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ABSTRACT 

This paper considers the distribution of aggregate claims of an insurer. 
The general form of the distribution is considered initially, and, after a 
few mild restrictions are imposed, it is characterized as being a compound 
distribution. Various models for the aggregate claims as well as the num- 
ber-of-claims distribution are presented. Special emphasis is placed on 
characterizing the aggregate claims random variable as Compound Pois- 
son, using the concepts of infinite divisibility and Bayesian uncertainty 
models. Results from stochastic process theory are applied to the mod- 
eling of the risk process faced by an insurer. The paper further provides 
a comprehensive review of related results that have appeared in the ac- 
tuarial and statistical literature. 

i. INTRODUCTION 

One of the primary goals of any insurance risk endeavor is to arrive at 
a satisfactory model for the probability distribution of the total costs of 
insurance claims, usually called the distribution of aggregate claims. The 
collective theory of risk is based on the assumption that the counting 
process representing the number of claims is a Poisson process and the 
associated cumulative or compound process (in the terminology of Cox 
[8]) representing the total claim amount is thus Compound Poisson. 

It has been found in many instances that the number-of-claims process 
is not necessarily of Poisson type, and so alternative assumptions have 
to be made concerning these two stochastic processes. The type of risk 
insured dictates the form, and it is the aim of this paper to survey and 
propose various models. 

In many cases it can be shown that the aggregate claims process is still 
of Compound Poisson form (which allows for the utilization of the col- 
lective theory of risk). This property is thus desirable, and one of the 
primary tools used to verify this property is the theory of infinite divisi- 
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400 DISTRIBUTION OF AGGREGATE CLAIMS IN RISK THEORY 

bility. To this end, infinitely divisible distributions are discussed in various 
parts of this paper. 

It is not the aim of this paper to present method of inference for these 
models, but rather to discuss the models themselves along with some of 
their basic properties. 

Earlier surveys include those of Cram6r [10, 11], Seal [36], Biihlmann 
[6], and Beekman [I]. The recent work of Gerber [18] and Bowers, Gerber, 
Hickman, Jones, and Nesbitt [4] should also be valuable to the reader. 

The reader should note the numbering system for equations in this 
paper. An equation referenced by a single number, e.g. (6), refers to an 
equation in the current subsection; an equation referenced by two num- 
bers, e.g. (3.6), refers to an equation in another subsection of the current 
section, while an equation referenced by three numbers, e.g. (III,.3.6), 
refers to an equation in another section. 

II.  THE AGGREGATE CLAIMS DISTRIBUTION 

II.1. General Representation 

Initially, definitions are made of the random variables representing the 
number-of-claims and the aggregate claims processes. 

Definition I. The number of claims in the time interval (0, t] is denoted 
by N(t) whenever  t > 0, and it is assumed that N(0) = 0. 

Definition 2. The total claim amount in the interval (0, t] is denoted by 
X(t) if t > 0, and X(0) -- 0. 

These are the two basic processes used. In general, it is assumed that 
X(t) has only step sample functions (i.e., the sample paths of X(t) only 
change vertically at times of  claims). Thus, as mentioned previously, 
{N(t); t /> 0} is a counting process,  and {X(t); t /> 0} the associated cu- 
mulative process. 

To derive the distribution of  X(t), the following definitions are needed 
as well. 

Definition 3. 

G,(x) = P{X(t)<~x}, x>-O. (1) 

Definition 4. The time of the occurrence of the ith claim is denoted by 
Tifor i = 1 , 2 , 3  . . . . .  

Definition 5. 

P,,.,(t,, t~ . . . . .  t,,)=P{T,<~t,, T2<<-t2 . . . . .  T,,<~t,,, N(t)=n}, 
(2) 

0<t~<t2< . . . <t,,<t. 
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Definition 6. 

G,.,(xl{t, t2 . . . . .  t,,}) = P{X(t)<~xlT~ = t~ . . . . .  T,, = t,, N(t)  = n}, 
(3) 

0 < t l < / 2 <  • • • <tn<t.  

Definition 7. 

F..,(ylx)=e{x(t)<-ylX(t-O)=x, N ( t - O ) = n ,  N ( t ) = n +  l}. (4) 

The possibility of multiple claims at any time is excluded, and hence 
F,,.,(YlX) represents the conditional distribution function of a single claim 
at time t given that immediately before time t, there were n claims totaling 
x units. 

THEOREM II. 1.1. The distribution func t ion  o f  the total claim a m o u n t  
distribution is given by 

Gt(x)= ~ f G,,.,(xl{t,, t2 . . . . .  t,})dP,.,(t,, t2 . . . . .  t,), (5) 
n = O  d 

O<tl<t2<...<tn<t 

where 

G,,.,(xl{t,, t2 . . . . .  t,,}) 

= f Fn_,,.(xlxo_,)dFo_2 ..... ( x . , _ , l x . , _ 2 )  • • • dFo,,(x,lO), 
(6) 

R n -  I 

and  the integrals are taken to be Lebesgue-St ie l t jes .  

Proof.  See Btihlmann ([6], p. 55). 
The general representation for G,(x) is thus given by (5). In the next 

section some of the assumptions made are relaxed in order to arrive at 
the usual form of G,(x). 

11.2. The C o m p o u n d  Distribution 

A relatively simple form for the distribution function G,(x) may be 
obtained if the individual claim size distribution is independent of time. 
The following definition is thus made. 

Definition 1. Let Y, denote the amount of the ith claim for i = 1, 2, 
, . . . .  

The special form of G,(x) for time-independent claim amounts may now 
be derived. 
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THEOREM 11.2.1. I f  the claim size distribution is independent  o f  time, 
i.e., 

Fo.,(ylx) = F,(ylx), (I) 
we may  write 

where 

and  

G,(x) = ~p,,(t)G(xln), (2) 
n=O 

p,,(t) = P{N(t)  = n} (3) 

G(xln)= P { ~ Yi~xlN(t)= n}. (4) 

Proof.  Since claim amounts are independent of time, (1.6) may be writ- 
ten as 

a(xln)= / F._,(xlx._,)dF._2(x._,lx._2)... dFo(XllO). (5) 
n - - I  

R 

Taking (5) outside the integral in (1.5) and noting that 

p,,(t) = ~ dP,.,(t,, t2 . . . . .  t,,) (6) 
O<ti<:t2 < . . .<tn<t  

yields (2). 
The distribution (2) is often referred to as a mixed distribution. Alter- 

natively, it is seen that 

X(t)=- Y, + Y2 + • • • + Y~.,,,. (7) 

This is referred to by Feller [16] as a random sum. The Yi's are not neces- 
sarily independent or identically distributed (i.i.d.). However, if they are 
i.i.d., then the following form Gt(x ) may be obtained. 

THEOREM 11.2.2. I f  the claim sizes are identically distributed as well 
as independent  given N(t), 

F,,6'lx) = F(y - x), (8) 
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then 

G,(x) = ~. p,(t)F"'(x). (9) 
n ~ O  

Proof. We note that G(xln) in (5) becomes the n-fold convolution of F 
with itself, and the result follows. 

The form (9) is the more nseful and common representation for G,(x). 
Henceforth (9) will be referred to as a compound distribution. The vari- 
ables Y, are further assumed to be nonnegative and i.i.d. 

Generating functions are now introduced in order to derive some re- 
lationships between X(t), N(t), and the Y~'s. 

Definition 2. 

P(s, t)= ~p , ( t ) s ' .  (10) 
n = o  

Definition 3. 

Definition 4. 

d~,(s) = ~ e  ...... dG,(x). (1 I) 

f= 
+(s) = Joe-"dF(x) .  (I 2) 

The following relationship between the above functions is satisfied. 

LEMMA II.2.1. 

d~,(s) = e(O(s), t). (13) 

Proof. 

~b,(s) = E,,,,,,{E[ e-'X"'lN( t) ] } 

= EN,,{+(S) u'''} = P(t~(s), t). 

Equation (13) also holds if ~bt(s) and ~(s) are characteristic functions, 
moment generating functions, or probability generating functions (if Yi is 
discrete), as well. The following relationships between the moments of X(t), 
N(t), and Yi then follow. 

THEOREM II.2.3. The nth moment  about the origin o f  X(t) satisfies 

, o A. j  i !  J E{N(t)u,}, ( 1 4 )  
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where A,, a is the set o f  nonnegative integers (k~, k2 . . . . .  k,) such 
that 

n n 

Z k , = j ,  Z i k , = n ,  
i = 1  i = 1  

and Y is a single claim amount.  

Proof. Kupper  [23] gives the following formula for the derivative of a 
composite function: 

° " ' [~ ] " .  . . [ g ' " ' ( x ) q ' "  w , , I  
° z j A,~ k, . . k,,! , , = , . . -  

(15) 

Also, it is assumed that 

F"'(0) = 0, n>0.  (20) 

The distribution functions G,(x), F"'(x) are now assumed to be differ- 
entiable for x > 0. The following probability density functions are defined. 

Furthermore,  the following are seen to hold. 

10---~tl s=O 
¢,(s) = E{X(t)"}; 

~s,,¢(s) = E{ Y"}; (16) 

t0~ s = I 
P(s, t) =E{N(t)'"'}. 

Thus, taking the nth partial derivative of (13) with respect to s and using 
(15) and (16), (14) follows. 

In particular, for n = 1, 2, (14) becomes 

E{X(t)} = E{N(t)IE{ Y} (17) 

and 

E{X(t) 2} = E{N(t)'2'}[E{ Y}]" + E{N(t)}E{ Y~}. (I 8) 

The following definition is now made for completeness. 
Definition 5. 

P*(x) = 1, x~>0. (19) 
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Definition 6. 

Definition 7. 

405 

g,(x) = OG,(x), x> 0. (21) 

fo'(x) = a---Fo'(x). 
dx 

The following is then an alternative representation for G,(x). 

THEOREM 11.2.4. 

Proof. From (I 9), 

and so from (21) 

Thus, 

G,(x) = po(t) + ffg,(y)dy. 

G,(x) = po(t) + ~ p,,(t)F"'(x), 

(22) 

(23) 

f~ 
G,(x) = po(t) + Jog,(y)dy. 

This result was given by Lundberg [25]. Hence X(t) is a mixed discrete- 
continuous random variable with P{X(t) = 0} = po(t). 

II.3. Some Common Examples 

In general, (2.9) and (2.23) do not allow for a simple expression for 
G,(x); however, in certain instances simpler forms may be obtained. Con- 
sidered here are the binomial, the negative binomial (including Pascal and 
geometric), and the Poisson number-of-claims distributions together with 
exponential claim amount distributions. The incomplete gamma function 
is needed and is now given. 

o r  

fo  r g,(y)dy = ~ p,,(t)F"'(x) = G,(x) - po(t), 
n= I 

g,(x) = ~ p,,(t)f"(x). (24) 



4 0 6  D I S T R I B U T I O N  OF A G G R E G A T E  C L A I M S  IN RISK T H E O R Y  

Definition 1. 

fo l(k, t)= s~-'e- 'ds/F(k),  k>O (1) 

is defined as the incomplete gamma function. 
For the special case when k is a positive integer, this definition is equiv- 

alent to the following (verified easily by integration by parts). 
Definition I(a). 

k -  I t j  e t 

l(k, t ) = l - ~ = o  ~] j! ' kE{ l , 2 , 3  . . . .  }. (2) 

a )  T H E  EXPONENTIAL DISTRIBUTION FOR CLAIM AMOUNTS 

The exponential distribution function for single claim amounts is given 
by 

F(x) = 1 - e ~,  x>~O. (3) 

The n-fold convolution is then given by 

F, . (x)= ~o ~ Ix(Ixt)"-'e-~'_ _. ~n ~- IF -at = l(n, ISJ¢). (4) 

This gamma distribution is fairly simple to work with, and explicit 
results for G,(x) usually assume (3) as the claim amount distribution. 

b) T H E  POISSON DISTRIBUTION FOR CLAIM NUMBERS 

The Poisson probability function for the number of claims is given by 

[X(t)]"e - ~'" 
p, ( t )= , n = 0 ,  l, 2 . . . . .  (5) 

n! 

The probability-generating function is thus 

P(s, t) = exp{X(t)(s- 1)}. (6) 

The Laplace transform corresponding to (6) for the aggregate claims dis- 
tribution is then (from (2.13)) 

qb,(s) = exp{X(t)[+(s) - !]}. (7) 

The transform (7) is of vital importance in the theOry of stochastic 
processes with stationary and independent increments as well as in the 
collective theory of risk. The reasons for this importance will be outlined 
in (II.5). For these and other reasons, (7) is often taken to be the transform 
for the aggregate claims distribution. 
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C) THE NEGATIVE BINOMIAL DISTRIBUTION FOR CLAIM NUMBERS 

This number-of-claims distribution is given by 

( ~ )[ 1 ]~'"[-a(t'] " 
p,(t)= - (t) ~ l l + a ( t ) J  ' n = 0 ,  1,2 . . . . .  (8) 

where [3(0 > 0, 0 < a(t). The probability-generating function is then 

P(s, t )={l  - a ( t ) ( s -  I )}- ' " .  (9) 

If [3(0 is an integer, (8) is sometimes called the Pascal distribution (see 
Johnson and Kotz [21]). Also, if [3(0 = 1, (8) reduces to the geometric 
distribution: 

p . ( t )=  ~ [ l + a ( t ) J '  n : 0 ,  1,2 . . . . .  (10) 

The negative binomial distribution is quite commonly used, since it also 
arises as a result of a variety of assumptions, again to be outlined later. 

d)  THE BINOMIAL DISTRIBUTION" FOR CLAIM NUMBERS 

This distribution has probabilities given by 

p, . ( t )=(N)[p( t )]"[ l -p( t )]  ~'-', n = 0 ,  ! , 2  . . . . .  N, (11) 

with probability-generating function 

P(s, t) = {sp(t) + 1 -p( t )}  ~'. (12) 

This distribution is useful for several reasons, one of which is that p,,(t) 
= 0 for all n > N. Thus (2.9) becomes a finite sum. 

With the use of the above-mentioned distributions, some expressions 
for G,(x) will now be derived. 

Example 1: The Poisson-Exponential Model. In an identical manner to 
that used in Seal ([36], p. 32), the following expression for G,(x) is easily 
derived. 

fO ~(t~ G,(x) = I - e - ~  e-qo[2~/(txsx)]ds, (13) 

where 

= 2(x /2)  '~" 
lo(x) j=o (j!)2 

is a modified Bessel function. 

(14) 
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Example 2: The Binomial-Exponential Model. Using (2) and (4), 

N 

Gt(x) =po(t) + ~ pk(t)Fk*(x) 
k=l 

=po(t)+~=pk(t){l-~'(Ixx)Je-~ (15) 
= j~0 j! J 

t "¢-* ~p.xl = I -  [P(t)]*[I-P( )] /J --~° l" 

A similar result to (15) is easily obtained if claims are gamma distributed 
with integer exponent. 

Example 3: The Pascal-Exponential Model. The Laplace transform of 
G,(x) is ~/,(s), which satisfies 

~l,(s) = ¢b,(s)/s, (I 6) 

and that of the exponential probability density function (p.d.f.) is 

O(s) = ix/(it + s). (17) 

Thus, using (2.13) and (12) for the binomial-exponential model, the trans- 
form of (15) is 

"Y'(s)=I ~ ( P" IP(t)+[l -p(t)]} kp, + s/ 
(18) 

1 fs[I -p ( / ) ]  +ILl  
N. 

1 
For the Pascal-exponential model using (9) instead of (12) 

, ,  11"s[l ' '" "'" +a(t)]- + p.[1 +a( t ) ] -  
3"t's' = s~. s ~ [  i + ' ~ ) ~  J , (19) 

which is of the same form as (18). Hence the Pascal-exponential model can 
be written as binomial-exponential; and, upon comparison with (15), it is 
seen that 

_~(13(t )~[  a(t)I*[_~, 1 ° ' ' - '  
G,(x)= 1 ,=,k k ,/L l+a(t) j  L I +a(t)J (2o) 

x Lr 
tJ =° j!L1 +a( t )J  
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The fact that G,(x) can be written as a finite sum is a somewhat surprising 
result and is given by Panjer and Willmot [33]. 

Example 4: The Geometric-Exponential Model. If 13(t.) = 1 in (20), then 

G,(x) = l - [ ~ ] e -~'t' ÷ ~"'j. (21) 

When the claim frequencies are of Poisson, binomial or negative bi- 
nomial form, and the claim size distribution is discrete, simple compu- 
tational methods allow the aggregate claims distribution to be easily cal- 
culated. These results are given by Panjer [30, 31], Sundt and Jewell [42], 
Gerber [19], and Panjer and Willmot [33]. 

11.4. The Compound Poisson Distribution ~ 

Any distribution with characteristic function or Laplace transform of 
the form (3.7) is termed a Compound Poisson distribution. It turns out 
that even if the number of claims is not necessarily of Poisson form, it 
may be the case that the distribution of aggregate claims is a Compound 
Poisson distribution. The reasons for this are outlined in the following 
subsection, which draws from the theory of infinite divisibility. 

~/) THE AGGREGATE CLAIMS DISTRIBUTION AS COMPOUND POlSSON 

Infinitely divisible distributions are now defined. 
Definition 1. Let A be a (measurable) subset of R, the set of real num- 

bers. Then a random variable (or its distribution function, or its charac- 
teristic function) is said to be infinitely divisible (i.d.) on A if its distribution 
is concentrated on A and if, for each positive integer n, its characteristic 
function qb(s) can be displayed as qb(s) = {d~n(s)} n, where d~n(s) is the char- 
acteristic function of some distribution on A. If A is the set R, then the 
random variable is just said to be infinitely divisible. 

It is clear that infinite divisibility on a subset A of R implies infinite 
divisibility. In particular, infinite divisibility on R ÷ = [0, oo) implies infinite 
divisibility. The converse, however, is not necessarily true. Infinite di- 
visibility, for example, does not imply infinite divisibility on N+ = {0, 1, 
2 . . . .  }. (The constant 1 is infinitely divisible, but not on N . . )  

The importance of infinite divisibility in stochastic processes is due in 
part to its relationship with processes with stationary and independent 
increments in continuous time. 

t The results of subsections I1.4 and III. I also appear in the paper "Compound  Poisson 
Models in Actuarial Risk Theory," Journal o f  Econometrics, XXIII (1983), 63-76,  and are 
included here for completeness.  
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Definition 2. A s tochas t ic  p rocess  {Z(t); t t> 0} is said to have indepen-  
dent  i nc remen t s  if, for  all cho ices  of  to < t, < . . . < t,, the n r a n d o m  
var iables  Z(tl) - Z(ti_O, i = 1, 2 . . . . .  n are independent .  

Definition 3. A s tochas t ic  p rocess  {Z(t); t >/0} is said to have s ta t ionary  
inc rements  if the dis t r ibut ion of  Z(t, + s) - Z(to + s) is the same as that  
o f  Z(t,) - Z(to) for  all to, t,, s i> 0. 

THEOREM II .4 .1.  I f  the stochastic process {Z(t); t I> 0} has stationary 
and independent increments (s.i.i), then Z(t) is infinitely divisible for 
any t > O. 

Proof. 

n 

Z(t) = ~ {Z(it/n) - Z((i - l)t/n)}, 
i = l  

and thus ,  if +,(s) is the charac ter i s t ic  funct ion of  Z(t), 

+,(s) = {+,,,,(s)}", n = 1, 2 . . . . .  

where  we  have a s s u m e d  Z(0) = 0. 
The  next  few theo rems  outl ine the close connec t ion  be tween  infinite 

divisibili ty and the C o m p o u n d  Poisson law. 

THEOREM II .4.2.  A Compound Poisson characteristic function is in- 
finitely divisible. 

Proof. e x p { h ( t ) [ ~ ( s ) -  1]} = (exp{X(t)[ t~(s)-  l]/n})". 

THEOREM II .4.3.  A characteristic function is infinitely divisible if  and 
only i f  (iff) it is the pointwise limit o f  a sequence o f  Compound Poisson 
characteristic functions, that is, it has the form 

lim exp{p,,[g,,(s)- 1]}, 
m - - - , ~  

where the p,,'s are positive constants and the g,,(s)'s are character- 
istic functions.  

Proof. See L u k a c s  ([24], p. 112). 
The re  is a ve ry  s t r o n g  charac te r iza t ion  of  the distr ibution of  aggregate  

claims as C o m p o u n d  Poisson  as a result  o f  the following theorems .  

THEOREM II .4.4.  A random variable with support on [0, oc) and dis- 
tribution function F(x) such that F(O) > 0 is infinitely divisible i f f  it 
is Compound Poisson. 

Proof. See Van H a m  ([48], p. 24). 
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Theorems II.4.1, 11.4.2, and 11.4.4 imply that the aggregate claims ran- 
dom variable X(t) is Compound Poisson if the associated stochastic pro- 
cess has s.i.i, and po(t) > O. 

THEOREM I1.4.5. A stochastic process with step sample paths has 
stationary and independent increments iff  it is a Compound Poisson 
process. 

Proof. See Delbaen and Haezendonck [12]. 
This certainly implies that a stochastic process w i t h  s ta t ionary and 

independent increments and step sample paths is Compound Poisson. 
Biihlmann [5] proved this result under the additional conditions that the 
expected number of jumps in a finite time interval is finite or that the 
process takes on integral values only. 

THEOREM I1.4.6. A random variable is infinitely divisible on N+ iff 
it is Compound Poisson with nonnegative integer terms. 

Proof. See Feller [16]. 
The following theorem gives another characterization of the aggregate 

claims distribution as being of Compound Poisson type. 

THEOREM II.4.7. The aggregate claims distribution is Compound 
Poisson iff the associated claim number distribution is Compound 
Poisson. 

Proof. See Thyrion [47]. 
Theorem II.4.7 states that X(t) is Compound Poisson if N(t) has s.i.i. 

Thus there is a close connection between infinite divisibility, stochastic 
processes with stationary and independent increments, and the Compound 
Poisson law. Infinitely divisible distributions are useful in another context 
to be discussed in the next section. 

Some properties of Compound Poisson distributions-will now be 
mentioned. 

b)  PROPERTIES OF THE C O M P O U N D  POISSON DISTRIBUTION 

THEOREM II.4.8. Let W have a Compound Poisson distribution with 
moment-generating function 

~b(t) = exp{Xtd~(s) - 1]}, (1) 

where tb(s) is the moment-generating fimction of  E Further, let the 
jth cumulant o f  W be kj and the jth moment about the origin ,of Y be 
pj. Then 

kj= hpj, j = 1, 2, 3 . . . . .  (2) 
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Proof. F r o m  (1), it is seen that 

log qb(t) = X ~  
tJ tJ 

. ,  7, (3) 

THEOREM II.4.9. Let  Wi have characteristic function 

+,(t) = exp{X;Id~(t)- ll}, i =  1, 2 . . . . .  n, (4) 

and let the Wi's be independent. Then S,, = W, + . . . + W,, has 
characteristic function 

+(t) = exp{h[~(t) - 1]}, (5) 

where 

and 

Proof. 

h = h l + h 2 + . . .  +h,, (6) 

+(t) = h- ' [X,~,( t)  + . . . + h,,+,,(t)]. (7) 

n 

~b(t) = II~b,(t) = exp{h[~(t) - 1]}. 

Hence  the sum of  a finite number  o f  Compound  Poisson random vari- 
ables is itself C o m p o u n d  Poisson,  so that, like the Poisson itself, the 
C o m p o u n d  Poisson class is c losed under  convolut ion.  

The following theorems  relate to random variables defined on {0, I, 
2 . . . .  }. 

THEOREM 11.4.10. Let  W have the probability-generating function 

Then 

(8) 

W = ~ iS,, (9) 
i = 1  

where Si is a Poisson variate with m e a n  ~kpi and Si and Sj are inde- 
pendent, i 4= j.  

Proof. Let S, be the number  o f  j u m p  values o f  size i, i = 1, 2, 3 . . . . .  
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Then if i :/: j ,  

e{S ,= x, s ,  

Also, 

Thus 

._ ) p;rp)'( I Y 

. . . .  :. n! \x,  y, _ _ x - y  

e - X  
=xVyt(hp,)~(hpj)., " ~ [h( l -p~-p~)]  . . . . .  ," 

. . . . . . . . .  (n - x - y ) !  

(hp,)*e- ~, (k&),'e- ~ 
x! y! 

P{s, = x} = ~ P{s, = x, s ,  = y} 
y=O 

(hp~),e-~,, 

x! 
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P{S, = x, Sj = y} = P{S, = x}P{Sj = y}, 

and the result follows. 
For further results on infinitely divisible random variables, see Van Ha m 

[48], Steutel [39, 40, 41], Feller [17], or Lukacs [24]. 
Example  1. The Poisson distribution is Compound Poisson. 
Example  2. The negative binomial distribution is Compound Poisson 

with logarithmic amount jump distribution. The probability-generating 
function may be written as 

P(S)= L 1 _--~q J 
(IO) 

Example  3. The Compound negative binomial distribution is Compound 
Poisson, as is the Compound geometric. 

Example  4. The  shifted logarithmic distribution is Compound Poisson (see 
Katti [22] for details). In fact, is a log-convex distribution and hence Com- 
pound geometric (see Van Ham [481 for details). 

Example  5. The distribution defined by 

Cp,, + I 
p . =  l _ p . + , ,  n=O.  1.2 . . . .  ( l l )  
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is Compound Poisson. See Katti [22] for details. This distribution arises 
in queuing theory. 

Further examples of  Compound Poisson distributions will be derived 
in later sections. 

11.5. Bayesian Uncertainty Models 

It is often of interest to model situations in which the risks are not all 
assumed to be identical. One method that has been used successfully is 
to assume that the form of  the distribution is known up to the inclusion 
of unknown parameters,  which are unique to each risk. In other words, 
the parameters have a distribution associated with them over the set of 
all risks, termed the collective. This distribution is called the risk distri- 
bution or structure function. 

The actuarial interpretation of this model is that a risk is selected from 
the whole set of risks in accordance with the structure function, and the 
performance "of this risk is then monitored. 

The statistical interpretation is essentially Bayesian. The structure func- 
tion is simply the prior distribution of the parameters. 

Definition 1.0 is the random variable that characterizes the risk in the 
collective and has distribution function 

U(a) = P{0~<a}. (1) 

Definition 2. The following characteristics of the aggregate claims pro- 
cess {X(t); t >I 0} are defined conditionally: 

G,(xlO ) = P{X( t) ~<x[0}; 

qb,(sl0) = E{e-sX'"lO}; 

p.(O) = E{X(t)[O}; 

cr2(O) = V{X(t)tO}. 

(2) 

(3) 

(4) 

(5) 

Definition 3. The following characteristics of the number-of-claims process 
{N(t; t~  > 0} are defined conditionally: 

p,,(tlO) = P{N(t) = nlO}; (6) 

P(s, tl0) = E{sN"'[0}. (7) 

Definition 4. For the single claim amount distribution the following 
definitions are made: 

F(xl0) = P{ Y~<xl0}; (8) 

~b(s[0) = E{e-'qO}. (9) 
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Remark 1. Unconditionally, one obtains the above characteristics sim- 
ply by weighting the conditional characteristics by the distribution func- 
tion U(O). Thus, for example, 

G,(X) = ] G,(xlO)dU(O). ( lO) 

THEOREM II.5.1. l f  O = (0~, 0,.), where 0,, 02 are independent and 

p,,(t[O) =p,,(t]O,), 

F(xlO) = F(xlO~), 

then 

where 

and 

Proof. 

G,(x) = ~p,,(t)F"'(x), (11) 
n=O 

p.(t) = fo,p,,(tlo,)dU,(O,), 

F(x) = fo.F(x[O._)dU2(O~), 

u(0)  = u , (0 , )u2(0 . ) .  

G,(x) = f G,(xlO)dO(O) 

= fofo ~Pn(tlO')F"*(xlO2)dU'(Ol)dU2(02) 
2 1 n=0  

= ~p,,(t)F"'(x). 
n=O 

COROLLARY II.5.1. I f  0 is a single parameter and either p,(tlO) 
or F(xlO) is independent o f  O, then G,(x) can again be written in the 
form (11). 



4 1 6  DISTRIBUTION OF AGGREGATE CLAIMS 1N RISK THEORY 

The majority of models considered in this class assume that p,,(tlO) 
depends on 0 and that F(xlO) does not. This is equivalent to a mixed num- 
ber-of-claims model, and further characteristics of this model will be out- 
lined in the next chapter. 

Example 1. From Example 3.4, let 

G,(xllx) = 1 - L i + a(t)J e-~/tl - a(,)l, 

where 

~(cxp.)"-'e-"~ 
dU(p.) - dlx, Ix>0. (12) 

r(~) 

Then 

G,(x)= l - l +  [ l+a ( t )  ] (13) 

Similarly, relatively simple expressions may be obtained using the gamma 
density (12) for the binomial-exponential model (3.15) and hence also the 
Pascal-exponential model (3.20). 

For a thorough discussion of these models, see Bfihlmann [6]. 

III. THE NUMBER-OF-CLAIMS DISTRIBUTION 

In this section models are considered for the number-of-claims prob- 
abilities as defined by (II.2.3). Various situations are looked at and the 
appropriate probabilities derived. In many of these models it is shown 
that N(t) (and hence, by Theorem II.4.7, X(t)) is Compound Poisson. 
Perhaps the three most common models are the Poisson, negative bino- 
mial, and binomial probabilities as defined by (II.3.5), (II.3.8), and (II.3. l l), 
respectively. In the next section Bayesian models are considered. Again 
the close connection between infinite divisibility and the Compound Pois- 
son law is considered. 

III. I. Bayesian Models and Infinite Divisibility 

In the situation where risks are nonhomogeneous, it is often useful to 
consider number-of-claims probabilities of the form 

p,,(t) = fo P"(tlO)dU(O)" (l) 

(See subsection II.5 for details and notation.) It is of interest to know if 
the unconditional probabilities (1) are from a Compound Poisson distri- 
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bution. If they are, then by Theorem 11.4.7, the aggregate claims distri- 
bution is also Compound Poisson. This question may sometimes be an- 
swered by the following theorem, which generalizes some results given 
by B0hlmann [6]. 

THEOREM III. I. 1. Let T and A be sets in R. For each 0 ( T, let {Q,(s)} ° 
be the characteristic function o f  a distribution on A. I f  U(O) is a 
distribution function infinitely divisible on T, then 

P,(s) = f {Q,(s)}°dU(O) (2) 

is the characteristic function o f  a distribution infinitely divisible on 
A. 

Proof. Let 0 be a random variable with distribution function U(0). For  
each positive integer n, 0 can be displayed as a sum 

n 

0 = ~ 0 . ,  (3) 

of n i.i.d, random variables with distribution concentrated on T. Then 

P,(s) = E[{Q,(s)} °] = E[{Q,(s)} ~",o,°.̀ ] = (E[{Q,(s)}O..]),. (4) 

But 

{ P t ( s ) }  IIn = E[{Q,(s)}O,.] 

is a mixture of  characteristic functions of distributions on A, and thus it 
is the characteristic function of  a distribution on A. 

COROLLARY III.1.1. I f  the sets A and T are both chosen to be N+, 
then P,(s) = P{Q,(s)}, where P{s} is the probability-generating func- 
tion o f  O. 

Thus P,(s) is both a mixed and a compound distribution. (See Ord [29], 
p. 128.) 

COROLLARY III. l .2.  I f  the set A is chosen to be N+, then P,(s) is a 
Compound Poisson characteristic function with nonnegative terms 
(by Theorem II.4.6). 

Example 1: The Mixed Poisson Distribution. For the probabilities 

(Ot)-e-O, 
p,(t[0) = n! (5) 
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it is seen that (2) is satisfied for 0 > 0, since 

P,(s) = f0{e ''~'- "}°dU(0). (6) 

Thus, from (6), the unconditional probabilities are Compound Poisson if 
U(0) is infinitely divisible on a subset of R÷. 

Example  2: The Mixed  Nega t i ve  Binomial  Distr ibut ion.  For the 
probabilities 

( - 0 " ] ~  i l e ~ - a ( t ) ~  " 
P"(tl0)=\ n /l]--~--~a(t)j/]-~-~a(t)j (7) 

(2) is satisfied for 0 > 0, since 

et(s) = Jo { 1 - a(t)[e is - l]}-0dU(0), (8) 

and hence the unconditional distribution is Compound Poisson if U(0) is 
infinitely divisible on a subset of R÷. 

Example 3: The Mixed Binomial Distribution. For the probabilities 

p,(tiO) = (:)[p(t)]"[ l -p( t )]  ~-" (9) 

(2) is satisfied if U(0) is defined on the nonnegative integers, since 

e,(s) = So{eisp(t) + 1 -p(t)}edU(O), (I0) 

and hence the unconditional distribution is Compound Poisson if U(0) is 
a discrete Compound Poisson distribution function. This result follows 
easily from Corollary III.1.1 as well. The jump distribution here is also 
a compound distribution. 

The next theorem generalizes the results of Example 1 somewhat. 

THEOREM III. 1.2. I f  ×(s) is a characteristic function such that - i×'(O) 
< 0% then 

Sf ~,~x,~,-"dU(h) = e ~'''~s'- ,i, (11) 

where cr,(s) is a characteristic function, IX(t) >~ O, i f f  U(h) is infinitely 
divisible on a subset o f  R+. 

Proof. See B0hlmann and Buzzi [7]. 
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This theorem says that a "mixed" Compound Poisson distribution (which 
could be the distribution of either X(t) or N(t)) with jump distribution 
independent of the mixing parameter is itself Compound Poisson if and 
only if the mixing distribution is infinitely divisible. The conditional Pois- 
son probabilities are assumed to be given by (5). 

These two theorems suggest that if the number-of-claims probabilities 
(1) are mixed over an infinitely divisible mixing function, this often results 
in the aggregate claims distribution being of Compound Poisson form. 
The above theorems demonstrate the importance of infinitely divisible 
distributions in their own right rather than in connection with Compound 
Poisson distributions. Some examples of infinitely divisible distributions 
are given in the next subsection. 

a) INFINITELY DIVISIBLE DISTRIBUTIONS 

Example 4: Mixture of Exponentials. 

f(x) = fo( 1 - e- ~')dU(X) (12) 

is an infinitely divisible distribution function for any distribution function 
U. See Steutel [39]. 

Example 5: Product of Gammas. Suppose X(ct,o) is a random variable with 
density given by (II.5:12). IfXl . . . . .  Xn are independent, X i = X ( a i , O i )  , then 

n 

I-I{x(~,, ~,)}" (13) 

is infinitely divisible if [ki[/> 1, i = 1, 2 . . . . .  n. See Bondesson [2]. 
Example 6." Pareto Distribution. 

F(x)= ! - (1  + x/a)-~, x, ~, [3>0 (14) 

is infinitely divisible. In fact, F(x) may be written in the form (12), where 
U(X) is a gamma distributiori function. See Thorin [45]. 

Example 7: Log-Normal Distribution. 

is infinitely divisible. See Thorin [46]. 
Example 8: Weibull Distribution. 

F(x)= 1 -exp{-(hx) ,} ,  x, h>0,  0<p~<l (16) 

is infinitely divisible. See Bondesson [3]. 
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From Example 5, it is easily seen that the gamma and exponential 
distributions are infinitely divisible. Other infinitely divisible distributions 
include the normal, Student's t, F, logistic, Laplace, and Cauchy distri- 
butions. See Steutel [41] for a discussion of these results. 

THEOREM II1.1.3. I f  a random variable is nondegenerate but has 
bounded support, then it is not infinitely divisible. 

Proof. See Lukacs ([24], pp. 258-59). 
This theorem implies that the binomial, beta, and uniform distributions 

are not infinitely divisible. 

THEOREM III. 1.4. l f  X and Y are independent and infinitely divisible, 
then X + Y is infinitely divisible. 

Proof. In an obvious notation, the characteristic functions satisfy 

- -  I h t  I h l  ~,'."'~ ~(s) - ~,~ (s)+~ (s), 
and the result follows. 

b)  EXAMPLES OF MIXED DISTRIBUTIONS 

A few examples of mixed number-of-claims distributions are considered 
here. For a thorough discussion of mixing, the reader is referred to Kupper 
[23], and Johnson and Kotz [21]. 

The following example is useful in analyzing a few models. 
Example 9: Binomial Mixtures.  Suppose the conditional probability- 

generating function is 

P(s, tl0)={l + p ( t ) ( s -  I)}% (17) 

If the probability-generating function of 0 may be written in the form (for 
some function B) 

P,(sl~) = B[~(s - 1)], (18) 

then 

P(s, t )=E{P(s ,  tl0)} 

=P,(I  + p ( t ) ( s -  1)1~) (19) 

= B{ixp(t)(s - 1)] 

= P,(sllxp(t)). 

Three distributions that satisfy (18) are the Poisson, negative binomial, 
and binomial. 
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Example 9a: The Binomial-Poisson Model. If 

P(O=n)=h"e-k/n!, n = 0 ,  1, 2 . . . . .  

then 
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{~.p(t)}"e-'*"' p,(t)- , n = O, 1, 2 . . . . .  (20) 
n! 

Example 9b: The Binomial-Negative Binomial Model. If 

- o  
P ( 0 = n ) =  n ] \ l  +a] \1 +a] ' n = 0 ,  1, 2 . . . .  (21) 

is the probability function of 0, then from (19) it follows that 

p , ( t ) = ( - n [ 3 ) ( i  1 .~a(--ap(t) y', +ap(t)] \1 +ap(t)] n =0,  l, 2 . . . . .  (22) 

Example 9c: The Binomial-Binomial Model. If 

P(O=n)=(M)p"(i-p) "-', n = 0 ,  1,2 . . . . .  M, 

then the unconditional distribution of N(t), 

pn(t)=(M){p[p(t)]}n[l-pp(t)] m-n, n = 0 ,  1 ,2  . . . .  M, (23) 

follows easily from (19). 
Kupper [23] derived (21) for the geometric case, i.e., when 13 = I. 
Example 9 implies that mixing the parameter 0 in the binomial over a 

distribution with probability-generating function of the form (18) results 
in the unconditional distribution being of the same form as the mixing 
distribution, but with different parameters. This generalizes results given 
by Kupper  [23]. (By Corol lary l I l . l . 1 ,  these are also compound  
distributions.) 

Example 10: Negative Binomial Distribution. If p,(tlO) is given by (5) 
and U(0) by II.6.12, the resulting unconditional distribution is a negative 
binomial one. See Btihlmann [6] for a proof of this. Since the gamma 
density is infinitely divisible, this provides an alternate proof of the fact 
that the negative binomial is a Compound Poisson distribution. 



4 2 2  DISTRIBUTION OF AGGREGATE CLAIMS IN RISK THEORY 

Example ! l : The Generalized Waring Distribution. Seal [37] derives the 
generalized Waring distribution with probabilities 

F(p + k)F(p + h)F(h + n)F(k + n) 
p,,(1) = F(p)F(n + l)F(h)F(k)F(p + h + k + n)' n = O, 1,2 . . . . .  oo (24) 

by mixing a Poisson distribution twice. The probability-generating func- 
tion P(z) may thus be written 

hhh h- le-~h F(p + k) h e(z)=fofoe " -" 
r ( h )  • 

x 1 + dXdv 

x"-'e -x F(p+k)  k_,(l 
= ~ o f ;  e.¢yc=-'" F(h) F---~(--ff)y +y)-'p+~'dxdy. 

Letting s = xy, t = y gives 

e(z) = ~ l) ~(s/t)h- le-s/tF(p + k) _ I 1 
fo es¢z- {fO F--~ ~ [ ¢ ,  tk ( +t'-(P+k)~) ds 

= foe" -' s)ds, 

where 

(=(s/t) h- ' e - "  F(p + k) P- '(I + t)-~" +,,dt 
 s):jo r-N 

can be shown to be the density of  

X(l ,  h)X(l, k)/X(l, p) 

in the notation of Example 5. Thus f(s) is an infinitely divisible density 
by Example 5 and so by Example 1 with t = 1, the generalized Waring 
distribution is Compound Poisson. It can also be easily shown that this 
distribution can be derived by assuming that the negative binomial dis- 
tribution has the transformed parameter [1 + a(t)]- '  with a beta distri- 
bution. This result has also been discovered recently by Goovaerts  and 
Van Wouwe [20]. 

Example 12: The Polya-Eggenberger Distribution. If  

\ x /  
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where 

then 

F(a + b) 
p"- ' (1  _p )h - ,  0 < p < l ,  (26) 

L,(p) = F(a)F(b) 

J~x) = fo'f ,(xlp)f2(p)dp 

F(a + b)F(n + l)F(a + x)F(b + n - x) 

F(a)F(b)F(n - x + l)F(x + l)F(a + b + n) 

= x = O ,  1 2 . . . . .  n. 
X n - - x  n ' ' 

(27) 

This binomial-beta  mixture is te rmed a Po lya -Eggenberge r  distr ibution by 
Johnson  and Ko tz  [21]. It is, in fact,  a general ized hypergeomet r i c  dis- 
tribution. By Theorem 1II.1.3, it is not  infinitely divisible and hence  not 
C o m p o u n d  Poisson.  

Example 13: Neyman's Type A Distribution. If  in the notat ion o f  Ex-  
ample 12 

M e - ~ 
f , (x lh)=  x! ' x = 0 ,  1 , 2  . . . . .  

and 

then 

o~he  - ~  
L ( x )  = , 

M 

and 

f ix) = x! X! 

e - a  ~ h X e - X t l - l o g a )  

V. ,  ' x = l , 2  . . . . .  

(28)  

f(0) = e - .  + ~ e - ~  °t~e-~ 
~ ,  h! 

= e-~(e~/,) = e-~,-e-,~ 
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The probability-generating function is 

P(Z) = ~ e ~z-'e-°et~ 
~=o X! (29) 

= e a ( e : -  ~ - I 

This " m i x e d "  distribution is easily seen from (29) or Corollary III. I. 1 
to be a Compound Poisson distribution with Poisson jump distribution. 
It was derived by Neyman [28] for use in accident statistics. See also 
Johnson and Kotz [21]. 

Example 14. If in the notation of Example 12 

X.,e-X 
f , ( x l x )  - x !  

and 

then 

r(a+b) -~-(I -e-O b-', k>0,  (30) f,(h) F(a)F(bie 

F(a + b) f=h~e -~''+ "(I 
= F . ,  - e - 0  

t o\ k 

= F(a+b)F(a)F(b)x! [ ,=o\ ~ ( b - 1 ) ( - l ) " Y ~  Me-~''÷'+''d~ } k 

( 3 1 )  

- ~ k = o \  k (-l)~(l+a+k) . . . .  ' ,  x=0,1,2 . . . . .  

This is a finite sum if b is a positive integer. This distribution may be 
termed a Poisson-beta distribution since (30) is equivalent to e -~ having 
a beta distribution. 

C) A LIMIT THEOREM 

In general, it is difficult to choose a structure function to serve as a 
mixing distribution. In certain cases, information about the mixing dis- 
tribution may be obtained, however. A theorem proved here provides one 
such case. 
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Definition 1. 

×,(s[0) = ~ e's"p,(t[O). (32) 
n = 0  

×,(s) = ~ e's"p,(t). (33) 
n = 0  

The following theorem may now be proved (using the characteristic 
functions defined above) concerning the relationship between the distri- 
bution of the number of claims and the structure function. 

THEOREM III. 1.5. If×,(s[O) satisfies 

lim log x,(s/tlo)= iskO, (34) 

where k > O, then N(t)/t converges in distribution to kO as t ---, oo. 

Thus, 

Proof. The characteristic function of N(t)/t is given by 

×,(s/t) = ~×,(s/tlO)dU(O). 

lira ×,(s/t)= fnm ×,(s/tlO)dU(O) 

= fei,~ dU(O). 

(35) 

The interchange of integration and limiting is justified by Lebesgue's dom- 
inated convergence theorem. The right-hand side of (35) is the charac- 
teristic function of k0. Hence, by the continuity theorem for characteristic 
functions, the result follows. 

Remark 1. Equation (34) implies E{N(t)IO} = kOt. A sufficient condition 
for (34) to hold is that the first 2 moments of N(t)]0 exist and the cumulant 
k2(tlO) satisfies 

lim k2(tl0) = 0. 
,_~ t 2 

If this condition holds, then 

log X,(s[0) = iskOt + k2(tlO) (is)Z + O(Is12). 
2! 

See Lukacs ([24], p. 26) for a derivation of this result. 
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This generalizes a theorem given by Btihimann [6] and Lundberg [25], 
who derive a similar result for X(t)/t  in the mixed Poisson case (given 
below). 

Example 15. For the mixed Poisson distribution (5), 

X,(s]O) = exp{0t(e i-~ - 1)}. 

Thus 

and 

log ×,(s/tlO) = Ot ~ (is/t)"/n! 
n =  i 

lim ×,(s/tlO) = isO. 

In this case k = 1 and N(t)/ t  converges to 0 in distribution. 
Example 16. For the negative binomial characteristic function given by 

×,(sl0) = {I - a(e': - 1)} -"' (36) 

it is easily seen that 

lim ×,(s/tlO)= lim {1 isa ~ (is/t)J] -~' 
. . . . . .  _ t a =2",_ j - ~  J ~ 

= exp{isaO}. 

Here k = a and N(t)/ t  converges  to a0 in distribution. 
Many variations on these results are possible. Lundberg [25] discusses 

many propert ies of  the mixed Poisson distribution with generating function 
given by (6), whereas  Kupper  [23] derives many distributions by mixing. 

III.2. Point Processes 

In the previous subsection models were considered in which the set at 
risk was suspected to be nonhomogeneous.  In this subsection and the 
remaining subsections of  this section, the situation where the occurrence 
of a claim influences the probabili ty distribution of the occurrence of other 
claims is considered. This dependency of sorts is known as " 'contagion." 
For a discussion of this phenomenon see Feller [15]. 

Methods used to handle this situation include urn schemes,  in which 
different colored balls are placed in an urn. Balls are drawn from the urn 
one at a time, and, after each draw, a set of  balls is added to the urn. 
This set is dependent  upon the color of the ball drawn. For a thorough 
discussion of  these models,  see Kupper  [23]. It should be noted that in 
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many instances the asymptotic distribution of  the number of balls drawn 
of a certain color can be shown to be of negative binomial or, more 
generally, of Compound Poisson form. 

Other models will now be considered to handle contagion, beginning 
with the number of claims as a general point process. Included in this 
general class of models are renewal processes,  alternating renewal pro- 
cesses, and semi-Markov or Markov renewal processes, among others. 

Def in i t ion  1. Le t  W .  = T . -  7 " . -  T . _  I be the nth claim interoccurrence 
time, n = 1, 2, 3 . . . . .  Let the distribution and density functions of 7". be 5'. 
(t) and s . ( t ) ,  respectively. 

The distribution of the number of claims is given by the following 
relationship. 

THEOREM III.2.1. 

Proof .  

p . ( t )  = S . ( t )  - s . ,  + , ( t ) .  (1) 

pn(t) = P { N ( t ) < n  + 1} - P { N ( t ) < n }  

= {1 - S,+ ,(t)}- {1 - S,,(t)} 

= S,,(t) - S ,  + ,(t). 

Hence the probability of a claim occurring at any time may be dependent 
upon the number of claims that have occurred and the time since the last 
claim. 

The mean and variance of N( t )  are given in the following corollary. 

COROLLARY III.2.1. 

E{N(t )}  = ~ S,,(t). (2) 
n =  I 

V{N(t)}  = 2 ~ __ nS , ( t )  - ~ _ S , ( t )  - . (3) 
n = l  n = |  

Proo f .  

E{N(t )}  = ~ n{S,,(t) - S.+ ,(t)} = ~ S,,(t). 
n = O  n = |  

V{N(t) }  = E{N( t ) [N( t )  + 1 ] }  - E{N( t ) } {E(N( t ) ) }  2 

) 2 2 = 2 .= ,nS . ( t )  - ,,=,S"(t) - ,S . ( t )  
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If E{N(t)} is proportional to t, then the process is called a stationary 
point process. See McFadden [27] for details. 

a)  THE RENEWAL PROCESS 

When the claim interoccurrence times are independent and identically dis- 
tributed, the point process becomes a renewal process. This model was first 
considered by Sparre-Andersen [38]. The probability of a claim occurring at 
any time in this case only depends upon the elapsed time since the last claim. 
since the last claim. 

Definition 2. Let the common distribution function and density function 
of the Wi's be denoted by S(x) and s(x), respectively. 

Then (1) easily becomes 

p,,(t) = S"'(t) - S'" + '"(t) (4) 

in terms of convolutions. For a detailed discussion of renewal processes, 
see, for example, Cox [8]. 

Example  1: G a m m a  Interoccurrence Times. If 

h(~kX) r -  'e - ~-~ 
s(x) = , x > 0 ,  (5)  

( r -  1)! 

then 

f~ h(Kx) .... ' e - ~ d x  f~ M k x ) ' + ' " - ' e - ' ~ d x  
p.(t)  = (--~r-~i~ - [(n + l ) r -  11! 

(6)  
,,,+',,-' (ht)Je-~, 

= y .  , 
j=nr 

using (II.3.2). Tellenbach [44] considered this model. When r = l, (5) 
becomes the exponential density and (6) becomes the simple Poisson. By 
the memoryless property of the exponential, it is easy to see that in this 
special instance the occurrence of  a claim is independent of the time since 
the last claim, so that the Poisson process does not have contagious 
properties. 

b) THE MARKOV RENEWAL PROCESS 

An alternative model is to consider the number-of-claims process to be 
a Markov renewal or a semi-Markov process. For simplicity, it is assumed 
that there are two claim types and two corresponding claim interoccur- 
rence densities. The following definitions are now made. 

Definition 3. For i, j = 1, 2, let f/(t) be the density of the time until the 
next claim given that it will be of type i; Pi be the probability that a claim 
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of type i will occur next, given that a claim of type i just occurred; ko(t) be 
the density of the time until the first type j claim given that a claim of type 
i just occurred. 

Definition 4. Let  p be the probability that the first claim interoccurrence 
density is f,(t)~ 

THEOREM III.2.2. In an obvious notation,  the  Laplace  transform o f  
the density o f  the time until the occurrence o f  the (n + l)st type 1 
claim is given by 

k*(s){k*,(s)}", (7) 

where 

f p)( I p~)fz*(s) 
k*(s) =f ,*(s)  ~p + ( / -  

and 

k*,(s) = f ,*(s){ p, + ( I _ p,) ( ~ - p2)f~*(s) ~ 

Proof. It is easily seen from probabilistic arguments that 

k,,(t) = p, f , ( t )+ (1 - p,) ['f~(r)k.,(t - "Odr. 
J o  

Thus, 

Similarly, 

o r  

which implies 

k*,(s) = p, f ,*(s) + (I - p,)f.*(s)k*, (s). 

k..t( t) = ( I - p2)f ,( t) + p2/~f.(x)k2t(t - T)d'r, 

k*,(s) = (I - p2)f ,*(s) + p2L *(s)k*,(s), 

(8) 

(9) 

(1 -p , ) f ,*(s )  
k* , ( s ) -  l - p . . L * ( s ) '  (lO) 

and (9) follows easily. By a similar argument (8) is derived. Since k,(t) is 
the time until the first type 1 claim and k,,(t) for each successive type 1 
claim, expression (7) follows. 



430 DISTRIBUTION OF AGGREGATE CLAIMS IN RISK THEORY 

Remark 1. The probability distribution for the number of type 1 claims 
can be obtained using Theorem III.2.2 and Theorem III.2.1. To obtain 
the distribution of  type 2 claims, simply replace p by (I - p) and inter- 
change the subscripts 1 and 2 in Theorem II1.2.2. 

Example 2: Exponential Interoccurrence Times. Let 

f(t) = h,e -~,', t>0. (11) 

Then (9) becomes 

x, f . x~(1-p~) ] k*,(s) x--~--~ ].p, + (l - P')x~(l -p . )  + s ( '  (12) 

from which it follows that (7) is 

h, "+' , h,(l-P2) ~{p,+( 1 h2(l-p2) }". (13) 
{ h - ~ s l  {P+( I -P)s  +-~2(-1--S-p2)J -P')s + h2(1-p2) 

This last expression is recognized as the convolution of a gamma den- 
sity, a compound Bernoulli-exponential, and a compound binomial-ex- 
ponential (see Example 11.3.2). Alternatively, note that it may be rewritten 
as a linear combination of convolutions of gamma densities. Formally 
(writing h* = X2(l -P2)), (13) becomes 

r \ " '  
\ X * + s /  

(14) 

h, "+' h* ~+' 

which upon ~nversion yields the following density of the time until the 
(n + l)st claim: 

k~='o(k) (I " .r('h,[h,(t-x)]"e -~,''-x' 
-P')~PT-'~Jo ni 

[ h*(h*x)k-,e-~, x h*th*x~ke-~,x] "1 
X _ F r l  ~ 2~  2 J " J -  I 

From this may be obtained the corresponding distribution function and 
hence p,(t) by Theorem 1II.2.1. 

Example 3: The Renewal Process. Putting p, p, = 1 in Theorem III.2.2 
yields k*,(s) = k*(s) = f~*(s), and the ordinary renewal process follows. 
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E x a m p l e  4: The  A l t e r n a t i n g  R e n e w a l  P r o c e s s .  If p, = Pz = 0 in Theorem 
III.2.2, then claim types alternate. This model has a direct interpretation 
in terms of disability insurance. The type 1 density could be viewed as 
the time until a claim occurs and the type 2 as the time until recovery. 
Hence the number of claims is given by the number of type 1 claims. 

From Theorem III.2.2, the transform of the density of the time until 
occurrence of the (n + I)st type i claim is seen to be 

{ft*(s)f2* (s)}"{pf,* (s) + (1 - p)f,*(s)f_.*(s)}. (15) 

Seal [36] assumes the healthy period to be of exponential form. If it is 
assumed that 

and 

f , ( t )  = he-~ '  

h(Xt) r- 'e- ~' 
L ( t )  = 

( r -  1)! 

then (15) becomes 

P (  h ) " ' r ÷ ' ' + ' ~  +(l-P)kt,.ts/[TTZ, _J / h ' ' + ' " " ÷ " ,  

which yields upon inversion 

h(Xt) ",`+ ''e -~' X(ht) . . . . . . . .  e-~,  
P [n(r+ 1)]! I-(I - p )  ~-r-r-r-~n~r). I , (16) 

i . e . ,  a weighted average of 2 gamma densities. From Theorem 111.2.1, it 
is easily verified that 

p . ( t ) = p  " ~ "  (ht)ie-~---------m'+(1-p)"r~+r(ht)Je-~', n>O; 
j . . . . . . .  j! j=,,,.+,, j! 

(17) 
.. .4, (ht~e- ~' 

P°(t) = pe-X '  + ( l - P)j~=o --ill. " 

The generalization to more than 2 types of claim densities is obvious, 
but the algebra quickly becomes cumbersome. For a further discussion 
of semi-Markov processes, see, for example, Cox and Miller [9] or Ross 
[35] for details. 

111.3. N o n h o m o g e n e o u s  Bir th  P r o c e s s e s  

An alternative model is to consider the number-of-claims process to be 
a nonhomogeneous birth process. The probability of a claim occurring at 
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any time is dependent on that time and the total number of claims up to 
that time. The following definition is due to Parzen [34]. 

Definition I. An integer-valued stochastic process {N(t); t I> 0} is said 
to be a nonhomogeneous pure birth process with transition probabilities 

which satisfy 

p..,.(t, s) = P{N(s) = mlN(t)  = n}, 

l imp  ...... ,(t, t + h) _ c,,(t)] 
h~O h 

lim I - p,,.,,(t, t + h) 
h-o h c,,(t)J 

(1) 

n = 0 ,  l,  2 . . . . .  (2) 

where c.( t) /> 0, n = 0, 1, 2 . . . . .  
The functions c,,(t) are referred to as intensity functions. The following 

lemma is instrumental in the solution of the transition probabilities (1). 

LEMMA III.3.1. The transition probabilities satisfy 

0 
-S-p.,,,(t, s )= -c,,(s)p,,.,,(t, s), 
o s  

0 
~sp..,.(t, s) = - c.,(s)p,,,.,(t, s) + c.,_ ,(s)p ...... ,(t, s), m ~ n ,  

(3) 

for  all n = 0, 1 ,2  . . . .  and all s >>- t >t O. 

Proof.  See Parzen [34]. 
Explicit solutions are obtainable from (3) which are o fa  recursive nature. 

THEOREM III.3.1. The solution to the system (3) is given by 

(4) 

Proof.  Substitution of  (4) in system (3) yields the desired result. 
It appears that no simpler solution than (4) is obtainable unless further 

assumptions about the intensities of frequency c,,(t) are made. 
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Assumption 1. Let the claim intensities of frequencies admit the 
factorization 

c.(t) = x.13(t), 
where 

13(t)>0, t>0.  

For a discussion of this assumption, see Btihlmann [6]. 
Definition 2. 

p*.,.('r,, "r2)=p..,.(t, s), 

where 

(5) 

(6) 

that is, 

E p*.,,('~,, ~,)< l 
e n ~ n  

~13( fo[3( T, = ~)dp~, "r2 = p.)dp.. (7) 

This change to "operational t ime" allows for a simplification of the 
system of equations (3), given in the following lemma. 

LEMMA III.3.2. The functions p*.,("¢,, "r2) satisfy 

0 ~p.*.°(7,, 72)= - * h.p...(~,, ~2), 
(8) 

0 
~-p.,m(7,, "r2) = - h~v*. . . . ( . r , ,  "r2) + h . ,_  uv*  . . . .  , (~,,  "r2), m > n .  
071"2 

Proof. It follows from Definition 2 that 

t ~p.,,.( , s) = O-~2p*,,.('r,, "r2)13(s), (9/ 

and the result follows upon substitution of (5) and (6) in system (3). 
The introduction of operational time allows for the elimination of the 

function 13(t) from the system (3). Clearly, h,, > 0 for all n, and the following 
theorem gives some idea of the magnitude of h.. 

THEOREM III.3.2. The process {N(t); t I> 0} with transition probabil- 
ities P*.m('q, 72) =p.,.,(t, S) is dishonest iff 

2ky~<oo, 
n ~ l  
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i f  and only i f  

n = l  

Proof. See Feller [16], pp. 452-53). 
In light of Theorem Ill.3.2, the following assumption is made. 
Assumption 2. 

c ,( t)=(a+bn)f3(t) ,  n = 0 ,  1, 2 . . . . .  N, (10) 

where N could be infinite. 
Explicit solutions for the transition probabilities are obtainable under 

this assumption. To obtain them, the following probability-generating 
function is defined. 

Definition 3. 

D * P,(z, r,, ~2) - ~ P  ...... k("~,, r~.)z k. (1 I)  
k = O  

The solution to (8) under the assumption (10) is summarized by the 
following lemma. 

LEMMA 111.3.3. The probability-generating function (11) satisfies the 
partial differential equation 

a 0 
-~x2Pn(z,'q ,'rz) + z(1 - z)b-~ozPn(z,x I ,x2) = (z - 1)(a + bn)P,(z,rl ,'r2) (12) 

subject to the initial condition 

P,(z, r,, "r,)= 1. (13) 

Proof. The multiplication of (8) by z m-~ and summation over all m>~n yield 
equation (12). Since po('h,'r0 = 1, equation (13) follows. 

Clearly a > 0 since ho > 0. The solution to (12) depends upon the value 
of b. These solutions are summarized in the next few theorems. 

THEOREM 111.3.3. l f  b = O, the solution to (3) under the assumption 
(10) is the set o f  nonhomogeneous Poisson probabilities 

• ( 1 4 )  

k=0 ,  1,2 . . . . .  
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Proof. If b = 0, then tb ,  subsidiary equations from (12) are 

d ' r z  dz dP, 

1 0 a ( z -  1)P." 
Thus, 

and 

o r  

Condition (13) implies 

and so 

Z=CI 

p .  = c2ear2(Cl - I )  

P.( Z, "r , , "r2)= e'2'~-"qb(z). 

d~(z) = e .... <~-", 

P.(Z, "rl, ~2) = e"~"--'°~:-". 
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(15) 

Proof. The subsidiary equations to (12) are 

Thus, 

o r  

d'~2 dz dP,, 
- i - = z ( l  - z ) b  ( z -  1)(a+bn)P,," (18) 

+*. 
\1 - z /  " 

( ~ _  z)  e -h'-' - c,. 

Since b = 0, (14) is independent ofn.  I fb -% 0, there is a unique solution 
to (12) and (13). 

LEMMA Ili.3.4. l f  b -% 0, the solution to (12) and (13) is 

{ e-~'2-'" } ''~ ÷" . (17) 
P,,(z, "r,, 'r2) = i - z(1 - e -b~'-'-~'') 

(16) 
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Also, 

o r  

DISTRIBUTION OF AGGREGATE CLAIMS IN RISK THEORY 

The general solution is 

a ~ dz dP,, 
- -  n - - - -  , P° 

p , , z  .Ib+n = e 2. 

Condition (13) implies, for fixed rt, 

f w e  b,I ~alb + n 

d~(w) = [ 1 + web'--'-'~, J " 

Thus, 
} t d b  + n 

z e  - b ( r 2  - T I  ) 

P,(z, %, "r2) = z- '~-"  I - z + ze-~'"--',' 

={ 
1 - z [ l  - e - ~ " : - ' , ' ] J  " 

Proof. I fb  > 0, (17) is simply a negative binomial probability-generating 
function, which yields probabilities (19) after substituting back from Def- 
inition 2. 

Finally, if b < 0, the probabilities are as follows. 

THEOREM Ili.3.5. I f  b < O, and - a/b a positive integer N, the solution 
to (3) under the assumption (10) is the set of  binomial probabilities 

Two different sets of probabilities are obtained depending upon whether 
b is greater or less than 0. If b > 0, the probabilities are given as follows. 

THEOREM 1II.3.4. l f  b > O, the solution to (3) under the assumption 
(10) is the set o f  negative binomial transition probabilities 

p ..... k(t, s ) = ( a / b k n + l ) ( e x p [ - b f ~ [ 5 ( r ) d r ] }  ''h+" (19) 

1 - e x p [  ~ k . . . . .  
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. . . .  . 

(20) 
• 

x exp b ~(r)dr k = 0 , 1 , 2  . . . . .  N - n ,  

for all n <~ N. 

Proof. From (17), 

P,(Z, "r,, r2) = {e ~':- ' ' '  + z(I - eb':-',')} u-' ', 

which is a binomial generating function for n ~< N. 
If - a / b  is not a positive integer, then the probabilities are given by a 

generalized binomial. See Bithlmann [6] for details of these "contag ion"  
models. 

Thus the Poisson, negative binomial, and binomial distributions arise 
from the nonhomogeneous birth process contagion models. 

Many counting processes can be modeled as a nonhomogeneous birth 
process with intensities of frequency of the form (10). These include the 
Poisson process, the nonhomogeneous Poisson process, the Polya pro- 
cess, and the Yule process. For a definition and discussion of  these pro- 
cesses, see Parzen [34], Feller [16], or Lundberg [25]. 

III.4. A Branching Process Model 

The number of claims can be considered to have arisen from a branching 
process in certain instances. Each claim is directly responsible for the 
occurrence of  a random number of claims, each of which in turn causes 
a random number of claims in accordance with the same probability dis- 
tribution. This model might perhaps be useful in a situation where there 
is an infectious disease epidemic. 

Definition I. A single claim gives rise to n further claims directly (not 
including the original) with probability 

where qo > 0, 

q,,, n = 0 ,  i, 2 . . . . .  (1) 

Q(s) = ~ q,,s", (2) 

and 0 < Q'(1) < 1. 
It is assumed that claims occur initially in accordance with the distribution 

(1), each of which in turn causes n more in accordance with (1). 
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Definition 2. Let the probability-generating function of the total number 
of claims be given by 

p(s )  = ~,p,,s,,. (3) 
t l ~ 0  

The relationship between P(s) and Q (s) is given by the following theorem. 

THEOREM III.4.1. 

P(s) = Q(sP(s)) (4) 

with P(1) = 1. 

Proof. Feller ([16], p. 298) shows that the probability-generating func- 
tion P,(s) of the total number of claims arising from 1 individual claim 
(including this claim) satisfies 

P,(s) = sQ(P,(s)). 

Thus if the number of these original claims has distribution (i), it follows 
that 

P,(s) 
P(s) = Q(P,(s)) = 

s 

o r  

sP(s) = P,(s). 

This implies sP(s)=sQ(sP(s)). Feller ([16], p. 298) also shows that the 
distribution {p,,} is not defective (i.e., P(1) = 1) when Q'(I) < 1. 

The probability distribution {p,,} has moments easily obtainable from 
(4). In particular, it is easily verified that the mean of the distribution may 
be expressed as 

Q'(I) (5) 
e ' ( l )  = 1 - Q ' ( I ) "  

Further, the form of the distribution P(I) is given in the following theorem. 

THEOREM 111.4.2. The probability-generating function P(s) given by 
(4) is Compound Poisson with generating function 

where 

P(s) = e ~t*(''- 'l, (6) 

h = - log qo (7) 
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and 

A(s) = --  ~ q;"" s" (8) 
,,=, - n log q,, 

is a probability-generating function. 

Proof." See Dwass [13]. 
Thus the solution to equation (4) is an infinitely divisible probability- 

generating function even if Q(s) is not. Once again, the importance of the 
Compound Poisson distribution is highlighted. Here, the explicit form of 
the distribution is obtainable. The probabilities p,, could be calculated 
using the results of the above theorem, but a simpler form is given in the 
following theorem. 

THEOREM III.4.3. 

1 
- - - -  I n + l ) *  p , - n + l q  . , n = 0 ,  1,2 . . . . .  (9) 

Proof. Multiplying (4) by s and using Lagrange's expansion gives each 
side of (9) as the corresponding coefficient of s "÷'. See Steutei ([39], p. 
13) for a discussion of this. 

Thus the probabilities from this contagion model are easily calculated 
using the above theorem. 

Example I: Q(s) = exp{X(s - 1)}. In this Poisson case, 

1 [X(n+ l)]"e -~''+'' 
p .  = , (10) 

n + l  n! 

h 
P ' ( I )=  1 _ x , 

and 

P(s)=exp{h[~__, 

Example 2: Q(s) = [1 - a(s - 
probabilities, 

(Xn)"e-~"" 1 ] ) .  ( l l )  S --  

1)]-". For these negative binomial 

1 (e~(n+ l ) + n - I ~  ( 1 ~"~"+*'( a ~" 
P" ,, / 

n=O,  1,2 . . . . .  

(12) 
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If a = 1, the geometric probabilities result in 

1 (2n'] ( I n  / ~ ) " + ' [  a '~"\l_~a] P" =~-+'-i\ ' n=O, I, 2 . . . . .  (13) 

Example 3: Q(s) = (ps + q)"'. The binomial probabilities lead to 

1 (m(nn + 1)) p,=_£__~\ p,,qm,°+,,-,,, n=0,  1, 2 . . . . .  (14) 

For the Bernoulli case when m = 1, 

pi,=qp"; n=0,  I, 2 . . . . .  (15) 

which is a geometric distribution. 

I11.5. Multivariate Distributions 

Many of the models considered assume that the individuals at risk have 
independent claim distributions (of each other). One possible method to 
account for a dependency of sorts is to assume that the number of claims 
from each individual at risk follows a multivariate distribution. 

Definition 1. The k individual risks have a multivariate distribution with 
generating function 

Pk(s,, s2 . . . . .  s~). (1) 

The probability-generating function of the sum of the k risks is thus 

P ( s )  = P~(s ,  s . . . . .  s ) .  (2) 
Example 1: The Multivariate Poisson Distribution. This distribution, as 

defined by Teicher [43], has probability-generating function 

(3) 
+ . . .  +X,.,...~(s,... sk- 1)]}, 

where the h's are all positive. The marginal distribution of a subset of 
size r is of the same form as (3). Each individual risk has a marginal 
Poisson distribution. The correlation of any two risks is positive so that 
this distribution gives rise to a positive contagion model. 
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If I~, = " the  sum of  all h coefficients with i subscripted digits," for i 
= 1, 2 . . . . .  k, then the generating function of  the sum is 

P(s) = P,(s, s . . . . .  s) 

where 

and 

= exp h Ix~(s'- 1) (4) 

= exp{hlx[Q(s) - 1]}, 

k 

Q(s) = ~ IXls' (5) 
i = l  ~.l, 

k 

g. = ~ p.,. (6) 

Thus Q(s) is a probability-generating function and P(s) a Compound 
Poisson. 

Example 2: The Multivariate Negative Binomial. If h. in (3) has a gamma 
density 

a(~xh.)--,e-~X g(X) = 
F(n) 

then unconditionally, (3) becomes 

P,(s,, s2 . . . . .  sk)=~ l - l  l ~h,(s,  - 
L -~L ' 

h>0,  (7) 

1) 

+ . . .  +x,.2.. . . . ,(s,s2.. .  s ~ - l ) ] } - ' ,  

(8) 

which is a multivariate negative binomial. Again, the marginals are neg- 
ative binomial and the generating function of  the sum is (in the notation 
of Example 1) 

P(s) = 1 - a [ Q ( s ) -  II , (9) 

which is a Compound negative binomial and hence a Compound Poisson. 
As before, the correlations between the individual risks are positive. 
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Another interpretation of the individuals at risk is that they represent 
the number of claims in nonoverlapping time intervals, which are thus 
correlated in some way. Edwards and Gurland [14] applied the model (8) 
when k = 2 and found a better fit to some accident data than a univariate 
negative binomial. 

Other multivariate discrete distributions may be found in Johnson and 
Kotz [21] or in Mardia [26]. 

1II.6. Catastrophe Models 

Another type of contagious process results from the occurrence of 
natural disasters. If an event such as a flood or an earthquake were to 
occur, the number of property or life insurance claims resulting from this 
single accident could quite easily be large. Thus, for each disaster that 
occurs, associated with it is a random number of claims resulting from 
it. 

Definition 1. Let the stochastic process {K(t); t /> 0} represent the 
number of "claim causing" phenomena in the interval (0, t] for t > 0, 
and K(0) = 0. 

if  the claims resulting from each single disaster are independent and 
identically distributed by number, it is clear that {N(t); t/> 0} is a compound 
counting process. (See [II.2] for a discussion of compound distributions.) 

in particular, if the disasters occur randomly in time, it is quite likely 
that {K(t); t /> 0} is a (possibly nonhomogeneous) Poisson process. Thus 
the distribution of N(t) would be Compound Poisson in this instance. 

Furthermore, if {K(t); t i> 0} has stationary and independent increments, 
then from (11.4) both K(t) and N(t) are discrete Compound Poisson 
distributions. 

It follows from these assumptions that X(t) is also Compound Poisson 
(see Theorem 11.4.6). 

A likely candidate for the distribution of N(t) therefore is any discrete 
distribution on the nonnegative integers that is infinitely divisible (or 
equivalently Compound Poisson). For examples of such distributions, see 
(11.4) or (III. 1). 

From (11.2) it is seen that the usual representation of the probability- 
generating function of a compound distribution is 

e(z) = P,(G(z)), 

where P,(z) and G(z) are also probability-generating functions. 
Simple methods of computations of the probabilities are given by Panjer 

[31]. 
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Alternatively, the probabilities may be expressed as a finite sum as a 
result of  the following theorem, which generalizes a result given by Ord 
([29], p. 129). 

THEOREM 111.6.1. Suppose  P(Z) and  G(z) = X~'=o gkz k are probability- 
generat ing func t ions  and a parameter iza t ion  exists such that 

P(z) : ~PrZ" = ~f, , (k)[G(z)l"  (I) 
r = O  n = O  

may be written in the f o r m  

P(z) = B{h[G(z) - 11} (2) 

f o r  some  func t ion  B, then 

r 

n *  p. = ~ . f , (h , )h  . . . .  (3) 
n=O 

where 

h, = h(l - go), 

Proof. From (2) it is seen that 

where 

h ,  = g ,  + i( l - g o ) -  '. 

P(z) = B{X,[zH(z) - 1]}, (4) 

= ( x ) h " "  z' .  ! I r - i i  

r=O[_ nffiO _] 

G(z) - go 
n ( z )  z ( I - g o )  ,,=o h,,z" (5) 

is a probabil i ty-generat ing function.  
Thus from (4), (2), and (1) 

P(z) = ~f,,(XO[zH(z)]" 
t l ~ O  

,,=o \~=o / (6) 

Z 2 f  t,( l )h  .... Z h tl* r 
n=O r = n  
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F r o m  (5), 

and so 
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_ g _ o z  ° - '  
H ( z )  - ~ , 

,,=~ 1 - g o  

h~ = g~ + ,(1 - go)- '. (7) 

Equa t ing  P(z )  in (1) and  (6) and  compar ing  the coeff ic ients  of  z r y ie lds  the 
result .  

A c o m p a r i s o n  o f  (2) wi th  (1.18) impl ies  that  th ree  d i s t r ibu t ions  that  
sa t isfy  (2) are  the  C o m p o u n d  Poisson ,  negat ive  b inomia l ,  and  binomial .  
H e n c e  any o f  these  th ree  c o m p o u n d  d i s t r ibu t ions  have probabi l i t i es  that  
may  be e x p r e s s e d  as a finite sum in the form given by (3). (See also 
E x a m p l e  1.9.) 

A n y  d i sc re te  c o m p o u n d  d i s t r ibu t ion  could  thus  se rve  as a d i s t r ibu t ion  
for  the n u m b e r  o f  c l a ims  in a c a t a s t r o p h e  s i tua t ion ,  a l though in most  
ins tances  a C o m p o u n d  Po isson  model  seems  an a p p r o p r i a t e  choice  for  
phys ica l  r easons .  Fo r  a de sc r ip t i on  of  the many  poss ib i l i t ies ,  see K u p p e r  
[23]. 
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DISCUSSION OF PRECEDING PAPER 

E L I A S  S . W .  SHIU:  

The authors are to be complimented for this comprehensive survey of the 
Compound Poisson process, infinite divisibility, and number-of-claims dis- 
tributions. I wish to supplement this excellent paper with the following 
comments. 

The Sparre-Andersen risk process is discussed in section III.2 of the paper. 
It is assumed that the claim interoccurrence times {Wi} are independent and 
identically distributed with probability distribution function S, with S(0) = 
0. However, TI = W~ is the time between the origin and the first claim epoch. 
It may not be reasonable to assume that the distribution of Ti is also S unless 
S is a memoryless distribution (i.e., N(t) is Poisson). Thorin ([8], [9]) has 
pointed out that if the probability density function of T~ is assumed to be 

[ 1 -  S(t)] /fo[1-S(y)]dy, (1) 
t 

then N(t) has stationary increments. An elegant discussion of equation (1) 
can be found in McFadden ([6], p. 366). 

It may be possible to simplify section II1.3 of the paper. Biihlmann ([2], 
p. 50) has proved that an operational time for the claim number process 
exists if and only if the intensities of frequencies are of the form 

c,(t) = hn-13(0. (II1.3.5) 

Thus, it seems natural to define 

P*n.m ('r) = Pn.m (t ,S),  (III.3.6') 

where 

"r = 13(~) dtx. (III.3.7') 

Comparing equations (III.3.4) with the top two equations on page 52 of 
Biihlmann [2], we see that Theorems Ili.3.3, III.3.4 and III.3.5 follow from 
the results in section 2.2.4 of [2] because of the new definition. 

447 
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If one wishes to use the partial differential equation method in the paper, 
one may define 

Pn(z,'r) = ~ p*m+,('r) z k. (III.3.11') 
k=O 

Then one has the partial differential equation 

L pn(z,,r) + z(1-z)b-~-_ Pn(Z,T) = (Z--1)(a+bn)P,,(z,r)  
OT Oz 

(III.3.12') 

with the initial condition 

P~(z, O) = 1. (III.3.13') 

Since this paper is concemed with the distribution of aggregate claims, it 
• might be of interest to review how Filip Lundberg derived the probability 

density functions of aggregate claims, g(x,t) ([3]; [7], Chapter 1). Assume 
that 

E[N(t)] = ht. 

Consider the infinitesimal time interval from t to t + dt. The probability 
that a claim occurs in this interval is hdt. The probability that this claim 
amounts to y is f(y)dy, where f is the claim amount density function. Hence, 

fo g(x, t+d t )  = (kdt) g ( x - y ,  t)f(y)dy + (1 - Xdt)g(x,t). 

Rearranging the above, we obtain Lundberg's integro-differential equation 
for g(x,t), 

- - -  h [  - Ot g(x,t) g ( x - y ,  t)fl.y)dy g(x, t)]. (2) 

Equation (2) can be solved by means of Laplace transformations. It fol- 
lows from (2) that 

0 
Ot g(s,t) = k[~(s,t)f(s) - ~o(s, t)]. 

T h u s ,  

O 
-- log o~(s, t) = h~(s )  - 1), 
Ot 

or  
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g(s,t) = ~(s,O)e ~d~l-I) 

= e - ~ ,  
(Xt)" 

,,=o - Z .  bt(s)]" g(s,0). 

Inverting the Laplace transforms, we have 

g(x,t) = e -At ~ (Xt)"f  n* (x) * g(x,O). 
n=O n] 

By hypothesis, g(x,O) is a probability density function with whole mass 1 
at x = 0. Thus, 

g(x,t) = e -x' 
(Xt)" 

,=0 - - ~ .  f "*  (x). 

Note that since f °*(x)  is a delta function, the probability distribution 
function of aggregate claims has a jump of height e -h' at x = 0. This fact 
also follows from Theorem II.2.4. 

I find the statement of Theorem III.6.1 somewhat difficult to understand. 
The problem here is the computation of the composition of power series. 
Suppose that 

P(z) = f (g(z)), 

where 

and 

f(z) = ~ f,z" 
n~O 

g(z) = ~ g,z". 
n=O 

Then 

n=O i=0 

n=O j=O 

j=O n=O 
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Thus, in general, the coefficients of  the power series of P are infinite series, 
which can be difficult to evaluate. 

On the other hand, suppose that we can find power series 

k(z) = ~ k,,z" 
n=O 

and 

h(z) = ~ h,z" 
n=O 

such that 

Then 

P(z)  = k(zh(z)) .  

P(z) = ~ k n (z ~ hizi) n 
n=O i=0  

• ]  k. (~] ~* "+J = h ~ z  ) 
n=O j=O 

~" ~ kn ( ~ hn* 
rl=O r = n  

~ n* Z r. = ( knhr-,7) 
r=O n=O 

Hence, in this case the coefficients of the power series of P are finite sums. 
Efficient algorithms for computing these coefficients can be found in the 
answer to exercise 4.7.11 on page 657 of Knuth [5] and also in section 1.6 
of  Henrici [4]. 

We remark that if f is a " n i c e "  function, then the coefficients of the 
power series of f(g(z)) can be computed using the Fah di Bruno formula, 
which is equation (II.2.15). 

It is pointed out in section 11.3 of the paper that the equation 

fo ~ tie-t 1 S n e -s ds = 1 -- (3) 
j=O 

can be verified easily by integration by parts. As actuarial students have 
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learned about operators  in finite differences,  they may be amused by the 
fol lowing proof  of  (3). 

d 
Let D denote the differentiat ion operator  d x  By the product  rule 

D[eaXf(x)] = a ear l ( x )  + e ~ Df(x)  

= e "~': [a + D]f(x).  (4) 

From equation (4) one derives the exponent ia l  shift formula  ([1], Sect ion 
36) 

q(D) [ e ~  f(x)] = e a~ q(a + O)f(x) .  

Thus, 

Since 

D -  l (e-X x") = e - x  ( - 1 q- D ) -  I x n 

= e - X ( - 1  - D - D 2 - D 3 - . .  

= e - x  ( - x "  - n x  " - I  - . . .  - n ! ) .  

.)x" 

fo  e - x  - ~ -x x = t x n dx D (e x n ) 
x = 0  ' 

we obtain (3). 
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(AUTHORS' REVIEW OF DISCUSSION) 

HARRY H. PANJER AND GORDON E. WILLMOT: 

Dr. Shiu's discussion is a valuable addition to the paper. The derivation 
of the Compound Poisson distribution using the method of infinitesimals, 
which was first obtained by Filip Lundberg, is important in motivating the 
use of this distribution. The derivation of formula II.3.2 using finite differ- 
ence techniques is most interesting. 

The point is raised with respect to the renewal (or Sparre-Andersen) process 
that it may not be reasonable to assume that the distribution of T~ = W~ be 
the same as that of the other W;'s. This reflects the fact that the origin may 
not be at the time of a claim occurrence. If the distribution of T~ is assumed 
to be different, the resulting process is called a "modified renewal process." 
The special case when T~ has the probability density function given by 

1 - S ( t )  

fo' [ 1 - S(y)]dy 

is called an "equilibrium renewal process." The motivation for this latter 
density arises since it is the long-run distribution of future time until a claim 
occurs, conditional on the time since the last claim (often called the forward 
recurrence time). An excellent reference for renewal processes is given by 
[8] in the paper. 

Dr. Shiu is correct in pointing out that the probabilities defined by III.3.6 
depend only on the difference "r2-'r I and not on TI and "r 2 separately. This 
leads to a somewhat simpler notational treatment of the model, although the 
final results are unaffected. 

The point of Theorem III.6.1 is that the probability generating function 
of the number of claims can indeed be written in the form 

P(z) = k(zh(z)), 

as Dr. Shiu discusses, if k(z) itself is of a particular form. This means that 
the probabilities can always be computed as finite sums. We thank Dr. Shiu 
for his additional references on power series. 


