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P R A C T I C A L  A P P L I C A T I O N S  O F  T H E  R U I N  F U N C T I O N  

GEORGE E. RECKIN, DANIEL J. SCHWARK,* 
AND JOHN B. SNYDER II 

A B S T R A C T  

The following paper is intended to acquaint actuaries with a simple and, 
we hope, practical application of the ruin function technique in the deter- 
mination of the C-2 mortality risk reserve needed for individual life insurance 
business. The goal is not the introduction of any new mathematical theory, 
as this field has been admirably explored by the more capable hands ac- 
knowledged herein. Rather, the paper seeks to provide working actuaries 
with a readable nontechnical introduction to this subject. 

The paper gives a qualitative explanation of the theoretical basis of  the 
ruin function technique. Several variations of  the theory are discussed 
and then applied to an actual life insurance company  situation. The results 
of each method are compared. Some of the limitations of the ruin function 
approach are pointed out. Finally, a mathematical appendix is presented 
to allow the reader to apply these techniques without having to consult 
outside references. 

In the final analysis, the reader should realize that contingency surplus 
quantification is in its infancy in most life insurance companies. Therefore,  
the application of methods to determine the appropriate surplus level is 
as much an art as it is a science. That is, in spite of the high-powered 
mathematical theory underlying risk analysis, the results must be scru- 
tinized under the light of reason and experience. 

I. B A C K G R O U N D  

At some point in almost every life actuary 's  career, he will be asked 
to examine an insurance company's  current retention limit or evaluate its 
contingency surplus requirements. Three commonly posed questions along 
these lines are the following: 

1. How much contingency surplus is realistically needed to cover the risk of 
random mortality fluctuations? 

* Mr. Schwark, not a member of the Society, is an actuarial assistant with Milliman and 
Robertson, Inc. 
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454 PRACTICAL APPLICATIONS OF THE RUIN FUNCTION 

2. How much addit ional risk is entailed when an insurance company  increases 
its retent ion limit by a given amount?  

3. How much surplus should be made available to cover  random claim variations 
if a new line of  bus iness  is to be in t roduced? 

These questions can be approached in several different ways. Histor- 
ically, many insurance companies have related retention limits and surplus 
requirements using industry-wide practices or "rule of thumb" tech- 
niques. An example of this would be setting a company's retention limit 
equal to 1 percent of its total capital and surplus. 

Recently, however, actuaries have turned to statistical means to quantify 
variations in mortality experience. One of the first approaches was to use 
the distribution branch of collective risk theory. This generally involved 
examining one year's claims and establishing "confidence limits" as upper 
bounds of claims variation. 

An alternative to the distribution branch Of collective risk theory is the 
ruin function. Ruin theory holds the advantage over distribution theory 
of looking at ruin continuously rather than at discrete points. Based on 
some of the texts listed in the bibliography, the four basic techniques used 
in evaluating ruin functions are (1) the convolution method, (2) the Monte 
Carlo method, (3) the Laplace transform inversion method, and (4) the 
method of moments. The first two methods lend themselves to numerical 
solutions but generally require advanced computer hardware and are ex- 
pensive to use. The third method, involving the Laplace transform, offers 
few analytical solutions but some hope in using numerical means. The 
last approach, the method of moments, is easy to apply and inexpensive 
but is restricted by the accuracy and detail of the underlying data. 

Using a variation of the method of moments suggested by Mr. Newton 
L. Bowers [13] and Mr. John A. Beekman [8], one can inexpensively 
produce reasonable results over finite or infinite time frames using only 
limited data. 

Ultimately, the actuary must take the results of whichever method he 
chooses and employ his best judgment as to their reasonableness. Such 
judgment must include a basic understanding of the principles underlying 
the method used, knowledge of current industry practices, and reflection 
of state insurance department desires. 

11. MATHEMATICAL BASIS OF THE RUIN FUNCTION 

The formulation of the ruin function as described in Mr. Beekman's 
paper "A Ruin Function Approximation" [8] is briefly summarized: Un- 
derlying all the ruin theory work used in formulating this paper is a dis- 
tribution function, P(z), which is the probability that, given that a claim 
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has occurred, its amount will be less than or equal to amount z. From a 
practical standpoint, it is the estimation of this function that takes the 
most time and incurs the greatest expense in the practical application of  
the method. A detailed breakdown of claims and in-force data by age and 
face amount, as required in the ideal application, is generally laborious 
and expensive to derive. 

Also defined is another function, N(t), which is the random number of 
claims occurring in time period t. However,  time t is generally defined in 
terms of operational time or the time for a claim to occur or N(t) = t. 
That is, if a life insurance company were to have 50 claims in a calendar 
year, then t = 50 would represent one calendar year from an operational 
time point of view. Generally, N(t) is assumed to have a Poisson distri- 
bution as discussed in Mr. Paul M. Kahn's  "An Introduction to Collective 
Risk Theory and Its Application to Stop-Loss Reinsurance" [19]. 

Based on these definitions, a value p, can be found that is the first 
moment (or mean) of P(z). That is, p, is the average amount of a claim, 
given that a claim has occurred. Therefore,  the quanti typ,t  can be thought 
of as an aggregate net premium over  time t. 

If claims never deviated from the mean, a premium equal to the net 
premium would cover  claims, and there would be no need for concern 
about financial ruin due to adverse claims experience.  However,  this is 
not the case in the real world. Therefore,  in addition to the net premium, 
a company must protect itself from ruin due to adverse fluctuations in 
claims experience by starting with an initial risk reserve (initial contin- 
gency surplus), usually denoted by u, and collecting an amount in addition 
to the net risk premium. The amount paid in addition to the net premium 
is called a security loading and is really part of  the gross premium profit 
margin that the policyholder pays. That is, the gross premium, besides 
covering expenses and benefits, inherently provides for periodic contri- 
butions to a risk reserve to offset adverse experience.  The security loading 
is often represented by h; and ht represents the aggregate security loading 
collected through time t. 

An additional item to be defined is the random variable X;, which rep- 
resents projected claim amounts. Therefore,  each random variable X, has 
as its distribution P(z), and E727 Xi represents the aggregate claims paid 
up to time t. 

Thus, the company's  current risk reserve U(t) at time t, which is a 
measure of the likelihood of ruin, can be symbolically stated by 

N(t) 

u(t) = .  + (p, + x ) t -  ~x~. 
i = 1  
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Since U(t) is useful as a measure of potential ruin (ruin occurring when 
U(t) < 0), the ruin function is the probability that U(t) will become less 
than zero within a time period t. The key is to try to quantify those 
elements that affect U(t) so as to minimize the probability of ruin within 
certain limits. 

This is done by defining an additional random variable Z. Z is defined 
as the maximum excess of claims over income, examined continuously. 
Symbolically, 

I N(t) 1 Z = maximum ~ X , -  t(p, + X) . 
o,~t<~ Li~ I 

Since it is the random variable Z that is to be quantified, Z must somehow 
be estimated. On the basis of  the work of Mr. Beekman and Mr. Bowers, 
we assert that the incomplete gamma function is a good approximation 
to Z. 

Several underlying assumptions of collective risk theory should be 
pointed out before proceeding. Generally, collective risk theory deals with 
an " o p e n "  group having the attributes of (1) independence, (2) station- 
arity, and (3) exclusion of multiple events. The concept of an open group 
is comparable to a stationary population in which claimants are continually 
replaced. It is because of  the open group assumption that the underlying 
mortality rate can be assumed to remain constant over time. 

The assumption of independence is the basis for analyzing random 
mortality fluctuations. Independence implies that the occurrence of any 
one event is not influenced by nor does it influence the occurrence of any 
other events. 

The concept of stationarity deals with the independence of  the events 
with regard to commencement  time. That is, the occurrence of events 
may be a function of  the duration of a time period, but their occurrence 
should not be affected by the point at which the time measurement period 
starts. 

The exclusion of  multiple events is a simplifying assumption closely 
related to the independence of individual events and the choice of the 
Poisson distribution. It states that the probability of more than one claim 
occurring during an infinitesimal time interval is zero. 

111. MODEL COMPANY 

To determine the practical applicability of the ruin function to the con- 
tingency surplus problem, some actual insurance company in-force data 
are needed for a test case. Because the values that are of greatest interest 
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to this analysis are extreme variations from the mean, the need for ac- 
curate data in testing is paramount. 

Based on data available from a medium-sized, general agency life in- 
surance company, a life insurance model was developed. The data con- 
sisted of 24,000 policies segregated into bands by issue age and policy 
size. From these data and some valuation information, the average du- 
ration from issue and composite death rate were determined within each 
policy-size band. These composite death rates were assumed to remain 
constant in the future because the insureds were assumed to comprise an 
open group, as is consistent with the collective risk compound Poisson 
process. This allowed P(z) to be determined. The model company in-force 
data are shown in Table 1. 

The detailed in-force data in the table permit several things. The first 
three moments of P(z), necessary for the Beekman-Bowers approximation 
to the ruin function, can be calculated. Also,  the policy-size data can be 
changed to test different retention limits. The table shown implies an 
unlimited retention limit. If a $50,000 retention limit were to be tested, 
the average policy size for policies in excess of $50,000 in the above table 
would be set equal to $50,000. This is because the actual financial effect 

T A B L E  I 

MODEL LIFE INSURANCE COMPANY IN-FORCE DATA 

Composite [ 
Average Policy Size Policy Death Rate ' p(z) P(z) 

Count [ 1.000q 

$ 2,000 . . . . . . . . . . .  
4 , 0 0 0  . . . . . . . . . . .  

6,000 . . . . . . . . . . .  
11,000 . . . . . . . . . . .  
16,000 . . . . . . . . . . .  
22,000 . . . . . . . . . . .  
26,000 . . . . . . . . . . .  
33,000 . . . . . . . . . . .  
44,000 . . . . . . . . . . .  
50,000 . . . . . . . . . . .  
63,000 . . . . . . . . . . .  
73,000 . . . . . . . . . . .  
83,000 . . . . . . . . . . .  
93,000 . . . . . . . . . . .  

I00,000 . . . . . . . . . . .  
130,000 . . . . . . . . . . .  
155,000 . . . . . . . . . . .  
226,000 . . . . . . . . . . .  
355,000 . . . . . . . . . . .  
550,000 . . . . . . . . . . .  

1,000,000 . . . . . . . . . . .  

6,903 
2,455 
5,877 
3,399 
1,36 I 

907 
685 

2.98 
5.63 
2.55 
1.69 
i .78 
2.04 
2.15 

30 .75% 
20.66 
22.40 

8.59 
3.62 
2.77 
2.20 

30 .75% 
51.41 
73.81 
82.40 
86.02 
88.79 
90.99 

610 
282 
708 

84 
93 
55 
43 

370 
20 
43 
79 
16 
4 
6 

2.13 
2.27 
2.61 
2.85 
2.98 
2.28 
2.05 
2.85 
1.82 
2.78 
2.84 
2.31 
4.19 

1.94 
.96 

2.76 

1.58 

2.60 

92.93 
93.89 
96.65 

.36 97.01 

.41 97.42 

.19 97.61 i 

.13 i 97.74 
[ 99.32 

.05 99.37 
• 18 99.55 
.34 99.89 
.06 99.95 
.03 99.98 
.02 100.00 
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on the life insurance company would be the same whether a claim was 
$50,000 or $500,000. 

If the Beekman-Bowers approach is going to be used, either (1) data 
such as given in the table must be available, (2) the first three moments 
of the distribution of a claim, given that a claim occurs, must be known, 
or (3) the moments of P(z) must be derived by making assumptions as to 
the mathematical characteristics of the distribution. 

IV. APPLICATION OF THE RUIN FUNCTION 

Based on the extensive data from the model company, the necessary 
parameters to utilize the Beekman-Bowers approximation of the ruin func- 
tion can be derived. The first analysis looks at an unlimited retention limit 
and an infinite operational time frame. Later in this paper, the results 
assuming a finite time period are discussed. 

From the calculation of the first three moments of the distribution P(z), 
a grid is constructed that summarizes the various initial risk reserves or 
contingency surplus amounts needed at various probabilities of ruin and 
security loading percentages. A particular probability of ruin reflects the 
assigned probability of claims exceeding income plus the initial risk re- 
serve. That is, a 1 percent level from the grid gives the required value of 
the initial risk reserve so that, along with the security loading assumption, 
the probability of ruin is one chance in 100. This can also be thought of 
as a confidence limit: with the risk reserve shown and the assumed security 
load, there is a 99 percent probability that ruin will not occur. Again, it 
should be emphasized that this is over an infinite time frame. 

As mentioned previously, another important aspect of establishing a 
level of contingency surplus is estimating the level of security loading that 
is appropriate. The grid of initial risk reserve values looks at various 
confidence levels for various security loading assumptions. The security 
loading, h, is usually taken as a percentage of the mean claims, p,. Since 
this security loading is explicitly or implicitly built into the gross premium 
when a product is priced, the security loading appears to be intrinsically 
related to the pricing profit margins. Because the profit margin inherently 
contains loads for adverse fluctuations in all assumptions (interest, ex- 
penses, lapses, deaths, and so on), a good estimate of h for individual life 
insurance policies might be the ratio of the present value of statutory 
profits to the present value of premiums. That is, h might typically be 
about 5-10 percent of mean claims for many blocks of nonparticipating 
individual life insurance. 

A summary of the resulting initial risk reserves for the unlimited re- 
tention, infinite time horizon situation is given in Table 2. 
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TABLE 2 

R U I N  F U N C T I O N  A N A L Y S I S  

M O D E L  C O M P A N Y  D A T A  W I T H  G A M M A  D I S T R I B U T I O N  

U N L I M I T E D  R E T E N T I O N ,  I N F I N I T E  T I M E  P E R I O D  

(Results in $1,000s) 
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SECURITY LOADING 

AS A PERCENTAGE 

OF MEAN CLAIMS 

2 . . . . . . . . . . . . . . . . . . .  

3 . . . . . . . . . . . . . . . . . . .  
4 . . . . . . . . . . . . . . . . . . .  

5 . . . . . . . . . . . . . . . . . . .  

6 . . . . . . . . . . . . . . . . . . .  

7 . . . . . . . . . . . . . . . . . . .  

8 . . . . . . . . . . . . . . . . . . .  

9 . . . . . . . . . . . . . . . . . . .  

10 . . . . . . . . . . . . . . . . . .  

15 . . . . . . . . . . . . . . . . . .  
20 . . . . . . . . . . . . . . . . . .  
30 . . . . . . . . . . . . . . . . . .  
40 . . . . . . . . . . . . . . . . . .  
5 0  . . . . . . . . . . . . . . . . . .  

10% 

$9,649 
4,895 
3,309 
2,514 
2,037 
1,717 
1,489 
1,317 
1,183 
1,075 

749 
581 
408 
317 
259 

VALUE OF INITIAL RISK RESERVE WITH PROBABILITY OF RUIN: 

5% I% 

$19,540 
10,034 
6,862 
5,275 
4,321 
3,684 
3,228 
2,885 
2,618 
2,403 
1,755 
1,426 
1,086 

909 
797 

.1% 

$29,466 
15,207 
10,452 
8,072 
6,642 
5,688 
5,005 
4,492 
4,092 
3,772 
2,805 
2,315 
1,814 
1,554 
1,393 

$12,620 
6,436 
4,372 
3,339 
2,718 
2,303 
2,005 
1,782 
1,608 
1,468 
1,044 

827 
603 
485 
410 

.01% 

$39,407 
20,397 
14,057 
10,885 
8,980 
7,709 
6,799 
6,116 
5,584 
5,158 
3,873 
3,223 
2,562" 
2,222 
2,012 

One interesting sidelight of  the infinite time period ruin function ap- 
proach is that it is independent of  the number  of  policies exposed to risk, 
unlike the methods used in distribution theory. 

An analysis of  several different retention levels under the infinite time 
period assumption reveals the effects of  limiting the maximum risk re- 
tained by an insurance company. Tables 3 - 6  look at retention limits of  
$25,000, $50,000, $100,000, and $200,000. As might be expected,  the initial 
risk reserves increase smoothly from the $25,000 retention and approach 
the unlimited retention level as an upper bound. 

As can be seen from the tables, the values of  the initial reserve amounts  
appear  to be relatively smooth and monotonically changing according to 
changes in the security loading and the probabili ty of  ruin. The results 
from the ruin function look plausible for several reasons: 

1. For a given probability of ruin, the initial risk reserve declines smoothly as the 
security loading increases. 

2. For a given level of security loading, the initial risk reserve increases as the 
probability of ruin decreases. 

3. In the aggregate, the lowest initial risk reserves occur at the lowest retention 
level. 

4. The risk reserves increase between grids as the retention limit increases with 
the unlimited retention limit being the upper bound. 



TABLE 3 

RUIN FUNCTION ANALYSIS 

MODEL COMPANY DATA WITH GAMMA DISTRIBUTION 
$25,000 RETENTION, INFINITE TIME PE~OD 

(Results in $1,000s) 

SECURITY LOADING 

AS A PERCENTAGE 

OF MEAN CLAIMS 

2 . . . . . . . . . . . . . . . . . . .  

3 . . . . . . . . . . . . . . . . . . .  

4 . . . . . . . . . . . . . . . . . . .  

5 . . . . . . . . . . . . . . . . . . .  

6 . . . . . . . . . . . . . . . . . . .  

7 . . . . . . . . . . . . . . . . . . .  

8 . . . . . . . . . . . . . . . . . . .  

9 . . . . . . . . . . . . . . . . . . .  

10 . . . . . . . . . . . . . . . . . .  
15 . . . . . . . . . . . . . . . . . .  
20 . . . . . . . . . . . . . . . . . .  
30 . . . . . . . . . . . . . . . . . .  
40 . . . . . . . . . . . . . . . . .  
50 . . . . . . . . . . . . . . . . . .  

VALUE OF INITIAL RISK RESERVE WITH PROBABILITY OF RUIN: 

10% 5% 

$1,734 $2,258 
872 1,136 
584 762 
440 575 
354 462 
296 387 
255 334 
224 294 
200 263 
181 238 
124 163 
95 125 
66 88 
51 69 
42 57 

1% 

$3,474 
1,749 
1,174 

886 
714 
599 
517 
455 
407 
369 
254 
196 
138 
109 
92 

.1% .01% 

$5,214 $6,954 
2,626 3,504 
1,764 2,353 
1,332 1,778 
1,074 1,433 

901 1,203 
778 1,039 
685 916 
613 820 
556 743 
383 513 
297 398 
210 282 
167 225 
141 190 

TABLE 4 

R U I N  F U N C T I O N  A N A L Y S I S  

M O D E L  C O M P A N Y  D A T A  W I T H  G A M M A  D I S T R I B U T I O N  

$50,000 RETENTION, INFINITE TIME PERIOD 

(Results in $1,000s) 

SECURITY LOADING 

AS A PERCENTAGE 

OF MEAN CLAIMS 

2 . . . . . . . . . . . . . . . . . .  

3 . . . . . . . . . . . . . . . . . .  

4 . . . . . . . . . . . . . . . . . .  

5 . . . . . . . . . . . . . . . . . .  

6 . . . . . . . . . . . . . . . . . . .  

7 . . . . . . . . . . . . . . . . . . .  

8. 
9 . . . . . . . . . . . . . . . . . .  

10 . . . . . . . . . . . . . . . . .  
15 . . . . . . . . . . . . . . . . .  
20 . . . . . . . . . . . . . . . . .  
30 . . . . . . . . . . . . . . . . .  
4 0  . . . . . . . . . . . . . . . . .  

5 0  

10% 

$3,047 
1,532 
1,027 

775 
623 
522 
450 
396 
353 
320 
218 
168 
117 
91 
75 

VALUE OF INITIAL RISK RESERVE WITH PROBABILITY OF RUIN: 

5% 

$3,969 
1,998 
1,341 
1,012 

815 
683 
589 
519 

I %  

$6,109 
3,078 
2,068 
1,563 
1,260 
1,058 

914 
805 
721 
654 
452 
350 
249 
198 
167 

.1% 

$9,170 
4,625 
3,110 
2,352 
1,897 
1,594 
1,378 
1,215 
1,089 

988 
685 
533 
381 
304 
258 

464 
420 
289 
223 
156 
123 
103 

.01% 

$12,231 
6,171 
4,151 
3,141 
2,535 
2,131 
1,842 
1,625 
1,457 
1,322 

918 
716 
513 
411 
350 

460 



TABLE 5 

RUIN FUNCTION ANALYSIS 
M O D E L  C O M P A N Y  DATA WITH GAMMA DISTRIBUTION 

$100,000 RETENTION, INFINITE TIME PERIOD 

(Results in $1,000s) 

SECURITY LOADING 

AS A PERCENTAGE 

OF MEAN CLAIMS 

I t ~  . . . . . . . . . . . . . . . . .  

2 . . . . . . . . . . . . . . . . . . .  

3 . . . . . . . . . . . . . . . . . . .  

4 . . . . . . . . . . . . . . . . . . .  

5 . . . . . . . . . . . . . . .  " . . . .  

6 . . . . . . . . . . . . . . . . . . .  

7 . . . . . . . . . . . . . . . . . . .  

8 . . . . . . . . . . . . . . . . . . .  

9 . . . . . . . . . . . . . . . . . . . .  

10 . . . . . . . . . . . . . . . . . .  
15 . . . . . . . . . . . . . . . . . .  
20 . . . . . . . . . . . . . . . . . .  
30 . . . . . . . . . . . . . . . . . .  
40 . . . . . . . . . . . . . . . . . .  
5 0  . . . . . . . . . . . . . . . . . .  

10% 

$4,795 
2,413 
1,619 
1,221 

983 
824 
711 
625 
559 
506 
346 
266 
186 
145 
120 

VALUE OF INITIAL RISK RESERVE WITH PROBABILITY OF RUIN: 

5% I %  

$9,619 
4,855 
3,267 
2,473 
1,996 
1,678 
1,451 
1,281 
1,148 
1,042 

724 
564 
404 
323 
275 

.1% 

$14,445 
7,299 
4,916 
3,725 
3,010 
2,534 
2,193 
1,938 
1,739 
1,580 
1,103 

864 
624 
504 
431 

$6,247 
3,148 
2,114 
1,598 
1,288 
1,081 

933 
822 
736 
667 
460 
356 
251 
198 
166 

.01% 

$19,272 
9,743 
6,567 
4,978 
4,025 
3,390 
2,936 
2,596 
2,331 
2,119 
1,483 
1,164 

845 
685 
589 

TABLE 6 

R U I N  F U N C T I O N  ANALYSIS 
M O D E L  C O M P A N Y  D A T A  W I T H  G A M M A  D I S T R I B U T I O N  

$200,000 RETENTION, INFINITE TIME PERIOD 

(Results in $1,000s) 

SECURITY LOADING 

AS A PERCENTAGE 

OF MEAN CLAIMS 

2 . . . . . . . . . . . . . . . . . .  

3 . . . . . . . . . . . . . . . . . .  

4 . . . . . . . . . . . . . . . . . .  

5 . . . . . . . . . . . . . . . . . .  

6 . . . . . . . . . . . . . . . . . .  

7 . . . . . . . . . . . . . . . . . .  

8 . . . . . . . . . . . . . . . . . .  

9 . . . . . . . . . . . . . . . . . .  

10 . . . . . . . . . . . . . . . . .  
15 . . . . . . . . . . . . . . . . .  
20 . . . . . . . . . . . . . . . . .  
30 . . . . . . . . . . . . . . . . .  
40 . . . . . . . . . . . . . . . . .  
50 . . . . . . . . . . . . . . . . .  

VALUE OF INITIAL RISK RESERVE WITH PROBABILITY OF RUIN: 

I %  .1% 

$12,420 $18,661 
6,283 9,455 
4,237 6,386 
3,214 4,852 
2,600 3,931 
2,190 3,317 
1,898 2,878 
1,678 2,549 
1,507 2,293 
1,370 2,088 

960 1,472 
754 1,164 
546 854 
441 698 
377 603 

10% 5% 

$6,184 $8,060 
3, I 15 4,068 
2,092 2,737 
1,580 2,07 I 
1,273 1,671 
1,068 1,405 

922 1,215 
812 1,072 
726 96 I 
658 87 I 
452 604 
348 469 
243 334 
190 265 
157 222 

~01% 

$24,904 
12,630 
8,538 
6,492 
5,264 
4,446 
3,861 
3,422 
3,08 I 
2,807 
1,987 
1,577 
1,164 

957 
831 

461 
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Although these general trends are logical, they do not lend credence to 
the ruin function as an accurate method of measuring the risk of ruin due 
to random claims. This can only be done by comparing the results to 
other statistical methods. 

V. DISTRIBUTION THEORY 

As was mentioned previously, another method of measuring the risk of 
adverse claims experience is to use the distribution branch of  collective 
risk theory. Again, this method uses the same sort of in-force data as was 
used for calculating the parameters for the gamma distribution approxi- 
mation to the ruin function. However,  the distribution theory looks only 
at various levels of  adverse claims experience for one year 's  claims. 

There are several methods for utilizing the distribution branch of risk 
theory for a problem such as this. One of the most recent methods is a 
compound Poisson method presented by Mr. Harry H. Panjer in his paper, 
"The Aggregate Claims Distribution and Stop-Loss Reinsurance" [20]. 

Table 7 summarizes the results from the model company using the Panjer 
method. Several things should be pointed out: 

1. The method looks at one year's claims and calculates the extra reserve, an 
amount in excess of the mean claim amount, that should be established for 
various confidence limits. A 99 percent confidence limit indicates that there is 
one chance in 100 that the aggregate claims will exceed the confidence amount 
plus the mean claim amount. 

2. The results using the Panjer method are dependent on the number of policies 
in force. This is unlike the infinite time horizon ruin function, which is inde- 
pendent of the policy count. 

3. The results assume an unlimited retention limit. 
4. The Panjer distribution theory does not examine the probability of ruin at each 

point in time. It looks at claims and excess claims at discrete points in time 
rather than continuously. That is, under the distribution theory approach, the 
company may appear solvent even though points of insolvency exist between 
the discrete points in time examined. 

5. If the confidence limits numbers from the table can be thought of as a risk 
reserve, the method ignores the infusion of additional surplus from the security 
loads built into gross premiums. 

To be consistent with the previously given ruin function tables, the table 
heading is labeled "probability of ruin" rather than "confidence limit." 
Because the distribution theory is a function of the number of policies 
studied, Table 7 summarizes the results for various portfolio sizes. 

Some important items can be pointed out from the table. First, the risk 
reserve increases when going from the 2,400 policy case to the 24,000 
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TABLE 7 

D I S T R I B U T I O N  T H E O R Y  A N A L Y S I S  

MODEL COMPANY DATA USING PANJER METHOD 
UNLIMITED RETENTXON, ONE YEAR'S CLAIMS 

(Results in $1,000s) 

463 

MEAN 

CLAIM 

AMOUNT 

VALUE OF RISK RESERVE WITH PROBABILITY OF RUIN:* 
NUMBER OF 

POLICIES 10% 5% I% .1% .01% 

2,400 $ 80 $ 81 $ 136 $ 285 $ 962 $1,112 
24,000 802 3,224 3,507 4,090 4,840 5,527 
240,000 . . . . . . . . .  8,020 1,068 1,435 2,179 3, I 01 3,931 

* The probability of ruin represents the probability that aggregate claims for the year will 
exceed the risk reserve given plus the mean claim amount. 

policy case but declines in going from the 24,000 policy case to the 240,000 
policy case. The principal reason for the increase in going from the 2,400 
policy case to the 24,000 policy case is the tenfold increase in the mean 
claim amount. The principal reason for the decline in the risk reserve in 
going from the 24,000 policy case to the 240,000 policy case is that as the 
sample size increases to very large amounts,  the confidence limits ap- 
proach the mean claim amount. If the model had an infinitely large number 
of policies, then the risk reserve under this method would become zero 
as the probability of aggregate claims exceeding the mean claim amount 
becomes zero. 

Second, the risk reserve amount does increase monotonically as the 
probability of ruin declines. 

Third, a comparison of the results in Table 7 to the unlimited retent ion-  
infinite time period ruin function results presented in Table 2 indicates 
that, at a 1 percent probability of ruin, the risk reserve using the Panjer 
method for the 24,000 policy case compares to the risk reserve assuming 
a security loading of 5 - 6  percent. For the company of  medium to large 
size, the infinite time period ruin function appears to produce reasonable 
results based on the Panjer method. However,  the method appears to 
overstate the risk reserve for a small company. 

V1. EXPONENTIAL FUNCTION 

Thus far the use of the gamma distribution approximation to the ruin 
function has required as much in-force detail as the Panjer method. The 
principal advantages to the use of the ruin function over  the Panjer method 
are (1) the ruin function examines insolvency continuously rather than 
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discretely, and (2) the ruin function can be viewed over an infinite time 
horizon versus looking at claims in one-year increments. 

The next step with regard to an analysis of the applicability of the ruin 
function is tO determine if there are any simplifying assumptions that can 
be made. In particular, are there any general assumptions that can be 
made with regard to the shape of the distribution P(z) such that reasonable 
risk reserve results can be generated utilizing limited policy data such as 
found in the NAIC convention blank? If this were possible, then the 
questions with regard to surplus requirements and retention limits could 
be answered without requiring detailed policy data, the compiling of which 
is time-consuming and expensive. It should be emphasized that the gamma 
distribution is still assumed to be a reasonable approximation to the ruin 
function; the remaining goal is to find an easy way to estimate the first 
three moments of P(z). 

One suggested simplifying assumption is that the function P(z), the 
probability density function of claim size, given that a claim has occurred, 
can be approximated by an exponential function. If a function fix) is 
exponential in form, it can be generalized by 

f(x) = 13e-~. 

A detailed analysis of this assumption is given in the mathematical ap- 
pendix to this paper, but from a practical point of view it implies that 
what is needed for the ruin function analysis is the average policy size 
and a retention limit assumption. 

Based on the exponential assumption and the model insurance company 
average policy size, initial risk reserve amounts were constructed com- 
parable to the original gamma distribution results. Tables 8-12 use the 
exponential assumption in the gamma approximation to the ruin function 
over an infinite time horizon at several retention limits. 

A comparison of the results using an exponential distribution/gamma 
method and the full model detail using the gamma method is both en- 
couraging and discouraging. The discouraging part arises because the 
results appear to be incompatible under the higher retention limit sce- 
narios. This indicates that the exponential assumption is inappropriate for 
the model company on an unlimited retention basis. The principal reason 
for this is that the exponential function does not give adequate weight to 
the very large policy sizes. The results may also imply that the exponential 
assumption is inappropriate for most standard insurance companies. 

The encouraging part is that the results assuming a smaller retention 
limit are much more compatible. Obviously part of the reason is that the 
low retention limits remove much of the weight that would be applied to 



TABLE 8 

RUIN FUNCTION ANALYSIS 
EXPONENTIAL CLAIM AMOUNT DISTRIBUTION, GAMMA DISTRIBUTION 

UNLIMITED RETENTION, INFINITE TIME PERIOD 

(Results in $1,000s) 

SECURITY LOADING 

AS A PERCENTAGE 

OF MEAN CLAIMS 

2 . . . . . . . . . . . . . . . . . . .  

3 . . . . . . . . . . . . . . . . . . .  

4 . . . . . . . . . . . . . . . . . . .  

5 . . . . . . . . . . . . . . . . . . .  

6 . . . . . . . . . . . . . . . . . . .  

7 . . . . . . . . . . . . . . . . . . .  

8 . . . . . . . . . . . . . . . . . . .  

9 . . . . . . . . . . . . . . . . . . .  

10 . . . . . . . . . . . . . . . . . .  
15 . . . . . . . . . . . . . . . . . .  
20 . . . . . . . . . . . . . . . . . .  
30 . . . . . . . . . . . . . .  : . .  
40 . . . . . . . . . . . . . . . . . .  
50 . . . . . . . . . . . . . . . . . .  

VALUE OF INITIAL RISK RESERVE WITH PROBABILITY OF RUIN;  

i% .1% 

$5,573 $8,366 
2,808 4,218 
1,887 2,836 
1,426 2,145 
1,149 1,730 

965 1,453 
833 1,256 
734 1,107 
657 I 992 
596 900 
411 623 
319 485 
226 346 
179 276 
151 234 

1o~ 5% 

$2,781 $3,621 
1,398 1,823 

937 1,223 
707 923 
568 743 
476 623 
410 537 
361 473 
322 423 
292 383 
199 263 
153 203 
106 142 
83 112 
68 93 

.01% 

$11,159 
5,629 
3,785 
2,863 
2,310 
i,942 
!,678 
1,481 
1,327 
1,204 

835 
65O 
466 
373 
317 

"FABLE 9 

RUIN FUNCTION ANALYSIS 
EXPONENTIAL CLAIM AMOUNT DISTRIBUTION, GAMMA DISTRIBUTION 

$25,000 RETENTION, INFINITE TIME PERIOD 

(Results in $1,000s) 

SECURITY LOADING 

AS A PERCENTAGE 

OF MEAN CLAIMS 

2 . . . . . . . . . . . . . . . . . . .  

3 . . . . . . . . . . . . . . . . . .  

4 . . . . . . . . . . . . . . . . . .  

5 . . . . . . . . . . . . . . . . . .  

6 . . . . . . . . . . . . . . . . . .  

7 . . . . . . . . . . . . . . . . . .  

8 . . . . . . . . . . . . . . . . . .  

9 . . . . . . . . . . . . . . . . . .  

10 . . . . . . . . . . . . . . . . .  
15 . . . . . . . . . . . . . . . . .  
20 . . . . . . . . . . . . . . . . .  
30 . . . . . . . . . . . . . . . . .  
4 0  . . . . . . . . . . . . . . . . .  

50 . . . . . . . . . . . . . . . . .  

IO~ 

$1,954 
982 
657 
495 
398 
333 
287 
252 
225 
203 
138 
106 
73 
57 
47 

VALUE OF INITIAL RISK RESERVE WITH PROBABILITY OF RUIN~ 

5% 1% 

$3,912 
1,967 
1,319 

995 
800 
671 
578 
509 
455 
411 
282 
217 
152 
119 
99 

.1% 

$5,870 
2,953 
1,98o 
1,494 
1,2o2 
1,008 

$2,544 
1,278 

857 
646 
519 
435 
375 
329 
294 
266 
182 
139 
97 
76 
63 

.o1% 

$7,828 
3,938 
2,641 
1,993 
1,6o4 
1,344 

869 1,159 
765 1,02o 
683 912 
619 826 
424 566 
327 436 
229 307 
18o i 242 
151 I 203 

4 6 5  



TABLE 10 

RUIN FUNCTION ANALYSIS 
EXPONENTIAL CLAIM AMOUNT DISTRIBUTION, GAMMA DISTRIBUTION 

$50,000 RETENTION, INFINITE TIME PERIOD 

(Results in $1,000s) 

SECURITY LOADING 

AS A PERCENTAGE 

OF MEAN CLAIMS 

2 . . . . . . . . . . . . . . . . . .  

3 . . . . . . . . . . . . . . . . . .  

4 . . . . . . . . . . . . . . . . . .  

5 . . . . . . . . . . . . . . . . . .  

6 . . . . . . . . . . . . . . . . . .  

7 . . . . . . . . . . . . . . . . . .  

8 . . . . . . . . . . . . . . . . . .  

9 . . . . . . . . . . . . . . . . . .  

10 . . . . . . . . . . . . . . . . .  
15 . . . . . . . . . . . . . . . . .  
20 . . . . . . . . . . . . . . . . .  
30 . . . . . . . . . . . .  . . . . .  
40 . . . . . . . . . . . . . . . . .  
50 . . . . . . . . . . . . . . . . .  

IO% 

$2,597 
1,305 

874 
659 
530 
444 
382 
336 
300 
271 
185 
142 
98 
77 
63 

VALUE OF INITIAL RISK RESERVE WITH PROBABILITY OF RUIN:  

5% I% 

$5,202 
2,619 
1,758 
1,327 
1,069 

897 
774 
681 
610 
552 
380 
293 
207 
164 
137 

.1% 

$7,808 
3,933 
2,641 
1,995 
1,608 
1,349 
1,165 
1,026 

919 
833 
574 
445 
315 
250 
211 

$3,381 
1,70 I 
1,140 

860 
692 
580 
500 
440 
393 
356 
244 
188 
131 
103 
86 

.o1% 

$10,413 
5,246 
3,524 
2,663 
2,146 
1,802 
1,556 
1,371 
1,228 
1,113 

768 
596 
423 
337 
285 

TABLE t 1 

RUIN FUNCTION ANALYSIS 
EXPONENTIAL CLAIM AMOUNT DISTRIBUTION, GAMMA DISTRIBUTION 

$100,000 RETENTION, INFINITE TIME PERIOD 

(Results in $1,000s) 

SECURITY LOADING 

AS A PERCENTAGE 

OF MEAN CLAIMS 

I ° ~  . . . . . . . . . . . . . . . .  

2 . . . . . . . . . . . . . . . . . .  

3 . . . . . . . . . . . . . . . . . .  

4 . . . . . . . . . . . . . . . . . .  

5 . . . . . . . . . . . . . . . . . .  

6 . . . . . . . . . . . . . . . . . .  

7 . . . . . . . . . . . . . . . . . .  

8 . . . . . . . . . . . . . . . . . .  

9 . . . . . . . . . . . . . . . . . .  

10 . . . . . . . . . . . . . . . . .  
15 . . . . . . . . . . . . . . . . .  
20 . . . . . . . . . . . . . . . . .  
30 . . . . . . . . . . . . . . . . .  
40 . . . . . . . . . . . . . . . . .  
50 . . . . . . . . . . . . . . . . .  

10% 

$2,775 
1,395 

935 
705 
567 
475 
409 
360 
322 
291 
199 
152 
106 
82 
68 

VALUE OF INITIAL RISK RESERVE WITH PROBABILITY OF RUIN:  

5% 1% 

$5,562 
2,802 
1,882 
1,422 
1,146 

962 
831 
732 
656 
594 
410 
318 
225 
179 
151 

.1% 

$8,349 
4,209 
2,829 
2,140 
1.726 
1,450 
1,252 
1,105 

989 
897 
621 
483 
344 
275 
233 

$3,614 
1,819 
1,220 

921 
742 
622 
536 
472 
422 
382 
262 
2O2 
142 
I11 
93 

.01% 

$11,114 
5,616 
3,777 
2,857 
2,305 
1,937 
1,674 
1,477 
1,323 
! ,201 

832 
648 
464 
371 
316 

466 
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TABLE 12 

R U I N  F U N C T I O N  A N A L Y S I S  

E X P O N E N T I A L  C L A I M  A M O U N T  D I S T R I B U T I O N ,  G A M M A  D I S T R I B U T I O N  

$ 2 0 0 , 0 0 0  R E T E N T I O N ,  I N F I N I T E  T I M E  P E R I O D  

(Results in $1,000s) 

467 

SECURITY LOADING [ VALUE OF INITIAL RISK RESERVE WITH PROBABILITY OF RUIN: 
! 

AS A PERCENTAGE 
OF MEAN CLAIMS 10~b 5°~ I% . ]~o .0I~b 

2 . . . . . . . . . . . . . . . . . .  

3 . . . . . . . . . . . . . . . . . .  

4 . . . . . . . . . . . . . . . . . .  

5 . . . . . . . . . . . . . . . . . .  

6 . . . . . . . . . . . . . . . . . .  

7 . . . . . . . . . . . . . . . . . .  

8 . . . . . . . . . . . . . . . . . .  

9 . . . . . . . . . . . . . . . . . .  
10 . . . . . . . . . . . . . . . . .  
15 . . . . . . . . . . . . . . . . .  
20 . . . . . . . . . . . . . . . . .  
30 . . . . . . . . . . . . . . . . .  
40 . . . . . . . . . . . . . . . . .  
5 0  . . . . . . . . . . . . . . . . .  

$2,781 $3,621 
1,398 1,823 

937 1,223 
707 923 
568 743 
476 623 
410 537 
361 473 
322 423 
292 383 
199 263 
153 203 
106 142 
83 112 
68 93 

$5,573 $8,366 
2,808 4,218 
1,886 2,836 
1,426 2,145 
1,149 1,730 

965 1,453 
833 1.256 
734 1,107 
657 992 
596 900 
411 623 
319 485 
226 346 
179 276 
151 234 

$11,159 
5,629 
3,785 
2,863 
2,310 
1,942 
1,678 
1,48 I 
1,327 
1,204 

835 
650 
466 
373 
317 

the relatively few larger amount policies. If the retention limit being tested 
is relatively small ($25,000-$50,000) or the nature of the company's  busi- 
ness is to issue smaller policies (less than $100,000), the exponential as- 
sumption may be reasonable and only data found in the annual statement 
are required. 

Further, if the actuary did not have the facility for a detailed in-force 
analysis or felt such an analysis would not warrant the expense,  he might 
elect the exponential assumption realizing the results would not be as 
accurate as a more detailed model. 

VII.  F I N I T E  TIME RUIN FUNCTION ANALYSIS 

Thus far, approximations to the ruin function have been viewed only 
over an infinite time horizon. An actuary might think that this is too 
conservative. Therefore, the question remains, can reasonable results be 
generated using some finite time period? The reader should be reminded 
that the time period is expressed in operational time, not in calendar time. 
A conversion from operational time to calendar time can be made by 
dividing the total operational units to be studied by the expected opera- 
tional units in one calendar year. The expected operational units in one 
year is the expected number of  claims in a year. 
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An approach to this question was suggested by Mr. Beekman and Mr. 
Bowers in their paper, "An Approximation to the Finite Time Ruin Func- 
tion" [l l, 12]. The results of using the Beekman-Bowers approximations 
for finite time intervals are summarized in Tables 13-16. The approxi- 
mation was applied assuming an unlimited retention limit for calendar- 
year periods of one, five, ten, and twenty years. 

Some anomalies occur that raise doubts concerning the reasonableness 
of the approximation, particularly when viewed over a short time period 
or at high probabilities of ruin. One of the anomalies is that the initial risk 
reserve, assuming a particular probability of ruin, first decreases but later 
increases as the security loading is increased. More reasonable results 
appear for the ten- and twenty-calendar-year scenarios with probabilities 
of ruin of 1 percent or less. 

The reader should be cautioned with regard to the results of this method 
because of the inconsistencies in the reserve amounts and the limits posed 
by the use of operational time. With regard to the limits of operational 
time, the reader should be aware of the differences in operational time 
by company size. That is, the larger the company, the more units of 
operational time in one calendar year. The greater the number of units of 
operational time studied, the more the method approaches the infinite 
time situation and the more the results appear reasonable. 

TABLE 13 

R U I N  F U N C T I O N  A N A L Y S I S  

M O D E L  C O M P A N Y  D A T A  W I T H  G A M M A  D I S T R I B U T I O N  

U N L I M I T E D  R E T E N T I O N ,  O N E  C A L E N D A R  Y E A R  

(Results in $1.000s) 

SECURITY LOADING I VALUE OF INITIAl. RISK RESERVE WITH PROBABILITY OF RUIN: 
I AS A PERCENTAGE I 

OF MEAN CLAIMS 10~ 5% I% ' .1• .01% 

2 . . . . . . . . . . . . . . . . . .  

3 . . . . . . . . . . . . . . . . . .  

4 . . . . . . . . . . . . . . . . . .  

5 . . . . . . . . . . . . . . . . . .  

6 . . . . . . . . . . . . . . . . . .  

7 . . . . . . . . . . . . . . . . . .  

8 . . . . . . . . . . . . . . . . . .  

9 . . . . . . . . . . . . . . . . . .  

10 . . . . . . . . . . . . . . . . .  
15 . . . . . . . . . . . . . . . . .  
2 0  . . . . . . . . . . . . . . . . .  

3 0  . . . . . . . . . . . . . . . . .  

4 0  . . . . . . . . . . . . . . . . .  

50 . . . . . . . . . . . . . . . . .  

$403 
264 
183 
151 
143 
146 
154 
165 
177 
188 
233 
255 
259 
242 
219 

$561 
497 
422 
386 
375 
377 
386 
398 
409 
420 
453 
459 
435 
399 
363 

$ 943 
1,180 
1,212 
1.211 
1.206 
1,200 
I, 194 
1,186 
1.177 
1.166 
1,099 
1.029 

906 
813 
743 

$1,512 
2,326 
2,624 
2,729 
2,745 
2,718 
2,669 
2,610 
2,546 
2,482 
2,187 
1,959 
1,653 
1,464 
1,336 

$2,092 
3,564 
4,184 
4,422 
4.466 
4,412 
4,311 
4,188 
4,057 
3,927 
3,361 
2,952 
2,439 
2,145 
1,959 



TABLE 14 

R U I N  F U N C T I O N  A N A L Y S I S  

M O D E L  C O M P A N Y  D A T A  W I T H  G A M M A  D I S T R I B U T I O N  

U N L I M I T E D  R E T E N T I O N ,  F I V E  C A L E N D A R  Y E A R S  

(Results in $1,000s) 

SECURITY LOADING 
AS A PERCENTAGE 
OF MEAN CLAIMS 

2 . . . . . . . . . . . . . . . . . .  
3 . . . . . . . . . . . . . . . . . .  
4 . . . . . . . . . . . . . . . . . .  
5 . . . . . . . . . . . . . . . . . .  

6 . . . . . . . . . . . . . . . . . .  
7 . . . . . . . . . . . . . . . . . .  
8 . . . . . . . . . . . . . . . . . .  
9 . . . . . . . . . . . . . . . . . .  
10 . . . . . . . . . . . . . . . . .  
15 . . . . . . . . . . . . . . . . .  
20 . . . . . . . . . . . . . . . . .  
30 . . . . . . . . . . . . . . . . .  
40 . . . . . . . . . . . . . . . . .  
50 . . . . . . . . . . . . . . . . .  

10% 

$51 I 
316 
355 
437 
513 
573 
616 
643 
657 
603 
619 
539 
404 
317 
259 

V A L U E  OF I N I T I A L  RISK RESERVE W I T H  PROBABILITY OF R U I N :  

5% I% 

$2,682 
2,702 

• 2,673 
2,618 
2,536 
2,439 
2,335 
2,232 
2,131 
2,035 
1,649 
1,390 
1,082 

908 
797 

.1% 

$5,506 
6,177 
5,946 
5,541 
5,122 
4,736 
4,39 I 
4,086 
3,819 
3,583 
2,763 
2,299 
1,811 
1,554 
1,393 

$1,044 
833 
876 
956 

1,018 
1,055 
1,072 
1,072 
1,062 
1,044 

914 
784 
599 
485 
410 

. 0 1 %  

$ 8,589 
10,067 
9,590 
8,752 
7,93 I 
7,206 
6,583 
6,051 
5,596 
5,205 
3,913 
3,233 
2,561 
2,222 
2,012 

TABLE 15 

R U I N  F U N C T I O N  A N A L Y S I S  

M O D E L  C O M P A N Y  D A T A  W I T H  G A M M A  D I S T R I B U T I O N  

U N L I M I T E D  R E T E N T I O N ,  T E N  C A L E N D A R  Y E A R S  

(Results in $1,000s) 

SECURITY LOADING 
AS A PERCENTAGE 
OF MEAN CI_AIMS 

2 . . . . . . . . . . . . . . . . . .  

3 . . . . . . . . . . . . . . . . . .  

4 . . . . . . . . . . . . . . . . . .  

5 . . . . . . . . . . . . . . . . . . .  

6 . . . . . . . . . . . . . . . . . . .  

7 . . . . . . . . . . . . . . . . . . .  

8 . . . . . . . . . . . . . . . . . . .  

9 . . . . . . . . . . . . . . . . . .  

I 0  . . . . . . . . . . . . . . . . .  

15  . . . . . . . . . . . . . . . . . .  

20 . . . . . . . . . . . . . . . . . .  
30 . . . . . . . . . . . . . . . . . .  
4 0  . . . . . . . . . . . . . . . . . .  
5 0  . . . . . . . . . . . . . . . . . .  

10% 

$520 
492 
666 
814 
905 
949 
961 
951 
928 
897 
720 
577 
408 
317 
259 

V A L U E  OF I N I T I A l .  RISK RESERVE W I T H  PROBARII . ITY OF R U I N :  

5% le/~, 

$3.839 
3,788 
3,666 
3,469 
3,241 
3,014 
2,800 
2,606 
2,432 
2,277 
1,735 
1,422 
1.086 

909 
797 

. l~r 

$8.517 
8,474 
7.608 
6,743 
5,997 
5,371 
4,85 I 
4,418 
4.056 
3,754 
2,80 I 
2,314 
1,814 
1,554 
1.393 

$ 1.268 
1,228 
1,395 
1,498 
1,531 
1,517 
1,476 
1,421 
1,359 
1,295 
1,016 

823 
603 
485 
410 

.01% 

$13,719 
13,692 
I 1,919 
10,269 
8,926 
7,852 
6,99 I 
6,297 
5,733 
5,272 
3,890 
3,225 
2,562 
2,222 
2,012 

469 
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TABLE 16 

R U I N  F U N C T I O N  A N A L Y S I S  

M O D E l .  C O M P A N Y  D A T A  W I T H  G A M M A  D I S T R I B U T I O N  

U N L I M I T E D  R E T E N T I O N ,  T W E N T Y  C A L E N D A R  Y E A R S  

(Results in $1,000s) 

SECURITY LOADING 

AS A PERCENTAGE 

OF MEAN CLAIMS 

IO~ . . . . . . . . . . . . . . . .  

2 . . . . . . . . . . . . . . . . . .  

3 . . . . . . . . . . . . . . . . . .  
4 . . . . . . . . . . . . . . . . . .  

5 . . . . . . . . . . . . . . . . . .  

6 . . . . . . . . . . . . . . . . . .  

7 . . . . . . . . . . . . . . . . . .  

8 . . . . . . . . . . . . . . . . . .  

9 . . . . . . . . . . . . . . . . . .  

I 0  . . . . . . . . . . . . . . . . .  

15 . . . . . . . . . . . . . . . . .  

20 . . . . . . . . . . . . . . . . .  
30 . . . . . . . . . . . . . . . . .  
40 . . . . . . . . . . . . . . . . .  
50 . . . . . . . . . . . . . . . . .  

VALUE OF INITIAL RISK RESERVE WITH PROI~ABILITY OF RUIN: 

I% .1% 

$5,404 $12,374 
5,214 10,901 
4,789 9,106 
4,298 7,661 
3,836 6,544 
3,434 5,686 
3,094 5,023 
2,812 4,508 
2,577 4,102 
2,380 3,777 
1,754 2,805 
1,426 2,315 
1,086 1,814 

909 1,554 
797 1,393 

10% 5% 

$ 628 $1,662 
920 1,955 

1,220 2,157 
1,355 2,164 
1,378 2,073 
1,340 1,942 
1,272 1,802 
1,193 1,667 
1, I 13 1,543 
1,036 1,43 ! 

747 1,042 
581 827 
408 603 
317 485 
259 410 

.01% 

$20,181 
17,134 
13,728 
11,202 
9,361 
8,007 
6,999 
6,239 
5,655 
5,197 
3,874 
3,223 
2,562 
2,222 
2,012 

One additional item from the Beekman-Bowers paper should be pointed 
out. The authors prove a theorem which places an upper limit on the 
value of the ruin function. Briefly put, if +(u, 7) is the: probability of ruin 
given initial reserve u and over  finite operational time period T, then 

+(u, 7)<p_~T, 

where Pz is the second moment of P(z) and u > 0. 

VIII.  OT HE R  CONSIDERATIONS 

In addition to the matters discussed in earlier sections, there are several 
items that should be addressed. 

First, the results ignore the reserves released by death. That is, the risk 
reserves shown in the tables are conservative because they do not reflect 
that part of the face amount paid at death arises from the release of the 
reserve underlying the policy. One possible approximation to this quantity 
might be derived by taking the ratio of the reserves released by death 
from page 6 of the annual statement to claims incurred before reinsurance 
from Exhibit 11. One minus this ratio times the risk reserve might be 
thought of  as the net risk reserve. 

Second, the effects of interest were ignored. A zero interest rate is a 
simplifying and conservative assumption. 
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Third, the savings in reinsurance premiums were neglected. If a com- 
pany increases its retention limit, an allocation of  surplus is required to 
reserve for adverse claims fluctuation with regard to the additional risk. 
However,  the cost of the allocation of surplus should be reduced by the 
loading portion of the additional reinsurance premiums that it would have 
paid if it had not increased its retention limit. 

In conclusion, the ruin function can be an effective tool for measuring 
contingency surplus and retention limit requirements,  provided the ac- 
tuary understands and appreciates the limitations of the methods employed. 

MATHEMATICAL APPENDIX 

APPROXIMATION OF THE RUIN FUNCTION BY USE OF THE 
INCOMPLETE GAMMA DISTRIBUTION 

Probability of ruin ~(u)given an initial risk reserve of u and security 
loading of k = 0pl (0 = a percentage, P l = the expected amount of a 
claim, given that a claim occurs): I 

° 

where 

F(o0 = The complete gamma function = l ;  t~- 'e- 'd t ;  

2p3 + P2 , 

p,  = nth moment of  the distribution of  the amount of claim, 
given that a claim occurs. 

The initial integral shown above can be calculated by the following 
procedure. 

The integral is standardized to the following: 

; t "  'e 'dt ,  x = u/f3. 

This integral is solved by two methods, the choice depending on whether  
x is greater or less than o~ + 5. (This relationship was found to yield 
acceptable convergence for each method after some testing.) 

i John  A. B e e k m a n  [8]. 
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1. Series expansion (x < et + 5): 

t ~ ' e - ' d t  = e-.3 + a (a  + 1) -t ct(ct + 1)(et + 2) . . . .  

2. Continued fraction (x/> a + 5): 

f~ Ix  I l - a  l 2 - a  I ] 
t ~ - t e - ' d t = e - x x ~  1 +  x +  l +  x +  . . . .  

The fraction 

1 l - e t  1 2 - e t  1 ] 

x +  1+ x +  1+ x +  

is calculated by the method of convergents and is equal to the kth con- 
vergent when P k / q ~  = p ~ -  ~/Ch_,  within a specified degree of tolerance. Let 

d 2 .  , = m - c t ,  d2m +, = m ;  

po=0,  qo = 1, Pl = 1, ql =x;  

then the convergents are calculated recursively by the following formula 
for m = 1, 2, 3 . . . k :  

P2 . ,  = P z . , -  , + d2.d92,~-  z; 

q z . ,  = q z m - ,  + d2,,,q2.,- 2; 

P Z m  + I = x P 2 , .  + d 2 m  + IP2,,, - I ; 

qz m  +, = x q 2 . ,  + d2. ,  + I q z , , , -  , .  

To calculate u for a given value of 6(u), the following iterative formula 
was derived based on the initial formula using Newton 's  method. The 
starting value of  u was set equal to a l l  which is the expected value of 
aggregate claims. 

f 3 [ ( f ~ t " - ' e - t d t )  - ~(u,,)(l + 0)]F(ct) 
U,, U,, + 

+ l  
x "  - ' e - r 

FINITE TIME RUIN FUNCTION (GAMMA METHOD)-' 

This method approximates the function O(u, /3 (the probability of ruin 
within T units of  operational time given an initial risk reserve of u). Note: 
operational time is the average interval between claims; thus, one year 
of real time would equal the expected number of claims in a year 's  units 
of operational time. 

z John A. Beekman and Newton L. Bowers [ l l ] .  
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The method  proceeds  to deve lop  et, [3, and P(Zr  = 0). Then  

, ( u , T ) = [ 1 - P ( Z r = O ) ]  . ~ d t  . 

The above  formula  is calculated by the method  shown previously.  It 
should be noted that when  T = 0% O(u) = 0~(u, T) and et and [3 equal  the 
ct and 13 defined in the initial formula ,  and I1 - P ( Z r  = 0)] = p,/(p,  + h). 

The following shows the deve lopmen t  o f  et, [3, and P ( Z r  = 0) for  the 
finite time gamma  method.  

0 = Securi ty loading percen tage ;  

p .  = nth momen t  o f  the amount  o f  a claim given that  a claim occurs ;  

h =Op,; 

A = 1 - e-8.~°; 

B A ( p 2 - 2 k p , ) ,  

a, = I/2[,4 + ~/(A 2 - 4B)]; 

et2 = V2[A - X/ (A 2 - 4B)]; 

p, - oqpJ2k 
C2- V(A~- 4B)' 

C , =  - C  - P ~ -  
2 2k' 

C,=P3  + P~. 
3h 2h 2' 

p2-e t ,C3  
C, = ~ / ( a  2 _ 4B) '  

C . =  - C , - C , ;  

Bp212X - ctzp , 

C7 - (p, + h)X/(A 2 _ 4B)'  

Pl C~- - C~; 
p l + k  

E[Zr] = P2 + C,e-~,r  + C2e-~:r; 
2h 
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E[Z~] = C, + C,e-",T + C,e-Q~r; 

h 
P[Zr = O] = + C6e-"'T+ CTe-~2r; 

p l + h  

E[ZZr] E[Z,] 

13 = E-[-~r]r] (1 - P [ Z r = O ] ) '  

E[Zr] 
0 t - -  

13(1 - P [ Z , =  01)" 

GAMMA M E T H O D - - - E X P O N E N T I A L  DISTRIBUTION 

The following formulas show the development of the first three moments 
of  p, for use with the gamma method, based on an exponential distribution. 

R = Retention limit; 
1 (without regard to retention limit 

13= 
(Average policy size) restrictions); 

f ix )  = 13e -x~ (exponential distribution); 

p,= ffx13e-~dx + f~R13e-~dx 
1 e-nO 

13 1 3 '  

p2 = x 2 e-"~dx+ 2 e-~,~dx 

2 2Re  -Ra 2e-Ra 

132 13 132 , 

P3= f~x313e-x~dx + f~R'13e-x~dx 
6 3R2e - ~  6Re  -R~ 6e - ~  

133 13 f~2 133 

Exhibit 1 shows the function IGAM written in the APL language, which 
evaluates the incomplete gamma integral in the following form: 

1 f ;  p_te_,dt" 
F(oO 



[ 1 ]  
[ 2 ]  
[ 3 ]  
[ 4 ]  
[ 5 ]  
[ 6 ]  
[ 7 ]  
[ B ]  
{ 9 ]  
[ 1 0 ]  
[ 1 1 ]  
[ 1 2 ]  
[ 1 3 ]  
[ 1 4 ]  
[15] 
[16] 
[17] 
[18] 
[19] 
[20] 
[21] 
[22]  

E X H I B I T  I 

v z 4 . a  x o n M  : . : ; a l _ ; t ~ l . 1 ; : : l ; p ; c ~ ; M ; ~  2 

A g ' V ~ t U ~ T E S  T H E  ~ # . # C O M P I _ E T E  G ~ M b 4 ~  Z# .#TEGf i :AL  ~ E T W E ~ ' # . !  :.C ~ H T ,  X [ . # r Z t 4 Z T ' v '  F ' O R  ~ + ' 0  * 

R 
• " . , '4-0r , ' . '  R D O E S  H O T  ~ L L O W  ,'.,' ( 0 ,  

- ) ( ; . , . . ) . .a+5) / l~ l~ R ~ L L O W S  Ed~:aHCHII.JG TO *E~fi:* IF" X _ ) a ÷ 5 ,  
elL 14- ~t .4-~ 

--'. 2~ .z  1 ~. 0 
THE  P O L L O W I H G  LOOP C ~ L C U L ~ T E S  THE I H T E ~ R ~ L  ]~"r" SER:ZES E~.~P~HSZOIq, 

L O O P 1  : Zlt-Zl +, 0 0 0 0 0 0 0 1  x L ,  5 +  J 0 0 0 0 0 0 0 0 K  ( ( * - - "  ) x ( : ' : R A L )  ÷ ~ L 1  ) -  ~ ~ " 1  
-',~- 1 - - Z l  
" + 0 x t Z 2 = Z l  R ~RC~HCHES OUT OF LOOP I F  " '2="- '1  TO ~ D E C I M A L  F ' L A C E S ,  
z 2 ~ - Z l  

- )LOOP 1 

I,~: ,* P~-O ~ W~- 1 
04-1 ~ :,' 
R T H E  P O L L O W ~ H G  L O O P  C A L C U L A T E S  THE Z H T E G R A L  ~ty COI. ITZFtUE~ F ~ : ~ C T Z O H S ,  

LOOP 2 ; Z~--- 1 ~ Z  1 ~" * 0 0 0 0 0 0 0 1  X L ,  5 +  1 0 0 0 0 0 0 0 0  X ( F' + a  ) X ( ,  - ;< ) X ( ".c ~ ~ ) + ' A -  1 
" ~ 0 X | = / Z 1  R ~ R ~ H C H E S  OUT OF L O O P  I F  THE  L ~ S T  2 COHVER:GEHTS ~ : E  [ G U L L  TO ~ [ , E C I M ~ L  F ' L A C E S ,  

P ( - I ~ p ~  + / ( H p : < )  x P ( . I ~ p ~ + / p X  ( M - C t )  ~ 1 

M4-M+ 1 
~ L O O P  2 



476 PRACTICAL APPLICATIONS OF THE RUIN FUNCTION 

The func t ion  is dyadic  with the left a rgument  being the value of et and 
the right a rgumen t  be ing the value o fx .  The func t ion  el iminates  the need 
to use tables of  the incomple te  gamma  densi ty  funct ion  and greatly reduces  
the effort required  in apply ing  the methodology out l ined in the paper. 
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DISCUSSION OF PRECEDING PAPER 

J O H N  A. B E E K M A N :  

The authors of this paper have performed a great service by demonstrating 
uses of collective risk theory in the determination of the C-2 mortality risk 
reserve needed for individual life insurance business. 

Since the publication of references [8], [9], [11], [12], and [14] of the 
paper, there have been a number of articles written which have discussed 
the accuracy of the gamma function approximate method for computing 
+(u). The following contains my observations on those papers in addition 
to the present one. 

The results on E(Z) and Var(Z) derived in [7] were accurate, subject to 
the Poisson distribution for N(t), t>--O. It was acknowledged from the outset 
that the method was more accurate for O(u) than for ~(u, T). However, for 
a large portfolio, E{N(t)} could be 1,000 or so per year, justifying the use 
of the ~(u) technique. A key point is that some alternative techniques are 
so complicated that few practicing actuaries would use them. A very fine 
technique for approximating ~(u) developed by Olof Thorin and Nils Wiks- 
tad is introduced in [10], pages 74-76. However, to understand their method, 
the actuary should study the theory of functions of complex variables. One 
idea in the Thorin-Wikstad papers, which is helpful and can improve the 
accuracy of the gamma function methods, is to use a weighted sum of five 
exponential distributions, rather than a single exponential distribution, for 
P(z), the distribution of a single claim given that a claim has occurred. (See 
[10], 45, 46, 183, and 184.) 

Another convolution type series for O(u) is in [7], but it seemed to have 
little utility. It now appears to offer potential for practical calculations. Some 
approximations to the series, including error analyses and examples, are 
presented in: 

J. A. Beekman and C. P. Fuelling, "Risk Convolution Calculations," Scandinavian 
Actuarial Journal, 198 I, 151-64. 

J. A. Beekman, "Risk Convolution Calculations II," pages 19-30 of Premium Calcu- 
lation in Insurance, F. deVylder et al. (eds.), D. Reidel Publishing, Dordrecht, Hol- 
land, 1984. 

I am pleased that the authors applied the techniques of Harry Panjer to the 
same problem. Dr. Panjer's method is excellent and very helpful to the 
actuary. Section V of this paper is most valuable. 

479 
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The ruin function ideas can also be used in other settings. Dr. Clinton P. 
Fuelling and I used the same methods in modeling computer usage at our 
university. That paper ( " A  Stochastic Model of Computer Use,"  C. P. 
Fuelling and J. A. Beekman, Scandinavian Actuarial Journal, 1980, 43-  
52) also contained a simple algorithm for computing gamma distribution 
values. We join the authors in wanting to eliminate the need for using tables 
of the incomplete gamma density function. 

Collective risk theory has been studied for many years and includes beau- 
tiful mathematical work by Professor Harald Cramrr and other researchers. 
(See [6].) But the ultimate test of the theory is whether it will be used. This 
excellent paper by Reckin, Schwark, and Snyder assures me that it will. 

E L I A S  S . W .  SHIU:  

In applying the method described in the paper, one should keep four points 
in mind. First, as pointed out in section VIII of the paper, the rate of interest 
is assumed to be zero in the model. However, in individual life insurance 
the interest rate is usually a much more dominant factor than the mortality 
rates. Second, it seems doubtful that the concept of an "open"  group can 
be applied to individual life insurance. Indeed, H.L. Seal [11] concluded 
his note "The  Poisson Process: Its Failure in Risk Theory" with the state- 
ment: "Poisson, renewal and Ammeter point processes have never been 
shown to occur in actuarial work."  Third, the Beekman-Bowers approxi- 
mation may not be sufficiently accurate. Seal ([10], p. 62) wrote that he 
would be reluctant to recommend its use. H.U. Gerber ([7], p. 128) sug- 
gested that "unless c~ = 1 and 13 = 1/R, the relative error of this approx- 
imation may become considerable if u is very large." (Here R denotes the 
adjustment coefficient, not the retention limit as in the paper.) Fourth, no 
limit is imposed on the growth of the risk reserve ([6], p. 10). 

It should be pointed out that if the probability density function of claim 
size given that a claim has occurred, p(x), is exponential, the Beekman- 
Bowers approximation is exact ([1], p. 50). Let 

p(x) = be -°x, x >- O. 

It is easy to verify that 

1 + 0  
13- 

b0 

and 
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Hence, 

1 r ~ t ~-I e -ar~ 1 

1 + 0 J. F (o0~1 ~---------g d t -  1 +-----0 e-Ub°'O+°)" (1) 

On the other hand, we have the following exact formula ([3], equation 
(12.6.9)): 

f o  0 M x ( r ) -  1 
e u r ( - ~ '  (u))du - 1 + 0 1 + (1 + O)plr - Mx(r)" 

(2) 

Since M x  (r) = b/(b - r), we have 

1 
_ _  e-UbO#O +0) 

tb(u)- I + 0 

which is the right-hand side of equation (I). Thus the Beekman-Bowers 
approximation is exact when p(x)  is an exponential function. For details of 
the last calculation, see example 12.9 of [3]. 

A variant of formula (2) in queueing theory is called the Pollaczek-Khintchine 
formula ([9], p. 120). An elegant proof of it can be found in section 6 of  
[8]. We now give a proof of formula (2) which is perhaps more direct than 
the proof given in [3]. (Cf. [2], p. 272; [4], p. 149; [7], p. 114.) Assume 
that E(N(t))  = ht. The probability that the first claim shall occur at time t 
is ke-X'dt.  T h e  probability that this claim shall amount to x is p(x)dx .  The 
company is ruined by this claim if and only if 

x > u  + ct, 

where 

c = (1 + 0)Xp~. 

Thus, we have the integral equation 

So(r; s:+ @(u) = . @(u + ct - x )p (x )dx  + ct p ( x ) d x )  he  -x' dt. 

With the change of variable s = u + ct, this equation becomes 

s:(s; s: ) @(u) = _h @ ( s - x ) p ( x ) d x  + p (x )dx  e -x<"-">'< ds. 
c 
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Putting p = c/h and using the notation 

So ( f .  g)(z) = f(z-x)g(x)dx, z > O, 

we have 

p+(u) = e " p j ~ [ ( t ~ * p ) ( s )  + 1 - P(s)]e ,,Ods. 

Differentiating, we obtain the integro-diffential equation 

p+ ' (u)  = +(u) - [(t~ * p)(u) + 1 - P(u)l. (3) 

Let us multiply equation (3) by e r" and integrate with respect to u from 0 
to 0o. Integrating by parts, we have 

foer"t~(u)du= [ - O ( O ) + f o e r " ( - ~ ' ( u ) ) d u ] / r  

and 

Since 

we obtain 

~o e" (1 - P(u))du = [ -  1 + Mx(r)l/r. 

~o Mx(r ) -  1 (4) eru(-~'(u))du = (1 - t~(O)) 1 - Mx(r ) + pr" 

Hence formula (2) is proved if we can show that 

4(0) = l/(1 + 0). (5) 

To prove (5), consider equation (4) with r tending to zero. The left-hand 
side o f  (4) converges to 

- ~ o  O'(u)du = ~(0) - ~(~) 

= q,(o). 
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By L ' H 6 p i t a l ' s  Rule,  the r ight-hand side o f  (4) converges  to 

Since 

and 

(1 - 0 ( 0 ) )  
M'x (0) 

-M'x  (0) + p" 

M ~ ( 0 )  = Pl  

p =  (1 + 0)p,, 

formula (5) is proved.  
W e  now give another proof  of  (5) which might  be o f  pedagogical  interest  

since we are treating the convolut ion as the mult ipl icat ion opera tor  in a 
commuta t ive  ring. Consider  the convolut ion o f  (3) with the constant  function 
1: 

Since 

p ~ ' * l  = (~ - ~*p - 1 + P )* I  

= +*1 - ~ * p * l  - (1 - P ) * I .  

Or, 1)(u) = f(x)dx 

and P(0)  = 0 by  hypothesis ,  

p(dg(u) - ~(0)) = (dg ,  1)(u) - (~ * P)(u) - fo' 

= (~ • (1 - p ) ) ( u )  - yo' 

(1 - P(x))dx 

(1 - P(x))dr. (6) 

It can be shown that 

l im (qJ * (1 - P))(u) = 0; u---~oo 

thus 

f ~  
p(O - g,(o)) = o - J o  

= - - P l .  

(1 -- P(x))dx 
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Hence 

t~(O) = pl/p 

= l/(1 + 0) 

as required. We note that exercise 11 in chapter 12 of [3] is an immediate 
consequence of equations (5) and (6). 

In theory, formula (2) can be used to determine ~ for each given M x .  

The appendix gives an integral representation for t~, but such contour inte- 
grals can be difficult to evaluate. However, ifp is a finite sum of exponential 
functions, we can derive an elegant expression for d~ as follows. By the 
method of partial fractions, we have 

0 M x ( r ) -  1 = ~ C / r (  (7) 
1 + 0 1 + (1 + O)plr  - M x ( r )  i= I ri - r 

(see section 12.6 of [3]). Thus, by formula (2) 

~(U) = ~ Ci e-flu. (8)  
i=1 

To find the coefficient Cj,  multiply (7) by i)  - r and let r tend to rj. Since 

lim rj - r = - 1 
r---~rj 1 + (1 + O)plr  - M x ( r )  (1 + 0)p~ - M '  x (rj) '  

we obtain 

o r  

0 M x ( r j ) -  1 

1 + O ' M ' x  (rj) - (1 + 0)p~ = Cjrj ,  

Opl (9) Cj  = 
M ' x  (rj) - (1 + 0)pl 

Formula (9) can be found on page 82 of [5], where it is derived by the 
residue theorem. 

The following two relations can be useful for checking values. From 
equations (5) and (8) we immediately have 

1 - ~ C i .  
I + 0  i~l 
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Multiply (7) by r; since lira Mx(r) = 0, we obtain 
/,----~ - -  OO 

0 
-- ~ Ciri. 

(1 + 0)2pl i=l 

To conclude this discussion let me mention some references on ruin prob- 
abilities. Seal's book [10] is concerned with numerical probabilities of ruin 
in a finite time period for nonlife insurance companies. There are thirty- 
three pages of FORTRAN computer programs in its appendix. The book is 
supplemented by [12]. Thorin's paper [14] is a systematic review of his 
results on ruin probabilities. Its emphasis is on the calculation of the ruin 
probability for a finite time period by the Wiener-Hopf technique, under the 
assumption that the epochs of claims follow a renewal process. 

APPENDIX 

Denote the right-hand side of (2) by g(r). Since 

o eru d?(u)du = [-t~(0) + g(r)]/r, 

applying the complex inversion formula for the Laplace transformation ([13], 
chapter 7) gives 

I f~,+i~ 
~ ( u )  = ~-~ -,~ 

As 

-d~(O) + g(r) 
e-r"dr, a<0 .  (10) 

lim g(r) = 1/(1 + 0) 
r---~0 

= ~(0), 

the point r = 0 is a removable singularity. Thus formula (10) can be sim- 
plified as 

1 --Jc :+i= g(r) e -ru dr, 0 < c < R ,  
~J(U) = ~ -i~ 7 

where R is the adjustment coefficient. This formula is equation (118) of [5]. 
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(AUTHORS' REVIEW DISCUSSION) 

GEORGE E. RECK1N, DANIEL J. SCHWARK, AND JOHN B. SNYDER: 

We wish to thank Professors Beekman and Shiu for the thought provoking 
comments  outlined in their discussions. 

Professor Beekman has pointed with encouragement to several alternative 
ruin probability evaluation methods. These methods would appear to hold 
considerable promise in areas of  practical application. We would encourage 
all interested readers to investigate them more fully. It is unfortunate, how- 
ever, that so much of  the literature on this exciting subject is available only 
through foreign publications which are not often accessible to practicing 
actuaries. 

Professor Shiu raises some fine points concerning the accuracy of  the 
gamma approximation. We agree that ignoring interest in an infinite time 
ruin model is very conservative. In practice, however, we have found that 
the ruin technique still generates much higher feasible retention limits and 
lower risk reserve requirements than most insurance executives would com- 
fortably employ.  
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We disagree with Professor Shiu's comments concerning the inaccuracy 
of the Poisson process in a real insurance company. In this regard, Professor 
Beekman was kind enough to supply some unpublished data developed by 
the late David Halmstad concerning the accuracy of the Poisson assumption 
in a large life insurance company. The results of this study verified the 
accuracy of the Poisson assumption using chi-square tests. 

Professor Shiu also questions the accuracy of the Beekman-Bowers ap- 
proximation. Although the accuracy of the method cannot be proven in a 
purely mathematical sense, except under some restricted assumptions, our 
experience with this and other risk theory techniques indicates that the method 
remains very useful as a guide to working actuaries. Practical work in this 
area is as much art and politics as science, and no method can be ascribed 
full credibility. 

We hope that this paper and its discussion will encourage other actuaries 
to investigate and utilize the variety of statistical techniques that exist in this 
field. 




