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ABSTRACT 

The problem of graduating a sequence of data values can be cast as a 
statistical estimation problem. In particular, the Bayesian approach is at- 
tractive due to its ability to formally incorporate known ordering and smooth- 
ness conditions for the graduated values into the estimation structure. However, 
this approach has not been widely adopted in practice, primarily because of 
the arduousness of specifying the prior distributions for the graduated values 
and carrying out the necessary numerical integrations. This paper presents 
simple Bayesian graduation models that substantially ease the prior elicita- 
tion burden; it also describes a Monte Carlo integration approach that greatly 
reduces the computational load. The method is presented in generality and 
subsequently illustrated with two examples, one from the realm of health 
insurance and the other from the more traditional graduation context of 
mortality table construction. It is hoped that the method will stimulate greater 
use of the Bayesian paradigm within the actuarial community. 

1. INTRODUCTION 

Perhaps no single topic has received more attention in the actuarial liter- 
ature over the years than the graduation of a sequence of initial mortality 
rates into smoothed final estimates. Although many practically useful tech- 
niques have been available for many years, the recent shift of primary ac- 
tuarial education from a deterministic to a more stochastic footing (see Bowers 
et al. [3]) has encouraged the development of more statistical approaches to 
the graduation problem. These approaches have the advantage of casting the 
problem as one of estimation of a k-dimensional vector of underlying, un- 
known rate parameters O = (01, .... 0~) r, the values of which help determine 
the elements of the k-dimensional vector of observed initial rates y =  Cvl, 
. . . .  y , ) r .  Notable papers include the works of Broffitt [4], Chan and Panjer 
[10], and Hoem [18]. 

Within the statistical framework, the Bayesian approach to graduation is 
attractive due to its ability to formally blend the practitioner's prior beliefs 
about the true rates into the analysis, thus avoiding the informal post-analysis 
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adjustment sometimes required with other methods because the results "don't  
look right." The primary references in the Bayesian graduation literature 
are the papers of Kimeldorf and Jones [20] and Hickman and Miller [17], 
summaries of which appear in the textbook by London [23]. The basic 
method posits multivariate normal distributions for the prior distribution of 
the true rates 0, and also for the conditional distribution of the observed 
data y given 0 (often called the likelihood for the experiment). These as- 
sumptions enable the posterior distribution of the true rates, given the ob- 
served data, to emerge as multivariate normal as well, the mean of which 
is taken as the final, graduated rates. Although the method is computationally 
simple (only basic matrix manipulations are required), it is frequently hard 
to implement because of the difficulty in setting the myriad of values required 
for the prior mean and covariance matrix of the true rates. Further, the simple 
multivariate normal structure is unable to guarantee prespecified orderings 
of the rates (such as the requirement that human mortality rates be increasing 
after age 30), though constraints are frequently imposed on the prior covar- 
iance matrix that approximate such conditions. 

Of course, the imposition of such natural constraints on the unknown true 
rates 0 is still conceptually easy to handle using the Bayesian framework by 
including them in the prior distribution for 0; Bayes' Theorem ensures that 
any constraints present a priori must necessarily be present a posteriori. 
However, as with many Bayesian approaches to applied problems, the dif- 
ficulty in carrying out the associated numerical integration necessary to com- 
pute the posterior distribution has prevented such approaches from being 
seriously contemplated until recently. In a series of excellent papers, Broffitt 
[5]-[7] has shown that by cleverly choosing prior distributions consistent 
with a reparameterized version of a model that implicitly includes the rele- 
vant constraints, the desired final estimates (in the form of posterior modes 
01 . . . .  , §k) emerge as the solution to a system of k equations in k unknowns. 

Broffitt's method represents a sizable improvement over previous Baye- 
sian approaches, but several criticisms (most typical of many Bayesian data 
analyses) can be made. Mathematical tractability concerns force the user to 
adopt a form for the prior distribution that is conjugate with the likelihood, 
that is, a prior that enables the posterior to emerge in a simple closed form. 
Further, the particular conjugate form chosen depends on the nature of the 
constraints imposed on O. For example, requiring the rates to be increasing 
requires a different prior structure on 0 than if we additionally insist that the 
rates be convex as well. Finally, and perhaps most limiting from an applied 
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standpoint, the method is similar to past attempts at Bayesian graduation in 
the large amount of effort required in specifying the prior parameter values. 
Combined with the high degree of subjectivity involved, this often serves 
to discourage the practitioner, who subsequently turns to less subjective, 
more easily implementable approaches such as Whittaker's method (again, 
see London [23]). 

In this paper we show how a recently developed Monte Carlo integration 
technique known as the Gibbs sampler can be used to obtain realistic answers 
in Bayesian graduation contexts without resorting to convenient assumptions 
about the forms of the model or the prior distribution. The method is easy 
to implement and does not require extensive numerical analytic expertise. 
Hardware requirements for most problems are also minimal; generally only 
a personal computer and a few basic random number generators are required. 
Estimates of the full posterior distribution or any characteristic thereof for 
any parameter of interest are easily obtainable. In particular, posterior means, 
medians, or modes for the rate parameters 0; can be used as the final rate 
estimates. Our basic models also streamline the prior elicitation process, 
historically the real impediment for persons seeking to apply the Bayesian 
methodology. We develop the methodology for completely general likeli- 
hood and prior combinations, and subsequently provide details for two im- 
portant examples found in practice. First, we consider graduating a series 
of aging factors in health insurance claim costs, in which an initial series of 
irregular rates is to be converted into one that is first increasing (up to some 
age s), then decreasing. Second, we take up the traditional context of human 
mortality table construction and show how increasing or increasing convex 
graduated rates can be obtained. Both examples are illustrated with datasets 
from the literature. Finally, we offer a summary discussion and our sugges- 
tions for more general applications of the methodology. 

2. BAYESIAN FORMULATION OF THE GRADUATION PROBLEM 

We begin with a completely general parametric model for the data y, 
which depends on our k-dimensional parameter vector 0 that is constrained 
to lie in a subset Sy of k-dimensional Euclidean space. In this paper, Sy is 
determined solely by inequalities amongst the 0i components, so that Sy = S 
is actually free of y (though this is unnecessary for the success of the al- 
gorithm). For example, for an increasing set of parameters we have 
S={0:01<0z<"'<0~}. We denote the likelihood [that is, the probability 
density function (pdf) of the data given 0] byf(yl0), and the prior distribution 



58 TRANSACTIONS, VOLUME XLIV 

by 'rr(01k ), where k is a vector of parameters (commonly called hyperpar- 
ameters) for O's distribution. We refer to the likelihood times prior as the 
Bayesian model, which in this case is given by 

p(y,OlX) = f(yl0)Tr (O IX)Is(O) (1) 

where Is(O) is the indicator function of the set S, so that Is(O) equals 1 when 
0ES and equals 0 otherwise. (For notational simplicity, we assume that any 
constraints on the yi's, such as yi>0, are built into the likelihood f(yl o). 
Also, throughout the paper we usep as a generic symbol for a pdf.) Gelfand, 
Smith and Lee [15] show that the desired posterior distribution for 0 is 
proportional to the Bayesian model in Equation (1); one simply computes 
the normalized version 

p(y,0 IX ) p(y,0 IX) 
p(01y,a) - p(yIX) = fp(y,01X) dO 

f(yl o)~(o l x)Is (0) 
= f f(yl 0)~(0 Ix)Is (0) dO " (2) 

If X is known, this posterior distribution is fully specified, and one simply 
takes some appropriate summary (such as the posterior mean) to be the set 
of graduated values. Notice that by using Equation (2) we are circumventing 
the intermediate step of standardizing the prior to satisfy the constraint set 
S. In other words, the proper distribution (that is, one that integrates to 1 
over S) that actually characterizes our prior beliefs about 0 is 

= I x)xs (o) 
f w ( , IX)Is ( , )  d ,  " 

Replacing ,rr with "rr* in Equation (2) produces the same result forp(01y,X), 
because the dO integrals will cancel in the numerator and denominator. Thus 
working with "rr directly (instead of ,rr*) simplifies the necessary formulas 
and also makes prior specification (choice of X) easier, because we may 
think about X separately from the constraint set S. Section 4 contains further 
guidance on this issue in the context of two examples. 

As an alternative to specifying a vector of fixed values for X, a second- 
stage prior distribution (sometimes called a hyperprior) can be selected for 
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it. If we denote this distribution by h(h), the desired posterior for 0 is now 
obtained by marginalizing over h, 

p(0 l Y) = p(y,0) = fp(y ,0 ,h)  dh 
p(y) f f p(y,0,X) dX dO 

ff(Yl 0)at(0 I X)h(h)Is(O) dX 
= f ff(y[O)rr(Olh)h(k)Is(O ) dX dO " (3) 

Unfortunately, the integrations depicted in Equations (2) and (3) typically 
required sophisticated numerical techniques because of the presence of the 
constraint set S. 

Before introducing our computational method, we wish to consider the 
complete conditional distribution of the i-th component of 0, that is, the 
distribution of 0i given values for the data and all the other parameters in 
the model. We notate this distribution as p(0/ly,h,0j÷; ). Corresponding to 
this distribution is a cross-section of the constraint set S, which we notate 
as Si. For example, looking again at our increasing parameter case above, 
we would have Si = {0i:0i-t < 0i< 0i+1}. Using logic similar to that preceding 
Equation (2), we can write 

p(0, I y,X,0j÷,) = f(Y[O)rc(OIh)Is,(O,) 
f Y(yl (o I x)zs, (o,) dO," 

Because the denominator of the right-hand side of this expression is a con- 
stant with respect to 0j, a convenient shorthand representation of this com- 
plete conditional distribution is given by 

p(O, l y,h,0j÷3 x f(Yl 0)rr(0 [X)Is,(O,), (4) 

where we remember to view the right-hand side of (4) as a function of 0~ 
for given values of 0j÷~. Notice that if rr is chosen to be conjugate with the 
likelihood f ,  so that the unconstrained complete conditional distribution 
emerges as a familiar standard form, then the constrained version given in 
(4) is simply the same standard distribution restricted to Sg. This fact will 
be key in our sampling implementation, which we describe in the next 
section. 

3. REVISED ESTIMATE CALCULATION VIA THE GIBBS SAMPLER 

The Gibbs sampler is a Monte Carlo integration method, developed for- 
mally by Geman and Geman [16] in the context of image restoration. In the 



60 TRANSACTIONS, VOLUME XLIV 

Bayesian framework, Tanner and Wong [25] used essentially this algorithm 
in their substitution sampling approach. Most recently, Gelfand and Smith 
[13] developed the Gibbs sampler for general Bayesian settings; that paper 
contains a more complete discussion of the method and its properties. 

To summarize the method, suppose we have a collection of n random 
variables U = (U1 . . . .  , U,) whose complete conditional distributions, denoted 
generically by gi(UilUj÷i), i =  1 . . . .  , n, are available for sampling. Here, 
"available" means that samples can be generated by some method, given 
values of the appropriate conditioning random variables. Under mild con- 
ditions (see Besag [2]), these complete conditional distributions uniquely 
determine the full joint distribution, p(Ut,  ..., U,,), and hence all marginal 
distributions, p(Ui), i = 1, . . . ,  n. The Gibbs sampler generates samples from 
these marginal distributions as follows: Given an arbitrary starting set of 
values Ul(o) . . . .  , U.(o), we draw U1(1) from g l ( U l [ U 2 ( o )  . . . .  , U.(o)), then U2(1) 
f r o m  g2(U2[UI(1), U3(o) , . . . ,  Un(o)), and so on up to U.o) from g.(U.[U~(x), 
.... U,-lo)) to complete one iteration of the scheme. After t such iterations, 
we obtain (UI~,) , ..., U, to). Geman and Geman [16] show under mild con- 
ditions that this n-tuple converges in distribution to a random observation 
from p(U~, . . . .  U,,) as t ~ .  For this reason, in what follows we suppress 
the (t) subscript, assuming that t is sufficiently large for the generated sample 
to be thought of as a realization from the joint distribution. 

Now, replicating the entire process in parallel G times provides indepen- 
dent and identically distributed (i.i.d.) n-tuples (U~) . . . . .  U~ )), g = 1 . . . . .  G 
from the joint distribution. (Typically the same starting values are used for 
each parallel sampling chain, though this is a just a matter of convenience 
and is unnecessary for the convergence of the algorithm.) These observations 
can then be used for estimation of any of the marginal densities or any 
features thereof. In particular, the marginal mean of Ui can be estimated by 

= u ,  = u ,  (5) 
g=l 

Moreover, since the U~ ) are i.i.d., the Central Limit Theorem implies that 
Ui is approximately normally distributed with mean E(Ui) and variance Var(Ui)/ 
G. Thus a simple standard error estimate for the point estimator in (5) is 
given by 

c G ) 2  
s e(V,) = • , 

1 )O  



MONTE CARLO APPROACH TO BAYESIAN GRADUATION 61 

the square root of the sample variance of the U~ )'s divided by G. Gelfand 
and Smith [14] give more sophisticated methods for estimating marginal 
moments and computing density estimates, but the simple methods given 
above suffice for our purposes. 

In our application, we have U = 0, or U = (0,~) if the hyperparameters 
are also unknown and thus have distributions as well. Notice that y is not a 
component of U; that is, we generate from p(Oi [Oj~ i , k , y ) ,  i = 1, . . . ,  k, and 
from p(kilkj÷i,O,y), i = 1 . . . . .  dim(k),  but not from p(yi~j~i,O,k),  i = 1 . . . . .  
k. This is because what is desired at convergence of the algorithm is not the 
marginal prior  p(Oi), but the marginal posterior P(0iIY). Because the 0 and 
k complete conditionals are by definition conditioned on the data y, by 
leaving these components out of the sampling process, the algorithm con- 
verges to the desired posterior distributions. 

Looking again at Equation (4), we see sampling from the 0, complete 
conditionals could be naively accomplished simply by sampling from the 
unconstrained distribution and then accepting the generated variate only if 
it satisfies the constraint 0~)~S~. This, however, could lead to quite ineffi- 
cient generation, because most variates generated might be rejected. A much 
more efficient approach for generating from invertible truncated distributions 
is given by Devroye [11]. Suppose X is a random variable having cumulative 
distribution function (cdf) F, and Y is a truncated version of this random 
variable with support restricted to the interval [a,b]. Then Y has cdf 

O, y < a  

G(y) = V(y) - F(a) 
F(b) - F(a) ' a <-y <- b .  

1, y > b  

Then Y can be generated as F - ' { F ( a ) +  V[F(b) -F(a)]} ,  where V is a U(O,1) 
random variate and U denotes the uniform distribution. This enables "one- 
for-one" generation from truncated distributions, eliminating the need for 
rejection algorithms. We make great use of this fact in the examples of our 
next section. 

4. EXAMPLES AND NUMERICAL ILLUSTRATIONS 

In this section two examples illustrate the methodology for some common 
distributional models in familiar actuarial settings. 
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Example 1: Health Insurance Aging Factors 

With the recent publication by the Financial Accounting Standards Board 
of FAS 106, "Employer's Accounting for Postretirement Benefits Other 
Than Pensions," the development of methods for projecting postretirement 
health costs has received increased attention. Such projections are highly 
sensitive to health insurance "aging factors," or factors that project the 
increase in health-care cost as an individual ages. These quantities can be 
computed from a claim cost distribution as the annualized percentage in- 
crease in the monthly cost per person at a given age bracket over the monthly 
cost per person from the immediately preceding age bracket. That is, suppose 
Cii ,,~,ij and CI~,~+,2 J are the true monthly costs per person for two consecutive 
age brackets having lengths nl and nz years, respectively. Then representing 
the intervals by their midpoints, the i-th "true" aging factor 0~ satisfies the 
equation 

"1 +"2 C[i , i  ~,n2] 
(1 + 0 i ) - ~ - -  

C t i - n l , i ]  " 

We can compute estimates Ye of these 0i's by replacing the true monthly 
costs C by estimated (observed) ~ values obtained from employee claim 
cost data. Solving, we obtain 

yi = I,,;--2~ _ 1. (7) 
\ C[ i  -n l ,  i I / 

Like ungraduated mortality rates, these " raw" aging factors y~ may form 
a noisy, irregular sequence. Because our goal is to project increases in 
medical costs due to the aging of a population, we would naturally prefer a 
smooth sequence of aging factors. Although the post-65 aging factors are of 
primary interest, we must also be concerned with pre-65 factors because of 
the presence of younger spouses, disabled workers and early (pre-Medicare) 
retirees. Further, health-care professionals believe that aging factors should 
be near zero for the youngest ages and also for the oldest ages. Finally, we 
would likely prefer a series without any negative aging factors, because, 
excluding infancy, we would not expect any age range over which costs are 
decreasing. This collection of prior opinions suggests a sequence of true 
aging factors that are small (but positive) for the early ages, increase smoothly 
with age up to some age s near retirement, and then decrease smoothly until 
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the end of the table, where the aging factor is again small yet positive. We 
may also want to impose some upper bound B that no 0i may exceed. 

In the notation of Section 2, suppose we specify the likelihood function 
f by assuming that the observed (data-based) aging factors y, arise from 
independent normal populations having means 0i and variances cr z (that is, 
we assume homogeneous variances across ages). We specify our prior rr by 
adopting the familiar product of independent conjugate normal distributions 
for the 0~ before imposing the constraints. That is, we assume that if we 
ignore the constraints, the 0i's constitute a random sample from a single 
(prior) normal population. The Bayesian model in Equation (1) may be 
written as 

k k 

p(y,O[X) = I-[ N(Y,.[0,,o2)II N(O, ll~,*2)Is,(O,) (8) 
i l l  i=1 

where again l denotes an indicator function, N denotes the normal distri- 
bution, and k =  (o~,r2,1~). In fact, we go one step further by assuming that 
~. is unknown as well and assign hyperprior distributions to its components. 
A sufficiently general class of hyperpriors is offered by standard conjugate 
forms, which have the decided advantage of allowing closed forms for the 
A complete conditional distributions, though as we remark in Section 5, this 
is not necessary for the implementation of the method. Thus we assume 
a e - I G ( a l , b l ) ,  ~--IG(a2,b2),  and i . , -N(c ,d  2) where IG denotes the inverse 
(reciprocal) gamma distribution. (The IG distribution gets its name from the 
fact that if X is distributed as a gamma random variable G(a,b),  that is, 
having pdff(x)=x"-1 exp(-x/b)I~o,~(x)/[F(a)b'], then Y= 1/X is distributed 
IG(a, b) with pdf f(y) = exp( - 1/by)I~o,®)(y)/[F(a)bay ~ ÷ '].) 

We now give the collection of complete conditional distributions necessary 
for the implementation of the Gibbs sampler. Applying Equation (4) and the 
standard conjugate normal theory (see, for example, Berger [1]), we have 

0.2 + ~.2 " # -~ ~.2/ I(oi-',Oi+') (Oi)' 

i = 1 , . . . , s -  1 

p(O, ly,k, Oj, 3 ~, N O~ tr 2 + o" 2 + r2 ] - ,  . 
(9) 

i = s  

o.2 + ,7.2 , 0.2 + r2 I(0,+,,0~-,)(03, 
i = s + l  . . . . .  k 
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where %= 0k+l = 0, and s indexes the age corresponding to the largest aging 
factor. The remaining complete conditionals (those for the h components) 
also emerge from standard hierarchical Bayes calculations as 

p(o~[ y,0,p.,~) = p(o-2 ly,0) 

p( r: I y,0,/x,a a) 

= IG 0 .2 a 1 + ~, b f '  + ~ (y, - 0i) 2 , 
i = l  

= p( 21 

, 

i = l  

and 
p(~  I y,O,cr2,r 2) = p(/~ I 0,~ -2) 

( [,2c +kd2"O r2d2_ ~ 
= n tx r2 + ~ ,  r2 + kd2], (10) 

w h e r e - -  k 0 -- ~i= 10i/k" 
As a numerical illustration, we analyze the raw aging factors Yi presented 

in Table 1, which were computed from average claim cost data presented 
by Hutchings and Ullman [19]. These observed ~ values were used with 
Equation (7) to obtain the raw aging factors in the table. The cost experience 
is based on 676,000 Blue Cross and Blue Shield of Greater New York 
contracts for the calendar year 1978. Our factors are unisex, the result of 
simply averaging the sex-specific monthly per-person costs. Our smoothed 
aging factors are thus appropriate for use with a population that has roughly 
the same number of males as females. Because these are private-carrier cost 
data, there is a sharp drop in the d values at age 65, due to the impact of 
Medicare funds offsetting the total cost. As a result of this discontinuity, no 
aging factor was calculated centered at age 65. Notice that the initial esti- 
mates Yi are very rough, violating our order restrictions several times and 
even becoming negative for one older age (90) where our information is less 
reliable. 

In order to fit the above model, we need to complete the specification of 
the hyperpriors by choosing values for the constants s, B, al, bl, a2, b2, 
c, and d. First, we took s = 60 as the age corresponding to the maximum 
aging factor. This selection is admittedly somewhat data-based, as the ob- 
served aging factors yi in Table 1 seem to offer overwhelming evidence in 
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TABLE 1 

OBSERVED HEALTH CLAIM COST AGING FACTORS 

i agei 

1 17.50 
2 30.00 
3 38.75 
4 45.00 
5 50.00 
6 55.00 
7 60.00 

Yi i agei y, 

0.0047 8 70.00 0.0454 
0.0341 9 75.00 0.039C 
0.0403 10 80.00 0.0244 
0.0503 11 85.00 0.024C 
0.0467 12 90.00 --0.0021 
0.0184 13 95.00 0.0001 
0.0713 

support of this s value• (We remark to practitioners uncomfortable with this 
selection that s could be regarded as another component of k and included 
in the sampling algorithm at little increase in complexity.) We then took 
B= 0.15, believing that no aging factor should exceed this value. 

Next recall that c and d 2 are the mean and variance of ~, which in turn 
is the prior mean of the collection of true aging factors (that is, ignoring 
their ordering for the moment). As such, we chose the hyperprior mean 
c = 0.035, but also chose the hyperprior standard deviation d = 0.05, a very 
large value (relative to the mean) intended to allow the data to have a greater 
impact on our results. 

Finally, recall that o -2 is the variance of the observed aging factors Yi, 
while r 2 is the prior variance of the true aging factors 0i (again, ignoring 
the constraints)• For the inverse gamma priors on these two parameters, we 
computed that setting the prior mean and prior standard deviation equal to 
(0.1) 2 (again, a rather vague Specification) implies the values a = 3.0, b = 50. 
Setting these values equal to the smaller value (0.02) 2 (a more restrictive 
hyperprior), we instead obtain a = 3.0, b = 1250. A limited sensitivity analy- 
sis suggested that a change in the b's had the greatest impact on our graduated 
0 values, and so in Figure 1 we compare the three graduations (bl = 1250, 
b2 = 1250), (bl =50, b2 = 1250), and (bl =50, b2=50). These hyperprior 
specifications reflect an increasing amount of variability in our prior beliefs 
and translate into increasingly variable graduated rates. We denote the three 
graduations by Smooth 1, Smooth 2, and Smooth 3, respectively• 

We implemented the Gibbs sampler by using the complete conditionals 
given in (9) and (10) above, and generated values in the following order: 
01, 02, Ok, 0 "2, ¢2, /z. We selected 0 ~) - ~  =0.035 for i =  1, k, o-(~01 • • •, i(0) --  ~ • • •, 

(g) _ (g) = ~'~o)- 0.1, and/~(o) = c = 0•035 as reasonable starting values for the algo- 
rithm, and used these starting values for each of our G independent parallel 
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sampling chains. Initially we took G = 20, but at iteration 16 we increased 
~) G to 100 by generating five independent 0m6 ~ values for each of the 20 

tz~) values on hand; we used the same trick to increase G to 500 at iteration 
21. Using Equation (6) for each i=  1, ..., k, the largest value of s~e(0i) 
obtained was approximately 0.00025. Thus, using the +_-2s~e error range 
suggested by the asymptotic normality of 0i, it seems that G = 500 is large 
enough to ensure three decimal place accuracy in this example. Regarding 
the choice of a sufficiently large t, convergence of Gibbs sampler algorithms 
is typically judged by monitoring empirical quantiles or entire density esti- 
mates from iterations that are far enough apart (say, five iterations) to be 
thought of as independent. In this example, stabilization of the empirical 
0~ ~ quantiles indicated convergence of the algorithm by iteration t = 25. 

We computed our final 0i estimates using Equation (5) for the three hy- 
perprior specifications, and plotted these along with the rawy~ aging factors 
in Figure 1. Notice that Smooth 2 (corresponding to a strict 0 -2 specification 
but a more vague r 2 specification) gives graduated rates that are almost 
exactly parallel to those of the more restrictive Smooth 1, but roughly 0.005 
larger. One of these graduations might be preferred to the other in the interest 
of conservatism, though which one would depend on the use of the final 
estimates. For example, if our client population comprised primarily older 
aged persons and our goal was to project backwards for the younger ages, 
choosing the larger values from Smooth 2 might tend to understate these 
actual costs. Allowing even more variability by decreasing bl as well (Smooth 
3), we get even more sharply peaked rates than in the previous two gradu- 
ations and a much larger maximum rate as well. Of course we do not wish 
to claim that one of the above graduations is "correct," but simply to give 
the reader an impression of the range of results that can be obtained using 
our simple prior specification. 

Example 2: Graduation of Human Mortality Rates 

Suppose we are interested in human mortality rates between ages x and 
x+k, where x_>30. Data available from mortality studies of a group of 
independent lives typically include values for di, the number of deaths ob- 
served in the unit age intervals Ix + i - 1, x + i], and ei, the exposure for this 
age interval, or the total number of person-years the lives were under ob- 
servation in the interval. By assuming that the force of mortality in the unit 
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age interval [ x + i - 1 ,  x + i ]  is equal to the constant 0,, Broffitt [7] obtains 
a simple expression for the likelihood function, 

k 

f(Yl o) ~ 1-[ 0~' exp(-e,0,),  (11) 
i=1 

where y =(dl  . . . . .  dk, ex, .... ek). (Note that if we view the exposures ei as 
fixed quantities, this likelihood is equivalent to that obtained by assuming 
that di[Oi has a Poisson distribution with mean e~0;.) An initial estimate of 
0~ is provided by r~ = d/e~, the unrestricted maximum likelihood estimate of 
0i, more commonly known as the " raw"  (ungraduated) mortality rate. We 
wish to produce a graduated sequence of 0/s that conform to the increasing 
condition 

O E S  mc = { 0 : 0  < 01 < "'" < Ok <B} (12) 

or perhaps to the more restrictive increasing convex condition 

O @ S  mcc°u = {0:01  > 0,0k < B ,  0 < 0z-01 < "'" < 0,--0k-~} (13) 

Broffitt [7] observed that a natural conjugate prior family for the likelihood 
in (11) is offered by the gamma distribution (see pdf given in Example 1). 
Unfortunately, the intractability of the posterior after imposing the order 
constraints (12) or (13) forces him to choose a reparametrization of the model 
that depends on the constraint set chosen, and subsequently to impose the 
gamma prior structure on the resulting new set of parameters. Using the 
Gibbs sampler, such constraint-dependent reconstruction of the model is 
unnecessary. We simply assume that the 0/s are an independent identically 
distributed sample from a G(a,/3) distribution prior to imposing the con- 
straints, so that the Bayesian model (1) becomes 

k k 

p(y,0 {k) ~ I I  o~ 'exp( -e io i ) l - I  o7 -~ exp(-oJ[3)ls,(O~). (14) 
iffil i=1 

We complete the model specification by assuming that a is a known constant 
but that/3 has an IG(a,b) distribution, so that k =  13 in Equation (14). Hence 
in order to implement the Gibbs sampler, we need to find the complete 
conditionals for the 0/and/3. The former are given by 

p(O i l y,/3,0j,i) ~ G(0~ [ a*,~*)[,o,_l.o,,)(O,), i = 1, . . . ,  k, 
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for rates which satisfy the increasing condition, and 

~ G(0, 

G(0i 

p(O, [y,X,0j , ,3  : c . ~ G ( 0 ,  

G(O, 

G(O,. 

~ ~ I ,/3 ) Cm~(o,2o~-o~),o=)(O,), t = 1, 

* 81+03 " - -  o~ ,/3 )I(m~co,.2o3_0,)_5__)(0i) , t - 2, 

~ I 0i 1+0i÷1 a ,/3 )<, .~2o,- , -o, -~.~o, . , -o, .~i .~ (0,) ,  

i = 3  . . . . .  k - 2 ,  

, r ,  ),(20,-2 o,-3.-:-~-=) (Oi), i = k - 1 ,  

Ot ,/3 )I(2o~ , -o ,  z,B)(0/), i = k, 

for rates satisfying the increasing convex condition. In both cases a * =  o~+ 
di,/3* = (/3-1 +e.)-1, 0o - 0, and 0,+1 =B.  The complete conditional for/3 is 
readily available as 

p(/3 y ,0 )  = IG(a + ka, b -1 + i = l  Oi " 

TABLE 2 

RAW MORTALITY D A T A  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

a~i dl el ~ I i ~ a ~ i  ~ e i I 

35 3 1 7 7 1 . 5  0.0016935 16 50 4 1 5 1 6 . 0  0.0026385 
36 1 2126.5 0.0004703 17 51 7 1 3 7 1 .5  0.0051039 
37 3 2 7 4 3 . 5  0.0010935 18 52 4 1 3 4 3 . 0  0.0029784 
38 2 2766.0 0.0007231 19 53 4 1 3 0 4 . 0  0.0030675 
39 2 2463.0 0.0008120 20 54 11 1 2 3 2 . 5  0.0089249 
40 4 2368.0 0.0016892 21 55 11 1 2 0 4 . 5  0.0091324 
41 4 2310.0 0.0017316 22 56 13 1 1 1 3 . 5  0.0116749 
42 7 2306.5 0.0030349 23 57 12 1 0 4 8 . 0  0.0114504 
43 5 2 0 5 9 . 5  0.0024278 24 58 12 1 1 5 5 . 0  0.0103896 
44 2 1 9 1 7 . 0  0.0010433 25 59 19 1 0 1 8 . 5  0.0186549 
45 8 1 9 3 1 . 0  0.0041429 26 60 12 945.0 0.0126984 
46 13 1746 .5  0.0074435 27 61 16 853.0 0.0187573 
47 8 1 5 8 0 . 0  0.0050633 28 ~ 62 12 750.0 0.0160000 
48 2 1 5 8 0 . 0  0.0012658 29 63 6 693.0 0.0086580 
49 7 1 4 6 7 . 5  0.0047700 30 64 10 594.0 0.0168350 

Table 2 gives a dataset of male ultimate (duration _> 16) experience orig- 
inally presented and analyzed by Broffitt [7]. Before graduating these rates, 
we must specify values for the constants a, a and b. In this regard, the paper 
by Gaver and O'Muircheartaigh [12] is helpful. These authors recommend 
a method of moments approach to determining o~ and/3. In other words, we 
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equate the first two sample moments of the raw rates, fi = ~k,=1 r,/k and st2 
_- ~;~k= ~ (r~- ?)2/(k- 1), to the corresponding population moments in the (un- 
constrained) marginal family m(rila,/3), 

E(r~) = 1E(d,) = 1E[E(d,I 0~)] 

and 

= 1E(e~O~). = E(O~) = a/3, 

Var(ri) = 1Var(di) = l{var[E(d,[O,)] + E[~Zar(di(Oi)]} 
ei ei 

= ~[Var(eiOi) + E(e,Oi)}] = ~[e2~(a~2) + ei(a/3)] 

= ce~ z + eFlafl, 

using the Poisson distribution of d,[Oi and the gamma distribution of 0ila,/3. 
This results in the system of two equations and two unknowns 

? = a / 3  
k 

s2 = ~/3z + a/3 ~ e , ' / k .  
i= l  

Solving, we obtain &=~Z/(SZr-fi~.~.leF1/k ) and /3=H&. Since in our spec- 
ification we actually have an IG(a,b) hyperprior on /3, we might choose 
a = 3.0 and b = &/(27), corresponding to a hyperprior having mean and stan- 

dard deviation both equal to ~ (again, a rather vague hyperprior specifica- 
tion). Notice that by using the data to help complete the hyperprior 
specification, our approach now has an empirical Bayes flavor (see, for 
example, Morris [24]), as opposed to a strict Bayesian interpretation. But 
for practitioners willing to accept the above data-based formulas, there is no 
prior specification burden at all. 

For this Gibbs sampling run, the starting values ~ - 0~o/- 0.0000222i2 (sug- 
gested by a quadratic regression of the r~'s on i) and /3~cEl=~/&=0.00435 
were used for each chain, g =  1 . . . .  , G. As in Example 1, empirical quantiles 
of the 0~ I were checked every five iterations, and we again increased G 
from 20 to 100 at iteration 16 and from 100 to 500 at iteration 21. Figure 
2 shows the raw rates r~ and graduated rates O~ obtained from the G = 500 
independent replications of the Gibbs sampler at iteration t = 25. In this 
example, this G value was large enough to produce a maximal standard error 
in Equation (6) of roughly 0.0000045, which in turns suggests at least four 
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good decimal places in our rate estimates. The rates given in the figure as 
Bayes 2 are those obtained using the prior specification technique described 
in the previous paragraph (for this data, fit= 1.49, a = 3.0 and b = 115), an 
upper bound B of 0.025, and the increasing constraint set. In Bayes 1 we 
reduce the impact of the prior by setting o~= 0 and b = 0.0005 (recall that 
this implies a* = di and an extremely vague prior on/3). The figure shows 
that the Bayes 1 rates are indeed a bit more variable, being smaller than 
those for Bayes 2 for younger ages but larger at the older ages. The Bayes 
3 rates are obtained by choosing the same c~, a and b values as in Bayes 2, 
taking B =0.020, and imposing the increasing convex constraint set. The 
results are clearly much smoother but exhibit less fidelity to the original rate 
sequence. 

Actuaries less familiar with Bayesian graduation methods might well won- 
der how they compare with more familiar approaches. Klugman [21], [22] 
gives a formal Bayesian derivation of Whittaker's method, and one with a 
relatively light prior specification burden. Figure 2 offers a less formal com- 
parison in the context of the Table 2 data by showing the results of two 
Whittaker Type B graduations along the Bayesian results. Both Whittaker 
graduations use the standardized exposure values ei/~ as weights, and take 
a third-degree polynomial as the standard of smoothness. The rates plotted 
as Whittaker 1 use the smoothing constant h = 500, which apparently is large 
enough to produce rates that are increasing, but not necessarily convex. The 
Whittaker 2 rates use h = 5000, which does result in a convex sequence; still 
larger values of h did not significantly alter the graduated results. The Whit- 
taker results are fairly similar to the Bayes results, though the Whittaker 
rates tend to be influenced more by the unusually low rate at age 63. Of 
course, the two convex sequences (Whittaker 2 and Bayes 3) could be made 
even more similar, either by altering the Whittaker weights or modifying 
the Bayes prior. We remark that a very large value of the smoothing constant 
must be employed to ensure Whittaker rates that are convex, and that the 
choice of this constant basically comes down to guesswork. The Bayesian 
approach formalizes this uncertainty into prior distributions and, via our 
Monte Carlo approach, enables direct imposition of the desired shape 
constraints. 

Finally, Figure 3 presents histograms of the raw rates and all three Bayes 
rate sequences plotted in Figure 2. Except for a bit too much mass in the 
right tail, the histogram of the raw rates seems to validate our gamma dis- 
tributional assumption. The fact that o~=0 in Bayes 1 is borne out by its 
heavier left tail as compared to Bayes 2. Although a4:0 in Bayes 3, its 
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ORIGINAL AND GRADUATED FORCES OF MORTALITY 
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FIGURE 3 

HISTOGRAMS OF ORIGINAL AND GRADUATED FORCES OF MORTALITY 
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histogram also exhibits a heavy left tail. This suggests that the very large 
number of constraints placed on the Oi's in this case may be overwhelming 
the shape of the original (unconstrained) distribution. 

5. SUMMARY AND DISCUSSION 

In this paper we have shown how a simple Monte Carlo integration pro- 
cedure known as the Gibbs sampler enables routine implementation of Baye- 
sian graduation without the need for artificial distributional assumptions or 
extensive numerical analytic expertise on the user's part. We also purposely 
avoided models requiring large amounts of prior elicitation, in response to 
the many practitioners who object to Bayesian graduation on the grounds 
that it lacks objectivity and practicality. As an unfortunate side effect, how- 
ever, our models may seem an oversimplification to some. Indeed, satisfying 
a large constraint set like that described in (13) with only three free param- 
eters may lead to unsatisfactory results. But this in no way diminishes the 
value of the sampling-based strategy we have described; many generaliza- 
tions are possible. First, the (unconstrained) identical distribution assumption 
on the 0i may be dropped. For instance, in Equation (14) we might replace 
a and/3 by a, and/3;, as Broffitt [7] does. This increases the prior elicitation 
burden k-fold, but not the computational burden because closed forms for 
the complete conditionals are still available. However, if even this does not 
give acceptable results, we can drop the conjugate prior assumption as well. 
This does increase the computational burden, because now the necessary 
Gibbs samples 0~ ~ must be generated using some sort of rejection algorithm 
(see, for example, Devroye [11]). 

Other generalizations are possible using the Gibbs sampling approach. 
One could graduate male and female rates simultaneously, perhaps with an 
unknown crossover point in the rate patterns (see Carlin, Gelfand and Smith 
[8]). Covariates (such as health status, sex, and the like) could be included 
in a parametric graduation version (see London [23]) of our Bayesian model. 
The implementation of formal Bayesian model choice techniques for com- 
paring several competing graduations is also possible using the Gibbs sam- 
pler (Carlin and Poison [9]). In short, the added flexibility offered by Monte 
Carlo methods suggests a rosy future in the applications world. 
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