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MODELING FLEXIBLE BENEFIT SELECTION 

CHARLES S. FUHRER AND ARNOLD F. SHAPIRO 

ABSTRACT 

A mathematical framework for benefits and choices must be created to 
model benefit selection. This paper creates such a framework by defining 
benefit plans as reimbursement functions. These are then used with a defined 
choice function to calculate the cost deviation due to selection. Finally, 
utility functions can be applied to this framework to predict choice. 

I. INTRODUCTION 

The problem of selection has been recognized by actuaries since the early 
days of the profession and has been a continuing concern since then. Highan 
[14] in 1851, for example, authored an article in the first volume of the 
Journal of the Institute, entitled "On the Value of Selection as Exercised 
by the Policy-holder against the Company." Similarly, McClintock [19] in 
1892, in an early volume of the Transactions of the Actuarial Society of 
America, published an actuarial essay "On the Effect of Selection." 

During the early periods, the analysis was primarily descriptive and con- 
cerned with identifying situations conducive to adverse selection and the 
associated hazards. In recent years, the emphasis has changed towards an 
attempt to model the selection process and an analysis of the sensitivity of 
those models. Moreover, while the initial concern was raised by actuaries 
in the context of insurance, it has come to be recognized as an issue common 
to a number of commodities and, as such, has become an important field of 
study in economics. 

A number of issues have emerged. The optimal form of an insurance 
contract for a risk-averse insured was studied by Botch [5], Arrow [2], Raviv 
[22], BiJhlmann and Jewell [7], and Blazenko [4]. Models that addressed 
the difficulty created by asymmetric market information on the riskiness of 
the insured were developed by Akerlof [1], Rothchild and Stiglitz [23], 
Wilson [25], Miyazaki [20], and Spence [24]. Still others have studied the 
role of wealth in this decision process: Gould [13], who concluded that it 
was not appropriate to consider demand without regard for the wealth po- 
sition of the individual; Mayers and Smith [18]; and Doherty and Schlesinger 
[11], who showed how assets are correlated with the demand for insurance. 
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This paper extends the analysis by dealing with some of the statistical 
aspects of choice in benefit plans. Although these techniques could be used 
for any choice in insurance plans, the focus is on group health benefit plans. 
By group health benefit plan we mean a system in which the members of a 
group are eligible to receive insurance benefits for some part of the cost of 
their (and sometimes their family's) medical care. The insurance benefits 
may require the payment of premiums. In general, the particular plan of 
benefits and premiums is unique to each group. The group is usually formed 
for some purpose other than the insurance coverage. The most common 
groups are the employees of a single employer. 

Most of the remarks deal with the traditional health insurance indemnity 
plans in which group members obtain health care from licensed health care 
providers and then are reimbursed for a portion of the providers' charges. 
Some benefit plans include a provision for an employee choice between 
more than one formula for the amount of reimbursement. The employee may 
be required to contribute different premiums for each option. 

Employee choice in group health benefits has started to become popular 
only in the last 5 or 10 years in the U.S. Of course, trivially, most plans 
have always allowed the choice of rejecting the coverage if the employee is 
required to pay premiums for the coverage. Thus, there is a choice between 
the benefit plan and a null plan. 

II. REIMBURSEMENT 

Before we can write some expressions for the effects of selection or predict 
it, we need to express the whole set of choices and outcomes in a functional 
and probabilistic setting. 

Let the random variable X be the covered charges for an individual during 
a period, usually one year. Assume that X is a one-dimensional positive 
random variable. 

We define the notation: 

x ÷ -- max {O,x} = / 
0 X < 0 

/ x x > O .  

Let r(X) be the amount of reimbursement in a benefit plan for covered 
charges equal to X, where r is a function called here a reimbursement func- 
tion. Note that we are assuming that the amount of reimbursement is deter- 
mined only by the total of covered charges during the year and not by when 
the services were performed or by which providers. 
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Although any function r could be a reimbursement function, we note that, 
in general, they have the following properties: 

I. They are continuous: lira r(x) = r(a); 

II. They are nondecreasing: x > y ~ r(x) >_ r(y); 

III. x > y ~ r(x) - r(y) <-x - y; and 

IV. r(0) = 0. 

Property I says that the amount reimbursed cannot vary too much for 
small changes in covered charges. Property II says that as the covered charges 
increase, the reimbursement cannot decrease. Property III says that amount 
of reimbursement cannot increase faster than covered charges. Property IV 
says that there is no reimbursement when there are no covered charges. 

Example 2.1 

The reimbursement function can be the identity function: r(x) =x. This is 
full reimbursement for all covered charges. 

Example 2. 2 

The reimbursement function can be identically equal to zero: r(x)= 0 for 
all x. This is the case of no benefits. 

Example 2. 3 

For a given fixed constant d, 

r ( x )  = ( x  - d ) ÷  --- - cl x > d .  

This is called full coverage after a deductible. The constant is called the 
deductible. 

Example 2. 4 

For a constant c, 0 <c < 1, r(x) = cx. The constant is called the coinsurance 
rate. 
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E x a m p l e  2 .5  

We can have both a deductible and coinsurance (a combination of ex- 
amples 2.3 and 2.4): 

0 x < _ d  
r(x)  = c(x  - d) ÷ = 

c(x - d) x > d. 

E x a m p l e  2. 6 

There can be a limit on the coinsurance of example 2.4. For constant L > 0 
and c, 0<c<11:  

( ~  x < L / ( 1 -  c) 

r(x)  = cx + [(1 - c ) x  - L] ÷ = - L x >- L/(1 - c) .  

Here L is known as the coinsurance limit or maximum. Note that L is not 
the amount of  covered charges that has to be reached before full reimburse- 
ment but rather is the maximum that is not reimbursed. 

Example  2. 7 

Examples 2.5 and 2.6 can be combined to get a plan with deductible, 
coinsurance, and coinsurance limit: 

r(x)  = c(x - d) ÷ + [(1 - c)(x  - d)  - L] ÷ 

I 
'O x < d  

= c(x - d) d <-x < L/(1 - c) + d 

I , x  - d - L L/(1 - c) + d < x .  

In this case L + d is sometimes called the out-of-pocket limit. 

E x a m p l e  2. 8 

Often there is an overall individual annual benefit maximum. For a con- 
stant M, 

~Note that we have deviated from the usual convention of reserving the uppercase for random 
variables. 
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f x  x <  M 
r(x) = min{x ,M} = IM x > M .  

Example  2. 9 

A combination of examples 2.7 and 2.8 would be a plan with deductible, 
coinsurance, coinsurance maximum, and overall annual maximum: 

r(x) = min{c(x - d) ÷ + [(1 - c)(x - d) - L] ÷, M} 

t 
" 0 

c(x - d) 

x - d - L  

~ M  

For this example, we define the intervals: B = [ d , L / ( 1 - c ) + d ) ,  C = [ L /  
(1 - c) + d, M + d + L), and D = [34 + d + L, ~). Even though this looks rather 
complicated, this is often just called a comprehensive major medical plan 
of benefits. Of  course, examples 2.1 through 2.8 can be treated as special 
cases of this example 2.9. All the r 's  in examples 2.1 through 2.9 satisfy 
the properties I through IV above. 

Table 1 illustrates some sample r 's :  rl is a very rich plan; r 2 reimburses 
less; r3 is a cheap plan; r4 is the null or 0 reimbursement of example 2.2; 
and r5 is the full reimbursement of example 2.1. 

x < d  

d <-x <L/ (1  - c) + d 

L/(1 - c) + d <-x < M + d + L 

M + d + L < _ x .  

TABLE 1 

SOME SAMPLP.. REIMBURSEMENT FUNCTIONS 

Reimbursement Deductible Coinsuranc¢ Coinsurance Overall Annual 
NumbeT (r) . (d) (e) Maximum (L) Maximum (M') 

1 $ 100 80% $ 400 $1,000,000 
2 500 80 1,000 1,000,000 
3 1,000 75 3,000 500,000 
4 0 
5 0 100 None 
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Example 2.10 
Assume that the random var iable  X has the discrete  dis tr ibut ion:  

Pr{X=ks}=pk for k = 0 ,  1, 2, ... and a constant s called the unit or span. 2 
Of course, 

~ P / ,  = 1. 
k~0 

E [?.2(X) ] = 

and 

Using the r 's  of example 2.9, we can calculate some values: 

E[r(X)] = • c(ks - d)pk + ~ (ks - d -  L)pk + E Mp,, 
k s E B  ks @C ks ~ D 

c2(ks - d)2p, + ~, (ks - cl-  L)Zp~ + ~, M2pk, 
k s ~ B  "ks E C  k.~ ~ D  

Var[r(X)] = E[ra(X)] - E2[r(X)], 

where we have used the notation: ra(X) = [r(X)] 2 or Ez(X) = [E(X)] 2. 
Table 2 shows an example of such a distribution. This distribution was 

based on data obtained from Health Care Service Corp. (Blue Cross/Blue 
Shield of Illinois). 

Table 3 shows the expectation and variance of the five reimbursements 
of example 2.9 when using this distribution, with s = $1,000. 

Example 2.11 
Similarly, let X have the mixed distribution where Pr{X=O}=po and 

Pr{a <x<_b} = f~f(t)dt for a ~0  and a density function f such that f~of(t)dt = 1 -Po. 
See Hogg and Klugman [15, page 50] for a discussion of mixed distributions. 
Again, assuming the r of example 2.9, we have the values 

E[r(X)] = I c(t - d)f(t) dt + Ic(t - d - L)f(t) dt + IDMf(t) dt, 

and 

E[ra(X)] = I cZ(t -d)Zf( t )dt+ Ic(t - d - L)2f(t)dt + IDM2f(t)dt. 

2This formulation has the advantage of simplicity. An alternative formulation would be 
Pr{ks<_X < (k + 1)s} =Pk- 



TABLE 2 

SAMPLE DISCRETE DISTRIBUTION 

$ffil: 

k p(k) 
0 0.600839 
1 0.212998 
2 0.057230 
3 0.033316 
4 0.022218 
5 0.015504 
6 0.011159 
7 0.008179 
8 0.006329 
9 0.004906 

I0 0.003751 
11 0.002734 
12 0.002257 
13 0.001984 
14 0.001629 
15 0.001230 
16 0.001179 
17 0.001041 
18 0.000854 
19 0.000741 
20 0.000633 
21 0.000554 
22 0.000529 
23 0.000528 
24 0.000485 
25 0.000397 
26 0.000387 
27 0.000352 
28 0.000403 
29 0.000333 
30 0.000306 
31 0.000253 
32 0.000258 
33 0.000245 
34 0.000228 
35 0.000204 
36 0.000231 
37 0.000193 
38 0.000172 
39 0.000177 
40 0.000133 
41 0.000121 
42 0.000136 

Mean - 1.433, Variance ~ 28.175, Standard Deviation ~ 5.308 

k p(k) k p(k) I k p(t~) 
I 

43 0.000139 85 0.0000231 131 0.000005 
44 0.000126 86 0.000019 132 0.000004 
45 0.000097 87 0.000023 133 0.000005 
46 0.000082 88 0.000015 134 0.000003 
47 0.000136 89 0.000005 135 0.000003 
48 0.000107 90 0.000011 136 0.000008 
49 0.000095 91 0.000017 137 0.000009 
50 0.000048 92 0.000018 138 0.000009 
51 0.000060 93 0.000009 139 0.000003 
52 0.000077 94 0.000004 140 0.000002 
53 0.000098 95 0.000006 142 0.000005 
54 0.000077 96 0.000015 145 0.000001 
55 0.000044 97 0.000007 146 0.000005 
56 0.000050 98 0.000021 147 0.000006 
57 0.000067 99 0.000014 148 0.000005 
58 0.000092 100 0.000005 150 0.000004 
59 0.000066 101 0.000013 151 0.000005 
60 0.000055 102 0.000015 152 0.000004 
61 0.000024 103 0.000015 153 0.000003 
62 0.000033 104 0.000012 158 0.000001 
63 0.000027 105 0.000011 159 0.000016 
64 0.000031 106 0.000003 160 0.000006 
65 0.000041 107 0.000004 169 0.000001 
66 0.000036 108 0.000007 170 0.000004 
67 0.000043 111 0.000002 172 0.000004 
68 0.000041 112 0.000007 173 0.000007 
69 0.000046 113 0.000005 185 0.000003 
70 0.000038 114 0.000007 186 0.000002 
71 0.000010 115 0.000006 197 0.000006 
72 0.000017 116 0.000001 202 0.000003 
73 0.000029 117 0.000009 203 0.000003 
74 0.000033 118 0.000002 204 0.000004 
75 0.000012 119 0.000005 205 0.000001 
76 0.000011 120 0.000004 206 0.000005 
77 0.000014 121 0.000005 245 0.000005 
78 0.000012 122 0.000010 263 0.000006 
79 0.000016 123 0.000004 285 0.000005 
80 0.000007 125 0.000002 292 0.000005 
81 0.000011 126 0.000003 323 0.000002 
82 0.000002 127 0.000005 324 0.000003 
83 0.000021 128 0.000013 519 0.000003 
84 0.000020 130 0.000005 520 0.000002 

141 
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TABLE 3 

CALCULATION OF VALUES FOR THE REIMBURSEMENTS 

Reimburse- 
men! 

Number (r) 

Discrete Distribution from Table 2; s ~ $I,000 

Mean 

$1,282.10 
1,091.57 

846.98 
0.00 

1,433.67 

Variance 

27,313,585 
25,789,764 
22,912,997 

0 
28,175,197 

Standard 
Deviation 

$5,226.24 
5,078.36 
4,786.75 

0.00 
5,308.03 

Mean 

$2,865.45 
2,436.31 
1,955.29 

0.00 
3,207.80 

Patetn Distribution 

Standard 
Variance Deviation 

67,725,832 $ 8,229.57 
65,540,408 8,095.70 
52,346,277 7,235.07 

0 0.00 
141,052,606 11,876.56 

Table 3 also shows a calculation of these values using the Pareto distribution 
with the same mean and variance as the discrete distribution andpo = 0. The 
Pareto distribution is discussed in [9] and [15]; it is often used for claim 
size distributions. The Pareto has density: f(x)=e&'~(h +x) -"-~ and expec- 
tation of hi(a- 1). The values used were: a = 2.1574 and h = 1.6593. 

III. COST DEVIATIONS DUE TO SELECTION 

We assume that a group comprises m individuals, m_>l. The covered 
charges for individual i are denoted with the non-negative random variable 
Xi, l<_i<_m. Now assume that each individual is given a choice at the be- 
ginning of the year between n reimbursement functions: rl(x ) .... rn(x). To 
avoid long subscripts, we write rj(x)= r(j,x), l<-j<-n. We define the "mean 
group reimbursement at r / '  as the random variable 

1 ~ r(j, Xi). 
m t - ,  

In the prechoice environment, insurers have been estimating E[xl"(j)] by 
using relatively complicated manual rating formulas that take into account 
the characteristics of the group, the individuals in the group, and rj. The 
formulas are complicated because they must reflect the deductible, the coin- 
surance, and so on. 3 Incidentally, insurers often use the group's experience 
to estimate E[W(j)]. 

~Of course, this is not true for simple reimbursement functions such as in examples 2.1, 2.2, and 
r - -  

2.4, where E[V(j)] -- ~ / - I  
L m 
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Assume that the i-th member of the group, l~_i<_m, chooses reimburse- 
ment level X(i), l<X(i)<n. Thus ×(i) is a function X:{1, 2, ..., m}--*{1, 2, 
.... n} called the choice function. Also, we define P(j), l<_j<n as the annual 
premium payable by an individual for reimbursementj. The total reimburse- 
ment to the group is 

R = ~ r[X(i),Xi]; 
i ~ l  

the total premiums paid are: 

and 

e = ~ P[x(g)], 
i = 1  

G = P - R = ~ {P[x(i)] - r[X(i),X~]} 
i=l  

is the insurer's gain. 

Example 3.1 

We have a set of Xi, l<_i<_m, mutually independent and identically dis- 
tributed as in example 2.10. The set of functions rj(x)=r(j,x), l<_j<n, is as 
in example 2.9 where d(j), c(j), L(j) and m(j) correspond to rj, and there- 
fore we have the intervals B(j), C(j) and D(j). For a choice function X, we 
can calculate the values: 

E{r[x(i),X,]} = 2 c[X(i)l(ks - d[x(i)]}pk 
~EB[Xq)I 

+ y~ {ks - d[x(i)] - L[x(i)]}pk + 2 M[x(i)]Pk 
~ C[x(i)] ks ~D[x(i)] 

and 

E ( : [ x ( g ) , x , ] }  = c2[X(i)]{ks - d[x(i)]}2p~ 
ksEB[×(i)I 

+ ~ {ks - d[X(i)] - L[X(i)]}2pk 
ks~C[×(i)l 

+ ~ MZ[x(i)]Pk. 
ks~O[x(i)] 
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From these we can then (given a set of Pi's) calculate: 

E[R] = ~ E{r[X(i),X~]}, 
i-1 

Var[R] = ~ Var{r[g(i),X~]}, 
i -1  

E[G], and Var[G]. 

Example 3. 2 
We can let the Xi have the distribution of example 2.11. We can also have 

the reimbursements rj's and the choice function g(i) of example 3.1. Then: 

E{r[X(i),Xi]} = JB~[x(i)] c[X(i)]{t - d[x(i)]} f(t) dt + ,c ~I×(ol {t - d[x(i)] 

and 

-L[X(i)]} f(t) dt + M[x(i) l f  (t ) at 

In c2[X(i)]{t - d[X(i)]} 2 f(t) dt + Jc {t - d[x(i)] 
f 

E{ra[X(i)'X']}= lxci)l [×(m 

- L[X(i)]} 2 f(t)dt + ~ Ma[X(i)]f(t) dt 
JD [X(i)] 

The expressions for Var{r[X(i),Xi]}, E[R], Var[R], E[G], and Var[G] are the 
same as in example 3.1. 

Now we define the "cost deviation due to selection," a random variable 
for a group with m individuals, as: 

A = R -  ~ ~[X(i)] 
i~l  

= i-1 ~ r[X(i),Xi]- ,-1 ~ I.m[1 ,.1 ~ r[X(i),Xk]]. 
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This is called the cost deviation due to selection because A is equal to the 
deviation in the reimbursement due to the choice X. Since 

and 

R =A + ~ ~[X(i)] 
i = l  

] E[R] = E[A] + E s=x 'It[x(/)] = E[A] + m , .  E{qs[x(i)]}' 

the problem of estimating E[R] is reduced to estimating E[A] and using the 
traditional rating techniques (for example, manual rates as discussed above) 
for E{g/[X(i)]} in the second term. 

Here are some of the properties of A (proofs omitted): 
I. A is exactly equal to the amount by which the actual reimbursement 

exceeds what the reimbursement would have been if each individual 
were reimbursed at the mean rate for the group. That is, if we define 
the mean reimbursement for the group 

F(x) = _1 ~ r[x(k), x], 
m k = l  

then 

for 

A = ~ {r[X(i),X~] - ~(Xi)} = ~ A(i) 
i=1  i=1  

A(i) = r[X(i), Xi] - r(Xi). 

II. If the Xi are identically distributed, then E(A) = O. 
III. If X is a constant, X(1) = 2:(2) = ... = X(m), then A = 0. 
IV. Often the insurer sets P(i)=E[',t:(i)]. In which case E(G)= -E(A).  
V. If the values of X(i) are treated as random variables that are independent 

of the Xi, then E(A) =0.  

Example 3.3 

Table 4 presents a hypothetical group with m = 100. Shown for each in- 
dividual is E(Xi) and the choice X(i). Here n = 4 and the four choices are 1 
through 4 of example 2.9. Table 5 shows the expectations and variances of 



TABLE 4 

SAMPLE GROUP* 

i E[X~l xb) 
1 . . .  $ 286.73 1 $ 
2 . . .  286.73 1 
3 . . .  286.73 1 
4 . . .  286.73 2 
5 . . .  286.73 2 
6 . . .  286.73 2 
7 . . .  286.73 3 
8 . . .  286.73 3 
9 . . .  286.73 3 

10 . . .  286.73 4 

11 . . .  286.73 4 
12 . . .  286.73 4 
13 . . .  286.73 4 
14 . . .  645.15 3 
15 . . .  645.15 3 
16 . . .  645.15 3 
17. . .  645.15 3 
18 . . .  645.15 3 
19 . . .  645.15 3 
20 . . .  645.15 3 

21 . . .  645.15 4 
22 . . .  1,146.94 3 
23 . . .  1,146.94 3 
24 . . .  1,146.94 3 
25 . . .  1,146.94 3 
26 . . .  1,146.94 3 
27 . . .  1,146.94 3 
28 . . .  1,146.94 4 
29 . . .  1,577.04 1 
30 . . .  1,577.04 2 

31 . . .  1,577.04 2 
32 . . .  1,577.04 2 
33 . . .  1,577.04 3 
34 . . .  1,577.04 3 
35 . . .  1,863.78 1 
36 . . .  1,863.78 2 
37 . . .  1,863.78 2 
38 . . .  1,863.78 3 
39 . . .  1,863.78 3 
40 . . .  1,863.78 3 

41 . . .  2,293.88 1 
42 . . .  2,293.88 1 
43 . . .  2,293.88 1 
44 . . .  2,293.88 2 
45 . . .  2,293.88 2 
46 . . .  2,293.88 3 
47 . . .  3,154.08 1 
48 . . .  3,154.08 1 
49 . . .  3,154.08 1 
50 . . .  3,154.08 1 

xi r(1, xj) 

5 5 0 $ 
3,358 2,858 
4,090 3,590 

0 0 
0 0 
0 0 

478 302 
0 0 
0 0 
0 0 

0 0 
0 0 
0 0 

1,000 720 
1,522 1,138 

0 0 
0 0 
0 0 

1,211 889 
707 486 

102 2 
512 330 

0 0 
0 0 
0 0 
0 0 
0 0 

551 360 
2,115 1,615 

0 0 

0 0 
0 0 
0 0 

1,798 1,359 
15,396 14,896 

0 0 
0 0 

213 90 
0 0 

295 156 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

5,795 5,295 
6,588 6,088 

15,649 15,149 
39,806 39,306 

,-(2, xi) [ a3, x~) ' ,ix(i), x,1 
0 $ 0 $ 0 $ 

2,287 1,769 2,858 
2,872 2,317 3,590 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

0 0 0 
0 0 0 
0 0 0 

4OO 0 0 
818 392 392 

0 0 0 
0 0 0 
0 0 0 

569 158 158 
166 0 0 

0 0 0 
10 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

40 0 0 
1,292 836 1,615 

0 0 0 

0 0 0 
0 0 0 
0 0 0 

1,039 599 599 
13,896 11,396 14,896 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

4,295 3,596 5,295 
5,088 4,191 6,088 

14,149 11,649 15,149 
38,306 35,806 39,306 

A(i) 

0 
951 

1,158 
0 
0 
o 

(73) 
0 
o 
o 

o 
o 
0 

269) 
226) 

o 
o 
o 

252) 
156) 

0 
(81) 

o 
o 
o 
o 
o 

(96) 
60o 

o 

o 
o 
o 

(204) 
3,655 

0 
0 (22  

(37) 

0 
0 
0 
0 
0 
0 

1,627 
1,813 
3,691 
7,073 

146  



TABLE 4-Continued 

E[xd x(~) i , _ ..... . .... . ~ ~ ~I ,~ I 
51 . . .  3,154.08 2 0 0 
52 . . .  4,014.29 1 0 0 
53 . . .  4,014.29 I 593 394 
54 . . .  4,014.29 1 4,960 4,460 
55 . . .  4,014.29 2 0 0 
56 . . .  573.47 1 0 0 
57 . . .  573.47 2 0 0 
58 . . .  573.47 2 1,084 787 
59 . . .  573.47 2 0 0 
60 . . .  573.47 3 794 555 

61 . . .  573.47 3 1,104 803 
62 . . .  573.47 3 275 140 
63 . . .  573.47 3 0 0 
64 . . .  573.47 3 0 0 
65 . . .  573.47 3 0 0 
66 . . .  573.47 3 0 0 
67 . . .  573.47 4 0 0 
68 . . .  573.47 4 0 0 
69 . . .  573.47 4 39 0 
70 . . .  573.47 4 0 0 

71 . . .  573.47 4 0 0 
72 . . .  573.47 4 0 0 
7 3 . . .  1,003.57 1 1,891 1,433 
7 4 . . .  1,003.57 2 1,780 1,344 
75 . . .  1,003.57 3 0 0 
76 . . .  1,003.57 3 965 692 
77 . . .  1,003.57 3 2,261 1,761 
78 . . .  1,003.57 3 0 0 
79 . . .  1,003.57 4 0 0 
80 . . .  1,003.57 4 0 0 

81 . . .  1,146.94 1 5,563 5,063 
82 . . .  1,146.94 2 0 0 
83 . . .  1,146.94 2 0 0 
84 . . .  1,146.94 3 0 0 
85 . . .  1,146.94 3 0 0 
86 . . .  1,146.94 3 0 0 
87 . . .  1,146.94 3 0 0 
88 . . .  2,007.14 1 7,311 6,811 
89 . . .  2,007.14 2 997 717 
90 . . .  2,007.14 2 1,218 895 

91 . . .  2,007.14 2 4,536 4,036 
92 . . .  2,007.14 2 232 106 
93 . . .  2,437.25 1 1,883 1,426 
94 . . .  2,437.25 1 3,754 3,254 
95 . . .  2,437.25 2 0 0 
9 6 . . .  2,437.25 3 0 0 
9 7 . . .  2,867.35 1 6,751 6,251 
98 . . .  2,867.35 2 0 0 
99 . . .  3,297.45 1 2,708 2,208 

100.. .  3,584.19 1 2,079 1,583 
Fotal $141,360 $153,970 $139,349 

0 0 0 0 
0 0 0 0 

74 0 394 282 
3,568 2,970 4,460 1,405 

0 0 0 0 
0 0 0 0 

0 0 0 
46 63 467 142 

0 0 0 0 
235 0 0 (190) 

483 78 78 (34d (260) 
0 0 
o o 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 

1,113 668 1,433 568 
1,024 585 1,024 233 

0 0 0 0 
372 0 0 (256) 

1,409 946 946 (174) 
0 0 0 0 
0 0 0 0 
0 0 0 0 

4,063 3,422 5,063 1,572 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

5,811 4,733 6,811 1,983 
397 0 397 130 
575 164 575 160 

3,229 2,652 3,229 477 
o o o (25) 

1,1o6 662 1,426 567 
2,603 2,o66 3,254 1,o63 

o o o o 
o o o o 

5,251 4,313 6,251 1,851 
o o o o 

1,767 1,281 I 2,208 767 
1,263 809 i 1,583 593 

, $120,037 $98,122 i$129,546 $30,007 

*Number Selecting Reimbursements: 
J" 110._ L 
1 24 
2 24 
3 38 
4 14 
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TABLE 5 

EXPECTATION, VARIANCE, AND STANDARD DEVIATION 
OF MEAN REIMBURSEMENTS R/m AND A/m 

SAMPLE SELECTION AND DISTRIBUTIONS BASED ON UNADJUSTED EXPECTED VALUES 

Reimbursement 
Number (r) 

3 

2overed Charges 
~/m 
4/m 

Number 
Selecting 

24 
24 
38 
14 

Discrete Distribution Parelo Distribution 

Standard j L Standard 
Mean Variance Deviation Mean Variance Devialion 

$1,871 818,820 $905 $2,764 1,301,139 $1,141 
1,668 796,109 892 2,457 1,284,966 1,134 
1,411 693,181 833 2,083 1,008,308 1,004 

0 0 0 0 I 0 0 
2,027 851,073 923 3,021 3,407,162 1,846 
1,564 774,686 880 2 472 I 1,272,618 1,128 

178.543 33,655 183 45:].4421 53,851 232 

qs(j) (1_<j<4), R/m, and Aim. These have been calculated under two as- 
sumptions: (1) each Xi has the distribution of example 2.10 with s = E(Xi)/ 
1433.67, and (2) each Xi has the distribution of example 2.11 (Table 3, 
Pareto) with X =E(Xj)(1.15738). This value of X will give a Pareto distri- 
bution with the required expectation. 

Table 4 also shows, for each individual in the group, an example outcome 
of values for Xi, the corresponding values of r(j, Xi) forj = 1, 2, and 3, and 
the value of A(i). Thus there were covered charges of $153,970 (compared 
to the expected value of $141,360), reimbursements R of $129,546, and A 
of $30,007. 

The values of E(Xi) can be thought of as the expected covered charges 
due to known (to the insurer) characteristics of the individuals in the group, 
such as their ages. In such case E(A) can be thought of as the expected cost 
deviation due to demographic selection. If the actual value of A greatly 
exceeds this E(A), then the insurer might wonder whether the individuals 
knew more about their health status and used this knowledge to antiselect. 
We can approximate the probability that a value of A was realized randomly 
by using E(A) and Vat(A) with the normal approximation. 

IV. PRIOR-YEAR'S CHARGES 

Let us assume that each individual has a, possibly unknown, parameter 
for the distribution of his or her covered charges. We call this parameter y 
= {v(i)l 1 <_i<_m}, where y(i) pertains to individual i. Note that the y(i)'s could 
themselves be treated as realizations of random variables Y(i)'s and may be 
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multidimensional. In any case, if we knew the values of the y(i)'s, we could 
calculate E[A[y]. Since there is generally a correlation between successive 
years' charges, we could take a set of y(i)'s to be each individual's prior- 
year's charges? 

Example 4.1 

Table 6 expands Table 4. The values that were previously called Xi are 
now taken to represent last year's claims and are identified as y(i). Table 6 
also shows a value of E[XilYi =y(i)]. Here we have set E[Xi}y(i)] = 0.75E[Xi] 
+ 0.25y(i). Table 7 shows the E[qt(j)Lv], (1_<j<4), Var[qt(j)~v], E[R/m[v], 
Var[R/m~v], E[A/m~v] and Var[A/m~v]. These are computed using the two 
assumptions of example 3.3. We have assumed that the Xi always have the 
same distributions except for a scale change. 

Example 4. 2 
Very often the parameter y would be unknown. If we assume that it is 

equal to the prior-year's charges, we could assume that each y(i) has the 
distribution of Xg. If we set E[X, IY~ =y(i)] = 0.75E[Xg] + 0.25y(i), then we can 
calculate E[R] = E[E(RIY)] and Var[R] = Var[E(RII0] + E[Var(RIY)]. The cal- 
culations involved are long and tedious, so no example values have been 
calculated. A Monte Carlo simulation technique could be used instead. 

V. PREDICTING CHOICE 

To predict employee choice, we assume that each of the individuals, 
i(l<_i<_m) has a utility function u~(w) for wealth w>_0? Now we assume 
that each individual will select the reimbursement that maximizes his or her 
expected utility. That is, if each individual's initial wealth is w(i) and there 
exists a l<k<_n such that: 

E{u,[w(i) - Xi + r(k,X,) - P(k)]} a E{u,[w(i) - X, + r(j,X,) - P(j)]} 

for every j ,  l<j<n,  then X(i)=k. Trivially, if there are two (or more) 
reimbursements for which the expected utility is equal and greater than all 
the other reimbursements, we will assume an arbitrary selection. 

4Fuhrer [12, p. 403] found a correlation of 24.35 percent, and Cookson [8, p. 1602] reported 
seeing estimates of 15 to 25 percent. 

~See [6, Chapter 1] for an introduction to risk-averse utility functions. A good reference on utility 
functions is [16}, particularly Chapter 4, which has an excellent section on various types of utility 
functions. 



TABLE 6 

SAMPLE GROUP* 

Z[X,] x(i) X, =y(i) 
I . . .  $ 286.73 1 $ 5 
2 . . .  286.73 1 3,358 
3 . . .  286.73 1 4,090 
4 . . .  286.73 2 0 
5 . . .  286.73 2 0 
6 . . .  286.73 2 0 
7 . . .  286.73 3 478 
8 . . .  286.73 3 0 
9 . . .  286.73 3 0 

I 0 . . .  286.73 4 0 

11 . . .  286.73 4 0 
12 . . .  286.73 4 0 
I 3 . . .  286.73 4 0 
14 . . .  645.15 3 1,000 
15 . . .  645.15 3 1,522 
16 . . .  645.15 3 0 
17. . .  645.15 3 0 
18. . .  645.15 3 0 
19 . . .  645.15 3 1,211 
20 . . .  645.15 3 707 

21 . . .  645.15 4 102 
22 . . .  1,146.94 3 512 
2 3 . . . '  1,146.94 3 0 
24 . . . .  1,146.94 3 0 
25 . . . .  1,146.94 3 0 
26 . . .  1,146.94 3 0 
27 . . .  1,146.94 3 0 
28 . . .  1,146.94 4 551 
2 9 . . .  1,577.04 1 2,115 
30 . . . .  1,577.04 2 0 

31 . . .  1,577.04 2 0 
32 . . .  1,577.04 2 0 
33 . . .  1,577.04 3 0 
34 . . .  1,577.04 3 1,798 
35 . . .  1,863.78 1 15,396 
36 . . .  1,863.78 2 0 
37 . . .  1,863.78 2 0 
38 . . .  1,863.78 3 213 
39 . . .  1,863.78 3 0 
40 . . .  1,863.78 3 295 

41 . . .  2,293.88 1 0 
42 . . .  2,293.88 1 0 
43 . . .  2,293.88 1 0 
44 . . .  2,293.88 2 0 
45 . . .  2,293.88 2 0 
46 . . .  2,293.88 3 0 
47 . . .  3,154.08 1 5,795 
48 . . .  3,154.08 1 6,588 
49 . . .  3,154.08 1 15,649 
50 . . .  3,154.08 1 39,806 

E[xily(i)l (1) I (2) (3) a(i) 
i 

$ 216 3 i 3 3 $ 6,000 
1,055 3 1 2 8,500 
1,238 2 1 2 3,600 

215 2 2 2 3,400 
215 3 3 3 6,800 
215 3 3 3 7,600 
335 3 3 3 7,500 
215 2 2 3 4,400 
215 2 2 3 4,900 
215 3 3 3 7,200 

215 3 3 3 6,500 
215 2 2 3 4,100 
215 3 3 3 8,500 
734 3 3 2 11,000 
864 3 3 2 14,500 
484 3 3 3 9,500 
484 3 3 3 13,100 
484 2 2 3 5,400 
787 3 3 2 12,300 
661 3 3 3 9,000 

509 1 2 2 3,800 
988 1 2 2 19,800 
860 1 3 2 23,500 
860 1 2 2 6,500 
860 1 3 2 19,600 
860 1 3 2 17,500 
860 1 3 2 20,900 
998 1 2 2 14,400 

1,712 1 1 2 31,800 
1,183 1 1 2 20,100 

1,183 1 1 2 30,300 
1,183 1 1 2 31,400 
1,183 1 1 2 25,200 
1,632 1 1 2 7,700 
5,247 1 1 2 11,300 
1,398 1 1 2 28,400 
1,398 1 1 2 36,000 
1,451 1 1 2 26,600 
1,398 1 1 2 7,800 
1,472 1 1 2 21,700 

1,720 1 1 2 35,000 
1,720 1 1 2 15,900 
1,720 1 1 2 27,600 
1,720 1 1 2 20,800 
1,720 1 1 2 39,300 
1,720 1 1 2 45,200 
3,814 1 1 2 17,400 
4,013 1 1 2 10,800 
6,278 1 1 2 59,900 

12,317 1 1 2 8,200 



TABLE 6--Continued 

i E[Xi] 

51 . . .  3,154.08 
52 . . .  4,014.29 
53 . . ,  4,014.29 
54 . . .  4,014.29 
55 . . .  4,014.29 
56 . . .  573.47 
57 . , .  573.47 
58 . . .  573.47 
59 . . .  573.47 
60 . . .  573.47 

61 . , .  573.47 
62 . . .  573.47 
63 . . ,  573.47 
64 . . . i  573.47 
65 . . . i  573.47 
66.11 573.47 
67. 573.47 
68. 573.47 
69.11 573.47 
70.. .1 573.47 
71 . . .  573.47 
72 . . .  573.47 
73 . . .  1,003.57 
74 . . .  1,003.57 
75 . . .  1,003.57 
76 . . .  1,003.57 
77 . . .  1,003.57 
78 . . .  1,003.57 
79 . . .  1,003.57 
80 . . .  1,003.57 

81 . . .  1,146.94 
82 . . .  1,146.94 
83 . . .  1,146.94 
84 . . .  1,146.94 
85 . . .  1,146.94 
86 . . .  1,146.94 
87 . . .  1,146.94 
88 . . .  2,007.14 
89 . . .  2,007.14 
90 . . .  2,007.14 

91 . . .  2,007.14 
92 . . .  2,007.14 
93 . . .  2,437.25 
94 2,437.25 
95 2,437.25 
96 . . .  2,437.25 
97 . . .  2,867.35 
98 . . .  2,867.35 
99 . . .  3,297.45 

100.. .  I 3,584.19 
Total..] $141,360 

X(i) X/=y(i) E[~ly(i)] 
2 0 2,366 
1 0 3,011 
1 593 3,159 
1 4,960 4,251 
2 0 3,011 
1 0 430 
2 0 430 
2 1,084 701 
2 0 430 
3 794 629 

3 1,104 706 
3 275 499 
3 0 430 
3 0 430 
3 0 430 
3 0 430 
4 0 430 
4 0 430 
4 39 440 
4 0 430 

4 0 430 
4 0 430 
1 1,891 1,225 
2 1,780 1,198 
3 0 753 
3 965 994 
3 2,261 1,318 
3 0 753 
4 0 753 
4 0 753 

1 5,563 2,251 
2 0 860 
2 0 860 
3 0 860 
3 0 860 
3 0 860 
3 0 860 
1 7,311 3,333 
2 997 1,755 
2 1,218 1,810 

2 4,536 2,639 
2 232 1,563 
1 1,883 2,299 
1 3,754 2,766 
2 0 1,828 
3 0 1,828 
1 6,751 3,838 
2 0 2,151 
1 2,708 3,150 
1 2;079 3,208 

$153,970 $139,349 

*Number Selecting Reimbursements: 
Sample (1) (2) (3) 

1 24 60 49 0 
2 24 11 13 72 
3 38 29 38 28 
4 14 0 0 0 

x(O 

(1) (2) (3) a(i) 
1 1 2 49,800 
1 1 2 6,500 
1 1 2 79,900 
1 1 2 10,000 
1 1 2 40,200 
3 3 3 9,500 
3 3 3 9,900 
3 3 2 8,300 
3 3 3 8,300 
3 3 3 14,300 

3 3 2 7,400 
3 3 3 6,900 
3 3 3 14,200 
3 3 3 6,300 
1 2 2 3,800 
3 3 3 12,600 
3 3 3 9,400 
2 2 3 4,700 
3 3 3 13,400 
3 3 3 8,500 

3 3 3 7,600 
3 3 3 5,700 
2 1 2 14,700 
1 I 2 5,900 
1 3 2 8,700 
2 2 2 13,900 
2 1 2 13,000 
1 3 2 8,400 
1 1 2 5,000 
2 3 2 12,300 

1 1 2 12,800 
1 1 2 4,700 
1 1 2 4,300 
1 3 2 16,300 
1 3 2 16,700 
1 2 2 6,500 
1 3 2 23,900 
1 1 2 28,900 
1 1 2 4,200 
1 1 2 31,600 

1 1 2 34,200 
1 1 2 9,000 
1 1 2 24,700 
1 1 2 14,600 
1 1 2 28,400 
1 1 2 18,200 
1 1 2 10,400 
1 1 2 27,700 
1 1 2 47,400 
1 1 2 45,100 
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TABLE 7 

EXPECTATION, VARIANCE, AND STANDARD DEVIATIONS 
OF MEAN REIMBURSEMENTS, R/m, AND A/m 

SAMPLE SELECTION AND DISTRIBUTIONS BASED ON Y CONDITIONED EXPECTED VALUES 

Discrete Distribution Pareto Distribution 

Reimbursement Number Standard 
Number (r) Selecting Mean Variance Deviation Mean 

1 24 $,1,919 1,134,917 $1,065 $4,178 
2 24 1,721 1,112,045 1,055 3,892 
3 38 1,465 902,406 950 3,366 
4 ' 14 0 0 0 0 
Covered Charges ~ 2,072 1,295,754 1,138 4,599 
R/m 1,657 1,104,684 1,051 3,959 
4/m i 226.304 48,116 219 742.9481 

Standard 
Variance Deviation 

5,435,419 $2,331 
5,423,544 2,329 
3,243,718 1,801 

0 0 
37,442,838 6,119 

5,421,039 2,328 
359,771 600 

For simplicity, we want to use the same form of a utility function for 
each individual. To model the actual situation, we need to say that each 
individual has a different aversion to risk. To do this, we select a utility 
function that is decreasingly risk-averse. That is, the larger the individual's 
initial wealth, the less risk-averse he or she is. Common measures of risk 
aversion are the Arrow-Pratt [2] and [21] measures of absolute risk aversion 
and relative risk aversion: p , , (w)=-u"(w)/u' (w)  and 6,(w)=wo~(w), 
respectively. 6 

Example 5.1 

We can use the assumptions of example 3.3 in which the choice depends 
on the utility function: u~(w)= ln[w+a(i)] for a positive constant a(i). This 
utility function is convenient because of the property that almost any level 
of risk averseness can be selected based on the size of the parameter a(i). 7 
Table 6 shows some sample values of a(i) for our sample group and the 
resulting choice in column 1 using the discrete distribution to calculate ex- 
pectations. Note that we have changed slightly the reimbursements so that 
there is no maximum M. The end of Table 6 summarizes the choices, and 
Table 8 shows the calculated values. We have assumed that P(j)=E[~F(j)]. 

~Kimball [17, p. 2] suggests "standard risk aversion" as another alternative. It is characteristic 
of  utility functions associated with constant relative risk aversion. 

7For u(w) =In(w), the absolute risk aversion is p.(w) = 1/w, which is a decreasing function of w, 
and the relative risk aversion is ~.(w) = 1. 
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TABLE 8 

VALUES FOg R/ra ~ D  Aim 

Discrete Distribution 

Standard 
Example Mean Variance Deviation Mean 

5.1 R/m $ 1 , 7 7 9  812,894 $ 902 $2,715 
Aim 63 2,011 45 182 

5.2 R/m 1,831 1,129,125 1,063 4,129 
A/ra 65 4,412 66 218 

5.3 R/m 1,795 1,126,295 1,061 4,104 
Aim 74 7,302 85 272 

5.5 Rim 1,697 1,110,082 1,054 ] 3,887 
A/m 48 3,605 601 142 

Partto Distribution 

Standard 
Variance Deviation 

1,300,147 $1,140 
5,907 77 

5,434,103 2,331 
58,528 242 

5,433,383 2,331 
100,422 317 

5,423,368 2,329 
54,459: 233 

Example 5. 2 
For this example, use the assumptions of example 4.1, with a fixed known 

parameter set y(i) and with the utility-based choice of example 5.1. The 
calculated values are also shown in Table 8. 

Example 5. 3 
This is example 5.1, except we use the parameter-adjusted discrete dis- 

tribution of example 4.1 to calculate the expected utilities and determine the 
choices. Table 6 shows the choices in column 2, and Table 8 shows the 
calculated values using the parameter-adjusted distributions as in example 
5.2. Note that choice 2 has a larger E[A] than choice 1. 

Example 5. 4 
Here we combine example 4.2 with the utility function of example 5.1. 

Now that the choice is random, we could calculate, for each i and j,  Pr{X(i) =j}. 
We define N(j) as the number of individuals for whom X(i)=j. We could 
also calculate E[N(j)], 1 <j<-4. 

Example 5. 5 
Let S(j)= {i:X(i)=j}. Then let 

1 ~ r[y(i)] 
P(J) = N(j) ,es<j) 

in example 5.2. That is, we set the premiums for a reimbursement equal to 
the experience of those who selected it (using the sample selection). The 
resulting choice (Table 6, column 3) is much more heavily weighted towards 



154 TRANSACTIONS, VOLUME XLIV 

the cheaper plans. This illustrates the selection spiral that can occur if pre- 
mium rates are based only on the experience of those who choose a particular 
reimbursement plan. 

VI.  CONCLUSION AND AREAS FOR FURTHER RESEARCH 

The framework of this paper allows us to predict employee choice and 
cost deviations due to selection given any arbitrary combination of individual 
charge distributions, a set of reimbursement plans and their premiums, and 
a set of utility functions. By using this method, various combinations of 
plans and premiums can be explored until the plan administrator can select 
the combination that best fits the group's needs. 

The calculations of examples 4.2 and 5.4 could be completed. A few 
more distributions could be used to calculate the values. A term could be 
added to each reimbursement's wealth to model affinities that individuals 
may have for a particular plan. This might be used in the HMO choice, as 
individuals might prefer the traditional plan over the HMO so that they could 
continue with their current physicians. 

The parameters of the utility function could be estimated from some actual 
choice data. These could then be used to predict actual past choices and then 
to determine the accuracy of the predictions. 
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DISCUSSION OF PRECEDING PAPER 

GERARD SMEDINGHOFF: 

Mr. Fuhrer and Dr. Shapiro present a valuable comprehensive model in 
an emerging field of research: measuring the causes and effects of individual 
employee health-care benefit selection. Because this model represents an 
initial effort in this area, actuaries will eventually see the need to modify it 
to suit their needs and their own emerging experience. Two refinements and 
one enhancement are suggested below. 

The first refinement concerns how the model portrays employees who 
opt out of the plan. In the Table 4 example, the values of A(i), "the cost 
deviation due to selection," are calculated as r[x(i), Xi]-r(Xi), the mean 
reimbursement function for the group. The derivation of ~(Xi) assumes that 
14 percent of eligible employees choose a zero reimbursement function (that 
is, no health coverage). In reality, most of those who decline health coverage 
are actually choosing to purchase coverage under their spouse's plan as 
opposed to (a) not wanting the product, (b) viewing the cost as outside of 
the valid range of their utility curves, or (c) having an array of other vendors 
to choose from. 

Ideally, the model should differentiate between employees who choose 
no coverage versus those who choose to be covered under their spouse's 
plan. Because the latter group does want health coverage, they are willing 
and able to pay for it, and the coverage available from their spouse's plan 
may cease or become relatively more expensive, these employees will return 
to the plan since their employer represents the only available vendor of health 
care coverage. If the employees who opt out were ignored in the calculation 
of the mean reimbursement function, ~(Xi), then the resulting value of A in 
the Table 4 example would be $13,744 instead of $30,007. 

Actually accounting for this differentiation may not be realistic. From 
the employer's perspective for the current plan year, the claims generated 
by employees who opt out of the plan are of no concern. But actuaries 
should at least note that any changes in the benefit composition, the options 
offered or the employer contribution rates could significantly affect the size 
and demographic composition of the percentage of employees who opt out 
of the plan by either attracting dependents of employees into the plan or 
driving employees away to be covered as dependents under their spouses' 
plans. 
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The second refinement, related to the first, concerns the individual 
values of A(i) for employees who generate large claims. Almost one-half of 
the total value of A ($30,007) in Table 4 is attributed to the three employees 
who generated claims of more than $10,000. As reimbursements to these 
employees progress to catastrophic levels, their corresponding values of A(i) 
continue to increase, even after they exceed the maximum out-of-pocket 
differential (again, this is due to the 14 percent of the mean reimbursement 
for the group, ~(x), who are assumed to choose no coverage). Because the 
employer must pay the bulk of these claims regardless of which reimburse- 
ment option is selected, the cost deviation value for any one employee should 
be limited to the out-of-pocket difference between the highest and lowest 
non-zero reimbursement options (much in the same way that claims for an 
individual above a specified level are pooled and not charged to a group's 
experience). In the Table 4 example, this would reduce the value of A from 
$30,007 to $26,088. 

These two refinements depend on the demographic composition of the 
subgroup of employees who opt out of the plan. If they appear to be younger, 
healthier lives who are not representative of the group as a whole, then the 
refinements may be justified. If there is no discernible pattern to those who 
opt out, then it appears that they probably represent their alloted portion of 
claims among all the employees (that is, if, in the example, the 14 percent 
who opt out also represent 14 percent of the total potential for claims among 
all employees), then these refinements would not be necessary. 

The enhancement concerns the structure of this model and its applica- 
tions in Sections IV and V of the paper, which suggest a game theory 
approach to employee benefit selection. In addition to factoring in an em- 
ployee's wealth and prior year's claims, the model also could consider an 
employee's deduction into a flexible spending account (FSA) as a measure 
of the degree of confidence the employee has in the level of health-care 
costs for the coming plan year. If the FSA deduction were to equal or exceed 
the chosen reimbursement option's out-of-pocket limit, then that would in- 
dicate that the employee may have already planned on significant health- 
care costs at the time of the annual benefit selection. 

Depending on the degree of precision desired, with respect to the employee 
utility function in Section V, the premiums, Pq), could be adjusted to the 
after-tax equivalent that would be available as discretionary income to em- 
ployees who opt out or who choose lower premium options. And if an FSA 
is available from which employees can fund their out-of-pocket health-care 
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expenses on a pre-tax basis, then the difference between expenses incurred 
and the amount reimbursed, X~-r(./', Xi), could also be adjusted to its after- 
tax equivalent as it would affect an employee's wealth. 

The impetus for this model results from the peculiar cultural, political, 
legal and tax-related aspects of the current economic environment for the 
allocation, delivery and payment of health care in the United States. Un- 
derwriting individual group health coverage in an unregulated marketplace 
would be a relatively simple and standardized exercise. It is only due to the 
distorted structure of regulations and perverse incentives that dominate the 
health-care market that this model is necessary. As this structure of the 
health-care environment evolves and grows even more complex, the model 
will naturally have to adapt to match it. 

(Finally, as a clarification, note that where the model refers to "the 
insurer" and "the insurer's gain," G (in the positive sense), it actually 
represents the perspective of a self-insured employer. And the "gain ,"  G, 
is actually the employer's "negative gain" or the portion of the plan's cost 
not funded by employee contributions. The employer's "negative gain" is 
not limited by its portion of the premium paid to an indemnity insurer but 
extends to the plan's individual benefit maximum, M.) 

(AUTHORS' REVIEW OF DISCUSSION) 

CHARLES S. FUHRER AND ARNOLD F. SHAPIRO" 

The authors thank Gerald Smedinghoff for his thoughtful discussion. His 
first refinement is very important, but it is outside the scope of the paper. 
Given today's cost of medical care, very few individuals would be willing 
to accept the risk of not insuring. Thus, practically all employees who 
decline medical insurance under a flexible benefit plan are covered under 
their spouse's plan. This explains our prediction of zero for the number who 
would choose reimbursement 4 in Section V of the paper. Of course, the 
methodology of the paper would extend to predicting choice with competing 
spousal plans. This probably should have been mentioned in Section VI. 

The second refinement is a little less clear. First, the discussant seems to 
attach some meaning to the term: A(i). In fact, he calls it "the cost deviation 
due to selection." A careful reading of our paper indicates that A(i) is never 
so defined. As a matter of fact, A(i) was defined for the purpose of illustra- 
tion only. Perhaps the discussant intended to make the case that A, the cost 
deviation due to selection, should be defined differently. If this was his 
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intent, he might have stated the exact definition. We defined A so that it 
would satisfy some of the properties discussed in Section III. 

Finally, we agree that we did sometimes use the word insurer when we 
mean the plan sponsor. Nevertheless, G, as defined, represents the excess 
of individual employee contributions over plan costs. 

Once again, we thank the discussant for the enhancement and the 
clarification. 


