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ABSTRACT 

"Credibility" is becoming as much of a catchword for life and health 
insurance actuaries as it is for casualty actuaries. Life and health insurance 
actuaries are better acquainted with Bayesian credibility models for esti- 
mating pure premiums, while casualty actuaries are better acquainted with 
the models of Hans Biihlmann. This paper examines the compatibility of the 
two models, in the hope that this exploration will prompt a greater cross- 
fertilization of ideas between the actuarial branches. 

1. INTRODUCTION 

According to Longley-Cook [19, p. 3]: "The word credibility was orig- 
inally introduced into actuarial science as a measure of the credence that the 
actuary believes should be attached to a particular body of experience for 
ratemaking purposes." Thus, we might write: 

C = ZR + (1 - Z)H (1.1) 

where 
R is the mean of the current observations (for example, the data) 
H is the prior mean (for example, the estimate based on the actuary's 

prior data and/or opinion) 
C is the compromise estimate to be calculated 
Z is the credibility factor, satisfying 0_<Z_<I. 

In this case, an application of credibility theory produces a linear estimate 
of the true value, derived as the result of a compromise between the current 
observations and the actuary's prior opinion. The symbol Z denotes the 
weight assigned to the (current) data and ( 1 -  Z) the weight assigned to the 
prior data. In insurance terms, the new insurance rate, C, is a weighted 
average of the old insurance rate, H, and the observations, R, for the most 
recent period of observation. An alternative interpretation of Equation (1.1) 
is to let C be the insurance rate of a particular class of business, let R be 
the recent experience for that class, and let H be the insurance rate for all 
classes combined. 
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This paper consists of two principal parts. First, Sections 2 and 3 present 
a detailed discussion of some fundamental concepts of Bayesian analysis, 
which forms the basis for an important approach to insurance ratemaking. 
Second, Section 4 describes a credibility model suggested by Biihlmann [2]. 

Fuhrer [8] recently applied some Bfihlmann-type models to health insur- 
ance problems. Klugman [18] uses a full Bayesian approach to analyze actual 
data on worker's compensation insurance. He investigates two problems. 
First, he calculates the joint posterior distribution of the relative frequency 
of claims in each of 133 rating groups. He employs three distinct prior 
distributions and shows that the results are virtually identical in all three 
instances. Second, Klugman analyzes the loss ratio for three years of ex- 
perience in 319 rating classes in Michigan. He uses these data to construct 
prediction intervals for future observations, that is, the fourth year. He then 
compares his predictions to the actual results. 

2. BAYES' THEOREM AND HEWITr 'S  EXAMPLES 

This section consists of Bayes' Theorem (the foundation of a branch of 
statistics called Bayesian statistics,* which is useful for solving a wide range 
of actuarial problems), as well as two examples from the important paper 
of Hewitt [12]. 

Bayes " Theorem: 

Let A and B be events such that P[B] > 0. Then: 

p[AIB] = P[B~g'[A] 
P[B] 

Example 2.1: 

A die is selected at random (that is, with probability 1/2) from a pair of 
"honest" dice. One die has one marked face and five unmarked faces, and 
the other die has three marked faces and three unmarked faces. We define: 

A1 as the state of having drawn the die with one marked face and five 
unmarked faces 

A2 as the state of having drawn the die with three marked faces and three 
unmarked faces 

"Edwards, Lindman, and Savage [6] summarize the Bayesian view of statistics as follows: "Prob- 
ability is orderly opinion, and inference from data is nothing other than the revision of such opinion 
in the light of relevant new information." 
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ui 

M, 

as the result of having an unmarked side showing on the i-th toss for 
i = 1 , 2  . . . .  
as the result of having a marked side showing on the i-th toss for 
i = 1 ,  2, . . . . 
By definition of "hones t"  die, we simply mean that 

P[U~t~] = 5/6 and P[Ui~A2] = 3/6. 

Example 2. 2." 
A spinner is selected at random (that is, with probability 1/2) from a pair 

of spinners. It is known that: (1) one spinner has six equally likely sectors, 
five of which are marked " t w o "  and one of which is marked " four teen ,"  
and (2) the other spinner has six equally likely sectors, three of which are 
marked " t w o "  and three of which are marked "'fourteen." We define: 

B~ as the state of having drawn the spinner with five " t wo s "  and one 
"four teen"  

B2 as the state of having drawn the spinner with three " t w o s "  and three 
"fourteens" 

S~ as the random variable representing the result of the i-th spin, 
i = 1 ,  2 . . . . .  

3. DISCRETE FREQUENCY-SEVERITY INSURANCE MODEL UNDER 

INDEPENDENCE 

This section presents a simple two-stage model of an insurance operation. 
The model is based on Examples 2.1 and 2.2. Specifically, we assume that 
there is a single insured whose claim experience is modeled as follows: 
First, a die and spinner are selected independently and at random. So, using 
the notation of Section 2, for i = 1,2 and j = 1,2, 

P[AI and Bj] = P[Ai] P[Bj] = (1/2)(1/2) = 1/4. (3.1) 

(Once selected, the die and spinner, which determine the risk characteristics 
of the insured, are not replaced.) Second, the random claims process starts 
when the die selected is rolled. If a marked face appears, this constitutes a 
claim; if not, there is no claim. Third, if there is a claim, the selected spinner 
will be spun to determine the amount of the claim. Each roll of the die and 
spin of the spinner, if necessary, constitute a single period of observation. 
We use Xi to denote the random variable representing the (aggregate) amount 
of claims during the i-th period of observation, i = 1, 2 . . . . .  
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In this section, we first compute the initial pure (or net)premium, E[XI], 
using the initial (that is, prior) probabilities of P[Ai and Bj]. Then, having 
observed the result of trial 1, we compute a revised pure premium estimate, 
E[X21X1], based on the revised (that is, posterior) probabilities of P[Ai and 
Bi] given the result of the first period of observation. 

3.1 The lnitial Pure Premium 

Because X~ takes only the values 0, 2, and 14 with positive probability, 
we may write E[X1] as: 

E[X1] = OP[X~ = 0] + 2P[X~ = 2] + 14P[X~ = 14]. (3.2) 

N o w ,  

P[X1 = 0] = P[U d = P[U~41] P[AI] + P[UI~12] P[Az] = 2/3. (3.3) 

Also, using M1 as defined in Example 2.1, we obtain: 

P[XI = 2] = P[M~ and (S~ = 2)] 

= P[M,] P[S, = 2] 

= (P[M,~A,] P[A,] + P[M'I~A:] P[Az]) x 

(P[Sx = 2lBl] P[B,] + P[S1 = 21B2] P[Bz]) = 2/9. (3.4) 

Finally, it is left as an exercise for the reader to verify that 

P[X 1 = 14] = 1/9. (3.5) 

We summarize the results just obtained in column 2 of Table 1. 

TABLE 1 

INITIAL PURE PREMIUM ESTIMATE 

i1) (2) /3) 
Initial Probability xP[XI ~ x] 

Value ofx PIXI = x] (I) x (2) 

0 
2 

14 
Total 

2/3 
2/9 
1/9 

0 
4/9 

14/9 
1 2 
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Thus, the initial estimate of the pure premium as per Equation (3.2) is 
equal to 2, the result of adding the entries in column 3 of Table 1. 

We may also write E[X~] as: 

2 2 

E[X~] = ~ ~ E[X~t, and Bj] P[Ai and Bj]. (3.6) 
i = 1  j = l  

Given the compound state Ai and Bj, the mean claim amount is equal to the 
product of (1) the mean number of claims and (2) the mean severity amount, 
given that a claim occurs. In symbols: 

E[XI~4 i and Bi] = E[II~4i] E[S,]Bj], 

{~ if the first toss of the die produces a marked side 
where I~ = if otherwise. 

Hence, E[II[Ai] = P[MI[Ai]. From Examples 2.1 and 2.2, we obtain the 
results shown in Table 2. Substituting the values of column (4) as well as 
P[Ai and Bi] = 1/4 into Equation (3.6) above again results in E[X~] = 2. 

TABLE 2 

PURE PREMIUMS BY STATE 
(RISK CHARACTERISTICS) 

(l) (2) (3) (4) 
Pure Premium 

State Frequency Severity EIXJ ~ti and BI] 
Ai and Bj EIII~Ii] EISI~Bj] (2) x (3) 

A, and B~ 1/6 4 2/3 
A~ and B 2 1/6 8 4/3 
A z and B 1 1/2 4 2 
A, and B 2 1/2 8 4 

3.2 Revised Pure Premium Estimates 

In this section we estimate the pure premium for the second period of 
observation given the result of the first period. In symbols, we seek to 
calculate: 

E[X2{X ~ = k] for k = 0, 2, and 14. 
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Because: 

(1) Once a die has been chosen, the result of each toss of the die is independent of the 
results of all other tosses, and 

(2) Once a spinner has been selected, the result of each spin of the spinner is independent 
of the results of all other spins, 

the random variable X2 only depends upon the result of the first trial through 
the probabilities of the states A i and Bj; in other words, the only effect is 
through the revised state probabilities: 

P[A~ and Bj~X1 = k]. 

As in the previous section, we present two ways of calculating the desired 
expected value. The first also yields the posterior probabilities of X2; the 
second yields some intermediate results to be used in Section 4. 

3.3 Pure Premiums and Predictive Distributions 

By analogy with Equation (3.2), we may write for k = 0, 2, and 14: 

E[X2P(1 = k] = OP[Xz = Op(t = k] + 2P[X2 = 2P(1 = k] 
+ 14P[X2 = 14~t'~ = k] (3.7) 

Our goal is to calculate the posterior expected claim amount (pure premium) 
after having observed a claim amount of k during the first period. Now, for 
the reasons given in the preceding section, we may write for m = 0, 2, and 
14: 

P[X 2 = rnp( 1 = k] = 
2 2 

~ P[X2 = m~4~ and B~] P[Ai and Bj~X1 = k] (3.8) 
i ~ l  j ~ l  

We first calculate the probabilities P[X2 = m~t~ and Bj] starting with 
m --- 0. Now, 

P[Xz = 0pt, and By] = P[X2 = 0~4,] = P[U2~4i] 

30/36 i =  1 (3.9) 

18/36 i = 2 

Next, we consider P[X2 = 2~Ai and Bj]. Now 

P[X 2 = 2pt, and Bj] = P[M2Pti ] P[S2 = 2]Bj]. (3.10) 
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Hence the values ofP[X2 = 2~Ai and Bfl may be tabulated as shown in Table 
3, making use of Equation (3.10). 

TABLE 3 

P[X 2 = 2~ ,  AND B,] 

(1) (2) (3) 
PIX2 ~ 2[,'1i and Bj] 

State PiM2~Ai] /~S~_ = 21,Bj] (1) × (2) 

At and Bi 1/6 5/6 5/36 
A 1 and B 2 I/6 1/2 3/36 
A 2 and BI 1/2 5/6 15/36 
A2 and B2 1/2 1/2 9/36 

The results of Equations (3.9) and (3.10) can be summarized as shown 
in Table 4. 

TABLE 4 

PROBABILITIES OF CLAIM OUTCOME GIVEN 
STATE (RISK CHARACTERISTICS)-- 

P[X2 = m~Ai and Bj]--IN 36THS 

State 

Al and BI 
A1 and B 2 
A 2 and B~ 
A 2 and B 2 

OutcOme for One Trial 

0 2 

30 5 
30 3 
18 15 
18 9 

14 

1 

Total 

36 
36 
36 
36 

The results of column (3) of Table 3 constitute column 2 of Table 4. 
In order to evaluate each of the terms on the right-hand side of Equation 

(3.8), it remains to compute 

PfAi and Bj~Y1 = k] for k = 0,2,14.  (3.11) 

By Bayes' Theorem, 

P[Ai and Bj~X, = k] P[XI = k~Ai and B/] P[Ai and B/] 
= P[X, = k] (3.12) 
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Since (1) P[Ai and Bj] = 1/4 for all i and j ,  (2) the values of P[X~ = k] 
constitute column (2) of Table 1, and (3) the values of P[X~ = k~i and Bi] 
constitute Table 4, it is an easy matter to evaluate P[Ai and BjIX~ = k]. The 
results are summarized in Table 5. 

TABLE 5 

POSTERIOR DISTRIBUTION OF RISK CHARACTERISTICS-- 

VALUE OF e[a i AND B/Izl( 1 = k] 

State 

A~ and B1 
A1 and B2 
A 2 and BI 
A2 and B2 

Total 

Value of k 

5/16 
5/16 
3/16 
3/,!6 .. 

5/32 
3/32 

15/32 
9/32 

1/16 
3/16 
3/16 
9/16 

Thus, as an example, 

P[A~ and B2~X~ = 14] = P[X1 = 14~A1 and Bz] P[A1 and B2] = 3/16.  
P[X, = 14] 

Tables 4 and 5 contain all the results needed to evaluate the conditional 
probabilities specified by Equation (3.8). For example: 

P[Xz = 2~'1 = 141 = 
2 2 

2 E P[Xz = 2~A, and Bj] P[A, and B i ~ S  I = 14] = 35/144.  
i = 1  j = l  

Table 6 contains all the values of the conditional probabilities of X2 given 
)(1. This is called the predictive distribution of the random variable X2 given 
the value of X1. Given the result of the first trial, the appropriate column of 
Table 6 contains the probability of each possible outcome of the second trial. 

TABLE 6 

P[X2 = rn~X, = k] 

0 
2 

14 
Total 

Value of k 

17/24 
7/36 
7/72 

7/12 
85/288 
35/288 

14 

7/12 
35/144 
25/144 

1 1 1 
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Finally, we are able to use Equation (3.7) and the entries of Table 6 to 
calculate the conditional expectation of X2 given X1. For example, for k = 2: 

E [ X z ~  = 2] = 2P[Xz = 21X~ - 2] + 14P[X 2 = 14IX ~ = 2] = 55/24. 

TABLE 7 

k E[x276 = k] 

0 7/4 
2 55/24 

14 35/12 

3.4 Additional Remarks 

The reader should compare the prior probability estimates of Table 1 with 
the probability estimates of the predictive distribution of Table 6. The reader 
should also compare the initial pure premium estimate E[X~] = 2 with those 
of Table 7 and note how the observed claim amount in the first period 
modifies the amount of claims expected in the second period. 

In this work, "predictive distribution" refers only to that of a random 
variable given previous outcomes of one or more random variables, as in 
Table 6. We use the term "posterior distribution" to refer to other condi- 
tional distributions, that is, those involving one or more parameters or "states,"  
as in Table 5. For example, in Section 4.6, we derive the predictive distri- 
bution of 2(,,+ ~ given Xx, • • • ,  X,,. To complete this derivation, we have 
to calculate the posterior distribution of a parameter (for example, state) 0 
given 2(1 . . . .  , X,,. 

4. THE BAYESIAN MODEL VERSUS BOHLMANN'S MODEL 

4.1 Introduction 

In this section we compare the Bayesian model described in Section 3 to 
a credibility model suggested by BiJhlmann [2]. In Section 4.4, we show 
that the credibility estimates produced by the BiJhlmann model are the "bes t"  
linear approximations to the corresponding Bayesian estimates. We then 
show that, under certain conditions, the BCthlmann credibility estimates are 
identical to the corresponding Bayesian estimates. 
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4.2 Mathematical Preliminaries 

Let N be a random variable representing the number of claims of an 
insurance portfolio. So, N takes only nonnegative integer values with pos- 
itive probability, that is, 

P[N=i]  = 1. 
i = 0  

For i = 1, 2 . . . . .  let Y~ be a random variable representing the amount of 
the i-th claim, and let X represent the aggregate claim amount: 

N 

x--E  

Then we have: 

Theorem 4.1: 

If the Y/are mutually independent with identical first and second moments 
and if the number of claims is independent of their amounts, then 

(1) E[X] = E[~E[Yd 

and 

(2) Var[X] = E[N] Var[Y1] + Var[N] (EtY1]) 2 

where Var[X] denotes the variance of the random variable X. 

4.3 Biihlmann" s Credibility Formula 

If the actuary has a good deal of prior knowledge as well as substantial 
technical and computational resources, then he or she should probably con- 
struct a predictive distribution of the aggregate claims during the next period 
of interest given prior aggregate claim amounts. An alternative approach that 
does not explicitly require prior information or as many resources has been 
suggested by Biihlmann [2]. His approach is to employ a point estimate, C, 
of the form of Equation (1.1): 

C = ZR + (1 - Z)H (1.1) 
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where Z is defined by 

n 
Z = ~ (4.1) 

n + k  

and satisfies 0.<Z~I; also, n is the number of trials or exposure units, and 

k = expected value of the process variance (4.2) 
variance of the hypothetical means 

where the numerator and denominator of Equation (4.2) are defined in the 
next two sections. Henceforth, we refer to credibility estimates satisfying 
Equations (1.1), (4.1), and (4.2) as "Biihlmann credibility estimates.'" 

Such estimates are of interest, because, among other properties, they are 
the " b e s t "  linear approximations to the Bayesian estimates. More is said 
about this property in Section 4.4 after we discuss the numerator and de- 
nominator of k. 

4. 3.1 Variance of the Hypothetical Means 

In general, each hypothetical mean refers to the average frequency, av- 
erage severity, or average aggregate claim amount (that is, pure premium) 
of an individual combination of risk characteristics. The hypothetical mean 
is the conditional expectation given that combination of risk characteristics. 

For an initial example, we consider the die example of Section 2 in which 
one of two dice is selected with equal probability of 1/2 at random and then 
tossed once. We assume that we have a claim for $1 if a marked face 
appears; otherwise, there is no claim. There are two combinations (or sets) 
of risk characteristics--namely, one corresponding to each die. The (hy- 
pothetical) mean amount of claims is equal to 1/6 for the die with one marked 
face and five unmarked faces, and 1/2 for the die with three marked and 
three unmarked faces. Because each die is selected with equal probability 
of 1/2, the expected claim amount (that is, the expected value of the hy- 
pothetical means) is: 

(1/2)(1/6) + (1/2)(1/2) = 1/3. 

So, the variance of the hypothetical means is: 

(1/2)[(1/6) - (1/3)] 2 + (1/2)[(1/2) - (1/3)] 2 = 1/36. 

In other words, the variance of the hypothetical means is the variance of the 
conditional expectations over the various sets of risk characteristics. 
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In the die-spinner example, the hypothetical means are the pure premium 
estimates for each of the four compound states or risk characteristics; see 
column (4) of Table 2. The variance of the hypothetical means is the weighted 
sum of the squared differences between each of the four pure premium 
estimates and the prior mean, E[X d = 2. (The prior mean is the expected 
value of the hypothetical means.) Again, each weight is equal to 1/4. The 
result is: 

(1/4)[(2/3 - 2) z + (4/3 - 2) 2 + (2 - 2) 2 + (4 - 2) 2 ] 

= 14/9 = variance of hypothetical means. (4.3) 

4. 3. 2 Expected Value of the Process Variance 

In general, each process variance refers to the variance of the frequency, 
severity, or aggregate claim amount of an individual combination of risk 
characteristics. The term "process"  refers to the process generating the 
number of claims and/or the amount of the claims. Thus, the process variance 
is the conditional variance given the combination of risk characteristics. 

For an initial example, we again consider the die example of Section 2. 
We assume that for each die the number of claims has a binomial distribu- 
tion. So, for a single toss of the die with one marked face the (process, that 
is, conditional) variance is 

npq = (1)(1/6)(5/6) = 5/36. 

For a single toss of the die with three marked faces, the (process) variance 
is 

npq = (1)(1/2)(1/2) = 1/4. 

Since each die is selected with probability 1/2, the expected value of the 
process variance is 

(1/2)(5/36) + (1/2)(1/4) -- 7/36. 

The calculations required to compute the process variance for each risk 
characteristic of the die-spinner example are summarized in Table 8 and 
described in the following discussion. 

The mean frequencies of column (3) are simply column (2) of Table 2. 
Since the variance of a single trial of a Bernoulli random variable is pq, the 
variances of column (4) are: 

Var[l IA ] = (1/6)(5/6) = 5/36 
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TABLE 8 

PROCESS VARIANCE OF DIE-SPINNER EXAMPLE 

5 5  

O) 

S~ate 
AtB I 

AaB~ 
A iB: 
A:B, 
A2B2 

(2) 
Stale 

Probability 
PIAzzA 

1/4 
I/4 
1/4 
1/4 

(3) 
Mean 

E[ll~4i] 
1/6 
1/6 
1/2 
1/2 

Frequency 

(4) 
Variance 
Var[ltlAi] 

5/36 
5/36 
1/4 
1/4 

(5) 
Variance 
Var[SdB~] 

20 
36 
20 
36 

Severi~ 

(6) 
Mean Squared 

(EISdBj]) 2 
16 
64 
16 
64 

(7) 
Process 

Variance 

50/9 
134/9 

14 
34 

and 

Vat[IliA2] = (3/6)(3/6) = 1/4. 

The variances of the severity, Var[SIlBj], which constitute column (5), 
are: 

Var[S,IBj] = ( 2  - E[S, IBj])2p[s, = 21 + ( 1 4  - E[S~[Bjl)2P[S, = 1 4 ] .  

So, for j =  1, 

Var[SIIB~] = (2 - 4)2(5/6) + (14 - 4)2(1/6) = 20 

and for j = 2, 

Var[SIIB2] = (2 - 8)2(3/6) + (14 - 8)2(3/6) = 36 

where the mean severities, E[SIIBj], employed to calculate the variances, 
Var[S~]Bj], as well as the entries of column (6) are taken from column (3) 
of Table 2. 

Finally, using Equation (2) of Theorem 4.1, we calculate the process 
variances of column (7) according to: 

E[I1~4,] Var[Sx[Bj] + Var[I1~Ai] (E[SxIBj]) 2. 
The expected value of the process variance is obtained by multiplying the 

process variance of each state, column (7), by the corresponding state prob- 
ability, column (2), and summing the results. This yields: 

Expected value of the process variance = 154/9. (4.4) 
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4. 3. 3 Credibility Estimates 

So, using Equations (4.2) - (4.4), we get for the die-spinner example: 

154/9 
k =  - 11. 

14/9 

For one observation (n = 1), the credibility factor is: 

n 1 1 

n + k  1 + 1 1  12" 

Using Equation (1.1) with Z =  1/12 and H=E[X~] = 2, we can compute C, 
the Biihlmann estimate given the result, R, of  the first trial. 

TABLE 9 

BI)HLMANN CREDIBILITY ESTIMATES 

o.t~me R BOhlmann Estimate 

0 11/6 
2 2 

14 3 

where for R = 14, for example,  

ZR + (1 - Z)H = (1/12)14 + (11/12)2 = 3. 

4. 3. 4 Characteristics of  the Credibility Factor 

We note the fol lowing important characteristics of  the credibility factor: 

n 
Z -  

n + k "  

(1) Z is an increasing function of n. In the limit as n approaches infinity, Z approaches 1. 
(2) Since Z is a decreasing function of k, Z is also a decreasing function of the expected 

value of the process variance, with a lower limit of 0. Thus, the larger the variation 
associated with the individual combinations of risk characteristics, the less weight given 
to the current observations, R, and the more weight given to the prior mean, H. 

(3) Finally, Z is an increasing function of the variance of the hypothetical means, with 
an upper limit of 1. Thus, Z increases with the variation in the expected values of 
the various combinations of risk characteristics. 
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4. 3. 5 Further Examples of  Biihlmann Estimates 

The starting point for the calculation of k is the individual combination 
of risk characteristics. For each combination of risk characteristics, appro- 
priate expected values (that is, means) and variances can be calculated. The 
variance across the population of risk characteristics of these expected values 
(that is, means) is referred to as the variance of the hypothetical means. The 
expected value over this population of the individual variances is referred 
to as the expected value of the process variance. Thus, if the distributions 
of the individual means and variances are known, k can be calculated directly 
from the moments of these distributions. Two additional examples follow. 

Example 4.1: 

Suppose that for a group of n risks, the aggregate claim amount, Xi, of 
the i-th risk has mean, ~i, and variance, o],-, for i =  1, . . . , n. Further, 
suppose that: 

(1) each of the g.i is, in turn, selected at random from a distribution with mean, r/a, 
and variance, r/a 2, and 

(2) each of the o~ is chosen at random from a distribution with mean of q/b and 
variance, q/b 2. 

The pure premium of the i-th risk is: 

E~, {Ex, [X, llx,]} = E~, [Ix,] = r/a, 

the expected value of the mean aggregate claim amount, Ixe. The variance 
of the expected value of the i-th individual risk is: 

Vary,, {Ex, [X~ltx,]} = Vary, [p-i] = r~ a2. 

The expected value of the i-th individual variance is: 

E[o~] = q/b, 

where the expectation here is with respect to ~ .  Hence, 

k = (q/b) _ qa 2 
(r/a 2) br " 

Example 4. 2: 

Each risk has a Poisson frequency distribution, P(~.), where the parameter 
(that is, mean) X is uniformly distributed over the interval (0.07, 0.13). The 
severity component is assumed to follow distribution Bt 40 percent of the 
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time and B2 60 percent of the time where the distributions B1 and B2 are 
defined by: 

Severity Probabilities 

Severity B~ Bz 

2 5/6 1/2 
14 I/6 1/2 

We calculate k and Z for three periods of observation (for example, for three 
years). 

The risk characteristics are denoted by the ordered pair (k, B,), where 
0.07<k<0.13 and i=1,2 .  (The reader will recognize B, and B2 as the 
spinner severity distributions of Example 2.2.) Table 10, similar to Table 
8, can be employed for this example. Since E[h]=0.1,  the expected value 
of the process variance is equal to: 

(0.4)(36)E[K] + (0.6)(100)E[k] = (74.4)E[k] = 7.44. 

TABLE 10 

Frequency Severity 

State Mean Variance Variance Mean Squared 

I K , B ~ )  h k 20 16 36k 
h,B2) k k 36 64 100k 

Process 
Variance 

For state (K,B1) the conditional (or hypothetical) mean is 4K, and for state 
(K,B2) it is 8k. Thus, the expected value of the hypothetical means is: 

(0.4)E[4k] + (0.6)E[8h] = (6.4)E[h] = 0.64. 

The squares of the hypothetical means are 16k 2 and 64h 2 for (k,B~) and 
(K,B2), respectively. The expected value of the square of the hypothetical 
means is: 

(0.4)E[16h 2] + (0.6)E[64h 2] = (44.8)E[K 2] 
= (44.8){[(0.13) 3 - (0.07)3]/(3)(0.06)} 
= 0.46144. 

Hence, the variance of the hypothetical mean is: 

0.46144 - ( 0 . 6 4 )  2 = 0.05184. 
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Thus, 

7.44 
k = -  = 143.52. 

0.05184 

Finally, for three periods of observation (for example, three years): 

n 3 
Z . . . .  0.02. 

n + k 3 + 143.52 

4.3.6 Calculation of k in Practice 

In practical applications k may be calculated in the following fashion: 

(1) A separate sample variance is calculated for the available data on each combination 
of risk characteristics. The average of these sample variances is then calculated and 
used as the estimate of the expected value of the process variance. 

(2) The available data on each individual risk are then used to calculate the total sample 
variance, which is then used as the estimate of the total variance. 

(3) Since 

total = expected value of the + variance of the 
variance process variance hypothetical means ' 

the variance of the hypothetical means can be obtained by subtracting the result of 
(1) from that of (2). 

(4) Finally, k is obtained by dividing the result of (1) by that of (3). 

While this is a direct method of calculating k, it is not necessarily optimal. 
In fact, the estimated variance of the hypothetical means produced by this 
method may be negative. Moreover, the estimator of the variance of the 
hypothetical means in (3) above is not an unbiased estimator. Several re- 
finements of this procedure have been developed for its practical application. 

4.4 Credibility and Least-Squares 

Suppose that the actuary has decided to use E[X2]X~ =k],  the mean of the 
predictive distribution (see Table 7), as an updated estimate of the pure 
premium. Further, suppose that the actuary is unwilling to assume a partic- 
ular family of distributions for (1) the process generating the claims and (2) 
the prior distribution of the parameters of the claims process. Such distri- 
butions are required in order to do a Bayesian analysis and thereby produce 
a predictive distribution. However, the actuary is willing to use a linear 
approximation of the mean of the predictive distribution as the (estimate of 
the) pure premium. 
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For the above situation, Bi~hlmann [2] and [3] has shown that the credi- 
bility estimates of Section 4.2 are the "best"  linear approximations to the 
Bayesian estimates of the pure premium. By "best ,"  we mean that the 
weighted sum (that is, expected value) of the squared differences between 
the linear approximations and the Bayesian estimates is minimized. The 
result, whose proof is given in the Appendix, can be illustrated as follows. 

4. 4.1 Linear Approximation Example 

Let the possible outcomes of the result of a single trial be denoted by R 
= (Rx, R:, R3) = (0, 2, 14). Let the corresponding Bayesian premium 
estimates P = (P1, P:, e 3 )  --- (7/4, 55/24, 35/12) as in Table 7, and let the 
initial or prior probabilities of the results be denoted by W = (W~, 1412, 1413) 
= (2/3, 2/9, 1/9) as in Table 1. Then, for our example, we can specify the 
definition of "best"  linear approximation as: The "best" linear approxi- 
mation to P is obtained by determining the values of a and b that minimize: 

3 
W,(a + bR, - p,)2. 

i ~ l  

This is the usual weighted least-squares approach. (See, for example, Draper 
and Smith [5], especially pages 108-116.) The desired estimates ~ and/) of 
a and b are 11/6 and 1/12, respectively, and each component of the least- 
squares linear approximation of the premium estimate 

+ /~R = (11/6) + (1/12)R = (11/6, 2, 3), 

is identical to the corresponding Bfihlmann credibility estimate of Table 9. 
We summarize the results of this example by presenting the revised pure 

premium estimates, given the result of a single trial, for both the Bayesian 
and Biihlmann credibility models in Table 11. 

TABLE 11 

PURE PREMIUMS 

Outcome of Biihlmann Bayesian 
Firsl Trial Eslimate Eslimate 

R ~ + b R  P 

0 11/6 7/4 
2 2 55/24 

14 3 35/12 
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4.5 Credibility and Bayesian Inference 
In Section 4.4 we showed that the Bfihlmann credibility estimate is the 

best linear approximation to the Bayesian estimate of the pure premium. In 
this section, following Jewell [16], we show that the Bfihlmann credibility 
estimate is equal to the Bayesian estimate of the pure premium for a large 
class of problems. We begin with some definitions. 

4. 5.1 Conjugate Prior D&tributions 
Suppose that H is some hypothesis and B is an event. Then we can use 

P[H] to denote one's initial or prior degree of belief in H. We call P[H] the 
prior probability of H. According to the definition of conditional probability, 
we can consider P[B[I-I] to represent the conditional probability of event B 
given hypothesis H. However, when considered as a function of H, the 
expression P[BIH ] is called the likelihood of H on B and is a crucial element 
of Bayesian analysis. Finally, P[HIB ] is called the posterior probability of H. 

It is useful at this point to reconsider Bayes' Theorem: 

P[H[B] - P[BJH]P[H] (4.5) 
P[B] 

So ignoring P[B], which may be considered a constant since it does not 
depend on H, we can interpret Equation (4.5) as a function of H as follows: 

The posterior probability of H is proportional to the product of (1) the prior probability 
of H, P[H], and (2) the likelihood of H on B, P[BII-t ]. 

In Section 3 we constructed various prior and posterior probability distri- 
butions. So, we can now introduce several formal definitions. 

Definition 4.1: 
A distribution of prior probabilities (that is, a prior distribution) is said 

to be a conjugate prior distribution if the prior distribution is so related to 
the likelihood, that is, the conditional distribution of the current observations 
(or data), that the posterior distribution is the same type of distribution as 
the prior. 

One major advantage of the use of conjugate prior distributions is that the 
posterior distribution for one year can be used as the prior distribution for 
the next year. Since no new functional forms are required, this reduces the 
complexity of the procedure considerably. 
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Definition 4. 2: 

The density function corresponding to the prior distribution is called the 
prior density function. 

Definition 4. 3: 

The density function corresponding to the posterior distribution is called 
the posterior density function. 

We illustrate the concept of conjugate prior distributions with two examples. 

4. 5. 2 Binomial Distribution Example 

We assume that we  have a sequence of n independent Bernoulli trials with 
constant probability, 0, of success. We discuss the inferences that can be 
made about O. We first note that 

(a + b + 1)! 
f(x) = a!b! x"(1 - x) b (4.6) 

fo r0 -<x~<  1, a > - 1 ,  andb  > - 1 ,  is the density function o f a r a n d o m  
variable having a beta distribution with parameters a and b. We use Beta(a,b) 
to denote such a distribution and B(n,0) to denote a binomial distribution 
with parameters n and 0. Given B(n,0), the probability of r successes in n 
independent Bernoulli trials is: 

( ; )  0 r ( 1  - O) n r  f o r r =  0 , 1  . . . .  , n .  (4.7) 

We are now ready to present the main result of this section. 

Theorem 4.2: 

If (1) n independent Bernoulli trials are performed with constrant proba- 
bility, 0, of success and (2) the prior distribution of 0 is Beta(a,b), then the 
posterior distribution of 0 is Beta(a + r,b + n - r), where r is the number of 
successes observed in the n trials. 

Proof." 

From Equation (4.6), we note that the prior density of 0 is: 

(a + b + 1)! 
0~(1 - O) ~' for 0 ~ 0 ~< 1, 

a!b! 
(4.8) 
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and the likelihood is, from (4.7), proportional to 

0 r (1 -- O) n-r. (4.9) 

Since the posterior density is proportional to the product of Expressions (4.8) 
and (4.9), the posterior density is proportional to 

0 o + r ( 1  _ 0 ) b  . . . . .  , 

proving the result. 

4. 5. 3. Poisson Distribution Example 

We assume that we have a sequence of m independent trials from a Poisson 
distribution with constant mean, 0. The Poisson density function is: 

exp( - 0)0" 

f(n) = 0 n! notherwise= 0, 1, . . .  (4.10) 

We also note that for a > 0  and 13>0: 

g(x) = 0exp(-13°c)13~'~-I / (c~ - 1)! otherwiseX~>0 (4.11) 

is the density function of a random variable having a gamma distribution 
with parameters a and [3. We use G(o~,13) to denote such a distribution. 

Theorem 4.3: 

If (1) m independent Poisson trials are performed with constant mean, 0, 
and (2) the prior distribution of 0 is G(et,13), then the posterior distribution 
of 0 is G(a+mn, ~+m),  where n,. is the value drawn on the i-th trial and 

-~ ~ ni/m. 
izl 

For insurance ratemaking, the posterior distribution for one year is the 
prior distribution for the next year. The use of conjugate prior distributions 
enables the actuary to continue to employ distributions of the same form 
and thereby substantially reduce the amount of computation required. 

4. 5. 4 Credibility and Conjugate Distributions 

Bailey [1] and Mayerson [20] have shown that for four pairs of likelihoods 
and their conjugate priors--namely, beta-binomial, gamma-Poisson, gamma- 
exponential, and normal-normal (with known variance)--the Btihlmann 
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credibility estimates are equal to the corresponding Bayesian estimate of the 
pure premium. We illustrate this result for the binomial and Poisson ex- 
amples considered in Sections 4.5.2 and 4.5.3. 

4. 5. 5 Binomial Distribution Example Revisited 

Let I denote the indicator random variable representing the result of a 
single Bernoulli trial. We assume that I has probability 0 of success, where 
0 has a beta distribution, Beta(a,b). Since the mean and variance of Beta(a,b) 
are (a + 1)/(a + b + 2) and [(a + 1)(b + 1)]/[(a + b + 3)(a + b + 2)2], respec- 
tively, the value of k is: 

k E0 {Varl [I{0]} 
Vat. {E, [Iio]} 

( a + l )  
(a + b + 2) 

So, 

Eo [o (1 - o)] 
Var0 [0] 

(a + 1)(a + 2) 
(a + b + 2)(a + b  + 3) 

(a + 1){b + 1) 
(a + b  + 3 ) ( a  + b  + 2) 2 

= a + b + 2 .  

n n 
Z ~ ~ 

n + k  n + a  + b  + 2" 

For the binomial distribution example of Section 4.5.2, the posterior dis- 
tribution of 0 is, Beta(a +r,b +n - r ) .  The mean of the posterior distribution 
of 0 is 

a + r + l  
a + b + 2 + n "  

We can rewrite the above as 

a + l  r + 
a + b + 2 + n  a + b + 2 + n  

a + 1 ( a + b  + 2 )  n(r/n) 
= + 

a + b + 2 + n  + b +  a + b + 2 + n  

(aa+b+2)(a+l  ) ( n ) 
+ b  + 2 + n  + b  + 2 + (r/n) a + b + 2 + n  
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Since Z = n/(a + b + 2 + n) and noting that (1 - Z) = (a + b + 2)/(a + b + 2 + n),  
we can rewrite the right-hand side of the above equation as:  lz (o+1) 

a + b + 2 + Z(r/n); 

that is, as 

(1 - Z )  (mean of prior) + Z (mean of observed data) 

since (1) the mean of the prior distribution of Theorem 4.2 is (a + 1)/(a +b + 2) 
and (2) (r/n), the proportion of successes observed in n trials, is the observed 
mean of the data. 

Hence, we have shown that if (1) the data can be assumed to have a 
binomial distribution and (2) a beta distribution is employed as the prior 
distribution, the mean of the posterior distribution (that is, the Bayesian 
estimate of the frequency component of the pure premium) is equal to the 
corresponding Btihlmann credibility estimate. Moreover, the mean of the 
posterior distribution is equal to the mean of the predictive distribution of 
the next observation (that is, Bernoulli trial). 

4. 5. 6 Poisson Distribution Example Revisited 

Let N denote the random variable representing the result of a single Pois- 
son trial. We assume that N has mean 8, where 8 has a gamma distribution, 
G(ec,13). Since the mean and variance of G(~,13) are ~/13 and od~ z, respec- 
tively, the value of k is: 

k = Eo {VarN[N]O]} _ Eo{O} 
Varo {EN [N]O]} Varo{O} 

(a/13) 

So, 

gl n 
Z = 

n + k  n + ~  

For the Poisson distribution example of Section 4.5.3, the posterior dis- 
tribution of 0 is G(c~ + m~, 13 + m). So, the mean of the posterior distri- 
bution of 0 is equal to: 
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We can rewrite the above as 

e~ + r n ~  

13+m 

+ 13 
m + 13 rn + 13 - (°t/13)m +---~ + 13 

Since Z = m/(m + f3) and noting that 1 - Z = 13/(m + 13), we can rewrite the 
right-hand side of the above equation as 

(1 - Z)(o, /13)  + Z(~);  

that is, as 

(1 - Z)(mean or prior) + Z(mean of observed data) 

since the mean of the prior distribution of Theorem 4.3 is a/13. 
Hence, we have shown that if (1) the data can be assumed to have a 

Poisson distribution and (2) a gamma distribution is employed as the prior 
distribution, the mean of the posterior distribution (that is, the Bayesian 
estimate of the frequency component of the pure premium) is equal to the 
corresponding Btihlmann credibility estimate. Again, the mean of the pos- 
terior distribution is equal to the mean of the predictive distrubtion of the 
next observation (that is, Poisson trial). 

4. 5. 7 Credibility and Exponential Families 

We begin the section by defining the term "exponential families" and 
presenting a few examples of an exponential family. We then state, without 
proof, an important general result. 

Definition 4. 4: 

Consider a family {f(x;0); 0eft} of probability density functions where f~ 
is the interval set ~ = { 0 : c < 0 < d }  and c and d are known constants. 

(a) A probability density function of the following form: 

= exp[p(0)A(x) + B(x) + q(0)] a < x < b 
fix;O) 0 otherwise 

is said to be a member of the exponential family of probability density 
functions of the continuous type. 
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as 

Definition 4. 5: 
An exponential family for whichA(x) = x is said to be a linear exponential 

family. 

Example 4. 3: 
Let the random variable X have a binomial density function of the form 

of Expression (4.7). For x = 0 . . . .  , n, we can rewrite 

(4.14  

; )  [0/(1 0)]~(1 0)" (4.15) 

We let y = [0/(1 - 0)] ~ and take the natural logarithm of both sides of the 
equation, yielding 

lny  = x In [0/(1 - 0)] 

o r  

y = exp(lny) = exp{x ln[0/(1 - 0)]}. 

Hence, we can rewrite Expression (4.15) as 

(x  n )  exp{x In[0/(1 - 0)]}(1 - 0)". 

Since (n ) and ( 1 -  O)~ can be written in the form exp[B(x)] and exp[q(O)], 

respectwely, and since we can let A(x) = x and p(O) = In[O/(1 - 0)], the 

(b) A probability density function of the form: 

= exp[p(0)A(x) + B(x) + q(0)] x = x~, x2 . . . .  
f(x;O) 0 otherwise 

is said to be a member of the exponential family of the discrete type. 
See Section 10.4 of Hogg and Craig [14] for more details on the definitions 

of exponential families. 
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binomial density function is indeed an example of a linear exponential family 
of the discrete type. 

The Poisson, exponential, and normal (with known variance) distributions 
are also examples of linear exponential families. 

Ericson [7] and Jewell [16] have shown that the class of likelihood-prior 
families for which the Bi.ihlmann credibility estimate of the pure premium 
is equal to the corresponding Bayesian estimate could be extended beyond 
the four cases discussed in the first paragraph of Section 4.5.4. Specifically 
Ericson [7] has shown the following. 

Theorem 4.4: 

If (1) the likelihood density is a member of a linear exponential family 
and (2) the conjugate prior distribution is used as the prior distribution, the 
Biihlmann credibility estimate of the pure premium is equal to the corre- 
sponding Bayesian estimate. 

4.6 Frequency-Severity Model with Continuous Severity Component 

In this section we present another two-stage model of an insurance op- 
eration. The frequency component is assumed to be based on a Poisson 
distribution, while the severity component is based on an exponential dis- 
tribution. In order to describe this two-stage model, we need to return to the 
concept of a predictive distribution, which we discussed earlier in connection 
with Table 3. We assume here that the number of claims is independent of 
the amount of individual claim losses. 

4. 6.1 Predictive Distributions 

We begin by defining X~ as the random variable representing the amount 
of aggregate claims during the i-th policy year (or, equivalently, during the 
i-th period of observation). Our goal is to calculate the predictive (or prob- 
ability) distribution of Xm÷ 1 given X~ . . . . .  X,,. We assume that given a 
parameter 0, the random variables XI, . . • , X,,, i are independent and iden- 
tically distributed with density function p. We use f to denote the density 
function of 0. So, we write the conditional density ofX,,~ ~ given X1 =xl . . . . .  
X,, :xm, as: 

fp(x~÷ 110) [1 p(x,[O)f(O)dO 
i ~ l  

f rl p(x, lO)f(o)do 
i ~ l  
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where 

p(x, t0)f(0) 
i=1 

f rI p(x,]O)f(O)dO 
i=1 

is the posterior density of 0 given X~ =xx . . . . .  X., =xm. 

4. 6. 2 Frequency Component 

For i = 1, 2 . . . .  , let N, be the random variable representing the number 
of claims during the i-th period of observation. We assume that Ni has a 
Poisson distribution with parameter (for example, mean) h. Given m obser- 
vations nl, n2, • . • ,  n,,,, we assume that the posterior distribution of h is 
G(et + m~, [3 + m), as shown in Section 4.5. The parameters ¢x and 13 deter- 
mine the prior gamma distribution. The data are summarized by 

m~ = ~ ni and m. 
i ~ l  

We use g(k) to denote the density function of G(et + mR, [3 + m). So, we 
can write the conditional probability of N,,, + 1 = n given N1 = n~, . . . ,N,, = n,,, 
a s :  

[exp(- X)x°/n!lg(X)d× 
g(X)dX 

f~ [exp( - h)k"/n!]exp[-  (13 + m)h]h '~+'~- ld~. 

f~ e x p [ -  (13 + m)h]h '~ +'~- ldh 

(l/n!) f~ exp[- ( [3  + m + 1)X]h~'+"~-~+"dh 

F(a  + mn) (13 + 
(1/n[)F(a + m~ + n)(13 + m + 1) -('~+m~+") 

F(a  + mh)([3 + m) -(~'+mg) 

n Ot+r~ 

= (a  +m~ + n -  1 ) ( [ 3 n  + m  + 1 1  ) ([3 [3 + m  ) + m  + 1 

n = 0, 1, . . . 

which is in the form of a negative binomial density function. 
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The mean of the above negative binomial density function is (ot+m~)/ 
(13 +rn), which was shown in Section 4.5.6 to equal the Biihlmann credibility 
estimate (of the frequency of claims). 

The above negative binomial density represents the predictive density 
function, given Nl=n l  . . . . .  Nm=nm, of the number of claims in the 
(m + 1 ) - s t  period of observation. The index n = n,, + 1 takes on the values 
0 ,1  . . . .  

The above predictive density function provides (estimated) probabilities 
of each of the possible number of claims. Hence, the predictive density 
provides much more information than is provided by only its (estimated) 
mean. 

4. 6. 3 Severity Component 

We assume that the amount of each individual claim has an exponential* 
distribution with probability density function given by: 

p(y[8) = exp(-y/8)/8 y > O, 8 > O. 

We have Ey[Y]8] = 8 and Varv[I~8] = 82. The mean claim amount, 8, has 
a conjugate prior distribution whose probability density function, f(81m', x ') ,  
is proportional to: 

exp(-x ' /8) /8"  x' > O, m' > 2, 8 > O. 

Such a density function is called an inverted gamma density function and 
has mean x ' / ( m ' - 2 ) .  The insurance process is observed for m periods of 
observation with n i claims incurred in period i. The total aggregate claim 
amount over the m periods of observation is: 

X =  E Y i "  
i=l 

Therefore, the posterior distribution of 8, f(8[m', x ' ,m~, x), is proportional 
tO: 

exp(-y/8) /8 exp(-x ' /8) /8  "~ = exp[ - (x '  + x)/8]/8 m'+'~, 

*The exponential distribution was chosen primarily to keep the level of mathematical sophisti- 
cation relatively low. Other probability distributions, such as the log-normal distribution, frequently 
provide a more accurate representation of the actual distribution of losses. See Hewitt [12] for a 
discussion of a two-stage Bayesian credibility model in which the loss distribution is assumed to be 
log-normal. Other references on loss distributions are Hewitt [13] and Hogg and Klugrnan [15]. 
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which is also an inverted gamma distribution. The mean of the posterior 
distribution of ~ is given by: 

( 
m' + r o B -  2 m' + m g  - 2 ( )(x) 

+ - -  = (1 - Z) (Prior Mean) + Z(Data Mean). 
m' + m - ~ - 2  

The predictive density of Y, which reflects the uncertainty in the estimation 
of the parameter values as well as in the random nature of the claim amounts, 
is given by: 

io~ pO'lm', x', m~, x) = pO'f~ )f(~lm', x', m~, x)~a 

= C [exp(-y/g)/g] {exp[- (x' + x)/g]/g"' +"~/g (4.16) 

where (x' + x) '' '*'~-1 
C =  

r (m' + r n ~ -  1)" 

The expression on the right-hand side of Equation (4.16) can be rewritten 
as- 

fo C [exp( -y  + x' + x)/g]g -m' ,,~-1 dg. (4.17) 

Making the change of  var iable  w = (y +x '  +x)/g,  and noting that 
dg = -[(3' +x' +x)/w2]dw, we can rewrite Expression (4.17) as: 

( :X t _~_ X)"n'+m~ -1_ ( f~ W m'~m~r_~tl ~xp(--w_)dw~ 3 r(m' + r n n -  1)/ ( 3 ' + x  + x ) "  .... / 

( ( x '  + x)"+"r'-1 ~ ( F(m'  + mn) 
= F(m'  + mn - 1)] (y + x '  +x)"~" ' r ' ]  (4.18) 

O f ' +  x ) - l ( m  ' -k-m~ - 1) 

( y ;  ..... 
1 +  (x, + x )  

which is a member of the Pareto family of distributions. 
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In practice, the above predictive distribution should be used for the claims 
occurring during the (m + 1) - s t  period of observation. When there is sub- 
stantial uncertainty about the value of the parameter h, the relatively tame 
exponential distribution gets transformed to the heavy-tailed Pareto distribution. 

The following example illustrates an important application of the predic- 
tive distribution of claim amounts. 

Example  4. 4: 

Suppose that 17 claims are observed during the first four periods of ob- 
servation and that the total aggregate claim amount is $1,000,000. Using 
the assumptions of this section, find 

17 

P[Y~8 >~ $100,0001 ~y ,  = $1,000,o00]. 
i = l  

Solution: 

We have 

and 

mH = ~ ni = 17 
i - 1  

x = ~y ,  = $1,000,000. 
i - 1  

So, using the Pareto density function above, we find the desired probability 
to be: 

- m' -re'h" + I]0* 

,...,.-~ dy = 1 + - -  
~oo,ooo 1 + Y ~  x + x '  

X -F X' 

100,000 ) 
1 + 1,000,000 + x' 

- m '  - 16 

4. 6. 4 The Two-Stage Model  

In Sections 4.6.2 and 4.6.3 we presented the predictive distributions of 
the number of claims and the amount of the claim losses, respectively. We 
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further assumed that the random variables corresponding to the two distri- 
butions are independent. Ideally, we would like to use the two predictive 
distributions to construct a simple, closed-form expression for the predictive 
distribution of aggregate claim amounts, that is, a predictive distribution of 
the random sum of random variables 

N 

g.+l = 2 LLn+I 
i=1 

where Li,~+, is the amount of the i-th loss during the (n+l)-s t  period of 
observation. Such a distribution can be used to give the probabilities that 
losses will exceed various amounts and thereby serve as an excellent man- 
agement tool. Unfortunately, in most situations it is not possible to calculate 
a closed-form expression for the predictive distribution. One approach is to 
simulate the predictive distribution, that is, to use stochastic simulation meth- 
ods to construct an empirical version of the predictive distribution of aggre- 
gate claims. 

One illustration of the use of stochastic simulation to construct an empir- 
ical distribution is Example 1 in Herzog [10]. A more practical application 
of the simulation of a two-stage model in a Bayesian context is found in 
Herzog and Rubin [11]. 

An alternative procedure is described in Heckman and Meyers [9]. They 
present an algorithm for determining the aggregate loss distribution by in- 
verting a characteristic function. This entails approximating the claim se- 
verity distribution function by a piecewise linear cumulative distribution 
function. Given this severity distribution, the Heckman-Meyers procedure 
produces exact results and typically requires less computer time than does a 
stochastic simulation approach; however, the actuary may find the Heckman- 
Meyers procedure considerably more complex, at least initially. 

4. 6. 5 The Pure Premium 

Theorem 4.1 showed that if X is a random variable representing the total 
aggregate claims in an epoch and if the claims frequency and claims severity 
processes may be assumed to be independent, then: 

E[x] = E[N]E[Y,]. 

Here, N is the random variable representing the number of claims in an 
epoch, and ]I, is the random variable representing the claim amount of an 
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individual claim. The expected aggregate claim amount, E[X], is also called 
the pure premium, as indicated in Section 3. 

If N has a Poisson distribution and !"1 has an exponential distribution, as 
above, then the pure premium is given by hg. If we assume that k and 
are independent and use the posterior means as given in Sections 4.6.2 and 
4.6.3 to estimate h and ~, we obtain: 

+ m' + m ~ - 2  " 

The first term in brackets is the credibility estimate of h that was derived in 
Section 4.5.6. The second term in brackets is the credibility estimate of ~. 

4. 6. 6 An Alternative Estimate of the Pure Premium 

Alternatively, we could compute an estimate of the pure premium by using 
a Btihlmann credibility model in which only the aggregate claim amounts 
of each insured are considered; that is, the frequency and severity compo- 
nents are not considered separately. The number of claims, N, is assumed 
to have a Poisson distribution with mean E[N] = h. Moreover, Var[N] = h, 
and X is assumed to have the gamma distribution, G(a,[3), implying that 

E[h] = cd13, E [ h  2] = o:(O¢ 4- 1)/(13) 2, and Var[X] = oj(13) z. 

The amount of an individual claim, Y1, is assumed to have an exponential 
distribution with mean ~ and variance g2. Finally, ~ has the inverted gamma 
distribution presented in Section 4.6.3, so that 

x '  

E[3] m' - 2 '  E[821 = (m' - 2)(m'  - 3 ) '  

and 

Var[~] = 
( x ' ) 2  

(m' - 2 ) (m'  - 3) 2. 

For state (X,g) the hypothetical mean is X3. So, the variance of the hy- 
pothetical means is: 

Var[hS] -- E[kZa 21 - (E[Xgl) 2 

= - 
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(-[3~ 1 ) ) ( ( m '  (x')2 ' 3 ) ) - ( ~ - 3 )  
- 2 ) ( m '  - k ( m '  - 2 )  2 ]  

~(x')~(c~ + m' - 2) 
(13)2(m ' - 2) 2 (m' - 3)" 

The process variance of state (h,8) is, using Theorem 4.2: 

E[N]Var[Y d + Var[N] (E[Yd) 2 = X82 + h82 = 2X82. 

So, the expected process variance is 

2a(x') 2 
E[ZX~ 2] = 2E[X]E[b 2] = 

[3(m' - 2)(m' - 3)" 

Hence, 

The prior mean is: 

k =  2~(m' - ; )  
cx + m' - 2" 

6 ! 

E[XS] = [3(m' - 2)" 

We observe m years of data, so Z = m / ( m + k )  and x/m is the mean of the 
observations. Therefore, the credibility estimate is: 

2ax '  + ox  + xm '  - 2x 
Z(x/m) + (1 - Z) (prior mean) = m(a + m' - 2) + 213(m' - 2)" 

Rewriting the credibility estimate as 

2~x' + (a + m' - 2)x 

213(m' - 2) + (a  + m' - 2)m 

facilitates comparison with the prior mean. 
In comparing the alternative estimate of the pure premium to the original 

estimate, note that m~, the total number of claims during the m years, is not 
needed for the Biihlmann estimate. Finally, we note that the pure premium 
estimator of Section 4.6.5 has a smaller mean squared error than does the 
Btihlmann estimator of this section. 
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4.7 Summary of Section 4 

In Table 12, which is similar to page 13 of the doctoral dissertation of 
Morgan [22], we summarize much of the material of Section 4. For example, 
the second column summarizes the results of Sections 4.5.2 and 4.5.5. Here, 
we assume that the data are from a Bernoulli random variable and that the 
prior distribution of the probability of success, 0, has a Beta distribution. 
This implies that the hypothetical mean and process variance are 0 and 
0 ( 1 -  0), respectively. These lead to a k value of a + b  + 2 and a predictive 
density having the form of the Beta density function. The third column 
summarizes the results of Sections 4.5.3, 4.5.6, and 4.6.2. Finally, the last 
column summarizes the results of Section 4.6.3. 

TABLE 12 

CHARACTERISTICS OF SIMPLE EXPONENTIAL FAMILIES 

Likelihood 

Prior 

Hypothetical mean 
Process variance 
Variance of the 
hypothetical means 

Expected process 
variance 

k 

Bernoulli: B(1,0) 

Beta: Beta(a, b) 

0 
0(I - O) 

(a + 1)(b + 1) 
(a +b + 3)(a +b +2) 2 

(a + 1)(t, + 1) 
(a + b + 3) (a  + b + 2) 
a + b + 2  
Beta 

Poisson: P(0) 

Gamma: G(a,[3) 

0 
a/~ 2 

Negative binomial 

Exponential: 
exp( -y/5)/5 

Inverted Gamma: 
exp(-x'16)/6 ~ '  

5 
62 

(x') 2 
(m' - 2) 2 (m' - 3) 

(x') ~ 
(m' - 2) (m' -3) 
m' - 2  
Pareto 

5. REVIEW AND CONCLUDING REMARKS 

In Sections 2 and 3, we reviewed the basic concepts of Bayesian analysis, 
showed how these concepts could be used in the insurance ratemaking process, 
and illustrated these ideas with an example originally presented by Hewitt 
[12]. The key ideas were the use of the predictive distribution of aggregate 
claim amounts (Table 6) and the use of the (Bayesian) conditional mean to 
estimate pure premium amounts. 

In Section 4, we discussed a credibility model proposed by Biihlmann 
[2]. We showed that this model produced least-squares linear approximations 
to the Bayesian estimate of the pure premium. This important result was 
first demonstrated by using the same example employed in Section 3. A 
detailed proof is presented in the Appendix. 
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We have also discussed an important, general result of Ericson [7]. It 
turns out that some specific results described in Mayerson [20] are simply 
special cases of Ericson's more general result. Using the statistical machinery 
developed to describe Ericson's result, we presented another two-stage model 
in which the number of claims had a Poisson distribution and the claim 
amounts had an exponential distribution. 

The emphasis here has been on basic statistical concepts. We have not 
discussed important practical issues such as how to apply these procedures 
in dealing with issues likely to be encountered in real-life situations. More- 
over, we did not attempt to discuss more sophisticated theoretical concepts 
such as multivariate extensions of the results presented here. These are all 
left for a more advanced treatment elsewhere. 

We do hope that this brief work has provided the reader with a stimulating 
and informative introduction to Bayesian credibility. 
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APPENDIX 

LINEAR APPROXIMATION--THEORY 

Here we present a proof that the Btihlmann credibility estimates are the 
"bes t "  linear approximations to the Bayesian estimates of the pure premium 
(that is, to the posterior mean). The proof is based on Btihlmann [2] and [3, 
pp. 100-103]. 

We begin by assuming that the random variables X 1 ,  • • • , X , , ,  which 
represent aggregate claim losses for years 1 . . . . .  n, respectively, are 
identically distributed. Further, we assume that their common distribution 
function, F ( X i , O ) ,  has mean Ix(0) and variance o-2(0), where 0 represents an 
unknown parameter value (or possibly a vector) that must be described by 
means of a prior distribution. Finally, we assume X1, X2 . . . .  , X, are 
mutually independent given 0. 

Our problem is to deter_mine the constants a and b, which specify the 
linear approximation a + b X  where 

These constants are to be chosen so as to minimize the expression: 

Ex {(e01x [ix(o)[x] - a - b~g) 2} (6.1) 

where 

(1) 
(2) 

(3) 

x = ( X , ,  . . . , X , ) ,  

E01x denotes integration over the probability space of the random var- 
iable 0 given X, and 
Ex denotes integration over the probability space of the random vector 
X. 

We note that by the definition of ix(O) 

ex~o[X] = ix(0) 

and so 

Exl0[X'] = Ix(0). (6.2) 

Moreover, 

E x { e o p x [ ~ ( O ) ~ }  = E o [ ~ ( O ) ]  ( 6 . 3 )  
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and 

Ex[~(] = EoExl0[~k'] = Eo[~(0)]. (6.4) 

Thus, we seek constants a and b, which minimize the expected squared 
deviations betw__een the posterior mean, E01x[~(0)lX], and the linear approx- 
imation, a + b X .  To determine a and b, we first differentiate Expression 
(6.1) with respect to a, set the result equal to zero, and solve for a. This 
yields: 

e = E,,{Eo~,,[~(0)IX]} - bE,,[YO. 

Using Equations (6.3) and (6.4), we can rewrite the last expression as: 

t~ = Eo[Ix(0)] - bEo[ix(0)] = (1 - b)E,[~(0)]. (6.5) 

In order to determine b, we first replace a in Expression (6.1) by ~ as 
specified in Equation (6.5), producing 

Ex{(Eolx[~(o)lx] - (1 - b)Eo[i.(0)] - bY02}. 

Differentiating the above expression with respect to b, we obtain 

2Ex{(Eolx[i.z(0)lX ] - (1 - b)E.[o.(0)] - b)0(Eo[I*(0)] - X)}. 

Setting the last expression equal to zero and solving for b gives us 

= Ex{(Eolx[~(0)lX]. _-  Eo[~(0)]) (X-Eo[v(0)I)} (6.6) 
t~x{X - E , [ ~ ( o ) ] }  2 

Since we have already established in Equation (6.4) that 

Eo[~(0)] = &[Tv], 

the denominator of/~ is simply equal to Var[X]. We now examine the nu- 
merator of (6.6): 

Ex{(Eolx[~(0)}X] - Eo[~(0)])(X - Eo[p.(0)])} = ex{A'Eolx[~Z(0)}X]} 

- E , , { E o ~ , , [ ~ . ( o ) l X ] e o [ ~ ( o ) ]  - E , , { ~ E d ~ ( o ) ]  + E, ,{Eo[~ . (o ) ]}2  

=Eo{e~oL2~(o)}- ( e o [ ~ ( o ) ] )  ~ - ( E ~ [ ~ ( o ) ] )  ~ + ( E o [ ~ ( o ) ] )  ~ 

= E0[ ( t J . (0 ) )  2] - {Eo[l~(0)]} z = V a r [ ~ ( 0 ) ] .  

Hence, we can rewrite Equation (6.6) as: 

/~ = Var[~(0)] 
Var[TY] " 
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So we can approximate E01x[p~(0)lX ] by: 

+ /~X = (1 - /~)Eo[p~(0)] + bX (6.7) 

Since Var~[2] = Eo(Varx,[X]0]) + Varo(E~[~0]), VarTd~0] = (lln) Varx[X]0], 
and E~IX]0] = Ix(0), 

/; _ Var[~(0)] = Var[ix(0)] 
Vat[X] (l/n)E(Var[XlO]) + Var[~(0)] 

nVar[ix(0)] 

E{Var[X~0]} + nVar[~x(0)] 

n 

E{Var[X~0]} 
n + 

Var[~(0)] 

= Z  

So we can rewrite Equation (6.7) as: 

a + /;2 = (1 - Z)Ee[~x(0)] + ZX (6.8) 

where Z = n E{Var[Xl0]}" n + - ~ a n d k  = ~ , t h a t i s ,  

k = expected value of the process variance 
variance of the hypothetical means 





DISCUSSION OF PRECEDING PAPER 

CHARLES S. FUHRER: 

Dr. Herzog is to be commended for an excellent treatment that makes 
some difficult concepts clearer. We have had very few papers on credibility 
in the Transactions. 

Claims Frequency and Severity: An Alternative Method 

The last formula in Section 4.6.5 sets the pure premium equal to a cred- 
ibility estimate of the frequency of claims multiplied by a credibility estimate 
of the size of claim. Although each of these estimates gives the exact mean 
of the respective posterior distributions, they are actually linear formulas of 
the general form: 

Z (Data Mean) + (1 - Z) (Prior Mean). 

Furthermore, each of these two Z's is of the general form Z = n/(n + k), where 
n is the volume of exposure and k = (expected value of the process variance)/ 
(variance of the hypothetical means). In case we do not have conjugate 
likelihoods and priors (or in general applications an unknown prior), as in 
the paper, the two estimates are still valid as the best linear least-squares 
estimates for each posterior mean. 

Unfortunately, the product of the two estimates is no longer linear in the 
number-of-claims random variable. It is no longer clear that the formula in 
Section 4.6.5 is optimum, in any sense, for estimating the total claims. 

Jewell [8] derived an alternative approach. He uses the equivalent of the 
formula: 

[Pure Premium] ~ Z1 (number of claims) 

+ Z2 (total claims) + (constant). 

The two Z's are then determined by least squares. For a simpler version of 
this method, under the assumption that the number and size of claims are 
independent, see Btihlmann [2]. 

Revision of Proof in Appendix 

I found the proof in the Appendix somewhat confusing. For example, it 
does not make clear which assumptions are necessary to derive which for- 
mulas. The following proof is easier to understand. This proof largely fol- 
lows Gerber [4]. The proof comprises three parts. The first part merely states 

83 
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a result from statistics, The second part uses this result with the minimum 
necessary assumptions to obtain Z = n/(n + k). The third part shows how these 
assumptions result from the parameterization that B/ihlmann and Straub [3], 
B~ihlmann [1], and others used. 

I. First, note that the problem is to approximate the conditional expectation: 

I x ,  . . .  x . )  

with the linear expression a +bX, where: 

2=l 
/'/" i= 1 

in such a way as to minimize 

E [a + b X  - E(X,+,p(~ ... X,)] 2, 

the expected squared error. The solution is: 

b = cov(X',X,,+,)/var(x9 (1) 

and 

= E ( x o + 0  - b E ( X 9  = - 

w h e r e  [,.l.,n+ 1 =E(X,+1) and p. :E(Y0. The b here is not b; it is a function of 
the random variables, not an estimate from a sample. The proof of (1) can 
be found in some statistics texts such as Hoel, Port and Stone [6, pages 43- 
44], which is included in the examination 110 syllabus. Note that 

p%/o-1 = c o v  (Xl,Xz)/var(XO. 

Surprisingly, many statistics textbooks do not prove this formula. They only 
prove a similar formula for the slope of the least squares line, fit to a set of 
sample points. Hogg and Craig [7] do not actually prove it. On page 75, 
they derive Equation (1), but they use the assumption that the conditional 
expectation is exactly a linear function. 

This is a good spot to point out that this method (called Biihlmann's in 
Herzog) can be generalized. We could approximate E(Xn+ ~(~ . .~ , , )  with the 
function: 

a +  ~b~( ,  
i ~ l  
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(this is the approach used above). Nonlinear functions also can be used and 
might fit better. Other loss functions besides squared error could be minimized. 

The proof can be to set the partial derivatives with respect to a and b of 
the expression for the squared error equal to zero. An alternative derivation 
recognizes that the covariance operator is essentially an inner product on the 
space of random variables, which is a Hilbert space. We can now use the 
orthogonality property in the projection theorem to prove Equation (1). This 
approach is used in Gerber and Jones [5, appendix], also in a credibility 
setting. 

II. Now assume: 

var(Xi) = var(Xj) = A + B and cov (Xi, Xj) = A, i4=j. (2) 

Substituting the definition of .~ into (1) gives: 

c o y  ,=, x , ,  x , , . ,  n , =  coy  X,, X , , . ,  

z = = (3) 

vat i='~ Xs n- 5 . = coy 

Because cov is a bilinear operator, we can write (3) as: 

1 
- h A  
n A n 

n2 (n 2 - n ) A  + n(A + B) A + n 

where k = B/A. 

III. We can give some meaning to the constants A and B in terms of a 
parameter as follows: For any random variables Xi and parameter O: 

var(Xi) --- E[var(Xi]O)] + var[E(X/lO)] (5) 

and for i :~j: 

Cov(Xi, Xj) : E[cov(Xi, Xj['l~)] "t- cov[e(xil~), E(X],t.~)] (6) 

These follow directly from the definitions of var and coy. 
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If we assume that the X;'s are independent and identically distributed given 
8 ,  then: 

cov(X;, XjI~ ) = 0 and cov[E(X;l~), E(~[O)] = var[E(X, lO)l. (7) 

Substituting (7) into (6) gives: 

coy(X;, ~ )  = var[E(X,.]O)] (8) 

Now (2), (5), and (8) give the result: 

A = var[E(X}0)], 

B = E [ v a r ( X > ) ] ,  

and therefore 

k = e[v,~r(X;lO)]/var[E(X;lO)] .  
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KRZYSZTOF J. STROIi'QSK[* : 

Dr. Herzog has to be complimented for his contribution on credibility 
theory. His paper is a revised and abbreviated version of his CAS Study 
Note on Bayesian credibility. We are indebted to Dr. Herzog for condensing 
the growing discipline of credibility theory into a manageable note. His paper 
reviews mostly the earlier works on credibility. Because of the introductory 
character of the paper, the emphasis was put on basic statistical concepts. I 
would like to supplement Dr. Herzog's paper with some additional references. 

In January 1987, a special note by Dr. Howard R. Waters, "An Intro- 
duction to Credibility Theory," was prepared and published as study material 
for British actuarial students. This note goes a step further than the discussed 
paper by also describing the Bi.ihlmann-Straub model. 

Later, in April 1987, Credibility Theory by Marc Goovaerts and Will J. 
Hoogstad appeared as No. 4 of the Surveys of Actuarial Studies. It reviews 
the classical model of Bi.ihlmann, the Bfihlmann-Straub model and seven 
additional models: 

The Hachemeister Regression Model 
The De Vylder Non-Linear Regression Model 
The De Vylder Semi-Linear Model 
The Opitmal Semi-Linear Model 
The Hierarchical Model of Jewell 
The De Vylder Loss Reserving Model 
The Optimal Trimming Model of Gisler 

This book contains chapters on special applications of credibility theory and 
a chapter on credibility for loaded premium. Furthermore, the book comes 
with an APL workspace that implements calculation of all nine models. 

Note that the survey by Goovaerts and Hoogstad gives a different collateral 
premium estimator than Dr. Waters' note. 

Finally, I would like to mention the special issue on credibility theory 
published by Insurance: Abstracts and Reviews in February 1986, which 
gives a complete list of references up to 1982. Moreover, it contains an 
excellent introduction to credibility theory written by Dr. Bjorn Sundt. This 
is one of the best guides through most of the credibility theory literature. 

*Krzysztof J. Stroinski, not a membcr of Society, is an Assistant Professor in the Department of 
Statistical and Actuarial Sciences, University of Western Ontario. 



88 CREDIBILITY'- BAYESIAN VS. BUHLMANN'S MODEL 

BIBLIOGRAPHY 

1. GOOVAERTS, M.J. AND HOOGSTAD, W.J. Credibility Theory, No. 4 of Surveys of 
Actuarial Studies. The Netherlands: Nationale-Nederelanden N.V., 1987. 

2. Special Issue on Credibility Theory. Insurance: Abstracts and Reviews 2, no. 3 (Feb- 
ruary 1986): 233-326. 

3. WATERS, H.R. An Introduction to Credibility Theory. London: Institute of Actuaries, 
1987. 

W.H. ODELL" 

This paper has been sorely needed, and Dr. Herzog is to be congratulated. 
For too many years, those aspiring to apply actuarial science to health 

insurance matters have not had the benefit of applicable material on one of 
the examination syllabuses. Only a month before the preliminary copies of 
this paper appeared, I had written James MacGinnitie, then President of the 
American Academy of Actuaries, asking that, to prepare actuaries taking 
the Society of Actuaries examinations for health insurance work, some ar- 
rangements be made for an educational curriculum that would include the 
concepts of relativity and credibility. That letter pointed out the material 
available on the syllabus for those training to apply actuarial science in the 
field of property and casualty insurance. 

This paper garners that material, synthesizes it, and presents it as a subject 
for study unto itself. This is not only valuable from the point of view of 
imparting knowledge to those interested in this field, but also important 
because that knowledge is presented in a usable way. This knowledge is 
sorely needed. To prepare the next generation (and dare I say, the present 
one) of actuaries who follow(ed) the Society of Actuaries syllabus, this paper 
should be immediately incorporated therein to fill a void and help our profes- 
sion better serve its publics. 

We owe our thanks and congratulations to Dr. Herzog. 

(AUTHOR'S REVIEW OF DISCUSSION) 

THOMAS N. HER;LOG: 

I would like to thank Mr. Fuhrer for pointing out Professor Gerber's proof. 
I would also like to thank Professor Stroifiski for supplying some recent 
references that extend the concepts discussed in my introductory paper. Fi- 
nally, I am grateful to Mr. Odell for his suggestion that my work be placed 
on the health insurance syllabus. 


