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We will discuss mathematical modeling and pricing of "Stable Value" financial products offered to 
pension plan providers. These products target a risk-averse population of investors, who have a 
significant preference for a stability of returns.  We offer a quantitative methodology that reflects a 
decision making process and applicable in the situation of incomplete market where traditional 
arbitrage free arguments are invalid 

 

Pricing of Guaranteed Products for Defined Benefit Pension 
Funds. 

 
 
We will discuss mathematical modeling and pricing of "Stable Value" financial products 
offered to pension plan providers. These products target a risk-averse population of 
investors, who have a significant preference for a stability of returns.  We offer a 
quantitative methodology that reflects a decision making process and applicable in the 
situation of incomplete market where traditional arbitrage free arguments are invalid 
 
As a first approximation these products can be described as debt instruments with some 
specific cashflow and contract arrangements. In a majority of cases, a contract does not 
terminate at once. Each contract is comprised of a number of participants who have a 
right to terminate (may be for unrelated personal reasons). For this reason, termination of 
the contract by the investor (put option) may randomly deviate from the optimal.  
Subsequent mathematical formalization will lead to a randomized stopping-time problem.      
 
A predictability of returns is an essential component of portfolio manager performance.  
The cost of a product from the guarantee provider’s point of view depends on volatility of 
return. At the same time the stability of return is also an investor's objective. 
Consequently, a portfolio management ability to generate reasonable return subduing 
volatility should be factored in the product pricing. This is a difficult problem since 
market is incomplete and inefficient, and arbitrage free arguments are not applicable  
 
Fortunately, a corporate pricing routine gives us a clue of how to approach the problem. 
It turns out that required capital may serve as an indicator of a company's volatility 
tolerance and return on capital as a company's measure of profitability. As an important 
byproduct, a solution will necessary generate the investment strategy.  
 
We will start from a small numerical example which we hope will clarify important 
points emphasizing necessity of proper quantitative portfolio management and exposing 
weaknesses of a traditional duration management approach. 
  
Then we will show solution of some stochastic optimization models applicable to the 
above. Finally, we will discuss pricing models related to the Guarantee Investment 
Contracts. 



 
 
 
 
 

Minimum Complexity Example 
 
Consider a simplest asset-liability model with a stochastic interference. Assume that 
contract stipulates payments of two premiums - P0 at the inception of the contract, and - 
P1  a moment later . Liability payment LT is paid at the time Tmat  and contract therefore 
terminated.     
Assume the following simplified financial environment. 
 

• Yield curve is flat at r0 = 5%  
• Expect a random jump N(m0,sigma) a second after investment decision is made. 

From that time on interest rate does not change.  
•  m0=7%,sigma =2% 
•  
• Initial premium P0=$4 million paid at time zero. 
• Second and the last premium P1 =$6 million expected at time t1=0.0001 right 

after the jump.  
• Contract matured at Tmat = 20 with a liability payment LT = $36 million 

 
One has to make an investment decision of how to allocate the existing assets (first 
premium) to maximize a present value of a future surplus. Second premium would be 
invested until maturity since the interest rate does not change after the first jump. 
 
The following formulas are straight-forward results of the assumptions:  
Present value of the ending surplus for a realized rate r  
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Expected value of the future surplus is     
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Variance of the future surplus is a bit more cumbersome     
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Old traditional Investment Decision 1. 
 

Ignore premium. Invest in the bullet maturing at Tmat 
 
Old traditional Investment Decision 2. 
 

Calculate modified duration of the liability.  
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Invest existing assets in the bullet maturing at 65 years. 
 

Now we will investigate if indeed any of above solutions offers a reasonable strategy. 
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Above we plotted expected present values of a future surplus depending on a length of 
the initial investment. Clearly, the old traditional decisions bring about inadequate results. 
What follows from this observation that if long investment (>100) is not available- keep 
money in cash. However in this analysis we ignored randomness concentrating on  the 
expected values. What about volatility of the return? 
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Figure 2 suggests that a short initial investment may generate a significant loss, or put it 
differently creates a significant value at risk. From this perspective, a risk averse investor 
would invest as long as possible however giving up an expected return. 
 
At this time assume that company's internal requirement demands allocation of a risk 
capital covering losses with 98% confidence. Thus, a cash (very short) investment 
strategy requires $7 million of capital.   
 
Consider now risk capital as an equity investment (Figure 3).  More risky strategy, more 
capital should be allocated. Now, it turns out that short investment would bring better 
return on equity notwithstanding higher capital requirement, than investment into 20 
years maturity. If exceptionally long maturities are not available, cash investment is 
superior again.  
 
   



Figure 3 
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Finally consider a situation when risk capital decision is based on the availability of 
capital and capital is allocated regardless of the calculated risk.  In this case we solve 
for an investment strategy that generates maximum return subject to loss restricted by 
the capital. 
 
Assume that $2 million is allocated as risk capital. In this case Figure 3 shows that an 
optimal investment is 30 years bullet. 
 

Figure 4 
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Summary  
 

• Risk Capital allocation is an indicator of a company risk tolerance. More risk 
averse company more risk capital required to open line of business. 

  
• Return on Equity requirement is a company's desired profitability.  

 
• Product is profitable if a maximum expected return is greater than the company’s 

requirement. 
 
• Ideally, an optimal control problem solves for the best strategy, maximizing 

expected return on equity and assuming that the initial capital is allocated 
according to the company requirement. 

 
• In practice the optimization problem often too difficult to solve. 
 
• A simplified problem solved with a hope that it’s solution would produce a 

feasible result.   



 
Mathematical Theory of a Stable Value Products 

 
Logical Structure and Classifications of Guaranteed Investment Contracts 

 
Structure of GIC Business 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Decision making 
 
 
 
 
 
 
 
 
 
The chart above classified GICs by the degree to which the investment manager is 
involved in the process of making economical decisions. 
 
Consider how it works in its simplest form. We  look at the  case 3 as the most general 
one. 
 
Case 3 (Fully  Discretional Pension Plan Manager)   
 
 A plan sponsor - PS corporation, on behalf of its employees – plan participants, has to 
invest $M  in the stable value sector of the  401K pension plan. We assume M Mi

i I

=
∈
∑  

where I is a set of all pension plan participants. PS hires an investment manager – 

1 
Direct Plan Sponsor 

2 
Plan Sponsor- Consultant 

(Advisory) 

3 
Plan Sponsor Turned over authority to  

Discretionary Manager 

Guarantee Provider  

1 
100%    Plan Sponsor 2 

100%    Plan Sponsor + 
Recommendation 

from advisors 

3 
100%  Investment manager, who is 

given this authority through an 
agreement 



company IM to manage the entire process. IM enters into a contract with an insurance 
company GP (Guarantee Provider). In the resulting agreement GP gets money in return 
for an obligation to pay M r T⋅ +1b g  upon maturity T of the contract assuming no 
withdrawals have been made. For the illustrative purposes assume that the interest rate1 
r  is a constant and is stipulated by the participating sides at the inception of the contract. 
The plan sponsor has the right to withdraw money at any time. For each dollar invested at 
the inception, the amount available for withdrawal at time t is equal to 1+ r tb g . However 
there are usually important strings attached. If the withdrawal is initiated by the IM, the 
plan sponsor has to pay an early withdrawal fee Ft . No fee is paid if the withdrawal is a 
plan participant initiated event.  The money could be withdrawn (before maturity) from 
the guaranteed account at time t T<  for three different reasons.  
 
1. At time t, IM realizes that an obligation of the Guarantee Provider GP is worth less 

than M r Ft
t⋅ + −1b g .  In this case a sound economic decision is to initiate a 

termination of the contract and withdraw money. 
2. An employee x of the PS decides that the guaranteed rate is too low for the current 

market situation and requests the IM to withdraw his portion of the account. Since 
this is an action initiated by an employee, no early withdrawal penalty is imposed. 
Accordingly, the employee gets back his investment at a guaranteed value of 
M rx

t⋅ +1b g  and the account value is reduced by the same amount. M rx
t⋅ +1b g . Here  

Mx  denotes the initial investment by x at time t.   
3.  An employee x of PS decides to withdraw money for reasons not related to the 

market situation (this may include retirement or change of employment.) 
 
As we shall see later, the mathematical tractability of the withdrawal is very different for 
each case.  
 
Open window option 
 
The next common feature, which may be added to the contract, is an “open window” 
option. This feature is familiar to many homebuyers as the “lock-in-rate” option for house 
financing. Under the open window clause the plan manager (or plan sponsor) may deposit 
money during a certain period of time (open window) with the crediting rate established 
at the beginning of the period.    
 
Synthetic GIC 
 
This product separates guarantee on the book value from the ownership of the assets. In 
the case of a regular GIC, the guarantor has an obligation to pay the entire sum requested 
for the withdrawal by the plan sponsor. In the case of a Synthetic GIC the guarantor has 
to subsidize a withdrawal if the assets portfolio (not owned by the guarantor) has 
                                                           
1 The constant interest rate assumption is local and is made here only for an illustrative purpose. In fact the 
methodology of assigning contractual interest rates is essential partin certain types of contract 
classifications.  



insufficient funds to cover the withdrawal request and the amount of withdrawal does not 
exceed the guaranteed value.     
 
Participating (Par) and Non-Participating (Non-Par) GICs 
 
The Guaranteed Investment Contract is said to be “participating” if the plan sponsor 
participates in the profit or loss of the assets portfolio through the adjustment of the 
guaranteed contract rate.  If the guaranteed rate does not depend on portfolio performance 
we say that the contract is non-participating. 
 
 
Mathematical Models 
 
For all the considerations below we assume that interest rate term-structure is described 
by a stochastic differential equation  
 

  ( ) ( )t t t t t tdr b r dt r dwσ= ⋅ +                                                      (1) 
 

with respect to a standard Wiener process wt , which is defined on a complete probability 
space { , }Ω P with  filtration. Ft tl q >0

,  rt  is an instantaneous interest rate, i.e. a risk free  
interest rate paid for short term borrowing.  
 
We also assume that the probability measure P  is risk neutral. Accordingly we will 
calculate the price of a security as a discounted cashflow. 
 
There are two different mathematical problems, which from the client's (plan sponsor) 
point of view are associated with the type of the contract. For the non-participating 
contracts the client is interested only in the size of the fee he is charged by the guarantee 
provider.  If the contract is participating, the client would request that the guarantee 
provider’s management of the portfolio would maximize plan sponsor’s investment. 
Therefore we will discuss below a Pricing Problem – the calculation of the fair market 
value of the fee charged by the guarantee provider and a Portfolio Management Problem  
- the optimal strategy the portfolio manager  has to follow to benefit his client the most. 
 
1.  Participating GIC with no withdrawal options (Portfolio Management Problem)  
 
Assume that the contract starts at time t = 0 when client makes a deposit L0 .  The 
guarantee provider purchases portfolio A  of assets. Denote by Mt   a market price of 
such a portfolio at moment t. We assume that L M0 0= . Assume that investment income 
from portfolio At  is equal to r st +  where rt  -is a spot interest rate and s is a quality 
spread.  Dynamic of the market value of the portfolio A  is described by a following 
equation 
 

dM M r s dt D drt t t t= ⋅ + − ⋅(( ) )  



 
This equation simply states that change in portfolio price consists of two components. 
The first component is an investment income, which is defined by the amount of interest 
earned through a coupon payment over the time interval dt . The second component is a 
change of price due to the interest rate shift. This change is proportional to a portfolio 
effective duration Dt  (By definition) at the time t. 
 

The guaranteed value of liability Lt is defined as L L et

l dss

t
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L  is a guaranteed 
rate calculated traditionally as  
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Where r L  is a minimum guaranteed rate.  The equation is derived from  
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The last equation makes a continuous readjustment to the guaranteed rate in such a way 
that final value of assets and liability portfolios would be equal each other if the market 
conditions remain unchanged until maturity of the contract. 
 
The equation (2) implies that the final liability value should converge to a final market 
value of the assets portfolio in a case of an adequate portfolio performance.  
 
Denote       l L m Mt t t t= =ln( ); ln( )  
 
By the Ito formula we have 
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Thus we are getting a following equation for a market value dynamic 
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Equation (3) describes a fixed income portfolio dynamic. Even though it looks quite 
simplistic, there are no significant aberrations from the reality.  Most restrictive (implicit) 
assumption that has to be made to justify (3) is a continuous rebalancing of the portfolio.  
 
 
 
 



Assets Management Optimization Problem 
 
The next step is a choice of criterions that evaluate a portfolio manager and a guarantee 
provider performance. The most straightforward one is to maximize liability value at the 
end of the horizon. 

Optimization Problem 1. 1 (Maximize Ending Liability Value)  

max ( )
u
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Here D Dt t,  are low and upper boundary allowed for the duration Dt  of the assets 
portfolio. Those functions are deterministic and usually are the contract-stipulated values 
 
Since we consider a participating contract, the final total earning would be in large degree 
defined by a portfolio performance itself. Therefore as an approximation and as a 
reasonable compromise for the investor would be a following problem, which is easier to 
solve analytically.  

Optimization Problem 1.2 (Expected Ending Portfolio Value)  

max ( )
u
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The problem has to be reformulated for an infinite time horizon if an evergreen2 contract 
is considered 
 

                                                           
2 With no expiration date  



 

Optimization Problem 1.3(Infinite time horizon) 
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The criteria 1.1 and 1.2 may not adequately reflect the basic premises of the product.  
The guaranteed investment contracts continue to occupy a significant portion of the 
pension fund market because of the higher return-to-volatility ratio, not to the return on 
the investment per se as would suggested by 1.1 or 1.2.  Considering this, we will 
introduce a CAPM3- type criteria. We assume that the market is risk averse and demands 
an additional return from more volatile securities. This is to say that the plan sponsor 
would have estimated a performance of the portfolio manager by looking not only at the 

portfolio return ( )m m
T

T − 0  but also at the historically estimated volatility. The last 

conception couldn’t be directly introduced within the continuous  time framework.  
Assume that the return is measured at times t t t t Tn0 10= = =, ,...Δ . A historical estimate 
of the volatility is 
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Here in order to shorten the notations we denote m mi
ti

=  
It is naturally therefore to state that   portfolio management purposes to minimize a 
mathematical expectation of (5) together with (4) or (4’) . A different optimal strategy is 
generated by a new problem where the  criterions (4) and (5) are mixed together. 
    

Optimization Problem 1.4   
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3 Capital Asset Pricing Model 



There are at least two problem with the problem 1.3. The first is a robustness and stability 

of the solution.. If Δt is small the volatility component 1 1
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could significantly supersede the market value component E mt( ) .  Another problem is 
that minimization of historical volatility does not necessary coincides with the client 
goals. It is more in sync with a GIC salesman arguments than with a client interest.. 
Assuming that the client main objective is to maximize profit and minimize volatility the 
optimal problem could be reinstated as follows: 



 
Optimization Problem 1.6 
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Another version is may be considered is  
 
Optimization Problem 1.6 
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It looks like a more difficult problem, though more in line with CAPM arguments. 
 
 
 
 
2.  Non-Participating GIC with a withdrawal option (Pricing Problems) 
 
 
For non-participating GICs the liability is a guaranteed contact value calculated on the 
base of the guaranteed contact rate. This rate is a parameter of the contract and is 
assumed to be a constant until the maturity of the contract. Plan sponsor of such a GIC 
has an option (put) to withdraw money at any time at his discretion. However, two cases 
of withdrawal are identified and separated. If a plan participant initiates withdrawal, no 
penalty for an early withdrawal is imposed. In this case the Guaranteed Contract Value is 
reduced by the amount withdrawn. If the plan sponsor initiated a withdrawal on behalf of 
the plan participants the Guaranteed Contract value is reduced by the amount withdrawn 
plus early withdrawal penalty.   
 
 
Notations, Assumptions and Preliminary Information 
Consider a Guaranteed Investment Contract paying coupon ft with a continuously 
compounded interest4.  
Assume that 
• Level of a risk free interest rate is equal to rt at the time t > 0 as described by (1) .  

                                                           
4 This means that coupon payment over the infinitesimal  interval Δt  is equal to Δt f Mt t⋅ ⋅ Δt  



• The contract-holder is entitled to a guaranteed value gt at time t if decided to 
withdraw money.  
•   Contract has a par value of  $1 and gT  is a guaranteed value that will be mandatory 
withdrawn at maturity T. We assume that if termination of the contract is happened due to 
the plan manager decision then there is a penalty which reduces the guaranteed value by 
gt

f . 
• Non-arbitrage transaction frees trading in a risk-neutral world. 
 
Denote by τ a fixed random moment (not necessarily optimal) when the contract holder 
decided to withdraw money. Denote V x tτ ( , ) the price for such a contract, calculated as a 
mathematical expectation of a discounted future cashflow.  
We therefore have   
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It is naturally to assume that the manager would chose moment τ to maximize V x tτ ( , ). 
Therefore if he has a full discretion over the process he will behave accordingly. In this 
case the price for the contract should be calculated as a solution of the optimization 
problem 
 
Optimization Problem 2.1 (Withdrawal is on the plan manager own discretion) 
 
dxs bds dws x= + =σ 0 x  
 

V x t E x f x I g I gu
t

s

t

T

s u

t

T

T T
fdu du( , ) max exp exp ( ) ( )= ⋅

∧

⋅

∧

≥ + <−FH IK ⋅ + −
F
HG

I
KJ ⋅ ⋅ ⋅

R
S|
T|

U
V|
W|zz zτ

τ τ

τ ττ τc h  

 

Optimality Conditions 

 
It is shown in [1]  that v(x,t) satisfies the  Non-Linear Partial Differential Equation.  
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This in turn is equivalent to the following three conditions: 
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This problem is very difficult to solve numerically. We consider a modification of the 
problem which drastically reduces the complexity.   
 
Contractholder is entitles to request a withdrawal. 
 
Assume that plan participant's withdrawal decision is not based on a market situation. He  
may withdraw money because of a contingency related to a retirement, job security, and 
other social events. For the simplification of the analysis assume that if plan participant 
decided to withdraw money, he will withdraw a total guaranteed value and the 
Guaranteed Contract is terminated. Assume that the intensity of withdrawal is r x t( , ) . 
This means that at time t0   probability that the plan participant will terminate the 
contract on the interval (t,t+dt) is 
 

r xt t r xu u du
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t
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For the sake of simplicity assume that t0 0= . We reformulate the optimization problem 
by introducing an additional variable yt , and assuming perpetuity in the payments period 
T=∞. It is not difficult to see that the last assumption does not cause a loss of generality. 
To achieve the actual maturity at T one has to choose unrestrictedly high intensity 
function in the small vicinity of  T. The optimization problem 2.1 may be rewritten as  



Optimization Problem 2.2 

v E y f ds y

dy x dt

s
t

s

t t

g

dx
t

bds dw
s

x

y

( ) max exp exp[ ( )]x , y

x

y

0 0

0

0

= − ⋅ + −

=

z ⋅

= + =

=

τ

τ

τ τ

σ

b g b g

0

0

 

 
Now consider an individual trajectory ω where the bond is scheduled to be called  at time 
τ(ω). The conditional contribution of this trajectory to the criteria of the Optimization 
Problem 2.2 is 

exp exp ( )]− ⋅ + −z ⋅y f ds ys s gb g b g
0
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τ τ  

 

Assume now that together with management call τ, the bond may be called due to the 
irrational cause defined by intensity function r x t( , ) Therefore the expected contribution 
from the individual trajectory is 
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For the given trajectory the contract will be terminated either due to the manager's call or 
the plan participants decision to withdraw money. If the plan manager decides that τ is 
an optimal time to withdraw, two different events may happen. First takes place when the 
contractholder does not withdraw before τ and the first part (I) of the expression above 

evaluates the expected contribution from this event. In this case exp( ( , ) )−∫ r x t dtt
0

τ

 is the 

probability that the withdrawal of the bond will be a plan manager initiated event. The 
second event takes place when the contractholder decided to withdraw before τ. 
Accordingly the second part (II) is a contribution from such an event. After some 
transformations we have 
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Now we may get rid of y and return to previous notations. 
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The price of the entire contract with given random withdrawal time τ is a mathematical 
expectation of the contributions of the individual trajectories 

 v x Eτ ( , ) )0 = +(I II  

Effective market will price the contract by choosing the call time to a maximum 
disadvantage of a bondholder. Therefore we obtain price of the bond as a result of the  

Optimization Problem 2.3 
v x t v x t( , ) max ( , )=

τ τ   

or 
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Applying Equation 3 to this problem we obtain a Differential Equation for v x t( , )  

Equation 3 
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Pricing With Stationary Processes 
 
Assume that xt is a stationary process.  This means that coefficients σ and b in  the 
equation 1 do not depend on time. Assume also that the intensity function ( , )r x t  is a 
function only of the state x, i.e.  ( , ) ( )r x t r x= We have 
 

1
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0

0

2σ ′′ + ′ + + + + =

<
= ′ =

v bv x r v f rg

x x
v x g v x

c

c c

( )

( ) ; ( ) ;
where

and
 

 
It is a second order ordinary differential equation with free boundary conditions. 
It can be shown that this equation has a unique bounded solution.  
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