure is practical if v = n  and m are each small. 
However, as v, n and/or m increase, this procedure becomes impractical. 
So we use the method below, which we call "Operational Bootstrapping." 

B. Resampling (with Replacement) without Random Numbers 

In contrast to classical bootstrapping, in which random numbers are used 
to do the resampling, operational bootstrapping uses numerical convolutions 
to generate the distributions without random numbers. For example, consider 
the distributionfx, ÷x2 ofX~ +X2, where X~ and X 2 are independent identically 
distributed random variables, each distributed as 

(Xi ,  P i ) i ~  l, 2 . . . . . .  • 

3For a detailed description of bootstrapping, see Efron and Tibshirani [1]. Effort coined the term 
"bootstrapping" in the late 1970s. 

"For the method used to obtain this distribution, see Section II-B. 



TABLE 1 

BOOTSTRAP-TYPE DISTRIBUTIONS OF TREND FACTORS (I +f ' )  
(RESAMPL1NG BY MONTE CARLO) 

[ 1÷'/" 
Cumulative v = 103 u = I04 o ~ 10 ~ . = x 

0. 000001 0.109 
0.00001 0.146 0.146 
0.0001 0.206 0.179 
0.001 0.264 0.247 
0+01 0.378 0.392 0.389 0.375 
0.025 0,472 0.467 0.462 0.457 
0.05 0.544 0.535 0.532 0.526 
0.1 0.636 0.622 0.622 0.618 
0.2 0.748 0.737 0.742 0.737 
0.3 0.838 0.834 0.840 0.837 
0.4 0.938 0.925 0.930 0.932 
0.5 1.022 1.017 1.025 1.028 
0.6 1.125 1.123 1.130 1.135 
0.7 1.236 1.243 1.256 1.261 
0.8 1,418 1.409 1.424 1.431 
0.9 1.723 1.687 1.706 1.723 
0.95 2.037 1.968 2.000 2.027 
0.975 2.398 2.323 2.331 2.370 
0.99 2.964 2.871 2.833 2.940 
0.999 4.068 4.433 4.274 4.844 
0.9999 6.458 5.618 6.635 
0.99999 7.299 8.360 
0.999999 10.239 

Mean 1.121 1.061 1.055 1.066 

Var. 10 ÷3 0.244 0.204 0.204 0.204 I 
n 64 64 64 64 

m 64 64 ~ 64 64 

15 
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Symbolically, we can express fx~ .x,  in terms of the distributions of X~ 
and X2, as followsS: 

fx,+x2 = fx, + fx~ 

= (x, ,  p , ) , . 1 . 2  . . . . . .  , + ( x .  p j ) j . 1 ,  2 . . . . . .  

w(xl  + xl ,  Pl "Pl) • 
(xl + x2, Pl "P2) 

(x~ + x., ,  Pl "P.') 
(x2 + xl ,  P2 "Pl) 
(x2 + x2, P2 "Pz) 

= ~, 

(x2 + x . , ,p2  "p.,) 

(x., + xl .  p., "Pl) 
(x.. + x2, p., " p~) 

(x., + x . , . p . .  "p..).., 

which we might express as 

(xi + xj, Pi "P:)i.1, z . . . . . .  , a.d~=l, Z . . . . . .  ,.6 

~The symbol + between two distributions means convolute for sums. 
'~This set of pairs is actually modified by replacing each of the pairs having identical values in 

the first position by one pair with that value in the first position and the sum of the corresponding 
probabilities in the second position. The resulting set of pairs then constitutes a distribution. 
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Using this distribution as a prototype and assuming that Xx, X2, . . . .  X,, 
are independent identically distributed random variables each distributed as 

(Xi '  Pi)iffi 1, 2 . . . . . .  " 

we can proceed recursively to generate 

fx ,  +x2+x3+ x,, 

where, since 

fX3+X4 = f x t + x 2 ,  

we can write 

f X z + X 2 ÷ X 3 + X ,  = f x ,  +X 2 "~- fX3+X, = fX, ÷X2 + fx , .x2;  

and continue to perform convolutions between the results of other convo- 
lutions until we have obtained the desired result; namely, 

f x t + x 2 + . . .  +x .  • 

If we proceed naively in this manner, the number of lines in the resulting 
distributions could become prohibitively large for both computer storage and 
computing time. The Appendix describes a method of overcoming this prob- 
lem. This method (after dividing the amounts by n) produces a distribution 
having mean equal to the mean of the original sample and variance equal to 
the variance of the original sample. 

We can similarly generate the distribution 

f Y~ + Y2 +... + Y,. 

of Y1 + ]"2 + - . -  + Y,,, where Yt, Y2, . . . ,  Y,,, are independent identically dis- 
tributed random variables, each distributed as 

(,vi,/:5,)i- 1.2 . . . . . .  ,. 

To generate the distribution 

~--- l m  + + +E " , / f l l n  X +X + +X~ f l+ f  f( z )(r, Y~ . . . . .  (/)( , ~ . . . .  ) 

of 

( l /m).  (Y, + Y2 + ... + Ym)/[(1]n)" (Xx + X2 + ... + X,,)], 
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we can first generate 7 

Letting 

be represented as 

and 

be represented as 

we have 

f Y l  + Y2+... +Ym/fXl +X2+. . .  +Xn " 

f x t+X2+. . .  +X. 

(Ui, Pi) i= I, 2 . . . . . .  * 

fYI+Y2+...  +Y., 

(Vi, Pi) i= 1, 2 . . . . . . .  " ,  

f (YI+Y2 . . . . .  Y.,) /(XI+X2 . . . . .  Xm = (Vj, J g j ) j = l .  2 . . . . . .  *[(Igi~ P i ) i= l .  2 . . . . . .  * 

(v/ . p  j) 6 UD Pi i = 1 ,  2 . . . . .  n* and j = l ,  2 . . . . .  m*" 

Then 

f l + ~ = f (I/m)(YI + Y2 +... + Y,n)/[(1/n)(XI + X2+... +X,)] 

would be obtained by multiplying the amounts (not the probabilities) in the 
distribution 

f ( Y l  + Y2+... +Y,n)/(XI+X2+... +Xn) 

by n / m .  

The distributions f1+~" generated by the methods of this section are rep- 
resentations of the distribution fl+i-, which would have been generated by 
the method of the previous section if we could have generated an infinite 
number of random numbers:  For this reason, we would expect the distri- 
butions shown in Table 1 in the columns headed v = 10 3, v = 10 4 and v = 10 5 
to approach the distribution shown in the column headed '% = infinity" as 

increases. 

7The symbol / between two distributions is being used to mean convolute for quotients, dividing 
the first random variable by the second. 

SSce the Appendix. 
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III. CONFIDENCE INTERVALS FOR TREND 

A. Large Resamples 
Lowrie and Lipsky [2] presented group major medical expense claims by 

claimant per accident year for each of the five years 1983 to 1987. Their 
distributions are shown separately for adult or child combined with either 
comprehensive or supplemental coverage. We focus on adult comprehensive 
coverage only, noting that the deductible is $100 per calendar year and the 
coinsurance is 20 percent. 

We considered the random variable 

1 + 7 "  
W =  1. 

E[1 + 

Note that E[1 + IV'] is equal to unity. We were interested to find that f ,  + w 
shows a remarkable degree of stability as the accident year pairs are varied. 
By using the operational bootstrapping approach described in the previous 
section, the distributions f l  +/- and f l  + w were generated for each of the ac- 
cident-year pairs 1983-84, 1984-85, 1985-86, and 1986--87 (see Table 2). 
In Table 2 the numbers of claims in the resamples varied from 66,260 to 
111,263. We concluded that, provided the numbers of claims are of this 
order of magnitude, f l . w  can be used as a pivotal distribution; that is, for 
any true trend 60, the point estimates 1 + i"16 o can be considered to be 
distributed asf(1 +,,,,)(, +w). We note thatf~+w is approximately N(1,Var[1 + 14']) 

and f ,  +f is approximately N(E[1 + ~,Var[1 + f]).9 

1. A Numerical Example of Determining a Confidence Interval for 
Trend Using Large Resamples 

We now turn our attention to determining a confidence interval for the 
true trend 6. We wish to determine 6, such that Pr{6, < 6} = 1 - a/2 and Oz 
such that Pr{6<Oz}= l - a / 2 ,  so that the random interval (61,62) encloses 
the true trend 6 at the desired level ( 1 -  ct) of confidence. 

From Table 2 we can select a value of W (say Wl) such that 

1 -- et/2 = Pr{w, < W}; 

°An expression such as N(ix,o a) is used, as is customary, to indicate a normal distribution with 
mean Ix and variance o-2. 
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TABLE 2 

BOOTSTe, Ae DISTRISU'r]oNs OF TREND FACTORS (1 + 1") AND STANDARDIZED FACrO~S (1 + W) 
(LARGE-SIZED RESAMPLING BY OPERATIONAL BOOTSTRAPPING) 

I983--84 1984--85 I985-86 1986-87 
Cumulative I+7" I+W 1+~ I+W 1+1" I+W 1+: t I+W 

0.000001 0.965 0.934 0.982 0.936 0.979 0.938 1.001 0.938 
0.00001 0.972 0.940 0.989 0.942 0.986 0.945 1.007 0.945 
0.0001 0.979 0.948 0.996 0.949 0.993 0.951 1.015 0.951 
0.001 0.988 0.956 1 . 0 0 5  0.958 1.001 0.959 1.023 0.959 
0.01 0.999 0.967 1 . 0 1 6  0.968 1.011 0.969 1.034 0.969 
0.025 1.004 0.972 1.021 0.973 1 . 0 1 6  0.974 1.039 0.974 
0.05 1.009 0.976 1.026 0.977 1.021 0.978 1.043 0.978 
0.1 1.014 0.982 1 . 0 3 1  0.982 1 . 0 2 6  0.983 1.048 0.983 
0.2 1.021 0.988 1.037 0.988 1 . 0 3 2  0.989 1.054 0.989 
0.3 1.025 0.992 1.042 0.993 1 . 0 3 6  0.993 1.059 0.993 
0.4 1.029 0.996 1.046 0.996 1 . 0 4 0  0.997 1.063 0.997 
0.5 1.033 1.000 1.049 1.000 1.043 1.000 1.066 1.000 
0.6 1.037 1.004 1.053 1.003 1.047 1.003 1.070 1.003 
0.7 1.041 1.007 1.057 1.007 1.051 1.007 1.074 1.007 
0.8 1.046 1.012 1 . 0 6 2  1.012 1.055 1.011 1.078 1.011 
0.9 1.053 1.019 1 . 0 6 8  1 . 0 1 8  1.062 1.017 1.085 1.017 
0.95 1.058 1.024 1 . 0 7 3  1 . 0 2 3  1.067 1.022 1.090 1.022 
0.975 1,063 1.029 1.078 1.027 1.071 1.027 1.095 1,027 
0.99 1.069 1.034 1.084 1 . 0 3 3  1 . 0 7 7  1.032 1.100 1,032 
0.999 1.081 1.046 1 . 0 9 5  1 . 0 4 3  1.088 1.042 1.112 1,042 
0.9999 1.091 1.055 1.104 1.052 1.097 1.051 1.121 1.051 
0.99999 1.099 1.064 1 . 1 1 3  1.060 1.105 1.059 1.129 1,059 
0.999999 1.109 1.073 1.122 1.070 1.115 1.068 1.139 1.068 
Mean 1.033 1.000 1.049 1.000 1.044 1.000 1.066 1.000 
Var'10 "3 0.209 0.223 0 . 2 1 1  0.192 0 . 1 9 5  0.179 0.204 0.179 
, [ 66260 76857 83457 88977 t 
rn I 76857 83457 88977 111263 

that is,  such  that 

1 - a / 2  = Pr{1 + wl  < 1 + 14/} 

= Pr{1 + w 1 < (1 + ~ / ( 1  + O)} 

= Pr{(1 + w , )  • (1 + O) < 1 + 

= Pr{l + 0 < (1 + ~/(i + w,)} 

= Pr{O < (1 + ~ / ( 1  + w , )  - 1} 

so  w e  c h o o s e  

o ,  = (1 + / 3 / ( 1  + w,) - 1. 
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Similarly, from Table 2 we can select a value of W (say w2) such that 

1 - od2 = Pr{W < w2}; 

that is, such that 

1 - ct/2 = Pr{1 + W <  1 + w2} 

= Pr{(l + ~/(1  + O) < 1 + w~} 

= Pr{1 + fr < (1 + w2) • (1 + 0)} 

= Pr{(1 + ~/(1  + w2) < 1 + O} 

= Pr{(1 + T)/(1 + w2) - 1 < O} 

so we choose 

o2  = (I  + + w2) - I .  

If I - a  = 95%, then referring to Table 2 (1983--84), we can let 1 + wl = 0.972 
and I + w: = 1.029 and find that 

01 = 1.033/1.029 - 1 = 0.004 

and 

Oz = 1.033/0.972 - I = 0.063. 

Therefore, the confidence interval for the true trend 0 is 

(O2,x~,) = (0.4%, 6.3%); 

3.3% was the corresponding point estimate. This result and the correspond- 
ing results for the other calendar-year pairs are shown in the following table: 

STATISTICS AND CONFIDENCE INTERVALS FOR TREND FACTORS 

Mean* and 95% Confidcn~ Caicndar 
501h Pere~ntil~ Interval Ye~ a m 

1.033 (1.004,1.063) 1983-84 66,260 76,857 
1.049 (1.021,1.078) 1984--85 76,857 83,457 
1.044 (1.016,1.071) 1985-86 83,457 88,977 
1.066 (1.039,1.095) 1986-87 88,977 111,263 

*The mean and the median could turn out to be different, but here they happen to be identical to 
the number of decimal places shown. 
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2. Test of  Normality Assumptions 

To determine whether we could produce equally good confidence intervals 
making use of some normality assumptions, we assumed that fx" and f~r 
could be approximated by the normal distributions N(n.E[X],n.Var[X]) and 
N(m.E[Y],m.Var[Y]), respectively. The distribution f~ +~ was then obtained 
by generating 

N(m • E[Y],m • Var[Y]) / N(n • E[X],n • Var[X]) 

and transforming the resulting distribution by multiplying the amounts (not 
the probabilities) by n/m. The resulting figures turned out to agree exactly 
with the figures shown in Table 2. ~° 

In the following section we investigate the corresponding situation in 
which n and m are equal and medium-sized, say 64 to 16,384. 

B. Medium-Sized Resamples 

So far we have been dealing with resamples of size n or m from an original 
sample of size n or m, respectively, either using or not using random num- 
bers. But even though the original samples are of size n or m, we can 
generate resamples of, say, size r~ (<n) and rh (<m); in particular, we can 
choose h = ffz ( < min{n, m}). The purpose of this would be to determine the 
confidence intervals for trend if the resamples were of medium (rather than 
large) size. 

Consider 

f~ ~ ~ = f~/~)(Y, ~r2 .....  r~) / f~l/~)(x, +x2 . . . . .  x~) 

i ~ l  i=1 

*XT. t f~ / . ) r ,  = fc~.~r~ + f,i .)Y,_ + . . .  + f , t . ~ v ,  is being used to mean convolutef~tt.o~.t,f~l,.,)~ . . . . .  
and f~t/.,)r,.. 

t°A referee pointed out that if ~" and ~" are asymptotically normal random variables and l"=~'/ 
X -  1, then 7" is asymptotically N(~,02) with ~ -- ~ ¢ ~ x -  1 and 02 = 1~'02x/l~.'n + o'2~/t.txZ'rn; and that 
these can be approximated by replacing the population quantities with the sample values. 

If we had available (and used) the detailed data underlying the loss distributions presented by 
Lowrie and Lipsky [2], our confidence intervals would be slightly wider. Using the calendar-year 
pair 1987-1988 and the above formula for 0 2 , we find that the ratio of 0 .2 based on the detailed 
data to ~ based on the grouped data is 1.016, that is, a 1.6 percent deficiency in the variance. The 
data for 1988 were not shown in [2]; however, Lowrie was kind enough to furnish those data to 
me for this paragraph. Lowrie said that the "standard deviation" figures shown in [2] were calculated 
by an incorrect formula and should not be used. 
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where h takes on the value 64, 128 . . . .  , or 1,024 and the Xi and Y~ are based 
on calendar years 1983 and 1984, 1984 and 1985, 1985 and 1986, or 1986 
and 1987, respectively. The distributions f l  +1" are shown in Table 3, along 
with the corresponding standardized distributions f~ ÷ w = f(~ •/3/v4~ +/I- 

For determining confidence intervals for trend where the resamples are of 
medium size, we wish to assume for given fi that fl÷w does not differ 
significantly as we vary the calendar-year pairs. The reasonableness of mak- 
ing this assumption seems to be confirmed by the fact that for fixed h = n~, 
the standardized distributions f~+ w in Table 3 vary as little as they do by 
calendar-year pair, at least in the portion of the distributions between cu- 
mulatives of 0.025 and 0.975. 

1. A Numerical Example of Determining a Confidence Interval for 
Trend Using Medium-Sized Resamples 

Suppose a trend factor of 1.15 has been observed from one year to another 
and the number of claims is 64 in each of the two accident years. We now 
determine a 95 percent confidence interval for the true severity trend ~, 
again using the formulas shown in the previous numerical example. 

Referring to Table 3 (1983--84), we can let 1 + w~ = 2.108 and 1 + wz = 0.406 
if 1 - a = 0 . 9 5 ;  so Ot = 1.15/2.108 = 0.546 and 92=1.15/0.406=2.83. Thus 
the estimated 95 percent confidence interval for the underlying trend factor 
1 + 9 would be (0.546, 2.83). This result and the corresponding results for 
the other calendar-year pairs are shown in the following table: 

MORE STATISTICS AND CONFIDENCE INTERVALS FOR TREND FACTORS 

50th 
Mean Percentile 

1.125 1.028 
1.147 1.050 
1.142 1.037 
1.171 1.059 

95% Cont'ide nee 
Interval 

0.546,2.83) 
0.542,2.91) 
0,533,2.96) 
0.524,3.05) 

Calendar 
Year ~ 

1983-84 64 64 
1984--85 64 64 
1985-86 64 64 
1986-87 64 64 

Table 3 includes distributions for r i=rh=64,  128, 256, 512, and 1,024 
for calendar-year pairs 1983-84, 1984-85, 1985-86, and 1986-87; and dis- 
tributions for h =rh = 2,048, 4,096, 8,192, and 16,384 for calendar-year pair 
1983-84. 



TABLE 3 

BOOTSTR,~-TYPE Disr~tntrnoNs oF TREND FACTORS (I+ i') AND STANDARDIZED FACTORS (I + W) 
(MEDIUM-SIZED RESAMPLING BY OPERATIONAL BOOTSTRAPPING) 

1983-84 I+W I 1984-85 1985-86 I+W I 1986-87 
Cumulative 1+~' } 1+1' 1+11: 1+1' 1+: 1+/4" 

am64 
0.000001 0.109 0.097 0.101 0.088 0.123 0,107 0.101 0.087 
O.00001 0.146 0.129 0.124 0.108 0.150 0.131 0.122 0.104 
0.0001 0.179 0.159 0.161 0.140 0.193 0.169 0.159 0.135 
D.001 0.247 0.220 0.220 0.191 0.253 0.221 0.225 0.192 
0.01 0.375 0.334 0.366 0.319 0.369 0.323 0,360 0.308 
0.025 0.457 0.406 0.453 0.395 0.444 0.389 0.441 0.377 
0.05 0.526 0.468 0.531 0.463 0.518 0.453 0.520 0.444 
C).I 0.618 0.550 0.623 0.543 0.610 0,535 0.614 0.524 
{).2 0,737 0.655 0.749 0.652 0.737 0.646 0.749 0.639 
{).3 0.837 0.744 0.854 0.744 0.839 0.735 0.853 0.728 
0.4 0.932 0.829 0.949 0.827 0.937 0.821 0.951 0.812 
0.5 1.028 0.914 1,050 0.915 1.037 0.909 1.059 0.904 
0.6 1.135 1.009 1.159 1.010 1.151 1.008 1.175 1.003 
0.7 1.261 1.121 1.294 1.127 1.283 1.124 1.316 1.123 
0.8 1.431 1.272 1.474 1.284 1.464 1.282 1.502 1.283 
0.9 1.723 1.532 1.775 1.547 1.770 1.551 1.826 1.559 
0.95 2.027 1.802 2.094 1.825 2.099 1.839 2.172 1.854 
0.975 2.370 2.108 2.435 2.122 2.465 2.159 2.570 2.194 
0.99 2.940 2.614 2.924 2.548 3.011 2.637 3.218 2.747 
0.999 4.844 4.308 4.237 3.693 4.714 4.129 5.435 4.640 
0.9999 6.635 5.900 5.578 4.861 6.461 5.659 9.069 7.742 
0.99999 8.360 7.434 6.972 6.076 8.138 7,128 12.108 10.336 
0,999999 10.239 9,104 8,453 7.366 9,926 8,695 14,811 12.644 
Mean 1.125 1.000 1.147 1.000 1.142 1.000 1.171 1.000 
Vat 0.267 0.211 0.264 0.201 0.283 0.217 0.338 0,246 
t] 64 64 64 64 
r~ 64 64 64 64 
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TABLE 3--Continued 

1983-.-84 1984-85 1985-86 1986-87 

Cumulative 1 -t- I" J I + W  I+~" I + W  l + ~  I+W 1+I '  [ I+W 

n = 1 2 8  

0.000001 0.209 0.193 0.187 0.170 0.221 0.202 0.192 0.171 
0.00001 0.246 0.227 0.223 0.202 0.255 0.233 0.227 0.202 
0.0001 0.295 0.272 0.269 0.244 0.305 0.278 0.274 0.244 
0.001 0.366 0.338 0.339 0.307 0.376 0.343 0.347 0.309 
0.01 0.489 0.452 0.474 0.429 0.489 0.446 0.475 0.423 
0.025 0.560 0.518 0.555 0.503 0.556 0.507 0.551 0.490 
0.05 0.624 0.576 0.626 0.568 0.618 0.564 0.619 0.551 
0.1 0.702 0.649 0.710 0.643 0.697 0.636 0.704 0.627 
0.2 0.803 0.742 0.816 0.740 0.804 0.737 0.813 0.724 
0.3 0.881 0.814 0.899 0.814 0.886 0.808 0.902 0.802 
0.4 0.954 0.881 0.975 0.883 0.963 0.878 0.980 0.872 
0.5 1.028 0.949 1.051 0.953 1.039 0.947 1.060 0.943 
0.6 1.107 1.023 1.135 1.028 1.122 1.024 1.147 1.021 
0.7 1.200 1.108 1.231 1.116 1.220 1.112 1.249 1.111 
0.8 1.319 1.219 1.356 1.229 1.349 1.228 1.383 1.231 
0.9 1.515 1.399 1.559 1.413 1.556 1.419 1.602 1.426 
0.95 1.717 1.586 1.758 1.593 1.766 1.610 1.832 1.630 
0.975 1.936 1.788 1.958 1.774 1.983 1.809 2.081 1.851 
0.99 2.271 2.098 2.224 2.015 2.291 2.089 2.452 2.181 
0.999 3.168 2.927 2.887 2.616 3.129 2.854 3.689 3.282 
0.9999 3.982 3.678 3.544 3.211 3.930 3.584 5.261 4.681 
0.99999 4.813 4.446 4.211 3.817 4.733 4.316 6.456 5.743 
0.999999 5.703 5.268 4.893 4.434 5.577 5.087 7.627 6.785 
Mean 1.082 1.000 1.103 1.000 1.097 1.000 1.124 1.000 
Var 0.126 0.108 0.127 0.104 0.135 0.112 0.160 0.127 
h 128 128 128 128 
rh 128 128 128 128 
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TABLE 3--Continued 

1983-84 1984-85 1985-86 1986-87 

Cumulative l + t  I + W  1 + ~  [ I + W  l + t  [ I + W  1 + ~  I I + W  i i i 
n = 5 6  

0.000001 0.327 0.309 0.301 0.279 0.338 0.315 0.309 0.281 
0.00001 0.369 0.349 0.342 0.317 0.378 0.353 0.350 0.319 
0.0001 0.423 0.399 0.397 0.369 0.430 0.402 0.405 0.369 
0.001 0.495 0.468 0.472 0.438 0.501 0.467 0.480 0.437 
0.01 0.602 0.569 0.589 0.546 0.603 0.563 0.594 0.542 
0.025 0.660 0.623 0.656 0.608 0.660 0.616 0.656 0.598 
0.05 0.713 0.673 0.715 0.663 0.711 0.664 0.714 0.651 
0.1 0.776 0.732 0.784 0.727 0.776 0.724 0.783 0.714 
0.2 0.857 0.809 0.871 0.808 0.859 0.802 0.871 0.794 
0.3 0.919 0.867 0.936 0.868 0.923 0.862 0.939 0.856 
0.4 0.974 0.920 0.995 0.923 0.982 0.916 1.001 0.913 
0.5 1.029 0.971 1.052 0.975 1.040 0.970 1.061 0.967 
0.6 1.088 1.027 1.113 1.032 1.102 1.028 1.126 1.026 
0.7 1.154 1.089 1.183 1.097 1.172 1.094 1.201 1.094 
0.8 1.239 1.170 1.270 1.178 1.262 1.178 1.296 1.181 
0.9 1.375 1.298 1.406 1.303 1.403 1.309 1.448 1.319 
0.95 1.508 1.423 1.531 1.420 1.537 1.435 1.597 1.456 
0.975 1.644 1.552 1.650 1.430 1.670 1.559 1.750 1.595 
0.99 1.829 1.726 1.803 1.671 1.846 1.723 1.963 1.789 
0.999 2.278 2.151 2.167 2.010 2.279 2.127 2.654 2.419 
0.9999 2.271 2.555 2.518 2.335 2.696 2.516 3.324 3.029 
0.99999 3.137 2.962 2.864 2.655 3.111 2.904 3.904 3.558 
0.999999 3.570 3.370 3.206 2.973 3.528 3.293 4.522 4.121 
Mean 1.059 1.000 1.078 1.000 1.097 1.000 1.097 1.000 
Var 0.062 0.055 0.063 0.055 0.135 0.058 i 0.079 0.066 
h 256 256 256 256 

256 256 256 I 256 
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TABLE 3--Continued 

1983-84 1984-85 1985-86 1986--87 

C~=~l~,i~e ,, l + t  J 1+W, 1 + t  J I + ~  l + t  I+W l + t  ,,J I+W 
n =512 

0.000001 : 0.457 0.436 0.432 0.405 0.465 0.440 0.440 0.406 
0.00001 0.498 0.476 0.475 0.446 0.505 0.478 0.483 0.446 
0.0001 0.549 0.525 0.529 0.497 0.555 0.525 0.536 0.495 
0.001 0.614 0.587 0.599 0.563 0.618 0.585 0.606 0.560 
0.01 0.702 0.671 0.696 0.654 0.705 0.666 0.701 0.648 
0.025 0.748 0.715 0.748 0.702 0.750 0.709 0.751 0.694 
0.05 0.789 0.754 0.793 0.745 0.791 0.748 0.796 0.735 
0.1 0.838 0.801 0.847 0.796 0.841 0.795 0.850 0.785 
0.2 0.901 0.860 0.914 0.859 0.906 0.856 0.919 0.849 
0.3 0.947 0.905 0.965 0.906 0.954 0.902 0.971 0.897 
0.4 0.989 0.945 1.009 0.948 0.998 0.943 1.017 0.940 
0.5 1.030 0.984 1.052 0.988 1.041 0.984 1.063 0.982 
0.6 1.073 1.025 1.097 1.030 1.086 1.027 1.I10 1.026 
0.7 1.121 1.071 1.146 1.076 1.137 1.075 1.164 1.075 
0.8 1.182 1.129 1.207 1.134 1.200 1.134 1.232 1.138 
0.9 1.274 1.217 1.298 1.219 1.295 1.224 1.336 1.234 
0.95 1.361 1.300 1.379 1.295 1.381 1.306 1.433 1.324 
0.975 1.443 1.379 1.454 1.365 1.463 1.323 1.529 1.413 
0.99 1.549 1.480 1.546 1.452 1.566 1.481 1.660 1.533 
0.999 1.798 1.718 1.760 1.653 1.811 1.712 2.017 1.863 
0.9999 2.035 1.944 1.959 1.840 2.042 1.930 2.350 2.171 
0.99999 2.266 2.165 2.149 2.019 2.266 2.142 2.667 2.464 
0.999999 2.492 2.381 2.334 2.192 2.485 2.349 3.000 2.767 
Mean 1.047 1.000 1.065 1.000 1.058 1.000 1.082 1.000 
Vat 0.031 0.028 0.032 0.028 0.033 0.029 0.039 0.034 

512 512 512 512 
512 512 512 I 512 
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TABLE 3--Continued 

1 

1983--84 1984-85 1985--86 I 1986-87 
i 

I Cumulalive l + f  I I+W 1+/" I+W l + t  I+,W 1 + :  I+W 

n~ 1024 

).000001 0,549 0.559 0.565 0.532 0.549 0,559 0.524 0.531 
).00001 0,592 0.594 0.607 0.570 0.593 0.593 0.573 0.567 
).0001 0,641 0.636 0.655 0.615 0.643 0.634 0.627 0.611 
).001 0,699 0.687 0.713 0.670 0,702 0.684 0.693 0.665 
).01 0,774 0.754 0.787 0.743 0.778 0.751 0.776 0.736 
).025 0,812 0.788 0.824 0,780 0.816 0.784 0.817 0.772 
).05 0,844 0.819 0.857 0.812 0.850 0.814 0.854 0.804 
3.1 0.884 0.854 0.897 0.851 0.890 0.851 0.898 0.842 
).2 0.933 0.899 0.947 0,898 0.940 0.897 0.953 0.890 
).3 0.970 0.933 0.984 0,934 0.978 0.931 0.995 0.927 
).4 1,002 0.963 1.017 0.965 1.011 0.962 1.031 0.959 
).5 1,033 0.992 1.049 0.994 1.043 0.992 1.066 0.990 
3.6 1.065 1.022 1,082 1.024 1.076 1.022 1.103 1.022 
3.7 1.101 1.055 1.119 1.058 1.113 1.057 1.143 1.058 
3.8 1.144 1.096 1.164 1.098 1.157 1.098 1.192 1.103 
3.9 1.206 1.156 1.229 1.157 1.222 1.160 1.263 1.169 
9.95 1,261 1.210 1,287 1.207 1,278 1.214 1.325 1.229 
3.975 1.311 1.260 1.339 1.253 1.330 1.263 1,382 1.286 
3.99 1.371 1.322 1,404 1.209 1.392 1.324 1.453 1.360 
9.999 1.510 1.464 1.555 1.434 1.537 1.464 1.615 1.540 
3.9999 1.639 1.595 1.697 1.547 1.673 1.591 1.769 1.710 
3.99999 1.766 1.720 1.839 1.652 1.806 1.713 1.921 1.874 
9.999999 1,892 1.841 1.984 1.752 1.941 1.829 2.076 2,036 
Mean 1.040 1,000 1.058 1.000 1.051 1.000 1.075 1.000 
Var 0.016 0.014 0.017 0.015 0.017 0.015 0.021 0,017 
r~ 1024 1024 1024 1024 
,h 1024 1024 1024 1024 
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TABLE 3--Continued 

1983-84 1983-.84 1983--84 198.3-84 
Cumulative 1+1' l+W 1+l' l+W I+~ [ 1+14" 1+~ [ l+W 

n=rh.h 

0.000001 0,674 0.650 0.769 0.743 0.841 0.813 0.894 0.865 
0.00001 0.707 0.682 0.794 0.767 0.859 0.831 0.907 0.878 
0.0001 0.744 0.718 0.822 0.794 0.880 0.851 0.923 0.893 
0.001 0.788 0.760 0.855 0.826 0.904 0.875 0.941 0.910 
0.01 0.844 0.814 0.897 0.866 0.935 0.904 0.963 0.932 
0.025 0.872 0.841 0.917 0.886 0.950 0.919 0,974 0.942 
0.05 0.897 0.865 0.935 0.903 0.963 0.931 0.983 0,951 
0.1 0.925 0.893 0.956 0.924 0.978 0.946 0.994 0.962 
0.2 0,961 0.927 0,982 0,949 0.997 0,964 1,007 0,974 
0.3 0,988 0.953 1.001 0.967 1.010 0.977 1.017 0.984 
0.4 1.011 0.975 1.018 0.983 1.022 0.988 1.025 0.992 
0.5 1.033 0.997 1.033 0.998 1.033 0.999 1.033 1.000 
0.6 1,056 1.018 1.049 L014 1,045 1,010 1,041 1,007 
0.7 1,080 1.042 1.066 1.030 1.057 1.022 1.050 1.016 
0.8 1.110 1.071 1.087 1.050 1.071 1.036 1.060 1.025 
0.9 1.153 1.112 1.116 1.079 1.091 1.055 1.074 1.039 
0.95 1,189 1,147 1,141 1,102 1,108 1,072 1,086 1,050 
0.975 1.222 1.178 1.163 1.124 1.123 1.086 1.096 1.060 
0.99 1.261 1.216 1,189 1.149 1.141 1.103 1.108 1.072 
0,999 1.347 1.299 1,246 1.203 1.179 1.140 1.134 1.097 
0.9999 1.424 1.374 1.294 1.251 1.211 1.171 1.156 1.118 
0.99999 1.496 1.443 1.339 1.293 1.240 1.199 1.175 1.137 
0.999999 1.564 1.509 1,380 1.333 [ 1.266 1.224 1.193 1.154 
Mean 1.037 1.000 1.035 1.000 1.034 1.000 1.034 1.000 
Var 0.008 0.007 0.004 0.004 0.002 0.002 0.001 0.001 

2048 4096 8192 16384 
2048 4096 ~ 8192 16384 
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2. Test o f  Normality Assumptions 

If h and fit are sufficiently large, we can avoid performing the convolutions 
to produce 

f Y , + g z  . . . . .  y,,, and fx,+x: . . . . .  x,,. 

That is, iff~.,+v: . . . . .  y,, andfv,.x~ . . . . .  x, are close to being normal distri- 
butions, we can assume thatfy,+v: . . . . .  y,, is 11 

N[E(Yx + Y2 + ... + Y,~), Var(Y1 + 112 + ... + Y,~,)] 

andfx, +x2 . . . . .  x, is 

N[E(Xx + Xz + ... + X~), Var(X~ + )(2 + ... + X,0] 

and do only a single convolution for quotients; namely, 

N{E[(1 / th ) . (Y1  + Yz + ... + Y,~)], Var[(1/rh). (Y~ + Yz + ... + Y,,,)]}/ 

N{E[(1/h) • (X1 + )(2 + ... + X~)], Var[(1/t~) • (X1 + X2 + ... + X~)]}. 

Based on the underlying adult comprehensive major medical claim sam- 
ples and the generated distributions, we can draw the following conclusions 
for these data: 
1. For resarnple sizes of 256 or less, the assumption of normality for dis- 

tributions of average size claims may not be particularly useful; this is 
because such an assumption produces negative average size claim per 
claimant with appreciable probability. 

2. From Table 4 it can be ascertained how well the assumption of normality 
for distributions of average size claim per claimant generates distributions 
of point estimates of trend for resamples of size fi =r~ = 512. 

3. Recalculating Table 4 for rh =fi = 1,024 (not shown) demonstrates that 
the assumption of normality for distributions of average size claim dis- 
tributions for resamples of size 1,024 produces point estimates of trend 
distributions shown in Table 3 (for t~ =r~ = 1,024), to an accuracy of at 
least three decimal places in 1 + T. This does not imply that the point 
estimates of trend distributions themselves are normal. 

'~A good discretized version of a normal distribution can be obtained by generating a binomial 
distribution b(n;p),  where n is large and p=0.5 ;  and then a discretized version of n(Iz,o "2) can be 
obtained by performing the usual type of transformation z = Ix + g ( x -  np)/~/'n-~. 
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TABLE 4* 

TREND FACTORS (I + T') OBTAINED BY CONVOLUTING TWO NORMAL DISTRIBUTIONS 
FOR QUOTIENTS 

1983-84 1984-85 1985-86 1986--87 

Cumulalive 1+~ I+P' 1+~ 1+~' 1+~ 1+~' 1+~ 1+~' 

0.000001 0.457 0.384 0.432 0.405 0.465 0.381 0.440 0.338 
0.00001 0.498 0.440 0.475 0.460 0.505 0.439 0.483 0.403 
0.0001 0.549 0.506 0.529 0.523 0.555 0.504 0.536 0.475 
0.001 0.614 0.582 0.599 0.597 0.618 0.583 0.606 0.563 
0.01 0.702 0.680 0.696 0.694 0.705 0.683 0.701 0.671 
0.025 0.748 0.730 0.748 0.743 0.750 0.734 0.751 0.726 
0.05 0.789 0.774 0.793 0.787 0.791 0.778 0.796 0.776 
0.1 0.838 0.826 0.847 0.840 0.841 0.832 0.850 0.835 
0.2 0.901 0.894 0.914 0.907 0.906 0.900 0.919 0.909 
0.3 0.947 0.944 0.965 0.959 0.954 0.953 0.971 0.966 
0.4 0.989 0.990 1.009 1.004 0.998 0.998 1.017 1.017 
0.5 1.030 1.033 1.052 1.050 1.041 1.043 1.063 1.066 
0.6 1.073 1.079 1.097 1.096 1.096 1.091 1.110 1.117 
0.7 1.121 1.130 1.146 1.149 1.137 1.143 1.164 1.176 
0.8 1.182 1.193 1.207 1.214 1.200 1.208 1.232 1.248 
0.9 1.274 1.286 1.298 1.315 1.295 1.305 1.336 1.355 
0.95 1.361 1.371 1.379 1.404 1.381 1.393 1.433 1.452 
0.975 1.443 1.450 1.454 1.490 1.463 1.475 1.529 1.545 
0.99 1.549 1.550 1.546 1.598 1.566 1.579 1.660 1.662 
0.999 1.798 1.792 1.760 1.869 1.811 1.834 2.017 1.953 
0.9999 2.035 2.038 1.959 2.155 2.042 2.097 2.350 2.259 
0.99999 2.266 2.303 2.149 2.472 2.266 2.382 2.667 2.599 
0.999999 2.492 2.598 2.334 2.840 2.485 2.703 3.000 2.367 
Mean 1.047 1.048 [ 1.065 1.066 1.058 1.059 1.082 1.084 
Var 0.031 0.034 j 0.032 0.036 0.033 0.036 0.039 0.044 

512 1 512 512 512 
512 512 512 512 

*The columns headed 1 + I" in this table are taken from Table 3. 

. Table 3 can be used almost directly to determine the size of the resamples 
such that the trend distributions themselves are essentially normal; that 
is, whether f~++ is approximately N(E[1 + ~,Var[1 + ~ )  or f l+w is ap- 
proximately N(E[1 + W],Var[1 + W]). Of course, such normality is lack- 
ing if the median is not equal to the mean or if symmetry is lacking. If 
the median is close to the mean and a fair degree of symmetry exists, 
then we may want to compare N ( E [ I + ~ , V a r [ I + ~ )  with fl+~- or 
N(E[1 + W],Var[1 + IV]) with f~ +w at selected cumulative probabilities, 
for example, 0.025, 0.05, 0.95, and 0.975. 
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IV. CONCLUSIONS 

We started with original samples of comprehensive major medical claims 
per claimant, one sample for each of two calendar years. By resampling 
with replacement (using numerical convolutions) from the corresponding 
empirical distributions, we generated distributions of average size claim per 
claimant, in which the number of resamples was a power of 2 from 6 to 15 
(that is, 64, 128, 256, 512, 1,024, 2,048, 4,096, 8,192, or 16,384). As- 
suming an equal number of resamples in each of two calendar years, we 
convoluted these latter distributions for quotients to obtain distributions of 
point estimates for trend in average size claim per claimant from one calendar 
year to the other. The results are shown in Table 3. 

Table 2 presents similar distributions of resample point estimates for trend 
in average size claim per claimant in which the numbers of resamples in 
adjacent calendar years are those of the original experience during the ob- 
servation period (1983 to 1987, inclusive). The distributions in Table 2 are 
close to normal, which is perhaps not unexpected because the numbers of 
claims lie in the range from 66,260 to 111,263. Standardizing these trend 
distributions by dividing the amounts (not the probabilities) by their respec- 
tive mean values, we find a high degree of stability as we move from one 
pair of calendar years to another. Thus we can use the distributions in Table 
2 for determining confidence intervals for trend in average size claim per 
claimant, when we are dealing with such large resample sizes. 

We show how we might use Table 3 to estimate 95 percent confidence 
intervals for trend when medium-sized samples of comprehensive major 
medical losses per claimant are available. Of course, because the underlying 
experience data involve $100 deductible/20 percent coinsurance and essen- 
tially no maximum, Table 3 should be used with caution if the major medical 
plan deviates significantly from this. Table 3 shows considerable stability '2 
in the standardized distributions of resample point estimates for trend, from 
one pair of calendar years to another. Thus, the distributions in Table 3 can 
be used for determining 95 percent confidence intervals for trend in average 
size claims per claimant, when resamples are medium-sized. 

The numerical convolutions (for sums and quotients) used in producing 
the figures in Tables 2, 3, and 4 were generated using the methods described 
in the Appendix using e = 10 -aS and nax= 1000. For any one convolution, 
the total of the discarded probability products did not exceed 5 " 1 0  - 7  , choos- 
ing a smaller value for e would make this figure even smaller. 

'ZAt least where the cumulative is in the range from 0.025 to 0.975. 
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APPENDIX 

UNIVARIATE GENERALIZED NUMERICAL CONVOLUTIONS 

Iffx and fv are independent distributions of the discrete finite univariate 
random variables X and Y, respectively, then the distributionfx+v of the sum 
W=X+ Y is the convolutionfx+fr offx andfv for sums. Is 

Letfx be expressed in element notation as 

which is also expressed as 

Similarly, letfy be 

(xli, plj)l.1. 2 ..... ,,, 

(x2 i, p2j)j'- 1, 2 . . . . . .  ,- 

DWe are using the operation + instead of * between two distributions to indicate convolution 
for sums; that is, fx+fv instead offx*fv. We use the notationfx/fv for the convolution offx aridly 
for quotients X/Y. 
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T h e n  fw=fx+ Y=fx + f r  = 

e" (xlx + x21, 

(xll + x22, 

(xl, + x2.2, 
(xl2 + x21, 

(x12 + x22, 

(xl~ + x2.2, 

(x13 + x21. 

4i (xls + x22, 

(x13 + x2,,~. 

(xl., + x2~. 
(xl., + x2 , 

,. (xl,,~ + x2,,2. 

which can also be expressed as 14 

p l l  • p 2 0  
p l l  " p2z) 

p l  1 • p2.2 ) 

p l2  " p21) 

p12 "p2e) 

p12 • pZ.~) 

p13 • p21) 
p13 • p22) 

p13 • p2~) 

pl,,, • p21) 

P L ,  "p22) 

P L ,  • p2.~) 

Set(l) 

(xl; + xZj, p l / •  p2j)/~.2 . . . . . . . .  d S~.2 ...... 

~4For a generalized convolution offx~ a n d f ~  to generate the distribution fxuxz of the random 
variable XJXz, this set would be replaced by 

(xl,/x2j, pl,'p2j),.,2 . . . . . .  , ..a j - , .  z . . . . . .  ~- 
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If nl and n2 are (say) 1000, then generating this matrix would involve 106 
lines. 15 This would be practical if we do not intend to use fw in further 
convolutions. But if (for example) we want to generate the distribution 
fu =fw+fz of U =  (X+ I1) + Z where 

fz = (x3k, p3k)k~ 1, 2 ..... lo00, 

then we would be dealing with 109 lines. And further convolutions would 
become impractical, because of the amount of both computer storage and 
computing time required. The following algorithm has been designed to 
overcome these problems. 

The Univariate Generalized Numerical Convolution Algorithm 
Choose e > 0. Typically ~ is chosen to be 10-lo or 10-is. 

Loop 1: 
Perform the calculations indicated in Matrix (1) above, discarding any 

lines for which the resulting probability is less than e; that is, discard lines 
for which pl,.'p2j<e. The purpose of this is to avoid underflow problems 
and to increase the fineness of the partitions (meshes) to be imposed. 

Calculate16,17 

~ =  1, 2 . . . . .  n~ low~, = min{xli + x2 i 4: Olpl ; -p2j  > e} for 1, 2 ..... n: 

15There may be some collapsing due to identical amounts on different lines. The number of lines 
produced is reduced by representing on a single line all lines with identical amounts; on that line 
is the amount and the sum of the original probabilities. 

lain many applications we replace xl~ +x2j by log(xl~ +x2j), which will allow finer subintervals 
at the low end of the range. Of course, to be able to use logs the range of X +  Y should not include 
values less than 1 (to avoid theoretical and numerical problems). 

17For a generalized convolution offxi andfx2 to generate the distribution fxi/xz of the random 
variable XJX2, these expressions would be replaced by 

low x = min{xl,/x2j 4 : 0  [pl ,  • p2j > e} for~ = 1,2 ..... nl 
1,2,...,n2 

and 

high~ = max(xlflx2j 4= O lp l , -p2~  > e} for~ = 1,2 ..... n, 
1,2 ..... n2 
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and 

high,, = max{xl, + x2j ~ 0[Pl i -p2j  > e} for ~ = 1, 2 ..... n~ 
1, 2, . . . ,  n2 .  

Let nax be a positive integer selected for the purpose of creating the 
following partition: let 

delta = highx - lowx 
n a x / 2 -  1 ' 

partition the interval (lowx - delta, high,, + delta) into nax/2 + 1 subintervals: 
let 

delta highx - low,, 
n o x / 2 -  1 ' 

partition the interval (low,, - delta, high,, + delta) into nax/2  + 1 subintervals: 

nax/2  - 1 
nax /2  
nax/2  + 1 

r Subinterval l{r) 

l OoCw! - delta, lowx) 
lowx,  low,, + 1 • del ta)  
low,. + 1 • del ta ,  low,, + 2 • del ta)  

[ /owx + (nax/2 - 3)"  delta,  high,, - delta) 
high~ - del ta ,  high~,) 
h i g h ,  high:, + del ta)  

Subinterval 11 is the degenerate interval consisting of 0 alone. If for some 
ro> 1, Oel,. o, then 0 is deleted from I,-o; that is, that particular subinterval has 
a hole at O. 

Loop 2: 

For each r ( r=  1, 2, . . . ,  nax /2+ 1) set to zero, the initial value of each 
of the accumulators mo[I(r)], ml[I(r)], m2[I(r)], and m3[l(r)]. 
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For each i (1 = 1, 2, ..., nl) and j ( j  = 1, 2 . . . .  , n2) for which xl~ +x2~ > e, 
determine the positive integer r for which xl~ +x2je/(r) and perform the 

moil(r)] = mo[/(r)] 
ml[I(r)] = mail(r)] 
m:[I(r)] = m2[I(r)] 
m3[I(r)] = m3[I(r)] 

accumulations 

+ p l i  " p2j 
+ (xll + x2j) ~ " p l i  "p2j  
+ (xli  + x2;) 2 .pli .p2  
+ (xl, + xZj) 3 "pl i  "pZj 

That is, we generate the probability and the 1st through 3rd moments for 
each mesh interval I(r) (r = 1, 2, . . . ,  nax/2 + 1). 

Loop 3: 

The Von Mises Theorem and algorithm [3] guarantee that for each r (r = 1, 
2 . . . .  , nax /2+ 1), there exist and we can find two pairs of real numbers a7 
[x~(r),p~(r)] and [x2(r),p2(r)] such that x l ( r )d(r )  and x2(r)d(r) and such that 
the following relationships hold: 

Momem R¢lalionship 
2 

pi(r) = rao[l(r)] 
2 

2 x i (r) ' '  p,(r) = m,[l(r)] 
2 

xi(r) 2" p,(r) = m2[l(r)] 
i ' 1  

2 

x,(r) 3 .  p,(r) = mail(r)] 
im l  

We accept the 0-th through 3rd moments and produce two points TM and 
associated probabilities, with the feature that these moments are accurately 
retained. 

Having kept accurately the 0-th through 3rd moments of X+  Ywithin each 
mesh interval, we have automatically kept accurately the corresponding global 
moments. 

~8ln some cases xl =x2 and what would otherwise be two pairs [xl(r),p,(r)] and [x2(r),p2(r)] 
collapse into one pair [xt(r),pt(r)+p2(r)]. This would happen, for example, when the values of 
xl  i +x2~ that fall into l(r) are all identical. 
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We can then express the full distribution f x ,Y  of the univariate random 
variable X+  Y as 

(xk(r),p,(r)),=,.2 . . . . . . .  /z+, a,d k=,.Z 

We now describe how we actually obtain the number pairs [x~(r),pl(r)] 
and [x=(r),pz(r)] for any given value of r (r = 1, 2 . . . .  , nax/2 + 1). To sim- 
pl i fy the notation somewhat in this description, we replace the symbols 
moil(r)], ml[I(r)], m2[l(r)], and m3[I(r)] by mo, ml, m2, and m3, respectively. 
If m~ =0  and mo=/: 0, then we let 

xl(r) = 0 pl(r) = mo 
x2(r) = 0 p2( r )  = 0; 

otherwise, if mo'm2-rnl"ml < 10-I°'1m1[, we let 

xl(r) = m,/mo p,(r) = mo 
x2(r) = 0 p2(r) = 0; 

that is, in effect, use a single-number pair rather than two-number pairs if 
the variance in I(r) is close to zeroS9; otherwise, perform the following 
calculations: 

a l  

a 2  

C O 
m l "  m 3  - m 2 "  m 2  

m o ' m 2  - m l " m l  

m ~ . m 2  - m o ' m 3  

mo" m 2  - -  m l "  m l  
C 1 

1 = 5  ( -c , - Ic ,  c , - 4  Col °-5) 

1 
= ~ " ( - c ,  +lc,  "c,  - 4 "  col °'5) 

m 0 • a 2 - m 1 
s 1 = 

a 2 - a I 

m l  - m o  • a l  
s 2 = 

El 2 - -  a I 

~gWe treat this situation differently to avoid exceeding the limits of precision of the numbers 
being held by the computer. 



DETERMINING CONFIDENCE INTERVALS FOR TREND 39 

xl(r) = al pl(r)  = sl 
x2(r) = a2 pz(r) = s2. 

We check that xl(r) and x2(r) both lie in I(r); and if not, then if l(r) is a 
degenerate interval (that is, consists of  a single point), then we  let 

xl(r) = ml/mo pl(r) = mo 
x2(r) = o p2(r) = 0;  

otherwise,  2° we let 

cr - - [ ( - m d m o ) ' ( m l / m o )  + (mJmo)[ °5 

[ mJmo - left endpoint of  I(r) I 
'r = iri~en~-po--~n t ~ / - ~  --  m~-~mo I 
xl(r) = - o - - - r  °'5 + ml/m o pl(r )  = mo/(1 + 'r) 

x2(r) = o'/'r °s + mJmo pz(r) = pi ( r )  • "r. 

It is desirable to use double precision floating point numbers in performing 
these calculations; otherwise, numerical difficulties could occur. 

2"This situation occurs only when the accuracy of the numbers being held by the computer is 
being impaired by the fact that the computer can hold numbers to only a limited degree of precision. 
Because this situation occurs only when the associated probability is extremely small, the fact that 
not all of the first three moments are being retained in this situation is not of practical significance. 





DISCUSSION OF PRECEDING PAPER 

ROY GOLDMAN: 

I found the author's paper informative from a theoretical point of view. 
It is especially helpful to know that the convolutions can be approximated 
by normal distributions. 

Although the author applied his methodology to group major medical 
claims, I think that other forms of casualty coverages may be more suited 
to this methodology than group health coverages. 

I see several problems in applying this methodology to a large block of 
group health business. First, how is a claim defined? Presumably, each claim 
transaction is not a claim. The number of transactions on traditional health 
business has been increasing rapidly for reasons unrelated to frequency: for 
example, physician claim unbundling, prescription drug submissions, hos- 
pital billings, and the like. The average severity would be distorted if trans- 
actions were used. 

Therefore in order to apply the methodology, all transactions during a 
calendar year must be aggregated for each individual (or employee unit). 

Individuals then need to be grouped by age (or adult/child), coverage, 
deductible, and so on. I venture to say that most claim data bases are not 
constructed that way for group insurance, so this type of aggregation would 
be expensive on a regular basis. 

Even if one could obtain the trend for severity in this manner, trend must 
then be derived for frequency. In group insurance, what is important is the 
overall trend on a case (or pool) basis. 

Overall trend can be obtained by comparing the yearly increase, on a case- 
by-case basis, of the ratio of incurred claims to employee units exposed. 
This methodology captures both frequency and severity and uses data that 
are readily available to group insurers. Means, variances, and confidence 
intervals can be calculated directly. Groups can, of course, be broken down 
by case size, industry, or any other category the actuary may want to study. 

CHARLES S. FUHRER: 

Mr. Bailey is to be congratulated for giving us a new way to calculate 
how accurate our trend estimates are. The traditional method is nonetheless 
still adequate. 

41 
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I. The Traditional Method 

Modern statistics was established during the first part of this century. 
Sometimes early authors in this field needed to devise methods that involved 
only relatively short computations. Today, we have data processing equip- 
ment, so some new methods are now available. However, these methods 
may not provide a worthwhile improvement in all cases. 

According to the central limit theorem [6, p. 260, 9.3.1a] (the author 
mentions this in footnote 9), the distribution of the ratio of two sample means 
is asymptotically normal if the random variables have finite variances. Con- 
sequently, for large samples, the normal approximation gives reasonably 
accurate confidence limits. Of course, as pointed out in author's reference 
[2] there may be some good reasons to suspect that the variance of medical 
care claim data may not be finite. The author's bootstrap methodology also 
makes the asumption that the variance is finite. In fact, it assumes that the 
population's distribution is exactly the same as the sample (empirical) dis- 
tribution. Thus, the author's method assumes that all moments of the dis- 
tribution are finite. This is certainly possible, but is not a property of many 
distributions that might be used to model claim size distributions, such as 
the Pareto. 

11. The Estimator 

The calculated confidence intervals are remarkably wide. Even for sam- 
ples of more than 80,000 claims per year (Table 2, 1986-1987), the 95 
percent confidence interval for an estimate of 6.6 percent had a width of 
5.6 percent (3.9 percent to 9.5 percent). This is so wide that the estimate 
becomes almost useless. To get the 95 percent confidence interval down to 
a more reasonable 1 percent width, about 3,000,000 claims per year are 
needed. Most health insurance actuaries would not have access to this vol- 
ume of claim data. 

Fortunately, there is a modified method for estimating the severity trend 
that does greatly reduce the width of the confidence intervals. This method 
involves ignoring claim amounts above a fixed limit point, which I will call 
p. This method is practiced by most health actuaries, who usually do not 
calculate the confidence intervals. It is actually a robust statistical technique. 
In [1, p. 105] it is called the Huber estimator [3] and is one of the M 
estimators. The paper might have been more useful if the author had cal- 
culated the confidence intervals for this modification. Most health actuaries 
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select the value p arbitrarily. Another useful result would have been to 
analyze how to select the optimum value of p.  There are other estimators 
that can be used from robust statistics. One method would smoothly give 
less weight to large claim amounts, instead of completely ignoring the amount 
over p.  

Robust statistical methods were discussed at the 14th annual Actuarial 
Research Conference held at the University of Iowa, September 6--8, 1979. 
The proceedings of this conference appear in ARCH  1979.3; in particular, 
see [2] and also [4]. 

IlL The Convolution Technique 

The Appendix to the paper presents a method for calculating convolutions 
of discrete random variables. It is known (for example, [5]) that convolutions 
of many random variables can be highly inaccurate due to round-off errors. 
The author's method replaces an intermediate calculated distribution with a 
distribution that has fewer points. He does this in a somewhat clever way 
that ensures that the first three moments are unchanged. Unfortunately, the 
author does not present any evidence as to whether this method actually 
helps reduce the round-off error. Furthermore, it can be shown that in re- 
placing the distribution, the fourth moments are lowered. The effect of un- 
derstating the fourth moment is to underestimate the tails of a distribution. 
Thus, his method may underestimate the width of the confidence intervals. 
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(AUTHOR'S REVIEW OF DISCUSSIONS) 

WILLIAM A. BAILEY: 

I thank Mr. Fuhrer and Mr. Goldman for their comments. 
With reference to Mr. Goldman's comments, my methodology has proved 

suitable for various lines of business, including group medical and workers' 
compensation among others. He is correct in inferring that the claim dollars 
need to be aggregated for each unit (employee or dependent) or for each life 
on which there was a claim. We have not found it difficult or expensive to 
do this aggregation. 

I did not build frequency of claim into my analysis, because group medical 
frequency data were not available to me. However, it may be better to 
examine frequency separately; otherwise, the distribution of number of claims 
may be incorporated into the analysis implicitly as a binomial distribution. 
The ratio of variance to mean of an empirical distribution of number of 
claims is likely to be on the order of a multiple of the mean. This rules out 
the Poisson (ratio = 1) as well as the binomial (ratio = q < 1). Otherwise, 
I have no objection to looking at trends in claim costs rather than trends in 
severities. 

With reference to Mr. Fuhrer's comments, the purposes of the paper were 
tO" 
(1) Describe an algorithm for performing univariate generalized numerical 

convolutions 
(2) Show how such convolutions could be used to determine confidence 

intervals for trend 
(3) Determine how large the samples need to be before the normality as- 

sumptions can safely be used 
(4) Demonstrate that the confidence intervals are likely to be rather large 

in the absence of huge volumes of data. 
Purpose (3) was achieved in Section III.A.2 for large resamples and in 

Section III.B.2 for medium-size resamples. These subsections help to quan- 
tify Mr. Fuhrer's "reasonably large samples" needed before "the normal 
approximation gives reasonably accurate confidence limits." Table 3 helps 
us to see how wide the intervals may be for trend estimates in which the 
sample sizes are smaller than this. 

I leave to other investigators the question of whether the underlying dis- 
tributions have infinite moments. 



DISCUSSION 45 

Whether we use classical bootstrapping (that is, resampling with replace- 
ment and with random numbers) or operational bootstrapping (that is, re- 
sampling with replacement and without random numbers) via numerical 
generalized convolutions, we are estimating the bootstrap distribution. In 
most cases, especially where we are interested in the tails of the distributions, 
the operational bootstrapping approach produces the better results. However, 
the question of the power of the bootstrap distribution itself in the estimation 
process has been the source of a vast statistical literature during the past 
decade and a half, and the discussions continue. 

The bootstrap distribution also can be viewed from an entirely different 
perspective. The "jackknife" is a statistical method developed early in the 
century. It involved eliminating from the sample one observation at a time 
and recalculating the statistic of interest. Thus was obtained a distribution 
of the statistic of interest. The approach of forming resamples by excluding 
some of the original observations is a common approach. The bootstrap 
distribution expands on this idea by considering every possible resample that 
might be obtained from the original sample by resampling with replacement. 
From this point of view, the bootstrap distribution (operational or classical) 
might be viewed as a part of the field of descriptive statistics, valuable in 
its own right. 

Purpose (4) was the original motivation for writing the paper. I believed 
that too much credibility was being given to trends observed on various 
blocks of medical business. I agree with Mr. Fuhrer that the confidence 
intervals generated without limiting the size of the claims are likely to be 
too wide to be useful. I also know from my own experience that underwriters 
and actuaries (in group health insurance and in workers' compensation) like 
to limit the size of the claims to give greater credibility to the observed 
experience (the excess over the claim limit is charged for on an expected 
value basis). Table A-1 shows operational bootstrap distributions comparable 
to those in Table 3 in the paper, but the claims are limited to $10,000 and 
$5,000. The new results seem to indicate that simply limiting the size of the 
claims may not enable us to achieve an objective such as trying to be within 
0.01 of the real trend 90 percent of the time, at least where the number of 
claims is 16,384 or fewer. 

Finally, we come to Mr. Fuhrer's questions about the convolution tech- 
nique itself. 

His first point concerns "round-off" errors. And I confess that, if I tried 
to convolute 2 ~°~s distributions together, there would be a round-off problem. 



TABLE A-1 

BOOTSZRAP-TvPE DlSTRlatrrIoNs OF TRr:No FACTORS (1 + ~ FOe 1983-84 
(MEDIUM-SIzED RESAMPLING BY OPEaA'nOSAL BOOTSTRAPPING) 

percentile 

0.000001 
0.000010 
0.000100 
0.001000 
0.010000 
0.025000 
0.050000 
0.100000 
0.200000 
0.300000 
O.400000 
0.500000 
0.600000 
0.700000 
0.900000 
O.900000 
0.950000 
0.975000 
0.990000 
0.995000 
0.999900 
0.999990 
0.999999 

1+/ '  
Percentiles for V 

0.319 
O.360 
0.411 
0.480 
O.579 
0.634 
0.685 
0.748 
0.833 
0.900 
0.961 
1.022 
1.087 
1.161 
1.396 
1.396 
1.526 
1.648 
1.804 
1.919 
2.545 
2.912 
3.283 

l + t  [ 1 + ~  [ l + t  [ l + t  
1aich Claims in Excess of $I0,000 Have Been Excluded 

0.450 
0.490 
0.539 
0.601 
0.686 
0.730 
0.771 
0.820 
0.885 
0.934 
0.978 
1.022 
1.067 
1.117 
1.272 
1.272 
1.354 
1.430 
1.523 
1.590 
1.939 
2.132 
2.323 

0.574 
0.609 
0.651 
0.703 
0.771 
0.806 
0.837 
0.875 
0.923 
0.959 
0.991 
1.022 
1.053 
1.088 
1.193 
1.193 
1.246 
1.295 
1.354 
1.396 
1.604 
1.715 
1.820 

0.680 
0.709 
0.744 
0.785 
0.838 
0.864 
0.888 
0.916 
0.951 
0.977 
1.000 
1.022 
1.044 
1.068 
1.140 
1.140 
1.176 
1.208 
1.246 
1.273 
1.404 
1.472 
1.535 

0.767 
0.790 
0.816 
0.848 
0.888 
0.908 
0.925 
0.946 
0.971 
0.990 
1.006 
1.022 
1.037 
1.054 
1.104 
1.104 
1.128 
1.150 
1.175 
1.193 
1.279 
1.322 
1.362 

Mean 1.053 1.037 ! 1.029 1.025 1.023 
Vat 0.068 0.032 I 0.016 0.008 0.004 

i 

h 64 128 [ 256 512 1024 
rh 64 128 , 256 512 1024 
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TABLE A-I--Continued 

Percentile: 

Percentiles for Which Clairrt~ in Ex¢..t'~ of $10,000 Have Been Excluded 

l + t  

0.000001 
0.000010 
0.000100 
0.001000 
0.010000 
0.025000 
0.500000 
0.100000 
0.200000 
0.300000 
0.400000 
0.500000 
0.600000 
0.700000 
0.900000 
0.900000 
0.950000 
0.975000 
0.990000 
0.995000 
0.999900 
0.999990 
0.999999 

0.834 
0.852 
0.872 
0.895 
0.925 
0.940 
0.952 
0.967 
0.986 
0.999 
1.011 
1.022 
1.033 
1.045 
1.079 
1.079 
1.096 
1.111 
1.128 
1.140 
1.197 
1.226 
1.251 

0.885 
0.898 
0.913 
0.931 
0.952 
0.963 
0.972 
0.983 
0.996 
1.005 
1.014 
1.022 
1.029 
1.038 
1.062 
1.062 
1.073 
1.084 
1.096 
1.104 
1.143 
1.162 
1.179 

0.923 
0.933 
0.944 
0.956 
0.972 
0.980 
0.986 
0.994 
1.003 
1.010 
1.016 
1.022 
1.027 
1.033 
1.050 
1.050 
1.058 
1.065 
1.073 
1.079 
1.106 
1.119 
1.131 

0.951 
0.958 
0.966 
0.975 
0.986 
0.992 
0.996 
1.002 
1.009 
1.013 
1.018 
1.022 
1.025 
1.030 
1.041 
1.041 
1.047 
1.052 
1.058 
1.062 
1.080 
1.089 
1.097 

Mean 1.022 1.022 1.022 1.022 
Var 0.002 0.001 0.000 0.000 

2048 4096 8192 16384 
2048 4096 8192 16384 
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TABLE A-l--Continued 

Percentile 

Pereentile~ for Which Claim~ in Excess of $5,000 Have Been F.xcluded 

1 + / '  

0.000001 
0.000010 
0.000100 
0.001000 
0.010000 
0.025000 
0.050000 
0.100000 
0.2OO000 
0.300000 
0.400000 
0.500000 
0.600000 
0.700000 
0.900000 
0.900000 
0.950000 
0.975000 
0.990000 
0.995000 
0.999900 
0.999990 
0.999999 

0.386 
0.427 
0.478 
0.544 
0.637 
0.686 
0.732 
0.788 
0.861 
0.918 
0.970 
1.021 
1.074 
1.135 
1.323 
1.323 
1.424 
1.520 
1.638 
1.725 
2.186 
2.451 
2.715 

0.516 
0.554 
0.599 
0.656 
0.732 
0.772 
0.807 
0.850 
O.905 
0.947 
0.985 
1.021 
1.058 
I.I00 
1.225 
1.225 
1.291 
1.350 
1.423 
1.475 
1.741 
1.886 
2.025 

0.632 
0.664 
0.702 
0.748 
0.808 
0.838 
0.865 
0.897 
0.938 
0.968 
0.995 
1.021 
1.047 
1.076 
1.161 
1.161 
1.205 
1.243 
1.290 
1.323 
1.486 
1.571 
1.652 

0.728 
0.753 
0.783 
0.819 
0.865 
0.888 
0.908 
0.932 
0.962 
0.983 
1.003 
1.021 
1.039 
1.059 
1.118 
1.118 
1.147 
1.173 
1.204 
1.226 
1.330 
1.383 
1.433 

0.804 
0.824 
0.847 
0.874 
0.908 
0.925 
0.940 
0.957 
0.978 
0.994 
1.008 
1.021 
1.034 
1.048 
1.089 
1.089 
1.109 
1.126 
1.147 
1.162 
1.231 
1.265 
1.297 

Mean 1.042 1.031 1.026 1.023 1.022 
I 

Vat 0.046 0.022 0.011 0.005 0.003 
64 128 256 512 1024 

256 128 512 64 1024 
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TABLE A-l--Continued 

I I 1 
P . . . . .  tile 1 + 1' I I + 2" J 1 + ~' [ 1 + I, 

Percentiles for Which Claims in Excess of  $5,000 Have Been Excluded 

0.000001 
9.000010 
0.000100 
0.001000 
O.OlO000 
0.025000 
9.05O000 
0.100000 
9.200000 
0.300000 
0.400000 
0.500000 
0.600000 
0.700000 
0.900000 
O.900000 
0.950000 
0.975000 
0.990000 
0.995000 
0.999900 
0.999990 
0.999999 

0.862 
0.877 
0.894 
0.915 
0.940 
0.952 
0.963 
0.975 
0.991 
1.002 
1,012 
1.021 
1.030 
1.040 
1.068 
1.068 
1.082 
1.094 
1.109 
1.118 
1.165 
1.188 
1.209 

0.906 
0,917 
0.930 
0.945 
0.963 
0.972 
0.979 
0.988 
0.999 
1.007 
1,014 
1.021 
1.027 
1.034 
1.054 
1.054 
1.064 
1.072 
1.082 
1.089 
1.121 
1.136 
1.150 

0.938 
0.946 
0.955 
0.966 
0.979 
0.986 
0.991 
0.998 
1.006 
1.011 
1,016 
1.021 
1.025 
1.030 
1.044 
1.044 
1.051 
1.057 
1.064 
1.068 
1.090 
1.101 
1.111 

0.962 
0.968 
0.974 
0.982 
0.991 
0.996 
1.000 
1.004 
1.010 
1.014 
1.017 
1.021 
1.024 
1.027 
1.037 
1.037 
1.042 
1.046 
1.051 
1.054 
1.069 
1.077 
1.084 

Mean 1.021 1.021 1.021 1.021 
Var 0.001 0.001 0.000 0.000 
rz 2048 4096 8192 16384 
q~ 2048 4096 8192 16384 
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It may not be the precise type of round-off problem that Mr. Fuhrer had in 
mind, but if I could do that many convolutions, I expect that the probability 
products discarded in Loop 1 on page 35 would have accumulated to unity 
by the end of that series of convolutions. That is, the resulting distribution 
would be null, because the lines in the resulting distributions would have 
disappeared. Fortunately, I observe the total of the discarded probability 
products (at the end, but also during the series of convolutions), so I would 
be aware if this ever became a problem. In practice, I have done thousands 
upon thousands of convolutions without this ever having been a problem. 

His second point concerns the possible deterioration in the fourth moment 
and the possibility of thereby understating the tails of the distribution. For 
confirmation that this is not a problem, I suggest turning to Ormsby et al. 
[2], specifically, the discussion of pages 1321-1327 (the comparisons are 
between univariate distributions calculated by (a) Monte Carlo vs. (b) nu- 
merical convolutions, using an earlier convolution algorithm) and to Bailey 
[1], specifically, the numerical example for the fifth and sixth bridges (the 
comparison is between a probability of ruin calculated (a) more or less 
precisely by an analytic method vs. (b) one of either of two series of uni- 
variate convolutions, using the current convolution algorithm). 

Perhaps Mr. Fuhrer could use some analytical methods or the Monte Carlo 
method to confirm or reject the operational bootstrap distributions shown in 
the current paper. 

Although it may be difficult or impossible to prove mathematically just 
how accurate are the results produced by numerical generalized convolu- 
tions, my experience has been that the univariate results are very accurate. 
Bivariate results, although acceptable in practice, are not likely to be as 
accurate as univariate results. For the bivariate case, see the numerical ex- 
ample for the fourth bridge in the above paper in ARCH 1993.1. 

Tables A-2 and A-3 were used to calculate Table A-4, which shows the 
effect of excluding claims in excess of the upper end of the range in the X 
column. These latter figures are shown for comparison with the means shown 
in Table A-1. 
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TABLE A-2 

COMPREHENSIVE ADULT 1983 

(1) (2) (3) (4) (5) 
Amount Number Cumulative 
of Claim of Claims Frequency (1) x (3) of (4) 

127 
197 
317 
447 
549 
773 

1,119 
1,371 
1,740 
2,236 
2,734 
3,455 
4,236 
4,738 
6,052 
8,609 

12,047 
18,932 
28,743 
41,210 
57,485 
84,194 

117,628 
177,414 
223,126 

6,500 
11,582 
10,873 
4,557 
3,224 
7,625 
3,105 
2,331 
3,637 
2,577 
1,834 
2,579 

874 

0.098098 
0.174796 
0.164096 
0.068775 
0.048657 
0.115077 
0.046861 
0.035180 
0.054890 
0.038892 
0.027679 
0.038922 
0.013190 

12.458 
34.435 
52.018 
30.742 
26.713 
88.954 
52.437 
48.231 
95.508 
86.963 
75.674 

134.477 
55.875 

46.893 
98.912 

129.654 
156.367 
245.321 
297.758 
345.99O 
441.498 
528.461 
604.135 
738.612 
794.487 
845.256 

710 
1,985 

889 
666 
417 
147 
87 
34 
13 
8 
4 
2 

66,260 

0.010715 
0.029958 
0.013417 
0.010051 
0.006293 
0.002219 
0.001313 
0.000513 
0.000196 
0.000121 
0.000060 
0.000030 
1.000000 

50.769 
181.304 
115.506 
121.088 
119.146 
63.767 
54.109 
29.497 
16.519 
14.202 
19.710 
6.735 

1,026.560 
1,142.066 
1,263.154 
1,382.301 
1,446.068 
1,500.177 
1,529.674 
1,546.193 
1,560.395 
1,571.105 
1,577.840 
1,577.840 
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TABLE A-3 

COMPREHENSIVE ADULT 1984 

(1) (2) (3) (4) (5) 
Amount Number Cumulative 
of Claim of Claims Frequency (l) x (3) of (4) 

126 
197 
318 
448 
548 
773 

1,119 
1,368 
1,735 
2,235 
2,744 
3,475 
4,238 
4,744 
6,016 
8,592 

12,078 
19,048 
28,785 
41,563 
60,224 
83,499 

116,377 
169,947 
274,771 

6,934 
12,700 
12,573 
5,458 
3,977 
9,483 
3,679 
2,728 
4,129 
2,943 
2,085 
3,058 
1,086 

0.090219 
0.165242 
0.163590 
0.071015 
0.051745 
0.123385 
0.047868 
0.035494 
0.053723 
0.038292 
0.027128 
0.039788 
0.014130 

11.368 
32.553 
52.021 
31.815 
28.357 
95.377 
53.564 
48.556 
93.210 
85.582 
74.440 

138.264 
59.884 

43.920 
95.942 

127.757 
156.113 
251.490 
305.054 
353.610 
446.820 
532.403 
606.843 
745.107 
804.990 
860.419 

898 
2,459 
1,009 

824 
478 
179 
93 
50 
12 
i0 
8 
4 

76,857 

0.011684 
0.031994 
0.013128 
0.010721 
0.006219 
0.002329 
0.001210 
0.000651 
0.000156 
0.000130 
0.000104 
0.000052 
1.000000 

55.429 
192.479 
112.798 
129.491 
118.466 
67.040 
50.293 
39.179 
13.037 
15.142 
17.690 
14.300 

1,052.898 
1,165.696 
1,295.187 
1,413.653 
1,480.693 
1,530.986 
1,570.165 
1,583.202 
1,598.344 
1,616.034 
1,630.334 
1,630.334 
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TABLE A-4 

TREND FROM 1983 TO 1984 

Trend from 

X 1983 ro 1984' 

0-150 
150-250 
250-.400 
400-500 
500-600 
600-1,(00 

1,000-1,250 
1,250-1,5oo 
1,5oo-2,ooo 
2,000-2,500 
2,500-3,000 
3,000-4,0(0 
4,000-4.'00 
4,500-5,000 
5,000-7,500 
7,500-10,0(0 

10,000-15,000 
15,000-25,000 
25,000-35,000 
35,000-50,000 
50,000-75,000 
75,000-100,000 

loo,ooo-15o,o(o 
150,000-200,000 
200,000--400,000 

0.937 
0.97 
0.985 
0.998 
1.025 
1.025 
1.022 
1.012 
1.007 
1.004 
1.009 
1.013 
1.018 
1.026 
1.021 
1.025 
1.023 
1.024 
1.021 
1.026 
1.024 
1.024 
1.029 
1.033 
1.033 
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