Adjustment Coefficient in the Sparre

Anderson Model with Reinsurance

Zhi Li
Department of Statistics and Actuarial Science University of Waterloo

August 12, 2005

Abstract:

Assumptions:

1. Reinsurance treaty: quota-share retention level a, retention limit M.
2. A diffusion process is added to the claim process.

Objective:

Choose the a and M to maximize the adjustment coefficient.

1. Reinsurance Forms

- Proportional (Pro Rata): premiums and Iosses are shared proportionately between the ceding company and the reinsurer.

Quota share: same percentage applies to all policies.

Surplus share: share varies for each risk.

- Non-proportional

Catastrophe: big losses involving more than one insured.

Stop loss: pays losses in excess of a predetermined amount.

Spread loss: ceding company's losses for a certain year are "spread" over a period of years.

2. Definitions

$X_{a, M}=\min (a X, M):$ the insurer retains payment when a claim of size X occurs.
$\left\{T_{i}\right\}_{i=1}^{\infty}$: inter-claim time, i.i.d. non-negative r.v. exponential distribution with $E\left(T_{i}\right)=\frac{1}{\lambda}$
$S_{n}=T_{1}+T_{2}+\cdots+T_{n}:$ the claim process with $S_{0}=0$.
$\{N(t)\}_{t \geq 0}$: the number of claims, an ordinary renewal process. $N(t)=\sup \left(n: S_{n} \leq t\right\}$.
$\{W(t)\}$: a diffusion process affects the surplus process, a Wiener process with infinitesimal drift 0 and infinitesimal variance $2 D>$
0 . Independent of $S(t)$ and $W(t) \sim N(0,2 D t)$
$\left\{X_{i}\right\}_{i=1}^{\infty}$: claim amount, i.i.d. non-negative r.v.s, independent of $\left\{T_{i}\right\}_{i=1}^{\infty}$. With distribution function F and $E\left(X_{i}\right)=\mu$. Satisfies:

- $F(0)=0 ; 0<F(x)<1$ for $0<x<+\infty$;
- $\frac{d F}{d x}$ exist and continuous;
- $M_{X}(r)$ (moment generating function) exists for $r \in(-\infty, \tau)$ for some $0<\tau \leq+\infty$ and $\lim _{r \rightarrow \tau} M_{X}(r)=\lim _{r \rightarrow \tau} E\left[e^{r X}\right]=+\infty$.
P : the insurer's gross premium income per unit of time.
α : positive loading coefficient.
e : insurer's expenses rate.
c : commission payment rate.
u : non-negative initial surplus.

2. Assumptions

1. The reinsurer will pays the commission back to the insurer according to the business volume, which is $c(1-a) P$.
2. The insurer cannot reinsure the whole risk with a certain profit, i.e., $e>c$ and $(1-e) P-(1+\alpha) \gamma \mu<0$. The reinsurance premium:

$$
P_{a, M}=(1-c)(1-a) P+(1+\alpha) \gamma \int_{M / a}^{\infty}(a x-M) d F(x)
$$

3. The surplus process can be expressed as

$$
U_{a, M}(t)=u+\left[(1-e) P-P_{a, M}\right] t-\sum_{i=1}^{N(t)} \min \left(a X_{i}, M\right)+W(t)
$$

Note that for $X \sim N\left(\mu, \sigma^{2}\right), M(t)=E\left[e^{t X}\right]=e^{\mu t+\sigma^{2} t^{2} / 2}$
4. The insurer's net(of expenses and reinsurance) risk at time t :

$$
\begin{gathered}
Y_{a, M}(t)=\left[(1-e) P-P_{a, M}\right] t-\sum_{i=1}^{N(t)} \min \left(a X_{i}, M\right)+W(t) \\
Y_{a, M}^{i}=-\left[Y_{a, M}\left(S_{i}\right)-Y_{a, M}\left(S_{i-1}\right)\right]
\end{gathered}
$$

Note that for $X \sim \exp (\lambda), E\left[e^{t X}\right]=\int_{0}^{\infty} e^{t x} \lambda e^{-\lambda x} d x=\frac{\lambda}{\lambda-t}$.
5. The insurer's expected net profit per period of time (after reinsurance and expenses):

$$
E[W(a, M)]=(1-e) P-P_{a, M}-\lambda E\left[X_{a, M}\right]
$$

3. Preliminaries

Centeno(1985) has proved the following lemma

LEMMA 1: Let $A=\{a: 0<a \leq 1$ and there exists an M such that $E[W(a, M)]=0\}$ and $a_{0}=\frac{(e-c) P}{(1-c) P-\lambda E(X)}$. Under our assumption on the reinsurance premium $P_{a, M}$, we have

1. $A=\left(a_{0}, 1\right]$.
2. For each $a \in A$, there is a unique M such that $E[W(a, M)]=0$, i.e. there is a function Φ mapping A into $(0, \infty)$, such that $M=\Phi(a)$ is equivalent to $E[W(a, M)]=0$.
3. $\Phi(a)$ is convex.
4. $\lim _{a \rightarrow a_{0}} \Phi(a)=+\infty$.

4. Two Models

The adjustment coefficient, $R_{a, M}$ is the positive solution of:

1. Modified Centeno's model

$$
\begin{aligned}
g_{a, M}(r) & =M_{Y_{a, M}^{i}}(r)=E\left[e^{r Y_{a, M}^{i}}\right] \\
& =E\left[e^{r X_{a, M}}\right] E\left[e^{-\left[(1-e) P-P_{a, M}\right] r T}\right] E\left[e^{-r W(1)}\right]=1
\end{aligned}
$$

2. Modified Dufresne's model

$$
\lambda \int_{0}^{\infty} e^{r x_{a, M}} d F(x)+D r^{2}=\lambda+\left[(1-e) P-P_{a, M}\right] r
$$

We want to figure out M and a to maximize $R_{a, M}$. We will discuss both models.

5. Modified Centeno's model

LEMMA 2.1: $R_{a, M}$ is the one and the only one positive solution of

$$
E\left[e^{r X_{a, M}}\right] E\left[e^{-\left[(1-e) P-P_{a, M}\right] r T}\right] E\left[e^{-r W(1)}\right]=1
$$

Proof:

1. $E\left[e^{r X_{a, M}}\right]=\int_{0}^{\infty} e^{r x_{a, M}} d F(x)$ is a non-decreasing convex function;
2. For $T \sim \exp (\lambda), E\left[e^{-\left[(1-e) P-P_{a, M}\right] r T}\right]=\frac{\lambda}{\lambda+\left[(1-e) P-P_{a, M}\right] r}$;
3. For $W(1) \sim N(0,2 D), E\left[e^{-r W(1)}\right]=e^{D r^{2}}$ is a non-decreasing convex function.

So the above equation is equivalent to

$$
\begin{equation*}
\lambda e^{D r^{2}} \int_{0}^{\infty} e^{r x_{a, M}} d F(x)=\lambda+\left[(1-e) P-P_{a, M}\right] r \tag{1}
\end{equation*}
$$

LEMMA 2.2: The adjustment coefficient is positive if and only if $(a, M) \in L . L$ is the set of points for which the insurer's net expected profit is positive, i.e.
$L=\{(a, M): 0 \leq a \leq 1, M \geq 0$ and $E[W(a, M)]>0\}$.
And for any $(a, M) \in L, H_{a, M}^{\prime}(r)$ is positive at $r=R_{a, M}$.

Proof:

$$
\begin{gathered}
H_{a, M}(r)=\lambda e^{D r^{2} \int_{0}^{\infty} e^{r x_{a, M}} d F(x)}-\left[(1-e) P-P_{a, M}\right] r-\lambda=0, \\
H_{a, M}^{\prime}(0)=\left.\frac{\partial H_{a, M}(r)}{\partial r}\right|_{r=0}=\lambda E\left[x_{a, M}\right]-\left[(1-e) P-P_{a, M}\right] . \\
\xi=\left\{\begin{array}{ll}
+\infty & \text { if } M<+\infty \\
\tau & \text { for } M=+\infty
\end{array}, \longrightarrow\left\{\begin{array}{l}
H_{a, M}(0)=0 \\
\lim H_{a, M}(r)_{r \rightarrow \xi}=+\infty
\end{array}\right.\right.
\end{gathered}
$$

Adjustment coefficient is positive $\Longleftrightarrow H_{a, M}^{\prime}(0)<0$.

RESULT 1.1: For a fixed value of $a \in\left(a_{0}, 1\right], R_{a, M}$ is a unimodal function of M, attaining its maximum value at the only point satisfying $M=\frac{1}{R_{a, M}} \ln [(1+\alpha)]-D R_{a, M}$, where $R_{a, M}$ is the only positive solution of (1). Let $\widehat{R}_{a}=\max \left(R_{a, M}\right)$.

Proof:

From the implicit function theorem, we have,

$$
\begin{gathered}
\frac{\partial R_{a, M}}{\partial M}=-\left.\frac{(\partial / \partial M) H_{a, M}(r)}{(\partial / \partial r) H_{a, M}(r)}\right|_{r=R_{a, M}} \\
\left.\frac{\partial^{2} R_{a, M}}{\partial M^{2}}\right|_{\frac{\partial R_{a, M}}{\partial M}=0}=-\left.\frac{\left(\partial^{2} / \partial M^{2}\right) H_{a, M}(r)}{(\partial / \partial r) H_{a, M}(r)}\right|_{r=R_{a, M}, \frac{\partial R_{a, M}}{\partial M}=0}
\end{gathered}
$$

From lemma 2.2, $\left.\frac{\partial H_{a, M}(r)}{\partial r}\right|_{r=R_{a, M}}>0$.

Target: find out M, s.t. $\frac{\partial R_{a, M}}{\partial M}=0$ where $\left.\frac{\partial^{2} R_{a, M}}{\partial M^{2}}\right|_{\frac{\partial R_{a, M}}{\partial M}=0}<0$. $\Longleftrightarrow M$ satisfies

$$
\begin{gathered}
\left.\frac{\partial H_{a, M}(r)}{\partial M}\right|_{r=R_{a, M}}=0 \\
\left.\frac{\partial^{2} H_{a, M}(r)}{\partial M^{2}}\right|_{r=R_{a, M}, \frac{\partial R_{a, M}}{\partial M}=0}>0 .
\end{gathered}
$$

Since

$$
\frac{\partial H_{a, M}(r)}{\partial M}=\lambda r\left[1-F\left(\frac{M}{a}\right)\right]\left[e^{D r^{2}+r M}-(1+\alpha)\right],
$$

implies $\frac{\partial R_{a, M}}{\partial M}=0$ at least has one solution and one solution is

$$
\begin{equation*}
M=\frac{1}{R_{a, M}} \ln [(1+\alpha)]-D R_{a, M} \tag{2}
\end{equation*}
$$

Since

$$
\frac{\partial^{2} H_{a, M}(r)}{\partial M^{2}}=\lambda r^{2} e^{r M+D r^{2}}\left[1-F\left(\frac{M}{a}\right)\right]+\frac{\lambda r f\left(\frac{M}{a}\right)}{a}\left(1+\alpha-e^{D r^{2}+r M}\right),
$$

When M satisfies (2), we have

$$
\left.\frac{\partial^{2} H_{a, M}(r)}{\partial M^{2}}\right|_{r=R_{a, M}, \frac{\partial R_{a, M}=0}{\partial M}=\lambda r^{2}(1+\alpha)\left[1-F\left(\frac{M}{a}\right)\right]>0.00 .}
$$

Hence the second derivative with respect to M of $R_{a, M}$ is negative whenever the first derivative is zero, which implies that for fixed $a \in\left(a_{0}, 1\right], R_{a, M}$ has at most one turning point, and that when such a point exists it is a maximum. The maximum will exist and be finite at the only point satisfying $M=\frac{1}{R_{a, M}} \ln [(1+\alpha)]-D R_{a, M}$.

Compared to the original model, the excess of loss retention limit M decreased due to the diffusion process, which means that for increasing uncertainty, the insurance company should cede more business to the reinsurer.

RESULT 1.2: \hat{R}_{a} is a unimodal function of a, for $a \in\left(a_{0}, 1\right]$, attaining it's maximum at $a=1$, if and only if $\lim _{a \rightarrow 1^{-}} \frac{d}{d a} \hat{R}_{a} \geq 0$

Proof:

At equation(2), defines M as a function of $a: \Upsilon(a)$. Let $\widehat{R}_{a}=$ $R_{a, \Upsilon(a)}$.

First we have $\frac{d \widehat{R}_{a}}{d a}=-\left.\frac{(\partial / \partial a) H_{a, u}(r)}{(\partial / \partial r) H_{a, u}(r)}\right|_{M=\Upsilon(a), r=\hat{R}_{a}}$
$\frac{d^{2} \hat{R}_{a}}{d a^{2}} \frac{d_{a R_{a}}}{d a}=0=-\left.\frac{\left(\partial^{2} / \partial a^{2}\right) H_{a, M}(r) \times\left(\partial^{2} / \partial M^{2}\right) H_{a, u}(r)-\left[\left(\partial^{2} / \partial a \partial M\right) H_{a, M}(r)\right]^{2}}{(\partial / \partial r) H_{a, M}(r) \times\left(\partial^{2} / \partial M^{2}\right) H_{a, M}(r)}\right|_{M=\Upsilon(a), r=\hat{R}_{a}, \frac{d R_{a}}{d a}=0}$
Note here we already proved that

$$
\left.\frac{\partial^{2} H_{a, M}(r)}{\partial M^{2}}\right|_{M=\Upsilon(a), r=\widehat{R}_{a}}>0 \text { and }\left.\frac{\partial H_{a, M}(r)}{\partial r}\right|_{M=\Upsilon(a), r=\widehat{R}_{a}}>0 .
$$

After some calculations, we have

$$
\begin{aligned}
& \left(\partial^{2} / \partial a^{2}\right) H_{a, M}(r) \times\left(\partial^{2} / \partial M^{2}\right) H_{a, M}(r)-\left.\left[\left(\partial^{2} / \partial a \partial M\right) H_{a, M}(r)\right]^{2}\right|_{r=R_{a, M} ; \frac{\partial}{\partial a} H_{a, M}(r)=0 ; \frac{\partial}{\partial a} H_{a, M}(r)=0} \\
= & \lambda^{2} r^{4} e^{r M+2 D r^{2}}\left[1-F\left(\frac{M}{a}\right)\right] \int_{0}^{M / a} x^{2} e^{r a x} d F(x)>0,
\end{aligned}
$$

which means $\left.\frac{d^{2} \widehat{R} a}{d a^{2}}\right|_{\frac{d \widehat{R}_{a}}{d a}=0}>0$.
On the other hand, when $a \rightarrow a_{0}, \hat{R}_{a}$ goes to zero and we can say that the maximum of \hat{R}_{a} is 1 , if and only of if $\lim _{a \rightarrow 1^{-}} \frac{d}{d a} \widehat{R}_{a} \geq 0$. Hence the result is proved. It is the same as the original result.

Example 1. Exponential Distribution

Claim amount distribution: $F(x)=1-e^{-\beta x}$ and $f(x)=\beta e^{-\beta x}$.
Let $\alpha=0.9, c=0.2, e=0.3, P=1.7, \beta=0.5, \lambda=1, D=0.004$.
It satisfies $e>c$ and $(1-e) P-(1+\alpha) \lambda \mu=-2.61<0$
In this case, we have:

$$
\begin{gathered}
\int_{0}^{\infty} e^{r x_{a, M}} d F(x)=\frac{r a}{r a-\beta} e^{r M-\beta \frac{M}{a}}-\frac{\beta}{r a-\beta} \\
(1-e) P-P_{a, M}=(a+c-c a-e) P-(1+\alpha) \lambda \frac{a}{\beta} e^{-\beta \frac{M}{a}}
\end{gathered}
$$

Hence (1) becomes
$\lambda e^{D r^{2}}\left(\frac{r a}{r a-\beta} e^{r M-\beta \frac{M}{a}}-\frac{\beta}{r a-\beta}\right)=\lambda+\left[(a+c-c a-e) P-(1+\alpha) \lambda \frac{a}{\beta} e^{\left.-\beta \frac{M}{a}\right] r}\right.$

After some simplification, it becomes:

$$
\frac{\lambda r^{2} a^{2}}{\beta}(1+\alpha)^{1-\frac{\beta}{a r}} e^{D \beta r / a}=\lambda \beta e^{D r^{2}}+(r a-\beta)(a+c-c a-e) r P+\lambda(r a-\beta)
$$

The solution is $r=\beta / a$.

When $a=1$, the adjustment coefficient $R_{a, M}$ attains its maximum value which satisfies:

$$
\begin{aligned}
& \left.\left\{\frac{\lambda r^{2}}{\beta(r-\beta)}(1+\alpha)^{1-\beta / r} e^{D \beta r}=\frac{\lambda \beta}{r-\beta} e^{D r^{2}}+(1-e) r P+\lambda\right\}\right|_{r=R_{a, M}} \\
& R_{a, M}=0.5 \text { and } M=1.2817 .
\end{aligned}
$$

6. Modified Dufresne's model

LEMMA 3.1: $R_{a, M}$ is the one and the only one positive solution of

$$
\lambda \int_{0}^{\infty} e^{r x_{a, M}} d F(x)+D r^{2}=\lambda+\left[(1-e) P-P_{a, M}\right] r
$$

The function can be rewritten as

$$
\begin{equation*}
\lambda \int_{0}^{\infty} e^{r x_{a, M}} d F(x)=-D r^{2}+\left[(1-e) P-P_{a, M}\right] r+\lambda \tag{3}
\end{equation*}
$$

LEMMA 3.2: The adjustment coefficient is positive if and only if $(a, M) \in L . L$ is the set of points for which the insurer's net expected profit is positive, i.e.
$L=\{(a, M): 0 \leq a \leq 1, M \geq 0$ and $E[W(a, M)]>0\}$.
And for any $(a, M) \in L, H_{a, M}^{\prime}(r)$ is positive at $r=R_{a, M}$.

RESULT 2.1: For a fixed value of $a \in\left(a_{0}, 1\right], R_{a, M}$ is a unimodal function of M, attaining its maximum value at the only point satisfying $M=\frac{1}{R_{a, M}} \ln [(1+\alpha)]$, where $R_{a, M}$ is the only positive solution of (2.2). Let $\widehat{R}_{a}=\max \left(R_{a, M}\right)$.

Proof:

Similar to result 1.1,

$$
\begin{gathered}
\frac{\partial H_{a, M}(r)}{\partial M}=\lambda r\left[1-F\left(\frac{M}{a}\right)\right]\left[e^{r M}-(1+\alpha)\right] \\
\frac{\partial^{2} H_{a, M}(r)}{\partial M^{2}}=\lambda r\left[-\frac{1}{a} f\left(\frac{M}{a}\right)\right]\left[e^{r M}-(1+\alpha)\right]+\lambda r^{2}\left[1-F\left(\frac{M}{a}\right)\right] e^{r M}
\end{gathered}
$$

which implies,

$$
\frac{\partial R_{a, M}}{\partial M}=-\left.\frac{(\partial / \partial M) H_{a, M}(r)}{(\partial / \partial r) H_{a, M}(r)}\right|_{r=R_{a, M}}=0
$$

at lease has one solution and one of solution is

$$
\begin{equation*}
M=\frac{1}{R_{a, M}} \ln [(1+\alpha)] . \tag{4}
\end{equation*}
$$

When the above relationship satisfied,

$$
\left.\frac{\partial^{2} H_{a, M}(r)}{\partial M^{2}}\right|_{r=R_{a, M}, \frac{\partial R_{a, M}}{\partial M}=0}=\lambda r^{2}\left[1-F\left(\frac{M}{a}\right)\right] e^{r M}>0
$$

which means.

$$
\left.\frac{\partial^{2} R_{a, M}}{\partial M^{2}}\right|_{\frac{\partial R_{a, M}}{\partial M}=0}=-\left.\frac{\left(\partial^{2} / \partial M^{2}\right) H_{a, M}(r)}{(\partial / \partial r) H_{a, M}(r)}\right|_{r=R_{a, M}, \frac{\partial R_{a, M}=0}{\partial M}=0}<0
$$

Hence the second derivative with respect to M of $R_{a, M}$ is negative whenever the first derivative is zero, which implies that for fixed $a \in\left(a_{0}, 1\right], R_{a, M}$ has at most one turning point, and that when such a point exists it is a maximum. The maximum will exist and be finite at the only point satisfying $M=\frac{1}{R_{a, M}} \ln [(1+\alpha)]$.

RESULT 2.2:

\hat{R}_{a} is a unimodal function of a, for $a \in\left(a_{0}, 1\right]$, attaining it's maximum at $a=1$, if and only of $\lim _{a \rightarrow 1^{-}} \frac{d}{d a} \hat{R}_{a} \geq 0$

Proof:

Here $\hat{R}_{a}=R_{a, \Upsilon(a)}$, where $\Upsilon(a)=M=\frac{1}{R_{a, M}} \ln [(1+\alpha)]$.

Similar to result 1.2, we first have $\left.\frac{d^{2} \widehat{R} a}{d a^{2}}\right|_{\frac{d \widehat{R} a}{d a}=0}>0$.

On the other hand, when $a \rightarrow a_{0}, \hat{R}_{a}$ goes to zero and we can say that the maximum of \widehat{R}_{a} is 1 , if and only of if $\lim _{a \rightarrow 1^{-} \frac{d}{d a}} \widehat{R}_{a} \geq 0$. Hence the result is proved. It is the same as the original result.

Example 2. Exponential Distribution

Use the same assumptions as example 1, (3) becomes

$$
\lambda\left(\frac{r a}{r a-\beta} e^{r M-\beta \frac{M}{a}}-\frac{\beta}{r a-\beta}\right)+D r^{2}=\lambda+(a+c-c a-e) r P-(1+\alpha) \lambda r \frac{a}{\beta} e^{-\beta \frac{M}{a}}
$$

Consider M satisfying (4), after some simplification, we have :

$$
\lambda a(1+\alpha)^{1-\frac{\beta}{r a}} \frac{r a}{\beta}+(r a-\beta) D r=\lambda a+(a+c-c a-e)(r a-\beta) P
$$

The solution is $r=\beta / a$.

When $a=1$, the adjustment coefficient $R_{a, M}$ attains its maximum value which satisfies:

$$
\begin{aligned}
& \quad(1+\alpha)^{1-\frac{\beta}{r}} \frac{\lambda r}{\beta(r-\beta)}+D r=\frac{\lambda}{r-\beta}+(1-e) P . \\
& R_{a, M}=0.5 \text { and } M=1.2837 .
\end{aligned}
$$

References:

[1] Francois Dufresne and Hans U. Gerber (1991). "Risk Theory for the Compound Poisson Process that is perturbed by diffusion", Insurance: Mathematics and Economics, Vol. 10, pp 51-59.
[2] Maria de Lourdes Centeno (2002). "Measuring the Effects of Reinsurance by the Adjustment Coefficient in the Sparre Anderson Model '", Insurance: Mathematics and Economics, Vol. 30, pp 37-49.

Any Questions?

Thank you !

Thanks:

My supervisors: Prof. Jun Cai and Prof. Gord Willmot.

The research is funded by NSERC.

The research is also funded by the University of Waterloo Institute for Quantitative Finance and Insurance.

