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ABSTRACT 

Pricing, in its broadest sense, lies at the heart of virtually all actuarial 
work. This paper shows how actuarial pricing based on the mathematical 
concept of present value can be formulated and solved using Markov 
chains and an approach borrowed from engineering mathematics called 
ballistic control theory. General discussions of a Markov chain model of 
insurance and the ballistic approach to pricing are illustrated by examples. 
A concluding summary briefly reviews the conceptual and practical ad- 
vantages of such an approach and speculates that rounding errors should 
not be a problem with the matrix manipulations required for actuarial 
systems. 

I. IN TRO D U CTI O N  

Pricing is the determination of a schedule of deposits to pay for expected 
benefits and expenses. This definition is sufficiently broad to include, as 
special cases, reserve valuation, pension valuation, and premium setting. 
When the expected incidence of deposits--based on pattern, frequency, 
and payment period--differs from the expected incidence of benefits and 
expenses, fund accumulations result. Thus, gross level premiums give rise 
to asset shares, net level premiums to reserves, level normal costs to 
accrued liabilities, and so on. 

Although the actuarial literature has tended to deal with these various 
special cases of pricing as separate topics, the mathematical attack on 
any of these problems is usually a variant of the formula method, the 
accumulation method, or the pay-as-you-go method. The formula method 
is used in determining gross premiums [7] and net valuation premiums [3, 
13] for individual products, and also level or unit credit normal costs for 
pensions [16]. The accumulation method is used to determine gross pre- 
miums [7] and GAAP reserve premiums [15]. The pay-as-you-go method 
is used whenever premiums must match current benefit costs, as for 
renewable term, social insurance plans, and so forth. Under the formula 
and accumulation methods, a desired incidence of premium is specified 
in advance, such as level amount, step rate, or level percentage of pay, 
and this determines the fund accumulations. Even the pay-as-you-go 
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method is a special case of the formula method with the pricing horizon 
confined to a period during which the premium does not change. 

These three basic methods work well when the benefits and expenses 
are not functionally related to each other or to the premiums. For example, 
in pricing an individual life coverage, the death benefits often can be 
determined independently, the cash values can be determined from the 
death benefits, and gross premiums and asset shares can be determined 
from the cash values and death benefits. When the benefits are interre- 
lated, however, as when the death benefit is a return of gross premiums 
that reflect withdrawal assumptions, the traditional methods tend to break 
down. 

This paper discusses an adaptation of an approach called ballistic con- 
trol theory that is used for such diverse engineering problems as deter- 
mining the rocket thrust input to maneuver a space vehicle and deter- 
mining the voltage input to charge a capacitor [2, 5]. Premiums play the 
role of input. Asset share, cash value, death benefit, and the like play the 
role of state variables, which describe an actuarial coverage in the same 
way that position and velocity coordinates describe a space vehicle and 
that capacitor charge and current describe an electrical circuit. The ap- 
proach results in (l) a theory of pricing broad enough to include premium 
setting, reserve valuation, and pension costing as special cases; (2) a 
solution in closed form to certain actuarial problems for which the func- 
tional interrelationships between benefits and/or premiums are difficult to 
handle by the standard methods; and (3) a computational technique that 
can be computerized readily. 

The remaining sections in this paper discuss and provide examples of 
a Markov model of insurance, the pricing of actuarial coverages using a 
ballistic approach based on this model, and the scope and implications of 
ballistic control theory in actuarial science. 

II.  A MARKOV MODEL OF INSURANCE 

The life insured by an actuarial coverage, whether it is life insurance, 
health insurance, or annuity coverage, can be viewed as occupying one 
of a number of states (active) in which it remains or from which it exits 
to another state (death, withdrawal, or disability). This view of insurance 
suggests a Markov chain [6, 14] as a mathematical model for an actuarial 
coverage. The usefulness and generality of this concept are discussed in 
[12], which also provides a number of references to specific applications. 
In fact, Markov chains have been used to study mortality classes [17], 
working life tables [9], present values of annuity and insurance coverages 
[10], and other problems. One paper [1] even used the Markov chain 
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concept to express collective risk theory in terms of  two states, nonruin 
and ruin, for an insurance company analogous to survival and death for 
a single life, and in doing so established a common model for life, sickness, 
property, and casualty insurance and collective risk theory. 

A Markov chain not only provides a conceptually useful view of  in- 
surance but also renders many actuarial problems tractable by means of  
linear algebra. Linear algebra can provide elegant formulations of actuarial 
problems [4, 17] and also is capable of providing solutions that can be 
computerized readily. This paper exploits both advantages of Markov 
chains. The model that will be discussed is similar to one described in 
[12, pp. 17-20] for pension and health coverages. For the first time, 
however, benefits and fund accumulations will be viewed as state vari- 
ables, in the engineering sense [2, 5], and premium or normal cost will 
be determined as the input component  of  a ballistic control problem. 

The life insured by an actuarial coverage is assumed to occupy at each 
time between issue and maturity any one of  a number of states such as 
active, terminated, disabled, or dead. Benefits may be paid as the result 
of  continued presence in a state, such as an annuity benefit, a disability 
income, or a waiver benefit, or as the result of a transition between states, 
such as a lump-sum death benefit or a cash surrender value. Premiums 
or normal costs are usually paid only while the active state is occupied. 
A state may be an a b s o r b i n g  s t a t e ,  such as death, from which there is 
assumed to be no return, or it may be possible to leave a state after 
entering it, for example, recovery from disability or reinstatement from 
lapse. 

Associated with each state are state variables, which include the ben- 
efits payable upon the condition of  leaving or remaining in that state and 
one or more measures of  the financial significance of those benefits, such 
as asset share and/or reserve. Since pricing is always based on a simplified 
model of  reality, the total number of state variables that are significant in 
the pricing process should be quite small. As illustrated by the examples 
to follow, at any time t the significant state variables from all of  the states 
can be listed in a state vector, x(t), which obeys a recursive equation of  
balance of the form 

A(t, t - l ) x ( t - 1 ) + M ( t ,  t - l ) u  
(1) 

=N( t ,  t - 1 ) x ( t - 1 ) +  P(t, t - l ) x ( t ) + Q ( t ,  t - 1 ) u ,  

where u is an input vector containing premium variables and A ( t ,  t - 1), 
M(t, t - 1), N(t, t - 1), P(t, t - 1), and Q(t, t - 1) are matrices whose 
elements describe the coverage and contain the actuarial assumptions for 
the period t - I to t.  
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Equation (1) treats each component o fx( t  - 1) as a fund at time t - 
1 that grows with interest and net deposits, as represented by the left 
side, to its value at time t after paying benefits that can be linear com- 
binations of components o fx( t  - 1), x(t), and u, as represented by the 
right side. This interpretation is clear enough for asset shares, reserves, 
and individual life cash values. That this same interpretation can describe 
benefits as components ofx(t) may not be so obvious and will be illustrated 
in the examples that follow. In the examples, interest (i), survival prob- 
ability (p), death probability (q), withdrawal probability (w), disability 
probability (d), net-to-gross premium ratio (/), the ratio of premium to the 
initial premium (p), recovery probability (r), accumulation factor for return 
of premium death benefit (b), and death benefit interpolation factor (3') 
will be shown without subscripts to indicate select and/or ultimate at- 
tained-age dependence (i.e., which t they belong to). They will, however, 
have superscripts to identify them with their associated state variables, 
which are identified by subscripts. 

Example 1: Endowment, Term, or Deferred Annuity 

The recursive equation of balance, equation (1), for this example is 

o o ]rx tl,] 
l + i 2 0 0 [x2(t 1) 
0 I + P  0 [x.~(t 1) 
0 0 ! + i 4 Ex,(t 1) 

L 
O 0 0 

= 0 0 0 
0 0 0 
0 0 0 

+ 0 ( i+F)Pp 2 0 u2 
0 0 (1 + p)pp3 u3 
b" 0 0 u, 

( 1 -  ~')q'l r x , . -  l)l 
(1 ~/2)q2[ [ x , ( t -  !) 
(1 .v-')q~[ [x3(t-  I) 
o j p,(,-,) 

+ p~ w~ eel/x~(tq 
/ o o v ~ , ~ ¢ / / x ~ ( t H  

L o o o p, j Lx,(t j 

[i000]Ful + 0 0 0 u2 
0 0 0 u 3 '  

o o - I ,  LUd 



where 

and 
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r Asset share at time t 1 
/Rese rve  at time t 

J x~t) = | C a s h  value at time t 

L Death benefit at time t 

t / =  ] Gross premium 
Valuation premium 
Adjusted premium 
Level death benefit increment 

Four separate equations are represented,  one for each row of the ma- 
trices. The off-diagonal matrix entries reflect couplings among the four 
equations. The fourth row illustrates that death benefits can be repre- 
sented in the same general format as the fund accumulations of the first 
three rows. Table 1 provides more detail on the variety of  death benefits 
that can be handled in the manner of  this example. 

Notice that the term - l '  was included in the fourth diagonal element 
of Q(t, t - 1), instead of  l' being included in the fourth diagonal element 
of M(t, t - 1), to emphasize that plan benefits can be indeed functions 
of  input. 

The cash value shown in this recursive equation is in the form suitable 
for calculating the cash values commonly found in individual policies in 
the United States and Canada; however, termination benefits of  the sort 
commonly found in pension plans also can be set up in the same format 
as the death benefits of  type 3 or 7 in Table !, assuming that the plan 
member is the survivor. 

Expenses also can be reflected. The probabilities p, q, and w can be 
loaded for claim expenses and overhead;  q and w can be loaded further 
for interest to the end of the year. All expenses that are proportional to 
premiums can be reflected in i. Acquisition costs per unit issued and 
surplus margins at maturity are handled by setting initial and final con- 
ditions as shown in the next section. 

Some individual products have "over lapping"  benefits. For example,  
the cash value may be payable on death in addition to the level basic 
benefit; for such a case w', w 2, and p3 would be replaced by w' + q',  w: 
+ q2, andp3 + q3, respectively, a n d i '  = 0, p '  = 1, b'  = 0. Another  



T A B L E  1 

TYPES OF DEATH B E N E F I T  C O N F O R M I N G  TO EXAMPLE I 

Recursive Equation (Fourth Row of Equation [I]); General Form: Interpolation 
Type of Death Benefit Factor 

(1 +i4)x4(t - I ) + b '  u l =  p 4 x 4 ( t ) - P  u ,  "¢ 

I. L e v e l  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2. Leve l  p lus  r e t u r n  o f  g r o s s  p r e m i u m s  

[x,(t) = x,(0) + t u,] . . . . . . . . . . . . . . . .  
3. R e t u r n  o f  g r o s s  p r e m i u m s  wi th  

1007% in t e r e s t  
[x,(t) = utA'~] . . . . . . . . . . . . . . . . . . . .  

4. m t h l y  i n c r e a s i n g  (u4 p e r  y e a r )  
[x,(t) = x,(0) - tu,] . . . . . . . . . . . . .  

5. m t h l y  d e c r e a s i n g  (u, p e r  y e a r )  
t x ~ ( t )  = x 4 ( 0 )  - t . j  . . . . . . . . . . . . . . . .  

6. 100i4% T - y e a r  m o r t g a g e  loan  b a l a n c e  
u n p a i d  ( b e g i n n i n g  o f  y e a r )  

[x3t)  =.r~(O)(ar-:7//arl) = .~ ar':a} . . . . .  
7. m t h l y  life a n n u i t y  to  s u r v i v o r  a t  

a t t a i n e d  a g e  x + t  at  t ime  t 
[ x , ( t )  = u , i 6 % ]  . . . . . . . . . . . . . . . . . . .  

x 4 ( t -  1) = x,(t) 

x , ( t - -  I) + u, = x4(t) 

(I + O ) x , ( t -  I ) + ( I  + ~)ut = x4(t) 

x4( t - - I )  = x , ( t ) - -  u ,  

x , ( t - I )  = x 4 ( t ) - ( - I )  u4 

( l + ? ) x , ( t - - I )  = x , ( t ) - ( - - l )  u4 

( l + i O x 4 ( t -  I) =p .~+,_ tx4( t ) -  ( l + # ) ( - a ! ~ ' , - t : ~ ) u ,  

1 

( m -  I ) /2m 

( m -  I) /2m 

½ 
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variation would be to pay the reserve in addition to the level death benefit, 
in which case P(t, t - !) would become 

[~l ql W' q ' l  
p2+q2 W 2 q2 

This paper does not deal specifically with income tax, but most treat- 
ments (e.g., [11]) represent the income tax generated by a policy as a 
linear combination of such state variables as asset share and reserve. 
These formulations can be accommodated in equation (1) by means of 
loading in the appropriate matrix elements. 

In a similar fashion, dividend and experience-rating credits commonly 
are based on formulas that are linear combinations of state variables, such 
as reserve, and input variables, such as gross premium, and, if applicable, 
experience premium [8, 11]. Such formulas can be accommodated by 
equation (1) with suitable loading of the appropriate matrix elements. 

This first general example covers a wide variety of insurance and de- 
ferred annuity coverages for which nonactive states are assumed to be 
absorbing states. 

Example 2: Three- Year Endowment,  Term, or Deferred Annuity 
with a Disability Waiver 

This next example will be more specific than the first one because it 
will serve as the basis for the numerical solution to an illustrative pricing 
problem. The coverage will be assumed to provide cash values and $1,000 
of level death benefit, and to contain a disability waiver that continues 
the insurance coverage and pays to the insurer all expenses that are 
proportional to premiums. The state vector is 

Active life asset share at time t 
A t )=  Cash value at time t 

Death benefit at time t ' 
Disabled life asset share at  time t 

and the input vector is 

[Gross premium 1 
u = |Adjus ted cash-value premium 

LPresent value at time 0 of all disabled life benefits 
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The recursive equation is 

(1 + iOl'p' 
+ 0 

0 
0 

A B A L L I S T I C  A P P R O A C H  T O  A C T U A R I A L  P R O B L E M S  

i + il 

0 
(l  + iO/~p , 
0 
0 

w'(1 + ~e I) 
pZ 

0 
0 

O OOo lFx, t-l'l 
l + i  2 0 0 i x , ( t  - 1) 
o 1 [ x , ( t -  1) 
0 0 1 +/4 Lx,(t- 1) 

o l  Eiool]rx, t_l  l 0 u, 0 0 I x 2 ( t -  1) 
0 uz = 0 0 | x 3 ( t - 1 )  
(i +i4)1404 u4 0 0 Lx4(t- 1) 

q'(1 +',e')(l + i'/2) 
qZ 

1 
q4 o!] 

+ 0 
0 

(1 +i4)(1 +l')pl 0 

p'oOd'(l + "e')] x,O)|x4(t)jx,o)|x'(O'] 

U2 ~ 

L I i 4 J  

where the notation and the numerical values are given in Tables 2, 3, and 
4. Also, in Tables 2, 3, and 4, the acquisition cost assumptions are rep- 
resented as negative asset share, reserve, and cash value at time 0 (see, 
e.g., [3]). Notice that the third component of u is labeled u4 to identify it 
with the disabled life asset share. 

In pension applications, P' and p 2 could incorporate a salary scale, the 
decremental expense factors (~e I, qe', ae') would usually be zero, and l' 
and P would usually be I. For a termination benefit, xz(t), equal to a return 
of employee contributions uz, q2 _- 0, pZ = 1, t u = l, F = interest on 
contributions; this special case of the cash-value formula, represented in 
the second row of the matrix-vector recursive equation, is equivalent to 
the type 3 death benefit in Table 1. 

The most significant aspect of this example is the explicit recognition 
of disability and recovery by means of a state variable associated with 
the disabled state. An examination of the "fourth row" of the recursive 
equation, 

(l + i')x4(t - 1) + (1 + i')14p4u4 = r'x,(t) + q4x3(t ) + p4x4(t) + (1 +/4)(I - l~)plu~, 



T A B L E  2 

NUMERICAL VALUES FOR EXAMPLE 2 

(Ac t ive  L i fe  A s s e t  S h a r e  Bas i s )  

VARIABLE 

In t e re s t ,  i ~ . . . . . . . . . . . . . . . . . . . . . . . . . .  
M o r t a l i t y  p robab i l i t y ,  q~ . . . . . . . . . . . . . .  
W i t h d r a w a l  p robab i l i t y ,  w ~ . . . . . . . . . . .  
Disabi l i ty  p robab i l i t y ,  d ~ . . . . . . . . . . . . .  
Su rv iva l  p robab i l i t y ,  pt  . . . . . . . . . . . . . .  
P r e m i u m  e x p e n s e  ra t io ,  1 - I  t . . . . . . . . .  
D e a t h  c la im e x p e n s e  r a t io ,  qe j . . . . . . . .  
S u r r e n d e r  e x p e n s e  r a t io ,  we~ . . . . . . . . . .  
Disabi l i ty  e x p e n s e  r a t io ,  det . . . . . . . . . .  
Accmis i t ion  c o s t ,  - -xt(0)  . . . . . . . . . . . . .  

Year Star t ing 
at T ime  0 

.1000 

.0200 

.1470 

.0330 

.8000 

.4000 

.0100 

.0200 

.0150 
120 

Maturity asset share,  xl(3) . . . . . . . . . . . . .  N / A  
Premium incidence factor,  pl . . . . . . . . . .  1 

i 

VALUES 

Year Star t ing 
at Time I 

.0900 

.0970 

.0300 

.0230 

.8500 

.3000 

.0100 

.0200 

.0150 
N I A  
N / A  

1 

Year Start ing 

at Time 2 

.0800 

.0400 

.0000 

.0200 

.9400 

.1000 

.0100 

.0200 

.0150 
N / A  
80O 

I 

T A B L E  3 

NUMERICAL VALUES FOR EXAMPLE 2 

(Ac t i ve  Li fe  C a s h  Value Bas i s )  

VARIABLE 

In t e re s t ,  F . . . . . . . . . . . . . . . . . . . . . . . . . .  
Mor t a l i t y  p robab i l i t y ,  q2 . . . . . . . . . . . . . .  
Su rv iva l  p robab i l i t y ,  p2 . . . . . . . . . . . . . .  
A c q u i s i t i o n  c o s t ,  - x2 (0 )  . . . . . . . . . . . . .  
M a t u r i t y  c a s h  va lue ,  x:(3) . . . . . . . . . . . .  
P r e m i u m  i n c i d e n c e  fac to r ,  p'- . . . . . . . . .  
P r e m i u m  e x p e n s e  f ac to r ,  I - P  . . . . . . . .  

Year S ta~ ing  
at Time 0 

•0350 
•0500 
•9500 

100 
N / A  

I 
0 

VALUES 

Year Star t ing 

at Time I 

.0400 

.0400 
• 9600 

N / A  
N / A  

I 
0 

Year Star t ing 
at Time 2 

•0300 
•0300 
•9700 
N / A  
600 

I 
0 

T A B L E  4 

N U M E R I C A L  V A L U E S  F O R  E X A M P L E  2 

(Disab led  Li fe  A s s e t  S h a r e  Bas is )  

VALUES 

VARIABLE 

In t e r e s t ,  P . . . . . . . . . . . . . . . . . . . . . . . . .  
M o r t a l i t y  p robab i l i ty ,  q4 . . . . . . . . . . . . .  
R e c o v e r y  p robab i l i t y ,  # . . . . . . . . .  . . . .  
D i s a b l e d  su rv iva l  p robab i l i t y ,  p4 . . . . .  
M a t u r i t y  d i s a b l e d  life a s s e t  s h a r e ,  

x,(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
P r e m i u m  i n c i d e n c e  f ac to r ,  p4 . . . . . . . .  
P r e m i u m  e x p e n s e  f ac to r ,  I - P  . . . . . . .  

Year Start ing 
at Time 0 

.0800 
N / A  
N / A  

1.0000 

N / A  
1 
0 

Year Star t ing 
at T ime  I 

.0900 

.1000 

.3000 

.6000 

N / A  
0 

N / A  

Year Star t ing 
at Time 2 

.0700 

.1000 

.3000 

.6000 

800 
0 

N / A  
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reveals that x , ( t )  is a single premium (p = 1 in first year, 0 thereafter) 
asset share or reserve providing the following benefits: 

1. A recovery  benefit  x~(t) (the act ive life asset  share)  with recovery  probabi l i ty  
r4; 

2. The  level dea th  benefit ,  x3(t), with mortal i ty probabi l i ty  q4; 
3. The disabled life asset  share  with disabled survival  probabi l i ty  p ' ;  and 
4. The expense  c o m p o n e n t  of  gross  p remium at beginning of  year, (1 - P)p%,  

with interes t  to the end of  the year. 

Since the active life asset share is the recovery benefit, recovery actually 
restores the policy to the surplus position it would have been in had no 
disability occurred. 

The effects of  excess mortality in the first few years after recovery or 
disablement could be handled very simply by means of explicit loading 
in the recovery and disability probabilities r ~ and d', respectively. 

The cash values provided are similar to the prospective cash values 
found in individual life insurance coverages: 

x2( t )  = A ,  + , -  u2i~ ..... 

where 

x2( t )  = , C V ,  u2 = ~ .  

However,  a specific first-year acquisition cost was used in Table 3 to define 
the cash values, rather than the more traditional formula 

x~(O) = o C V  = - (f3 - o0 .  

Thus the first-year expense allowance is represented by a negative cash 
value at time 0, and the first-year premium in this formulation would be 13, 
not or. This approach is equivalent to a zero first-year expense allowance 
and a first-year premium of o~, the approach used in [13]. 

Other types of termination benefit, such as return of premium or em- 
ployee contributions, which are more common in pension coverages, can 
be accommodated in the same fashion as the death benefits illustrated in 
Table 1. In pension costing situations, the withdrawal or termination prob- 
ability could incorporate a vesting factor. 

These two examples demonstrate the wide range of coverages to which 
equation (1) applies. In general, any coverage priced by means of present- 
value methods can be reduced to equation (1) because present values, 
whether reserves,  accrued liabilities, asset shares, or whatever, represent 
idealized fund accumulations, according to specific actuarial assumptions, 
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which can be represented by recursive equations. Also, the benefits pro- 
vided are generally expressible as recursive equations along the lines 
shown for death benefits in example 1. Even an arbitrary string of benefits, 

x~(0), x ,(I)  . . . . .  x , ( t -  I), x~(t) . . . . .  

can be expressed recursively, as 

x,( t )  = (I + i*)x,(t - 1), 

where i k for the period t - 1 to t is given by 

xk(t) 
1 + i k =  

x R t -  1)" 

I l l .  THE BALLISTIC APPROACH TO PRICING 

Equation (1) can be solved for x(t)  in terms o fx ( t  - 1) and u :  

x(t) =~( t ,  t -  l ) x ( t -  l )+B( t ,  t -  1)u, 

where 

and 

• (t, t -  l )=P( t ,  t -  l)-l[A(t,  t -  1 ) - N ( t ,  t -  1)] 

(2) 

B(t, t - 1 ) = P ( t ,  t - l ) - ' [ M ( t ,  t - l ) - Q ( t ,  t - 1 ) ] .  

The invertibility of  P(t, t - 1) follows from the fact that a well-defined 
actuarial pricing problem would un ique ly  define all the components  of  
x(t) ,  which are benefits and idealized fund accumulations, (such as asset 
shares and reserves) at time t, in terms of their values at time t - 1, (the 
components of x( t  - 1)) and their associated premiums (the components of 
u). 

On the other hand, equation 2 can be solved for x(t - 1): 

x ( t -  I )=  qb(t, t -  1 ) - ' [ x ( t ) - B ( t ,  t -  1)u] =alp(t- 1, t ) [ x ( t ) - B ( t ,  t -  1)u], 

where ~( t  - 1, t) is defined to be the inverse of qb(t, t - 1). That  
• (t, t - 1), and therefore [A(t, t - 1) - N(t, t - I)], should be invertible 
follows from the idea that the net present value of  benefits and premiums, 
which is what a reserve, asset share, or accrued liability is, should be 
unique. Death benefits expressed recursively also can be given a present- 
value interpretation that uniquely defines them, as illustrated in Section 
II. 
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It is convenient to adopt the following definitions: 

do(t, k)=do(t, t -  l)do(t-  1, t - 2 ) . . . d O ( k +  1, k), for t>k ,  

alp(k, t) = do(t, k)- ' ,  for t>k ,  

qb(t, t )=  The identity matrix, 

B(0, - 1)= A zero matrix, and 

0 

E . . .  = 0 .  
k = l  

The trajectory of a system, for example, the progress of the expected 
financial position of a surviving life insurance policy, which begins at state 
o~ at time 0 and receives input defined by u, such as initial premiums for 
asset shares, reserves, cash values, and so on, and which obeys equation (2) 
is given by 

x(t)  = +(t, O)~t + ~P(t, k)B(k, k - 1 )  u. (3) 

This readily can be seen to satisfy equation (2): 

[ ] ~ t ) = ~ ( t ,  t -  1) q~(t- 1, 0)~+ ~ ( t -  1, k)B(k,  k -  1)u +B(t,  t -  l)u 
k = l  

= do(t, t - 1)x(t - l) + B(t, t - l)u, 

and to satisfy the initial condition 

x ( 0 )  = do(0, O ) a  = a .  

The ballistic state control problem, for the purposes of this paper, is to 
determine u such that 

x ( 0 )  = a ,  

x(t)=dP(t ,  t - l ) x ( t - 1 ) + B ( t ,  t - 1 ) u  for 0<t~<T, (4) 

and 

x ( T )  = ~o, 

where a and to are given. It is often convenient to formulate the pricing 
problem in terms of another variable, y(t), called output, which is related to 
x(t) by 

y(t)  = C(t)x(t). 
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For the purposes of this paper, the ballistic output control problem is to 
determine u such that 

x(0) -- a ,  

x(t) = ~(t, t - 1)x(t-  I) + B(t, t - 1)u, 

y(T)= to ' .  

(5) 

The relevance of these two ballistic control problems to actuarial pricing 
is evident from a reconsideration of example 1. The pricing problem for 
example 1 can be defined by the following: 

(Acquisition cost according to pricing assumptions) ] 
(Acquisitioncost according to reserve assumptions) 

J (Acquisition cost according to nonforfeiture assumptions) = ot 
Initial death benefit 

and 

x(T)= 

-Maturity asset share 1 
Maturity reserve | _  
Maturity cash value | -  co, 
Death benefit at maturi tyJ 

where the input u is to be determined as the solution to a ballistic state 
control problem. 

Table 1 shows that sometimes u, is redundant in the pricing problem. 
In such cases it is convenient to delete the redundant element and to 
redefine u, M(t, t - 1), and Q(t, t - 1) and to make use of the output,  
y(t): 

Gross premium 
u =  |Reserve  premium , 

[_Adjusted premium 

10 ° l M(t, t - l ) =  0 (1+i2)1202 0 
0 (1 +i3)13p3 ' 

0 0 
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Q(t, t - l ) =  0 0 

0 0 ' 
0 0 

/'-'/FAsset valueShare atat timetime t t 1 [ i  0 0 i l  [Reserve a t t ime t  
y( t )=C(t)x( t )= I 0 i t ,  as h 

0 1 /Death benefit at time t 

f Asset share at time t[  
= [Reserve at time t 1. 

],Cash value at time t _1 

[   sset s area  ime/ ] 
1 - 1 0 0 ]Reserve at time t 

y(t) = C(t)x(t)= 0 I 0 ]Cash value at time t ' 
0 0 1 ]Death benefit at time t 

[Maturity surplus ] 
y(T) = to' = ]Maturity reserve /" 

I_Maturity cash valueJ 

Again, u would be determined by solving a ballistic output control 
problem. A profit objective expressed as a present value of book profits 
also can be incorporated into a ballistic output control problem: 

[i x v °i] y(t) = C(t)~O = 1 0 x(t) 
0 1 

[Present value at issue of book profits in first t years-] 
= ]Reserve at time t J ;  

l_Cash value at time t 

in the form of a surplus objective: 

The maturity condition x(T) = to then would be replaced by 

-Maturity asset share] 
y(T) = to' = Maturity reserve | ,  

Maturity cash value J 

and u would be the solution to a ballistic output control problem. 
Alternatively, it sometimes is desirable to formulate the pricing problem 
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FPresent value at issue of book profits-] 
y(T) = to' = [Maturi ty reserve J 

LMaturity cash value 
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Of the two, the ballistic output control problem is more general and 
reduces to the ballistic state control problem when C(t) is the identity 
matrix and to' = to. 

The relevance of the ballistic control problems to pricing established, 
it now remains to solve equation (5), which includes equation (4) as a 
special case. The maturity condition, y(T) = to',  can be combined with 
equation (3) and solved for u: 

u =  C(T)q~(T, k)B(k, k -  1) [co' -C(T)~b(T, 0)o~]. 
= 

(6) 

This solution can be substituted repeatedly in equation (2) to generate the 
state and output vectors: 

x(0 )  = oL, y (0)  = c ( 0 ) x ( 0 ) ;  

x(l) =q~(l, 0)x(0)+ B(I, 0)u, y(l) = C(l)x(1); 

x(2) =q~(2, 1)x(I)+B(2, l)u, y(2) = C(2)x(2); 

x(T)=c~(T,T- l)x(T- 1)ff B(T, T -  l)u, y(T) = C(T)x(T). 

This repeated substitution is self-checking, because it should produce 
y(T) = to'. The degree to which y(T) differs from to' is a measure of 
rounding error. 

Numerical Solution of Example 2 

Included in Tables 2, 3, and 4 with the other actuarial assumptions were 
acquisition costs of $120 on the active life asset share basis and $100 on 
the active life cash-value basis. These are issue costs that are not pro- 
portional to premium but that have been expressed on the basis of $1,000 
of insurance. Any issue costs proportional to premium would be included 
in the premium expense ratio (1 - l'). Since the policy is sold in the 
active life state, there is no such acquisition cost assigned to the disabled 
state. These acquisition-cost assumptions can be treated as negative funds 
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and can be represented along with the initial death benefit in the initial 
condition: 

x(O) = a 

____ (Acquisition cost according to pricing assumptions) ] 
= (Acquisition cost according to cash-value assumptions) / Initial death benefit 

(Acquisition cost according to disabled life assumptions)| 
J 

F -  120.OOq 
l -  l°°-°°/ =/1,°°°.°°/ 
L o.ooj 

Also included in Tables 2, 3, and 4 are maturity value conditions: $800 
of asset share, $600 of cash value, $1,000 of death benefit at maturity, 
and $800 of disabled life asset share at maturity. These can be expressed 
in vector form: 

rActivel asset shareatmaturity 1 E 80000 j 
/Active life cash value at maturity | = 600.00 

x(3) = to = / D e a t h  benefit at maturity [ 1,000.00 " 

LDisabled life asset share at maturityJ 800.00 

The maturity asset share and cash value specify a profit objective, while 
the $800 disabled life asset share at maturity represents a maturity benefit 
for the disabled life (to purchase an immediate annuity, perhaps) and may 
also include a profit margin. 

The input obtained by means of equation (6) with C(t) equal to the 
identity matrix would be 

FGross premium 
[Cash-value premium 

u = [Annual death benefit increment 
Present value at time 0 of disabled life benefits 



F-  120.00] 
/ -  100.00/ 
/ 1,o00.001; 
L o.ooj 

x(1)= [ l  
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However, since the death benefit is level, it is known in advance that 
u3 = 0, so it is more convenient to drop the redundancy in the target 
maturity position by using the output vector and equation (6) as follows: 

[Maturity ac t ivel i feassetshare  ] [800] 
y(3) = co'= |Maturi ty active life cash value = |60o l, 

[_Maturity disabled life asset share [800] 

[Gross premium ] 
u = |Cash-value premium 

[Present value at time 0 of disabled life benefits 

C(t)= 1 0 . 
0 0 

By way of illustration, the computational matrices for the latter ap- 
proach are shown in Table 5 to four decimal places, but in practice as 
many decimal places as possible should be used in the computations to 
minimize rounding problems. The input vector u turns out to be 

F426.63] FGross premium 
u = |248.46 / = |Cash-value premium 

1_879.791 LPresent value at time 0 of disabled life benefits 

and the state vectors obtained by repeated substitution are 

107.94- 
109.12 

,000.00 ' 
765.87 

F 366.27q 800.00- 
| 345.71|. 600.00 

 2)--/1,ooo.ool, x 3)= 1,ooo.oo =oo 
L 809.02] 800.00 

Thus, the cash value at time 2 is 345.71, the asset share at time 1 is 107.94, 
and so forth. 

While the actuarial assumptions may not be realistic, this example does 
illustrate a workable approach to pricing an actuarial coverage that in- 
volves disability and recovery. Only three years were used to allow com- 
plete presentation of the numerical details for the reader to check. AI- 



TABLE 5 

COMPUTATIONAL MATRICES FOR EXAMPLE 2 

A(t, t -  I). 

M(t, t -  1) 
oo 

N(t, t -  I) 

P(t, t - I) 

t = l  t=2 t=3 

1.1000 0.0000 0.0000 0.0000 
0.0000 1.0350 0.0000 0.0000 
0.0000 0.0000 1.0000 0.0000 
0.0000 0.0000 0.0000 1.0800 

-0.6600 0.0000 0.00007 
0.0000 1.0350 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 1.0800 

- 0 . ~  0 . ~  0 . ~  0 . ~ "  
0 . ~  0 . ~  0 . 0 ~  0 . ~  
0 . ~  0 . ~  0 . ~ 0 0  0 . ~  
0 . ~  0 . ~  0 . ~  0 . ~  

-0.8000 0.1499 0.0212 0.0335" 
0.0000 0.9500 0.0500 0.0000 
0.0000 0.0000 1.0000 0.0000 
0.0000 0.0000 0.0000 1.0000 

! .0900 0.0000 0.0000 0.0000 
0.0000 1.0400 0.0000 0.0000 
0.0000 0.0000 1.0000 0.0000 
0.0000 0.0000 0.0000 1.0900 

"0.7630 0.0000 0.0000" 
0.0000 1.0400 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 

-0.0000 0.0000 0.0000 0.0000" 
0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 

"0.8500 0.0306 0.1024 0.0233" 
0.0000 0.9600 0.0400 0.0000 
0.0000 0.0000 1.0000 0.0000 
0.3000 0.0000 0.1000 0.60001 

.I 

m 

1.0800 0.0000 0.0000 0.0000"~' 
0.0000 1.0300 0.0000 0.0000 
0.0000 0.0000 1.0000 0.0000 
0.0000 0.0000 0.0000 1.0700 

-0.9720 0.0000 0.0000" 
0.0000 1.0300 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 

"0.0000 0.0000 0.0000 0.0000" 
0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 

-0.9400 0.0000 0.0420 0.0203- 
0.0000 0.9700 0.0300 0.0000 
0.0000 0.0000 1.0000 0.0000 
0.3000 0.0000 0.1000 0.6000 
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t = l  t = 2  t = 3  

•(t, t -  1). 

O(t, t -  1) 

B(t, t -  !) 

"0.0000 0.0000 0.0000" 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 

L 0.4320 0.0000 0.0000 

1.3750 -0 .2042  -0 .0166  -0 .0452  
0.0000 1.0895 - 0 . 0 5 2 6  0.0000 

0 . 0 0 0 0  0.0000 1.0000 0.0000 
0.0000 0.0000 0.0000 1.0800 

0.8431 -0 .2042  - 0 , 0452  / 
/ 

0.0000 1.0895 0.0000! 
0.0000 0.0000 0 . 0 0 0 0  

- 0.4320 0.0000 1.0800 

"0.0000 0.0000 0.0000" 
0.0000 0.0000 0.0000 : 
0.0000 0.0000 0.0000 
0.3270 0.0000 0 . 0 0 0 0  

1.3002 -0 .0395  -0 .1160  -0 .0506  
0.0000 1.0833 -0 .0417  0.0000 
0.0000 0.0000 1.0000 0.0000 

-0 .6501 0.0198 -0 .1087  1.8420 

° 

0.9253 - 0.0395 0.0000 

0.0000 1.0833 0.0000 

0.0000 0.0000 0.0000 
- 1.0077 0.0198 0.0000 

3 V 3.5141 --0.4111 --0.2103" 
~',C(3)cD(3, k)B(k, k- I) = ] 0.0000 3.4655 0.0000 
k.t [. -6.1289 0.5160 3.7052 

"0.0000 0.0000 0.0000" 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.1070 0.0000 0.0000 

i.1615 0.0000 -0 .0415  - 0 . 0 3 8 9 "  
0.0000 1.0619 -0 .0 3 0 9  0.0000 
0.0000 0.0000 1.0000 0.0000 

-0 .5807  0.0000 -0 .1459  1.8028 

1.0492 0.0000 0.0000 
0.0000 1.0619 0.0000 
0.0000 0.0000 0.0000 

-0 .7029  0.0000 0.0000 
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though individual product terminology was used, this example could have 
represented the coverage on a pension plan member where 

F Active life accrued liability at time t ] 
[Termination benefit at time t 

J x(t) = [Dea th  benefit at time t 

L Disabled life accrued liability at time t 

and where the gross premium would represent normal cost or current 
service cost. 

IV. CONCLUSIONS 

The control theory discussed in this paper differs somewhat from the 
control theory in engineering. First of all, engineering systems are usually 
assumed to obey the laws of classical mechanics and/or electromagnetism, 
which are often easily formulated as differential equations: 

~ t )  = A(t)x(t) + B(t)u(t); 
(2a) 

y(t) = C(t)x(t). 

System (2a) is much more difficult to solve and leads to theoretical 
difficulties which equation (2) sidesteps. Also, actuaries are more accus- 
tomed to working with probabilities and regular intervals, such as one 
year, than with forces of  interest and decrement in conjunction with con- 
tinuous assumptions; however, an actuarial coverage based on a contin- 
uous Markov process [14] would lead to a formulation of the form of 
system (2a). Second, system (2a) also allows the input, u(t), to be a 
function of time, thus leaving the incidence of input unspecified. This can 
result in a multiplicity of solutions from which an optimal one can be 
selected [2]. Yet the similarities between a large class of engineering prob- 
lems and a large class of  actuarial pricing problems are very striking and 
suggest the possibility of  fresh insights as well as new and powerful tools 
for actuaries. 

As outlined in the introduction, the ballistic approach to pricing based 
on a Markov model of insurance provides a general theory of actuarial 
pricing, a straightforward solution to certain actuarial coverages that are 
not readily tractable when the conventional formula and accumulation 
methods are used, and a readily computerized algorithm based on simple 
linear algebra. 

This paper has not dealt with the rounding problem associated with 
matrix inversions other than to point out that the recursive formulation 
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provides a good check on its own rounding error. Heuristically, it seems 
that as long as survival probabilities are not very small relative to prob- 
abilities of  decrement, then the diagonal elements of P(t, t - 1) should 
dominate, and the necessary inversions should not cause a rounding prob- 
lem. This is a conjecture, however, which has not been tested beyond a 
small number of  examples. 
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DISCUSSION OF PRECEDING PAPER 

MICHAEL STRAMAGLIA: 

Mr. Smith should be complimented for providing a novel approach to 
solving an old problem. I was particularly pleased with his treatment of "A 
Markov Model of Insurance," as it involves an area of probability theory 
that I feel is worth considerably more attention than it receives from most 
actuaries. 

As the author has shown, the theory of Markov chains is suited nicely to 
modeling the multidecrement environments that 'frequently arise in insurance 
applications. A good illustration of this is given in the paper's second ex- 
ample, where a disability decrement is recognized (with subsequent possible 
recovery) in addition to the usual lapse and mortality decrements. However, 
since rates of recovery and mortality vary by both attained age and duration 
since inception of disability, a select-type approach to the disabled life state 
should be pursued in practice. 

The formulation of the state-space for the Markov chain requires the in- 
troduction of a unique state variable for each duration in the select period 
and one for the ultimate disabled life state. Perhaps this extension of the 
disabled life state can be clarified by presenting the network diagram of one- 
step transitions. The nodes represent the various state variables and the 
directed edges indicate the possible one-step migration routes between ad- 
jacent states. The transition probability assigned to each of these edges must 
be known before the Markov Chain can be run. Also, of course, the sum 
of the transition probabilities assigned to all edges leaving any node must 
be one. 

Figure 1 illustrates the network diagram for the original state space. Note 
that a continuous string of disability occurs via repeated loops through the 
same disabled life state. 

Figure 2 displays how the structure of the state is altered when the addi- 
tional effect of the duration of disability is recognized. For simplicity, a 
rather short select period (length 2) is shown. In this case, a lengthy string 
of disability traces a path through a number of different states before looping 
through the ultimate disabled state. With this mechanism in place, two dis- 
abled lives with the same attained age can experience different forces of 
decrement (in terms of the model) since they can reside in different states 
of disability. When the multidecrement one-step transition probabilities are 
calculated through some transformation of the single decrement rates, a 

523 
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FIG. 1 .--Network diagram of one-step transitions without select disabled lives states. 

FIG. 2.--Network diagram of one-step transitions with two-year select disabled lives states. 

single decrement rate of unity should be assumed for transitions out of a 
select disabled state into a subsequent state of disability. 

In much the same manner, I believe that the effect of risk selection on 
the active life state easily could be incorporated into Mr. Smith's algorithm, 
and I would welcome his comments on the details of implementing such a 
modification. 

(AUTHOR'S REVIEW OF DISCUSSION) 

J.C. MCKENZIE SMITH: 

Mr. Stramaglia's discussion makes two valuable contributions. For one 
thing, he shows how to incorporate select and ultimate assumptions into a 
Markov-chain representation of an actuarial coverage. In addition, he makes 
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use of network diagrams to illustrate the essential features of a given Markov 
chain. 

In applying the approach described by Mr. Stramaglia, the disabled state 
is split into select disabled states and an ultimate disabled state. Each select 
state is "homogeneous"  to the extent that each of its occupants were disabled 
within the same policy year. This makes it possible to incorporate the effects 
of selection on recovery and mortality probabilities. When using the ballistic 
approach, each select state would be represented in the state vector, x(t), by 
its own asset share or reserve. This asset share or reserve would obey a 
recursive equation similar to that for the ultimate state except that there 
would be no probability of remaining in the same state. This is because each 
occupant of a select state must either die, recover, or "move  on"  to the 
next select state (or to the ultimate state). Similarly, the active state could 
be split into "select recovered active" states and an "ultimate active" state. 
For each additional select state, there would have to be an additional maturity 
condition and an additional input component representing the "net  single 
premium" at issue of future benefits (less future premiums in the case of a 
select recovered active state). This approach would offer more refinement 
than the method of  loading the disability and recovery probabilities as sug- 
gested in the paper. However, the price for this extra refinement is the higher 
dimensionality of the state, input, and ouput vectors. 

Mr. Stramaglia's use of network diagrams is very appealing. It would 
seem that a network diagram would be a useful tool in examining any ac- 
tuarial coverage whether to price or to value it. 

I wish to express my sincere thanks to Mr. Stramaglia for his insights, 
which have added to the ideas raised in the paper. 




