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PARAMETRIC MODELS FOR LIFE TABLES 
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ABSTRACT 

This paper presents a general law of mortality that is equal to a mixture of 
Gompertz, Weibull, Inverse-Gompertz, and Inverse-Weibull survival functions. 
We demonstrate that a special case of our model fits the pattern of mortality 
of a U.S. life table up to age 90. We investigate several loss criteria for 
parameter estimation including some information theoretic criteria. We also 
present parsimonious special cases of our general law that fit the male and 
female 1980 CSO mortality tables to age 90 and the male and female 1983 
Table a to age 100. Plots of our estimates of the valuation mortality rates 
are almost indistinguishable from the valuation rates themselves, and so we 
conclude that future valuation tables can be defined with reasonable math- 
ematical formulas. Finally, we demonstrate that modeling a law of mortality 
as a mixture of survival functions is equivalent to using a multiple decrement 
table. 

1. INTRODUCTION 

Research into a law of mortality has been conducted ever since Abraham 
De Moivre proposed the model l,, =/0(1-x/o)), where lo is the radix of the 
life table and o) is the terminal age of the population. Jordan [6] demonstrates 
that many actuarial functions are readily derived from the survival function 
s(x) = lx/lo, and so a parametric mathematical law of s(x) can be quite useful, 
as Tenenbein and Vanderhoof [11] suggest. Probably the most useful para- 
metric mathematical law was proposed by Benjamin Gompertz in which the 
force of mortality 

= ( 1 . 1 )  

was modeled as an exponential function. Gompertz's law fits observed mor- 
tality rates very well at the adult ages, and it is a good tool for comparing 
mortality tables, as Wetterstrand [12] demonstrated. Brillinger [3] argued 
that if the human body is considered as a series system of independent 
components, then the force of mortality may follow Gompertz's law. In fact, 
Brillinger argued that the distribution of the time of death can be approxi- 
mated with one of the three extreme-value distribution functions. We also 
use extreme-value distributions for modeling the pattern of mortality. 

77 



78 TRANSACTIONS, VOLUME XLIV 

Recently, Heligman and Pollard [5] proposed a formula that fits Australian 
mortality rates fairly well at all ages. This formula is 

qx/P,, = A (x+u~¢ + D exp{-E (log x - log F) 2} + G H  '~ (1.2) 

where Px = 1 - qx and qx is the probability that a life aged x will die within 
a year. The Heligman-Pollard model is an eight-parameter model containing 
three terms, each representing a distinct component of mortality. The last 
term reflects the exponential pattern of mortality at the adult ages, while the 
first term reflects the fall in mortality during childhood. The middle term 
models the hump at age 23 that is found in many mortality tables. Tenenbein 
and Vanderhoof [11] showed that this pattern of mortality is evident in tables 
other than the Australian tables. Following the example of Heligman and 
Pollard, we present a special case of our general law that reflects the ex- 
ponential pattern at the adult ages, the fall of mortality at the childhood 
years, and the hump at age 23. Heligman and Pollard also state that (1.2) 
has relatively few parameters and that all the parameters have a demographic 
interpretation. However, they caution that interpreting the parameters is dif- 
ficult when (1.2) is generalized. We also strive for parsimonious parametric 
models. Moreover, 811 our model parameters have an easy demographic and 
statistical interpretation regardless of the number of parameters. 

Both Brillinger [3] and Heligman and Pollard [5] give general formulas 
for laws of mortality. Brillinger does not support any of the possible models 
with empirical evidence, while Heligman and Pollard only support (1.2) 
with empirical evidence. Often mortality tables do not exhibit the classical 
pattern suggested by (1.2). A typical example is the male 1983 Table a. We 
present a general parametric law of mortality that is equal to a mixture of 
extreme-value survival functions. Moreover, we support various special cases 
of our model by fitting them to population and valuation tables. We show 
that one version of our general model fits the pattern of mortality in a life 
table for the U.S. population up to age 90. In this case we also show that 
our model has a smaller loss than the Heligman-Pollard model. We also fit 
our formulas to the male and female 1980 CSO tables and to the male and 
female 1983 Table a. Based on the performance of our formulas, we con- 
clude that valuation mortality rates in the future can be defined with a rea- 
sonable mathematical formula. Finally, we demonstrate that modeling a law 
of mortality as a mixture of survival functions is equivalent to using a mul- 
tiple decrement model. 
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2. MIXTURES OF PARAMETRIC SURVIVAL FUNCTIONS 

In this section we present a general law of mortality that is equal to a 
mixture of Oompertz, Weibull, Inverse-Oompertz, and Inverse-Weibull sur- 
vival functions, and we give a heuristic justification of this model. Let ~b, 
for k = 1 . . . .  , m be the probability that a new life must die from cause k and 
let sk(x) be the probability of surviving to age x given that a life must die 
from cause k. Then the survival function s(x) can be expressed as a mixture 
of s~(x), ..., sin(x). That is, the probability of living to age x>0  is 

s(x) = ~ ~'~sk(x). (2.1) 
k=l 

In the Appendix we demonstrate that a mixture of survival functions such 
as (2.1) is equivalent to a multiple decrement model. This implies that the 
survival function associated with (1.2) can be represented as (2.1). More- 
over, the survival function associated with the general form of Ixx as given 
in Brillinger [3] can be represented as (2.1). 

We now argue that extreme-value survival functions are reasonable models 
for s~(x). In the following discussion we assume that the causes of death can 
be categorized according to childhood causes, teenage causes and adult causes. 
The discussion also draws extensively from the theory of reliability as pre- 
sented in Barlow and Proschan [1]. 

At the adult ages the law of mortality follows a Gompertz law. Using 
reliability theory, we can argue that this is a reasonable model. Suppose that 
a human body can be represented as a series system of independent and 
identically distributed components. In this system, the first failure of a com- 
ponent results in death, and the time of death is approximately distributed 
as an extreme-value distribution that can take three different forms. One of 
these extreme-value distributions is the Gumbel distribution for minima, 
which is approximately a Gompertz distribution. Another of these extreme- 
value distributions for minima is the Weibull distribution. For certain pa- 
rameter values the Weibull has a decreasing force of mortality, and so it 
seems that this may be a plausible model for early childhood where mortality 
rates are decreasing. Barlow and Proschan [1] point out that the third ex- 
treme-value distribution for minima is not very useful for modeling lifetimes, 
and we concur with this opinion. 

Some other extreme-value distributions are the Inverse-Weibull distribu- 
tion and the Gumbel distribution for maxima, which is approximately an 
Inverse-Gompertz distribution. Later we give empirical evidence that these 
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distributions are plausible models for the teenage component of our model. 
These distributions arise in a parallel system of independent and identically 
distributed components. This system fails when all components fail and the 
approximate distribution of the time of failure can take three forms, including 
the Gumbel distribution for maxima and the Inverse-Weibull distribution. 
The third extreme-value distribution is not appropriate for modeling lifetimes. 

We now present the survival functions for the Gompertz, Weibull, In- 
verse-Compertz, and Inverse-Weibull models. We also give a parametriza- 
tion of these models that reveals the location and dispersion of the distribution. 

A. The Gompertz  Model  

Consider the Gompertz law shown in (1.1). Instead of using the standard 
parametrization/.~ =Bc ~, we prefer to use the informative parametrization 

1 {~_.~__ } 
/4, = ~. exp (2.2) 

where c = exp(1/tr) and B = exp(-m/tr)/cr. Tenenbein and Vanderhoof [11] 
state that in many human populations B>0 will increase whenever c>0 
decreases. This property is readily explained with our parametrization when- 
ever m > o. In this parametrization m > 0 is a measure of location because it 
is the mode of the density, while o-> 0 represents the dispersion of the density 
about the mode. We demonstrate both facts. The Gompertz survival function 
is 

s(x) = exp{e -'/~' - e~X-")/"}, 

and the density is 

) f (x)  = ~. exp -- + e -'/'~ - e (~ ")/" . 

(2.3) 

(2.4) 

Using the inequality ey_ > 1 +y,  we deduce that 

e -m1~ - 1 >- e -m/~ - e (x-'~l~ + ( x - m ) / o "  

and that 

f ( m )  >_ f ( x )  'q x > O. 

This demonstrates that m is the mode. The parameter o- is a measure of 
dispersion about m because 
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lim s(m - ~ - s(m + e) = 1 (2.5) 
~--...~o 

for an arbitrary e> 0. This also demonstrates that m is a measure of location 
because all the mass concentrates about m when o- is small. 

B. The Inverse-Gompertz Model 
A model that is closely associated with Gompertz's law is the Inverse- 

Gompertz, where the survival function is 

s(x) = (1 - exp{-e-(x-m~m})/(1 - exp{-em/"}), (2.6) 
/ 

the density is 

1 f f(x) = ~. exp 
x - - m  

O" 
e -~ - " ) /~ ' } / (1  - exp { -  e'~/~'}), (2.7) 

and the force of mortality is 

1 f x - m ]  1~" /4, = S. e x p / - - - - 7 -  ~ / (  e x p { e - • - " O / ¢ }  - J (2.8) 

In this parametrization m > 0 is a measure of location because it is the mode 
of the density, while o-> 0 represents the dispersion of the density about the 
mode because (2.5) holds. To understand the difference between the Gom- 
pertz and Inverse-Gompertz models, we present Figure 1, in which the den- 
sities are plotted with the parameter values m = 50 and o-= 10. In both cases 
the densities are unimodal, and they peak at age 50. Note that the Gompertz 
is skewed to the left, while the Inverse-Gompertz is skewed to the right. 
Also, note that the Inverse-Gompertz density is simply equal to the Gompertz 
density reflected around m. All the plots in this paper were created with the 
computer language GAUSS. 
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A PLOT OF SOME GOMPERTZ AND INVERSE-GOMPERT7- DENSITIES 
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C. The Weibull Model 

Another survival function is the Weibull, which can be parametrized as 
follows 

In this parametrization, m > 0 is a location parameter and o-> 0 is a dispersion 
parameter because (2.5) holds. The density function is 
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and the force of mortality is 

/-/-x = o.  

Note that if o->__m, then the mode of the density is 0 and ~,, is a non-increasing 
function of x, while if o-<m, then the mode is greater than 0 and ~, is an 
increasing function. 

D. The lnverse-Weibull Model 
A model that is closely associated with Weibull's law is the Inverse- 

Weibull, in which the survival function is 

oxp{ (S  }, 
the density function is 

f(x) = ~. ~ exp - , (2.13) 

and the force of mortality is 

(2.14) 

In this model m>0 is a measure of location and o->0 is a measure of 
dispersion because (2.5) holds. The Inverse-Weibull proves useful for mod- 
eling the teenage years, because the logarithm of (2.14) is a very concave 
function. Another model that has a similar logarithmic force is the Trans- 
formed Normal, in which the force of mortality is equal to 

m 2 ¢ (m(1  - m/x)) 
(2.15) 
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where 

I' 1 
q~(t) = _®4~(z) dz and 4~(z) = ~ e x p ( - z V 2 ) .  

To understand the different shapes that log (~x) may assume for the Wei- 
bull and Inverse-Weibull models, we present Figure 2. Note that l o g ( u )  is 
a decreasing function for the Weibull when m = 1 and o-= 2 and that the 
function is very concave for the Inverse-Weibull when m = 25 and o-= 10. 
Later we show that a mixture of  a Weibull and an Inverse-Weibull fits the 
pattern of  mortality at the childhood and teenage years. Including a Gompertz 
component yields a model that fits all ages. 
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FIGURE 2 

A PLOT OF LOG(g.) FROM THE WEIBULL AND INVERSE-WEIBULL MODELS 
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3. APPLICATION TO A UNITED STATES LIFE TABLE 

In this section, we fit a special case of (2.1) to a life table for the total 
population of the U.S., and we investigate several loss criteria for parameter 
estimation. The U.S. Decennial Life Tables for 1979-81 were prepared by 
the National Center for Health Statistics [8]. The pattern of mortality can 
be described by the function log(qx). Figure 3 illustrates log(qx) for the total 
U.S. population at the ages x = 0 ,  ..., 109. This graph is very informative 
because we can immediately identify at least three components to the pattern 
of mortality. First, log(qx) is decreasing at the early ages. Second, there 
appears to be a hump at around age 23. Third, there is a linear component 
at the adult ages. 

°i 
FIGURE 3 

A PLOT OF LOG(qx) FROM A LIFE TABLE OF THE TOTAL U.S. POPULATION 

t%t 
I 

cO 
I 

I 

t 

Q 
I t I I , I 

t 0 20  40  60  80 100 

a g e  x 

120 



86 TRANSACTIONS~ VOLUME XL1V 

Carefully examining Figure 3, we notice that the linear component 
extends to age 94 where it becomes nonlinear for the ages 95 . . . .  , 109. 
Examining the methodology used by the National Center for Health Statistics 
[1], we find that experience from the Social Security Medicare program was 
used to construct the table at these later ages. We believe that this experience 
is not representative of the total U.S. population, and so the nonlinear com- 
ponent from 95 . . . .  , 109 is suspect. Furthermore, the experience from the 
Medicare program was blended with the population mortality rates at the 
ages 85, ..., 94. Therefore we exclude mortality rates above age 90 when 
modeling this U.S. life table. 

The pattern of mortality in Figure 3 suggests that a mixture of a Weibull, 
an Inverse-Weibull and a Gompertz may be reasonable. In this case a sur- 
vival function would have the form 

S(X) = 61SI(X) "1- 62S2(X) "t- 63S3(X) (3.1a) 

where 

63 = 1-61-6 , 

f ( x 
s l (x)  = e x p ~ - ~ - ~ ]  ~, (3.1b) 

{- (x/ 
SE(X) = 1 - exp \ m 2 1  J 

s3(x) = exp {e-"3/"3 - e"-"3~/~}. (3.1 d) 

Not that this is an eight-parameter model just like (1.2), but unlike (1.2) 
the parameters have a clear interpretation. For instance, 61 is the probability 
that a new life will die from childhood causes; 62 is the probability of dying 
from teenage causes; and 03 is the probability of dying from adult causes. 
Moreover, the location and scale parameters provide some insightful statis- 
tical information. 

To estimate the parameters 6k, m~, ok for k= 1, 2, 3, we investigated 
eight loss functions. All parameter estimates were calculated by a statistical 
computer program called SYSTAT. This system estimated the parameters 
by minimizing 

1 - Clx/qx (3.2a) 
x=0 
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,o( >1)2 
log[log(1 - ~x)/log(1 - qx , (3.2b) 

x=O 

90 

~,  (qx - ~lxl21qx, (3.2c) 
x~O 

90 

~,  (qx - 0,,) log(qJOx), (3.2d) 
x~0  

Y. I - a~/d~ (3.ee) 
XmO 

~; log , (3.2t) 

90 

2 (a~ - d~)~/d~, (3.2g) 

9O 

(d~ - dx)log(dJd~). (3.2h) 
x~O 

In these formulas qx is a U.S. mortality rate and d~, =s(x) qx is the probability 
that a new life will die between the ages ofx  andx+  1. Estimates Ofqx and 
d~, are 

c1~, = 1 - g(x + 1)/g(x) (3.3a) 

and 

a,, = ~(x) - .~(x + 1) (3.3b) 

where g(x) is equal to (3.1a-d) evaluated at the estimated parameters. 
Note that four of the loss functions are based on qx, while the other four 

are based on dx. The loss function in (3.2a) was used by Heligman and 
Pollard [5], while the function in (3.2b) was used by Tenenbein and Van- 
derhoof [11]. The loss functions (3.2d) and (3.2h) are based on Kullback's 
divergence measure, which is recommended by Brockett [4] because of its 
information theoretic interpretation. Parameter estimates for the eight loss 
functions are given in Table 1. 
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TABLE 1 

PARAMETER ESTIMATES UNDER VARIOUS LOSS CRITERIA 

I Equation 
Parameter 3.2a 3.2b 3.2c 3.2d 3.2e 3.2f 3.2g 3.2b 
¢/1 0.01632 0.01663 0.01641 0.01659 0.01665 0.01701 0.01624 0.01647 
m~ 0.3107 0.3470 0 .2481  0 .2650  0.3293 0.3716 0 .2 3 2 5  0.2524 
o'1 1.127 1.289 0.9572 1.038 1.239 1.433 0.9000 1.006 
~z 0.01385 0.01356 0.01170 0.01172 0.01432 0.01408 0.01068 0.01070 
m 2 22.12 22.06 21.49 21.51 22.26 22.21 21.17 21.19 
o'2 6.455 6.378 5.745 5.737 6.606 6.546 5.283 5.302 
~3 0.96983 0.96981 0.97189 0.97169 0.96903 0.96891 0.97308 0.97283 
m~ 82.31 82.30 82.34 82.33 82.04 82.01 82.43 82.42 
o'~ 11.40 11.44 11.68 11.68 11.26 11.28 11.81 11.81 
Loss 0.495 0.464 0.00126 0.00125 0.473 0.441 0 .00081 0.00080 
Pollard 0.623 0.554 0.00185 0 .00185  . . . .  

For an example of a fitted curve, see Figure 4 where log(qx) and log(0x ) 
are plotted for x = 0 . . . . .  90. This plot uses the parameter estimates given 
in column 3.2a of Table 1. Note that the estimated mortality rates fit the 
actual pattern fairly well, although the fit at the earlier ages could be better. 
Also, note that the parameter estimates are essentially the same for all the 
loss functions. Due to the similarity in the parameter estimates, we simply 
use (3.2a) for estimating parameters in the later models. Note that the pa- 
rameters reveal some interesting information. The location parameters ml, 
m2, and m 3 clearly show that the Weibull component models the early ages; 
the Inverse-Weibull component models the ages from 10 to 35; and the 
Gompertz component models the late ages. The parameter ~b3 reveals that 
the Gompertz component explains most of the deaths in the U.S. population. 

Let us compare the Heligman-Pollard model to our model. We estimated 
the parameters A, B, C, D, E, F, G, and H with the loss functions (3.2a- 
d). Finding estimates with (3.2e-h) is impractical because of the complexity 
that s(x) would assume with model (1.2). Estimates based on (3.2a) are 

A = 0.001095, B = 0.04413, C = 0.1412, D = 0.0008865, 
E = 9.442, F = 21.24, G = 0.00006869, H = 1.092. 

These values are similar to the estimates that Heligman and Pollard [5] 
calculated for the Australian national mortality. The last row in Table 1 
shows the loss for (3.2a--d) when formula (1.2) is used to estimate qx. Even 
though our model had a smaller loss for each of these four cases, there is 
practically no difference. 
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FIGURE 4 

A PLOT OF U~(q~) FROM ̂  U.S. L r ~  T J u ~  AND OF ~ ( ~ )  USmO rotundas (3.1a-d) 
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4. APPLICATION TO THE 1980 CSO TABLES 

In this section, we fit special cases of (2.1) to the male and female 1980 
CSO tables found in [10]. The pattern of mortality for the male and female 
tables can be described by the function log(q=), which is plotted in Figure 5 
at the ages of x---0, . . . ,  99. Note that the pattern of mortality for the male 
1980 CSO table is similar to the pattern for the total U.S. population. Also, 
note that the female pattern is very different from the male pattern. To 
estimate the parameters in this section, we minimize 

9(} 

(1 - q=/q,,)' (4.1) 
x = O  
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A PLOT OF LOG(qx) FROM THE MALE AND FEMALE 1980 CSO TABLES 
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where q: is a 1980 CSO mortality rate and qx is an estimated rate. The CSO 
valuation table gives rates for x =  0 . . . .  , 9 9 ,  but our loss function excludes 
x = 9 1 ,  ..., 99. We believe that CSO rates at these ages are unreliable be- 
cause at ages 85 and over they were graded smoothly into a rate of 1.0 at 
age 99. This property is evident in Figure 5. 

We used a mixture of a Weibull, an Inverse-Gompertz and a Gompertz 
to model the male 1980 CSO table. This eight-parameter model has the form 

3 

s(x) = ~, ~bk sk(x) (4.2) 
k = l  
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where sl(x) is equal to (2.9),  s2(x) is equal to (2.6),  and s3(x) is equal to 
(2.3). To  estimate the parameters ~k, mk, o-, for k = 1, 2, 3, we  minimized 
the loss function in (4.1). Estimates o f  the parameters are 

~1 = 0.03170, ml = 49.05,  o-1 = 77.55, 
¢2 = 0.01721,  m2 = 20.39,  o'2 = 5.656,  
qJ3 = 0.95109,  m3 = 78.97,  0"3 = 10.89. 

With ~3 = 0.95109 we find that most  deaths are due to a Gompertz  com- 
ponent.  Figure 6 plots log(qx) and log(~x) for  x =  0 . . . .  , 9 0 .  The estimated 
mortality rates fit the actual pattern ve ry  well .  

FIGURE 6 

A PLOT OF L~3(q~) FROM ~ MALE CSO TABLE AND OF tJOG(~) USllqG FORMULA (4.2) 
(THE CSO VAtJ.JF.S ARE GFVEN AS A DASHED LINE) 
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For the female 1980 CSO table we used a mixture of two Weibull and 
two Gompertz components. This eleven-parameter model has the form 

4 

s(x) = E t~k s~(x) (4.3) 
k=l  

where sl(x) and s2(x) are equal to (2.9) and where s3(x) and s4(x) are equal 
to (2.3). To estimate the parameters ~j,, ink, o.~, for k = 1, 2, 3, 4, we min- 
imized the loss function in (4.1). Estimates of the parameters are 

fit = 0.007797, ml = 5.922, o-~ = 12.36, 
~z = 0.04466, mz = 47.00, o.z = 28.92, 
~3 = 0.05913, m3 = 55.97, o'3 = 9.029, 
~b4 = 0.888413, m4 = 84.87, o4 = 8.777. 

With +4 = 0.888413, we find that most deaths are due to a Gompertz com- 
ponent. Figure 7 plots log(q,,) and log(0x ) for x = 0 . . . . .  90. The estimated 
mortality rates fit the actual pattern very well. Note that qq_< if,. for i = 1, 2, 
3, 4, and so we investigated a model without the first Weibull component. 
The resulting eight-parameter model had a loss of 0.49, which was substan- 
tially greater than the loss 0.17 for the eleven-parameter model. In our 
opinion the eleven-parameter model fit the pattern of mortality much better 
than the reduced model. 

5. APPLICATION TO THE M A L E  AND FEMALE 1983 T A B L E  a 

In this section, we present some other special cases of (2.1) and fit them 
to the male and female 1983 Table a found in [9]. Figure 8 depicts the 
pattern of mortality for this valuation table. This graph plots the function 
log(qx) f o r x = 5  . . . .  , 115. 

To estimate the parameters in this section, we minimize 

100 

E (1 - glJqx) 2 (5.1) 
x=5 

where qx is a 1983 Table a mortality rate and c~x is an estimated rate. Note 
that this valuation table gives rates for x = 5 . . . . .  115, but our loss function 
in (5.1) excludes x =  101, .. . .  115. We believe that the rates from 101 to 
115 are unreliable because the rates at ages 97 and over were adjusted to 
grade smoothly into a rate of 1.0 at age 115. 
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FIGURE 7 

A PLOT O~: UOG(q~) FROM "mE FEMALE CSO TABLE AND or: UOG(~t,.) USING FORMULA (4.3) 
(ThE CSO VALUES ARE GWEN AS A DASr~ED LINE) 
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The eight-parameter model that we used for the male Table a is different 
from that used for the U.S. life table and the male CSO table. It is equal to 

3 

s(x)  = sk(x) (5.2) 
k = l  

where sl(x) and s3(x) are equal to (2.3) and Sz(X) is equal to (2.9). Note that 
this is a mixture of a Weibull and two Gompertz components. To estimate 
the parameters ~,, mk, O'k for k = 1, 2, 3, we minimized the loss function in 
(5.1). Estimates of the parameters are 
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ffl = 0.01077, ml = 16.82, o'~ = 18.07, 
~2 = 0.008842,  me = 53.28, 0" 2 = 3 .469,  
if3 = 0.980388,  m3 = 86.20, 0"3 = 10.65. 

With ~3 = 0.980388,  we find that most deaths are due to a Gompertz com- 
ponent. Figure 9 plots log(qx) and log(~x) for x = 5, . . . ,  100. The estimated 
mortality rates fit the actual pattern very well. 

For the female 1983 Table a,  we used a mixture of two Weibull and two 
Gompertz components. This eleven-parameter model was also used on the 
female 1980 CSO, and it has the form 

4 

s(x) = s,(x) (5.3) 
kffi l  
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FIGURE 9 

A PLOT OF LOG(qx) FROM THE MALE TABLE a AND OF LOG((~.t.) USING FORMULA (5.2,) 
(THE TABLE a VALUF.S ARE GIVEN AS A DASHED LINE) 
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where sl(x) and s~(x) are equal to (2.9) and where s3(x) and s4(x) are equal 
to (2.3). To estimate the parameters Ok, rnk, 0-~ for k = 1, 2 3, 4, we min- 
imized the loss function in (5.1). Estimates of the parameters are 

01 = 0.01473, ml = 0.3388, 0-1 = 1.904, 
02 = 0.006268, m2 = 33.30, 0-2 = 10.52, 
03 = 0.008959, m3 = 55.76, 0-3 = 6.670. 
0,, = 0.970043, m4 = 90.46, 0-4 = 9.128. 

With 03 = 0.970043, we find that most deaths are due to a Gompertz com- 
ponent. Figure 10 plots log(qx) and log(0,,) for x = 5, . . . ,  100. The estimated 
rates fit the actual pattern very well. Note that 02_<01 for i = 1, 2, 3, 4, and 
so we investigated a model without the second Weibull component. The 



resulting eight-parameter model had a loss of 0.35, which was somewhat 
greater than the loss of 0.15 for the eleven-parameter model. In our opinion 
the eleven-parameter model fit the pattern of mortality much better than the 
reduced model. 

FIGURE 10 

A PLOT OF LOG(qx) fROM THE FEMALE TABI-~ a AND OF LOG (~) UStNG FORMULA (5.3) 
(THE TABLE a VALUES ARe GIVEN AS A DASHED LINE) 
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6. CONCLUSION 

In this paper we presented a general law of mortality that is a mixture of 
Gompertz, Weibull, Inverse-Gompertz, and Inverse-Weibull survival func- 
tions. We also presented parsimonious special cases of this general law that 



PARAMETRIC MODELS FOR LIFE TABLES 97 

fit a U.S. population table and various valuation mortality tables. We pre- 
sented a parametrization of our law that emphasizes demographic and sta- 
tistical information. Using this parametrization, we demonstrated that the 
Gompertz law explains most of the patterns of mortality in all the analyzed 
tables. Moreover, in the Appendix we demonstrate that our model is equiv- 
alent to a parametric multiple decrement model. 

In the derivation of the 1983 Table a [9], an attempt was made to define 
the table in terms of a reasonable mathematical formula, but the effort was 
reluctantly abandoned. We developed some reasonable formulas for the male 
and female 1980 CSO tables and the male and female 1983 Table a that 
perform well up to very high ages. 
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APPENDIX 

EQUIVALENCE OF A MIXTURE AND A MULTIPLE DECREMENT MODEL 

In this appendix we demonstrate that a mixture of survival functions is 
equivalent to a multiple decrement model. The discussion about multiple 
decrement models draws extensively from Jordan [6] and Bowers et al. [2]. 
Under the Balducci hypothesis ~ = q d P x ,  and so the Heligman-Pollard model 
in (1.2) can be interpreted as a force of mortality. Actually we can interpret 
(1.2) as a total force of decrement that is equal to the sum of three forces 
of decrement from different causes. That is, (1.2) is equal to the sum of 

~d~ 1) = A(x+B) c, 

~ 2 )  = D exp { - E ( l o g  x - log F)2}, 
/.~3) = G H  x. 

and so (1.2) may be interpreted as a parametric multiple decrement model. 
To demonstrate that a multiple decrement model is actually equivalent to a 
mixture of survival functions, we first assume that we know the forces of 
decrement/.~k)--_0 for all the causes of decrement k = 1 . . . . .  m. Define 

/_~x = ~ ~k). (A.1) 
k=l 

Then the survival function is 

s(x)  = exp - /x, dt  , (A.2) 

and it will be well-defined as long as f ~  I~,dt = ~. By knowing t~ k) and s(x), 
we can calculate the number of lives aged x that will eventually die from 
cause k given a radix of l o. This is equal to 

fx ~ l(~ ~) = lo S(t)  lz} ~) d t .  (A.3) 

With this we can calculate the probability that a life aged 0 will eventually 
die from cause k. This is denoted as ffk, and it is equal to 

q'k = l~k)/lo • (a .4)  

We can also calculate the probability that a life will survive to age x given 
that the life will eventually die from cause k. This will be denoted as sk(x) ,  
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and it is equal to 
s~(x) = t~/t~ ~>. (A.5) 

Using the relations lx = l~ 1~ + ""  +l~ ") and Ix=los(X) along with the defini- 
tions in (A.4) and (A.5), we find that (A.2) can be written as 

s(x) = ~ q'k sk(x). (A.6) 
k=l 

This demonstrates that s(x) can be written as a mixture of survival functions 
when/zx is equal to (A.1). Now suppose we know ffk and Sk(X); then we can 
find p,~(~) as follows. Assuming that sk(x) is differentiable, we can calculate 
the probability density function 

d 
L ( x )  = - Tx  sk(x). (A.7) 

Using the relations in (A.4) and (A.5) and the fact that s(x)= lflo, we find 
that 

. . . . .  t~>. (A .8 )  
s(x) lx dx 

Using the definition for/.~k) we finally find that 

11~x k) -~ ff'lk fk(X)  ( n . 9 )  
s(x)  

We have just shown that knowing /ztk) for k =  1, ..., m is equivalent to 
knowing ~bk and Sk(X). This paper modeled life tables with mixtures of par- 
ametric survival functions. This is equivalent to modeling life tables with 
parametric multiple decrement tables. 




