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ABSTRACT 

The coefficients of the minimum-R e moving-weighted-average formulas 
are derived using matrix algebra and the method of Lagrange multipliers. 

I. INTRODUCTION 

Thirty-seven years ago Dr. T. N. E. Greville ([7], [8]) determined the 
coefficients of the symmetric and asymmetric minimum-Rz moving-weighted- 
average formulas by manipulating certain orthogonal polynomials. In this 
paper, we shall derive these coefficients using matrix algebra. An advantage 
of our matrix formula is that the coefficients can be easily obtained with 
APL. 

II. FORMULATION 

Consider the class of graduation formulas of the form 

UX ~ ~ n as'Ux+s. 
S= - - m  

Then 

n 

AZux ~ z ,, = a s ' A  ux+s 
s =  - m  

= a r K u x ,  

where a = ( a _  m . . . . .  ao . . . . .  an) r ,  
n tl n "~T 

( U x _ m ~  • . . ~ Ux~ • . . ~ U x + n + z l  

and K is the (m + 1 + n) row by (m + 1 + n + z) column differencing 
matrix of order z ([9], p. 51; [11], p. 43). For column vectors x and y, let 
the inner product xr~ be denoted by < x, y> .  Thus, 

AZux = < a ,  Ku--> 

= < K ' a ,  Ux • 
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The progression of the graduated values {ux} is considered to be smooth 
if their zth differences are numerically small ([9], p. 9). By the Cauchy- 
Schwarz inequality, 

laZuxl <-II alllluxll, 
where II II denotes the Euclidean norm. Hence, in general, if we minimize 
Ilgra_ll, we minimize IA uxl. 

A moving-weighted-average formula is usually required to reproduce 
polynomials up to, say, degree d. Let _t denote the column vector 
( ~ ,  1, 0, . ,,". , 0) T and for a polynomial p, let/2 denote (p( - m), 

. . . .  p (0) ,  . . . , p ( n ) ) r ;  it is thus required that 

< a , / ~ >  = < b / 2 >  

for all polynomials p of degree d or less. If P denotes the (n + 1 + m) by 
(1 + d) matrix l/~o/21 - • -/2d], where {Pi} is a basis for all polynomials of 
degree d or less, then the requirement becomes 

p T a  = PTt,. (1) 

III .  L A G R A N G E  M U L T I P L I E R S  

We now have the following 
PROBLEM: Minimize IIKr_all subject to equation (1). Observe that IIKr_all 2 = 
< l ( r a ,  K ' r a >  = (2~)R2, and the vector a that minimizes IIKrall 2 also mini- 
mizes IIKr_SII. (Also note that (2 i) = </(r_t, K'r_~>.) By the method of La- 
grange multipliers ([6], Appendix; [26], p. 9; [20], p. 73; [23], p. 87; cf. 
[4], p.3, Problem B) the problem is to find the critical point of the function 

l (a ,  h_.) = < K r a ,  K r a  > + < p r  (a -- t_), h__>, 

where k is the vector of multipliers. 
Equating the derivative of I with respect to a with the zero vector (cf. 

[25]), we have 

2 K K r a  = - PK, (2) 

or a = - " 2 ( K K  r ) -  I P h .  (3) 
m 

(The matrix KK r is invertible because K has full rank, but the matrix KrK 
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is invertible only when z = 0, i.e., K = I.) In left-multiplying equation (3) 
by pr,  we get 

- "2PTiKK T)- 'PK_ = e ta  

= p T t  "." equation (1). 

Since pr  has full rank, the matrix Pr(KI( r)-  ip is positive definite, hence 
invertible. Thus, 

k = - 2(pT(KK T)- i p ) -  IpTt. (4) 

The substitution of (4) into equation (3) gives 

a = (KK r)-  Ip(er(Kl(r) - Ip)-  lerL. (5) 

The following is an APL program for computing the coefficients of min- 
imum-Rz exact-for-cubics MWA formulas. 

VMWA[[--]]V 
VA~-- Z MWA MN;L;P;ZZ;C;SIGN;KK;X;I~IO 

[1] [S]/O~--- 1 
[2] L*-- + / I , M N  
[3] e~--(( tZ)-1 +MN[1])o. * 0 1 2 3 
[4] C~--(O, ~Z)!ZZ*--2 x Z 
[5] SIGN~-(ZZ+ l)p 1 - 1 
[6] K K ~ ] ( O , Z )  ~, ( 0 , - Z )  ~ (L,L + ZZ)p(SIGNx C), Lp0 
[7] X~--- 1 0 0 0 [~--](¢P)+ . x KK +. x P 
[8] A ~ - - K K + . x P + . × X  

V 

For instance, upon entering 

3 MWA 1 3 

the computer returns 

0.06118881119 0.7552447552 0.3671328671 -0.2447552448 0.0611888119. 

Hence, we have the following five-term minimum-R3 exact-for- cubics MWA 
formula (cf. [8], p. 13): 

ux = 0.0612 u"_~ + 0.7552Ux + 0.3671u"+~ 
- 0.2448u"+2 + 0.0612u~+3. 
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IV.  U N I Q U E N E S S  

Equation (5) can be used to prove Greville's theorem ([9], p. 13). To 
avoid confusion, we shall denote the right-hand side of equation (5) by ~. 
The vector t~ is independent of the basis matrix P, because 

p ( p r ( K i ( r )  - lp) - ~pr = ( p s ) ( ( p s ) r ( K K r ) - l ( p S )  )-  ~(ps ) r  (6) 

for each invertibile matrix S. 
We now show that there is a unique polynomial q of degree (2z + d) or 

less such that 

= (q ( -m) ,  . . . , q(0) . . . . .  q(n))  r, 

andq(s) = 0 f o r s  = - ( m  + 1) . . . . .  - ( m  + z ) ,n  + 1 . . . .  , n  + z. 
By equation (2), K/(r~ is a polynomial vector of degree d or less. The matrix 
K r is not a differencing matrix, but by multiplying K r by ( - l) z and adding 
z columns of appropriate numbers to each side of it, we can extend K r to 
/~, a differencing matrix of order z. The product K/(" is a differencing matrix 
of order 2 z. Now extend d by adding z zeros to both ends. Call this extended 
vector d. Then clearly 

(=  1)ZKKa_ - = KKr~. 

Thus, ~ is a polynomial vector of degree 2z + d or less; i.e., there exists 
a polynomial q of degree (2z + d) or less such that 

g~ = ( q ( - ( m  + z ) ) , . . . ,  q(n + z)) r. 

For a slightly different argument, see ([4], page 10). 
Such a polynomial q is necessarily unique ([9], p. 66) since (1) the 2z 

zeros specify 2z conditions and the reproducing criterion specifies another 
(d + 1) independent conditions, and (2) there can be at most one such 
polynomial of degree (2z + d) or less. 

V. M I N I M U M  R z 

The minimum value of R~ is given by ,[KT_~I[2/(~ 2z) or equivalently ([[K'r~[[/ 

IlK'r q[) 2. It follows immediately from equation (5) that this minimum value 
also equals 

~Z'p(pT(KKT) - I p )  - IprL 

t r KI(r~ 
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If we apply equation (5) again, the numerator of the last expression becomes 
L_rKl(r~_, which is ( -  1)z~2z~ o. This result was first derived by Greville ([7], 
p. 257). 

It is interesting to note that the problem: 

Minimize IlKrall 2 subject to p r a  = PTL 

is equivalent to the problem ([22], p. 234, Theorem 12.1 .II): 
Find a such that 

(i) Kl(ra  ~ Kernel (pr)l  

and (ii) Pra = PTL. 

The equivalence is a consequence of the identity ([2], p. 64; [23], p. 49) 

Kernel (pr)l  = Range (P), 

which shows that condition (i) and equation (2) imply each other. 

VI. S Y M M E T R I C  F O R M U L A S  

Let us consider the case where n = m. Define// = (an . . . . .  4o . . . . .  
_n) r. It is obvious that Ilgr_all 2 = Ilgr_~ll 2. Furthermore, < a_",/~> = p(0), 

because p ( - s ) ,  as a polynomial in s, has the same degree as p(s).  Thus, 
by the uniqueness of ___, 

t i = ~ .  

Hence, the graduation formula is symmetric. 
Since ~ is an even polynomial vector, <_~,/Z> = 0 = p(0) for each odd 

polynomi-al p. Therefore, we only need to require the graduation formula to 
reproduce even polynomials. Consequently, formula (5) can be simplified 
a s  

= (KI(r) - I E ( E r ( K ~  r) - IE) -  1E~, (7) 

where the column vectors of the matrix E constitute a basis for all the even 
polynomial vectors of degree d or less. For a symmetric M W A  formula, the 
maximum degree of reproduction, d, is an odd number, and the matrix E 
consists of (d + 1)/2 columns. 

VII.  P A R T I T I O N E D  M A T R I C E S  

The technique of partitioned matrices provides an alternative method to 
derive the results above. 
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Equations (1) and (2) can be combined as a single matrix equation (cf. 
[2], p. 124, No. 36): 

2KK r 0 ~ :][a;] [~3 .8. 

To obtain formula (5) we invert the matrix in the left-hand side of equation 
(8) using the following result ([20], p. 68; [2], p. 197, No. 9). 

'E~...~churs,,enti~.~et,,:[~ ~] w.ereaan~O.t~us~ 
are square matrices. If M and A are invertible, then 

M _  1 = [ H - A - I B G  - I ]  

L _ G - I C A - I  G - I  J 
(9) 

where 

and 

G = D - C A - 1 B ,  

H = A - l  + A - I B G  - I C A  - l  . 

[ ,  o] [~ Al~] 
Proo f .  L e t  L = - CA  - i and R = ; then 

~ [a o] 

Since LMR is a product of invertible matrices, G -  ~ exists. 

[al o] 
Thus, M - l  = R L proving equation (9). 

G - !  
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Vll l .  C E N T R O S Y M M E T R I C  M A T R I C E S  

The technique of partitioned matrices can be further exploited to show 
that when m = n, the vector ~ is an even polynomial vector and equation 
(7) holds. 
DEFINITION ([21], p. 19; [1], p. 124). A square matrix is called centrosym- 
metric if it is symmetric about its center; that is, C -- (cij) is a centrosym- 
metric matrix of order r x r if 

Cij  : Cr+ I - i ,  r+ 1 - j .  

It is easy to see that the matrix KK "r is centrosymmetric; for an explicit 
calculation, see Lemma 2 of [5], or page 25 of [17]. We shall show that 
the matrix 

Q = p(pr (KK~-~P)- ipr  (10) 

is also centrosymmetric. 
Let J denote the square matrix with l ' s  on the secondary diagonal and 

O's elsewhere, that is, 

J I " '  0 1 1  

. . .  l 

. . .  0 

Left-multiplication by J reverses the order of the rows of a matrix, and right- 
multiplication by J reverses the columns. Thus, a matrix C is centrosym- 
metric if and only if C = JCJ and if and only if C commutes with J. It 
follows immediately that the inverse of a centrosymmetric matrix is centro- 
symmetric, and the sums and products of centrosymmetric matrices are also 
centrosymmetric. 

We say a vector x is symmetric if x = Jx; skew-symmetric if x = - Jx .  
If C is a centrosymmetric matrix, then Cx is symmetric if x is symmetric 
and Cx is skew-symmetric if x is skew-symmetric. 

LEMMA 2. For m = n, the matrix Q defined by equation (10) is centro- 
symmetric. 
Proof. Recall that by equation (6) the matrix Q is independent of the choice 
of basis. Since n = m, we can choose a basis matrix P such that P can be 
partitioned as [E F], where the matrices E and F consist of symmetric and 
skew-symmetric column vectors, respectively. Thus, 
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p r ( K l ( r  ) -  1p = 
[ET] 

F r (KK'r)- l [E F] 

Hence, 

Q = [EF]  

(Er(KK'r) - iE)- i 

0 (Fr(Kl(r)  - I F )  - 1 F r 

= E(ET(KI(r) - l g ) -  l E t  + F(Fr(KI(r)  - IF) - IFr . (1 1) 

SinceE = J E a n d F  = - J F ,  

Q = j Q J ,  

that is, Q is centrosymmetric. 
A consequence of Lemma 2 is that the matrix ( K K r ) - I Q  is centrosym- 

metric. Since the vector t is symmetric (m = n), 

6_ = (KK'r)- IQt 

is a symmetric vector. Thus, the entries of ~ are the values of an even 
polynomial. Furthermore, the equation 

FrL = 0 

and equation (11) immediately give equation (7). 

IX.  R E M A R K S  

1. M W A  graduation can be considered from the standpoint of reduction 
of random errors ([9], p.22). For extensive statistical treatments of M W A  
graduation, the reader is referred to the recent papers [3], [14] and [16]. 
These papers also discuss M W A  formulas which reproduce functions other 
than polynomials. Also see [19]. 

2. In the context of M W A  formulas, formula (5) has been given by Borgan 
([3], Theorem 3.4). The following is a more general result ([24], p. 60, 
1.f.l(ii); [2], p. 125, No. 37). LetA be a positive definite m x m matrix, 
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B an m x k matrix and u a k-vector. Let S- be any generalized inverse of 
BrA- lB. 

Then 

inf {<Ax, x>lnTx = u} = < S - u ,  u>  

and the infimum is attained at 

g = A-IBS-u .  

3. The coefficients for minimum-R 3 and minimum-R4 formulas can be 
found in [8]. On checking with our APL program we find that four tables 
in ([8], pp. 16-19, n = 19, 21, 23, 25) are incorrect. 

One of the motivations for deriving the asymmetric minimum-Rz formulas 
was the graduation of end values ([7], p. 250). However, Greville ([9], p. 
20; [12], pp. 75-76) has pointed out that such formulas are unsuitable for 
this purpose. Recent developments on the graduation of end values can be 
found in [11], [12], [13], [17] and [18]. 

4. If the asymmetric minimum-Rz formulas are not suitable for the grad- 
uation of end values, are there any reasons why we should study them? The 
following interesting result of Greville ([10], Section 8) provides a partial 
answer. For each z, there is a 5-term asymmetric exact-for-quadratics for- 
mula which has an Rz value smaller than that of the minimum-Rz 5-term 
symmetric formula. 

5. The method of Lagrange multipliers is a powerful technique. For in- 
stance it can be applied to solve the three problems treated in [4] and derive 
the MWA formula proposed in [5]. 

Motivated by the Whittaker-Henderson graduation method, Gerritson [5] 
develops the MWA formula whose coefficients are obtained by minimizing 

Ila -_t[I 2 + ktlgTall 2, k > 0 ([5], Equation (8)) 

subject to the constraint that 

pT a = pr~. ([5], Equation (9)) 

This minimization problem is a type " C "  problem discussed in [4]. 

[a] Equating the gradient vector (the derivative with respect to [ ) of the 

function 
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l(a, X) = Ila - _ql 2 + kllg'rall 2 + < p r  (a  - t), X> 

to the zero vector and rearranging, we immediately have 

p r  0 = P:~  ' 

which is equation (11) on page 8 of  [5]. 
6. The matrix ( - 1)ZK/( r is the subject of  study in [15]. Lemma 5 of  [15] 

gives a formula for the entries o f  the matrix ( -  1)z(KKr) - i. 
The matrix K K  r c o r r e s p o n d s  to the finite difference operator ( -  1)~ Ez. 

We now conclude this paper by providing an interesting way to see this. 
Let m = n = +0% so that we are dealing with doubly-infinite matrices. 

Let E denote the forward-shift  matrix. The (i, i +  l ) - e n t r i e s  of  E are l ' s  
and all the other entries are O's. Then 

K =  ( E - / )  ~. 

The matrix E r is the backward-shift  matrix. Since we are working with 
doubly-infinite matrices, 

E T = E - l  

Thus, 

Hence, 

1(  r = ( (E  - I)") r 

= ( ( E  - O r )  ,, 

= ( E -  I _ l)Z 

= ( - l ) Z ( I  - E - ~ ) z .  

KK "r (=K ' rK)  = ( -  1) z ((E - /) (I - E -a ) )  -" 

is the matrix for the finite-difference operator 

( -  I)=(AV) z = ( -  1)z82z. 
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