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Abstract:

Assumptions:

1. Reinsurance treaty: quota-share retention level a, retention
limit M.

2. A diffusion process is added to the claim process.

Objective:

Choose the a and M to maximize the adjustment coefficient.



1. Reinsurance Forms

e Proportional (Pro Rata): premiums and losses are shared pro-
portionately between the ceding company and the reinsurer.

Quota share: same percentage applies to all policies.
Surplus share: share varies for each risk.

e Non-proportional
Catastrophe: big losses involving more than one insured.
Stop loss: pays losses in excess of a predetermined amount.

Spread loss: ceding company’s losses for a certain year are
"spread’ over a period of years.



2. Definitions

Xo.m = min(aX, M): the insurer retains payment when a claim
of size X occurs.

{T;}721: inter-claim time, i.i.d. non-negative r.v. exponential
distribution with E(T;) = &

Spn=T1 4+ T+ ---4Ty: the claim process with Sg = 0.

{N(t)}t>0: the number of claims, an ordinary renewal process.
N(t) =sup(n: Sy <t}.

{W(t)}: a diffusion process affects the surplus process, a Wiener
process with infinitesimal drift O and infinitesimal variance 2D >
0. Independent of S(t) and W(t) ~ N(0,2Dt)



{X;}24: claim amount, i.i.d. non-negative r.v.s, independent of
{13372 1. With distribution function F' and E(X;) = u. Satisfies :

e '(0)=0;0< F(zx)<1forO0<xz<—+o0;
CfiF exist and continuous:

e Mx(r) (moment generating function) exists for r € (—oo, 7)
for some 0 < 7 < 400 and limy—; Mx(r) = limy—; E[e"™] = 4o0.

P: the insurer’'s gross premium income per unit of time.
o positive loading coefficient.

e. insurer’'s expenses rate.

c. commission payment rate.

u. non-negative initial surplus.



2. Assumptions

1. The reinsurer will pays the commission back to the insurer
according to the business volume, which is ¢(1 — a)P.

2. The insurer cannot reinsure the whole risk with a certain
profit, i.e., e >cand (1 —e)P — (1 + a)yu < 0. The reinsurance
premium:

Povr=(1—-c)(1—a)P+ (1+a)y /]\Za(aa: — M)dF(z).

3. The surplus process can be expressed as

N (t)

U mi(®) =u+[(1 —e)P — Py It — > min(aX;, M) + W(t).
i=1

Note that for X ~ N(u,o2), M(t) = E[etX] = ett+o°t?/2



4. The insurer's net(of expenses and reinsurance) risk at time t:

N(t)

Yo () =[(1—e)P — P, It — > min(aX;, M) + W(t).
1=1

L = —Yam(S) — Yo mr(Si—1)]-

Note that for X ~ exp()), E[e!*] = [§° e e Mdx = ﬁ

5. The insurer's expected net profit per period of time (after
reinsurance and expenses):

E[W (a, M)] = (1 — e)P — Py — AE[Xq a1



3. Preliminaries
Centeno(1985) has proved the following lemma

LEMMA 1: Let A = {a: 0 < a <1 and there exists an M

such that E[W(a,M)] = 0} and ag = (1_6()61;9/\];()(). Under our

assumption on the reinsurance premium P, s, we have

1. A= (ag,1].

2. Foreacha € A, thereis a unique M such that E[W (a, M)] = 0O,
i.,e. there is a function ® mapping A into (0,c0), such that
M = ®(a) is equivalent to E[W(a,M)] = 0.

3. ®(a) is convex.

4. Ilma—>a0 CD(&) — _I_OO.



4. Two Models
The adjustment coefficient, Ra,M IS the positive solution of:

1. Modified Centeno’'s model

YZ'
gar(r) = My (r)= Ele' aM]
M

a,

= B[ XM pleA-)P=PoulrT) pre—rW(1)] = 1

2.Modified Dufresne’'s model

A/OOO MR () + Dr2 = A+ [(1 — e) P — Py y]r

We want to figure out M and a to maximize R, ;. We will
discuss both models.



5. Modified Centeno’s model

LEMMA 2.1: Ra,M IS the one and the only one positive solution
of

E[erXavM]E[e_[(l_e)P_Pa7M]TT]E[G_TW(]')] — 1
Proof:

1. Ele™*aM] = [5C e faMdF (x) is a non-decreasing convex func-
tion;

2. For T ~exp(X), Ble (=P fandT) = c0r o f

3. For W(1) ~ N(0,2D), E[e-"W (D] = ¢DP7? is a non-decreasing
convex function.

So the above equation is equivalent to
o0
AP [ T eraMdp(a) = A+ [(1 = €)P = Pylr (1)
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LEMMA 2.2: The adjustment coefficient is positive if and only
if (a, M) € L. L is the set of points for which the insurer’'s net
expected profit is positive, i.e.

L={(a,M):0<a<1,M >0 and E[W(a,M)] > 0}.

And for any (a,M) € L, H] ;,(r) is positive at » = R, ).

Proof:
Hypr(r) = AeP7Jo €M@ (1 — )P — P, plr — A =0,
OH, p(r)
HC,L,M(O) — aér lr=0 = AE[wa,M] —[(1 —e)P — Pa,M]-

| oo if M < 40 . H, v (0) =0
&= T for M = 400 ’ lim Hy pp(7)p—e = 400

Adjustment coefficient is positive <= H! ,,(0) < 0.
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RESULT 1.1: For a fixed value of a € (ag, 1], R, ps is @ unimodal
function of M, attaining its maximum value at the only point
satisfying M = = In[(1 + a)] — DR, s, Where R,y is the only

positive solut|on of (1). Let Ry = max(R, nr).
Proof:

From the implicit function theorem, we have,
aRCL,]W (a/aM)Ha ()

oM (8/8T)Ha a () r=r Ra,m
a2Ra,M| _ (9%/0M?)H, y(r)
oM2 et g (8/0r)Hy 31 (r) 'r=Rypp, nM =g

OH
From lemma 2.2, “éf(r)“:Ra,M > 0.
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Q

L R, O2R, a1
Target: find out M, s.t. —37 = 0 where 5-oR, s < 0.

<

<~—— M satisfies

8Ha,M(T) —0
8M |T:Ra,M -
82Hg pr(r)
a, d | R, 1 > 0.
aM T:Ra7M,8—M:
Since
OH r M
M) 31— PADEPP M (14 a)),
oM a
implies %#MM — 0 at least has one solution and one solution is
M = ———1In[(1+4a)] — DRy y (2)

a,M
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Since

2 M
0 Ha’M(ﬂ = )\TQGTM—I_DTQ[l — F(%)] + er(j) (14+a— eDTQ—I_TM)a
OM?2 a a
When M satisfies (2), we have
O2H, p(r) 5 M
’ = Ar<(1 1—-F(—)] >0
AT iy st o = M = PO

Hence the second derivative with respect to M of Ra,M IS negative
whenever the first derivative is zero, which implies that for fixed
a € (ag, 1], Ra,M has at most one turning point, and that when
such a point exists it is a maximum. The maximum will exist and
be finite at the only point satisfying M = ﬁ IN[(14a)]—=DR, .

Compared to the original model, the excess of loss retention limit
M decreased due to the diffusion process, which means that for
increasing uncertainty, the insurance company should cede more
business to the reinsurer.
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RESULT 1.2: R, is a unimodal function of a, for a € (ag, 1],

attaining it’s maximum at a = 1, if and only if lim,_,;- %R, >0

Proof:

At equation(2), defines M as a function of a:T(a). Let Ry =
Ra,v(a):

i dR, __ _ (9/0a)H,n(r) R
First we have = _(8/8’/")Ha,M(r)|M=T(a)’T:Ra
d?R,| _ _(82/8a2)Ha71\,1(7*)><(82/8M2)HQ,M(7‘)—[(82/8(16M)Ha71\,1(7*)]2| o
da? %=0 _ (0/0r)H, 1 (r)x(82/OM?)H, (1) M=T(a),T:Ra,%=O

Note here we already proved that

82Ha M(T) aHa M(T)
~ >0 and A

N2 M= () =R > 0.

|M='T‘(a),r=§a
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After some calculations, we have

(82/80’2)HCL,M(T) X (82/8M2>HCL,M(T) — [(82/8aaM)HCL,M(T)]2Ir:Ra’M;%HayA,j(r):O;%Ha’M(r):O

M/a
M
— )\2T4€TM+2DT2[1 . F(;)]/ $2€Ta:rdF($) > O,
0

d2 ﬁa | R
da? 'dRa —0
da ~—

which means > 0.

On the other hand, when a — aq, R, goes to zero and we can say
that the maximum of Ry is 1, if and only of if lim d p.>0.

a—1~ da
Hence the result is proved. It is the same as the original result.
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Example 1. Exponential Distribution
Claim amount distribution: F(z) =1 — e P% and f(z) = Be P~

Let « = 0.9,c=02,e=03,P=17,8=0.5A=1,D = 0.004.
It satisfiese>cand (1 —e)P— (1 4+ a)dpu=-2.61<0

In this case, we have:

/OOO emja’MdF(:U) — ra erM—ﬁ% . B

m ra — (3

(1l-e)P-P,pyy=(at+c—ca—e)P—-(1+ a))\%e_ﬁ%

Hence (1) becomes

)\eDTQ(&eTM_B%—L) = )\—I—[(a—l—c—ca—e)P—(1-|—cu))\ge_ﬂ%]r
ra — 3 ra — 3 5}
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After some simplification, it becomes:
A\r2a?

5]

(1—|—oz)1_§eD”8r/a = )\BGDTQ—I—(TG,—B) (a+c—ca—e)rP+A(ra—p0).

The solution is r = 3/a.

When a = 1, the adjustment coefficient R, j; attains its maxi-
mum value which satisfies:

Ar? A
{5(TT_ m(l + a)1-B/reDBr — %GDTQ + (1 —e)rP+ 2} =R, ,; -

Ry, p = 0.5 and M = 1.2817.
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6. Modified Dufresne’s model

LEMMA 3.1: Ra,M IS the one and the only one positive solution
of

A/OOO "M AR () + Dr2 = A+ [(1 — €) P — Py y]r.

The function can be rewritten as

A /OOO MR (z) = —Dr?2 + [(1—e)P — Py yfr + A (3)

LEMMA 3.2: The adjustment coefficient is positive if and only
if (a, M) € L. L is the set of points for which the insurer’s net
expected profit is positive, i.e.

L={(a,M):0<a<1,M >0 and E[W(a, M)] > 0}.

And for any (a,M) € L, H! ,,(r) is positive at r = R, ).
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RESULT 2.1: For a fixed value of a € (ag, 1], R, 3/ iS @ unimodal
function of M, attalnmg its maximum value at the only point
satisfying M = a,M is the only positive

solution of (2. 2) Let Ry, = max(Ra M)-

Proof:

Similar to result 1.1,

a[_Ia,,M("ﬂ)
oM

azHa,M(T) . 1 M .y 5 M oy
aM2 AT[_gf(;)][e — (14 o)+ 71— F(;)]e .

= {1 = FCOIE™ — (14 )]

which implies,
8Ra,M (a/aM)Ha M (r)

M (0/0r) Hy 1 (r) Ir=Rqar =0
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at lease has one solution and one of solution is

M = In[(1+ a)]. (4)

a,M
When the above relationship satisfied,
02H, (1) 5 M
) = Ar2[1 — F(X)e™M > 0
OMZ e,y Paan g = AL ECD)
which means.

82Ra,,M B (82/8M2)Ha,M(T) | or <0
a,M __

or,, =
aMQ 8—]\’4M=O (a/ﬁr)Ha,M(T) T:RG,M78—M_O

Hence the second derivative with respect to M of R, ) is negative
whenever the first derivative is zero, which implies that for fixed
a € (ag,1], R, s has at most one turning point, and that when
such a point exists it is a maximum. The maximum will exist
and be finite at the only point satisfying M = RGLM In[(1+ a)].
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RESULT 2.2:

R, is a unimodal function of a, for a € (ap,1], attaining it's
maximum at a = 1, if and only of lim, ;- d%}?a >0

Proof:
Here Ry = R, v (4), Where T(a) = M = ﬁ In[(1+ a)].

d

. 2p
Similar to result 1.2, we first have %a| ~ > 0.
da dcll%azo
a

On the other hand, when a — aq, R, goes to zero and we can say
that the maximum of R, is 1, if and only of if lim d R, > 0.

a—1" da
Hence the result is proved. It is the same as the original result.
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Example 2. Exponential Distribution

Use the same assumptions as example 1, (3) becomes

ALY eyt Oy D2 = At (at e ca— )P — (14 a)Arte
ra — (3 ra— b

Consider M satisfying (4), after some simplification, we have :

B ra

Aa(l 4+ oz)l_ﬁﬁ + (ra—B8)Dr=Xa+ (a+c—ca—e)(ra— 3)P.

The solution is r = 3/a.

When a = 1, the adjustment coefficient R, j; attains its maxi-
mum value which satisfies:

AT A
D 1 —e)P.
G TP =gt

(1+a)i=r

Ry v = 0.5 and M = 1.2837.
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Any Questions?

Thank you !
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