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Abstract

In this paper we study the tail probability of discounted aggregate claims in a
continuous-time renewal model. For the case that the common claim-size distribution
is subexponential, we obtain an asymptotic formula, which holds uniformly for all time
horizons within a finite interval. Then, with some additional mild assumptions on
the distributions of the claim sizes and inter-arrival times, we further prove that this
formula holds uniformly for all time horizons. In this way, we significantly extend a
recent result of Tang (2007, J. Appl. Probab. 44, 285–294).
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1 Introduction

Consider the renewal risk model, in which claim sizes Xk, k = 1, 2, . . . , constitute a

sequence of independent, identically distributed (i.i.d.), and nonnegative random variables

with common distribution F, while their arrival times τk, k = 1, 2, . . . , independent of Xk, k =

1, 2, . . . , constitute a renewal counting process

Nt = #{k = 1, 2, . . . : τk ≤ t}, t ≥ 0. (1.1)

That is to say, the inter-arrival times θ1 = τ1, θk = τk− τk−1, k = 2, 3, . . . , constitute another

sequence of i.i.d., nonnegative, and not-degenerate-at-zero random variables. If {Nt, t ≥ 0}
is a homogeneous Poisson process, then this model reduces to the commonly used compound

Poisson model. Aggregate claims form a random sum X(t) =
∑Nt

k=1Xk, t ≥ 0. Suppose that
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there is a constant interest force r > 0. The discounted aggregate claims are expressed as

the stochastic process

Dr(t) =

∫ t

0−
e−rsdX(t) =

∞∑
k=1

Xke
−rτk1(τk≤t), t ≥ 0, (1.2)

where the symbol 1E denotes the indicator function of an event E.

From (1.2) we see that {Dr(t), t ≥ 0} corresponds to a special case of the stochastic

integral

Zt =

∫ t

0−
e−RsdPs, t ≥ 0,

where {Rt, t ≥ 0} and {Pt, t ≥ 0} are two independent stochastic processes fulfilling certain

requirements so that Z∞ is well defined. When both of them are Lévy processes, Gjessing

and Paulsen (1997) gave a wealth of examples showing the exact distribution or asymptotic

tail probability of Z∞. Related discussions on the distribution of Z∞ can also be found

in Dufresne (1990), Paulsen (1993, 1997), and Nilsen and Paulsen (1996), among others.

However, we notice that all these references did not pay particular attention to the important

case that {Pt, t ≥ 0} has heavy-tailed jumps.

In this paper, we are interested in the asymptotic tail behavior of Dr(t) for all t for which

the renewal function

λt = ENt =
∞∑
k=1

Pr (τk ≤ t)

is positive. Define Λ = {t : λt > 0} = {t : Pr (τ1 ≤ t) > 0} for later use.

We shall assume that the claim-size distribution F on [0,∞) is subexponential, denoted

by F ∈ S. That is to say, F (x) = 1− F (x) > 0 holds for all x ≥ 0 and the relation

lim
x→∞

F n∗ (x)

F (x)
= n

holds for all (or, equivalently, for some) n = 2, 3, . . . , where F n∗ denotes the n-fold convolu-

tion of F . It is well known that every subexponential distribution F is long tailed, denoted

by F ∈ L, in the sense that the relation

lim
x→∞

F (x− y)

F (x)
= 1

holds for all (or, equivalently, for some) y 6= 0. Moreover, the class S covers the class ERV

of distributions with extended-regularly-varying tails. By definition, a distribution F on

[0,∞) is said to belong to the class ERV if F (x) > 0 holds for all x ≥ 0 and there are some

constants α and β, 0 < α ≤ β <∞, such that the relations

v−β ≤ lim inf
x→∞

F (vx)

F (x)
≤ lim sup

x→∞

F (vx)

F (x)
≤ v−α (1.3)
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hold for all v ≥ 1. Note that relations (1.3) with α = β define the famous classR of regularly-

varying-tailed distributions with regularity index −α. Another useful distribution class is

A, which was introduced by Konstantinides et al. (2002). By definition, a distribution F on

[0,∞) is said to belong to the class A if F ∈ S and, for some v > 1,

lim sup
x→∞

F (vx)

F (x)
< 1. (1.4)

Since relation (1.4) is satisfied by almost all useful distributions with unbounded supports,

we remark that the class A almost coincides the class S. In conclusion,

R ⊂ ERV ⊂ A ⊂ S ⊂ L.

For more details of heavy-tailed distributions in the context of insurance and finance, the

reader is referred to Embrechts et al. (1997).

Hereafter, all limit relationships hold as x tends to ∞ unless stated otherwise. For two

positive functions a (·) and b (·), we write a (x) ∼ b (x) if lim a (x) /b (x) = 1. Furthermore,

for two positive bivariate functions a (·, ·) and b (·, ·), we say that the asymptotic relation

a (x, t) ∼ b (x, t) holds uniformly over all t in a nonempty set ∆ if

lim
x→∞

sup
t∈∆

∣∣∣∣a (x, t)

b (x, t)
− 1

∣∣∣∣ = 0.

Tang (2007) investigated the tail probability of the stochastic process (1.2) and proved

that, if F ∈ ERV, then the relation

Pr (Dr(t) > x) ∼
∫ t

0−
F (xers)dλs (1.5)

holds uniformly for all t ∈ Λ. This formula transparently captures all stochastic information

of the claim sizes and their arrival times. However, we point out that the assumption F ∈
ERV unfortunately excludes some important distributions such as lognormal and Weibull

distributions. In the context of ruin theory, Tang (2005) and Wang (2007) obtained some

similar asymptotic results as (1.5) for the finite-time ruin probability but for a fixed time

horizon t ∈ Λ.

Our goal in this paper is to extend the work of Tang (2007) from the class ERV to the

class S so that lognormal and heavy-tailed Weibull distributions are included. The class ERV

enjoys some favorable properties like inequalities (3.1) and (3.2) in Tang (2007), which play

a crucial role in establishing the main result of Tang (2007), but the class S does not possess

such properties. Therefore, to achieve the desired extension we have to employ different

approaches.

The rest of this paper consists of four sections: Section 2 presents our main results and

Sections 3, 4, and 5 prove them, in turn, after preparing some necessary lemmas.
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2 Main Results

The first main result of this paper is given below:

Theorem 2.1 Consider the discounted aggregate claims described in relation (1.2). If F ∈
S, then relation (1.5) holds uniformly for all t ∈ ΛT = Λ ∩ [0, T ] for arbitrarily fixed T ∈ Λ.

In the next two main results below, we extend the set over which relation (1.5) holds

uniformly to the maximal set Λ.

Theorem 2.2 Consider the discounted aggregate claims described in relation (1.2). If F ∈
A and Pr (θ1 > δ) = 1 for some δ > 0, then relation (1.5) holds uniformly for all t ∈ Λ.

The technical assumption on the distribution of θ1 in Theorem 2.2, though not nice-

looking, causes no trouble for real applications since δ can be arbitrarily close to 0.

For a distribution F on [0,∞) with a finite positive expectation µ, denote by

Fe(x) =
1

µ

∫ x

0

F (s)ds, x ≥ 0,

its equilibrium distribution function. Our third main result is given below:

Theorem 2.3 Consider the discounted aggregate claims described in relation (1.2), in which

{Nt, t ≥ 0} is a homogeneous Poisson process with intensity λ > 0. If F ∈ S and Fe ∈ A,

then the relation

Pr (Dr(t) > x) ∼ λ

∫ t

0

F (xers)ds (2.1)

holds uniformly for all t ∈ (0,∞].

We remark that the assumptions F ∈ S and Fe ∈ A in Theorem 2.3 are satisfied by almost

all useful heavy-tailed distributions such as Pareto (with finite expectation), lognormal, and

Weibull distributions.

Let us illustrate the usefulness of the uniformity of (2.1). Denote by

τ(x) = inf{t ≥ 0 : Dr(t) > x}, x > 0,

the time when Dr (t) up-crosses the level x. Clearly, τ(x) is a defective random variable with

total mass Pr (τ(x) <∞) = Pr (Dr(∞) ≤ x) < 1.

Let all conditions of Theorem 2.3 hold. We first consider the asymptotic behavior of

the Laplace transform of τ (x). For every u > 0, use integration by parts and the identity

Pr (τ(x) ≤ t) = Pr (Dr(t) > x) for all t ≥ 0 to get

Ee−uτ(x) = u

∫ ∞
0

Pr (Dr(t) > x) e−utdt.
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Substituting the uniform asymptotic relation (2.1) into the above then changing the order

of integrals, we have

Ee−uτ(x) ∼ λ

∫ ∞
0

e−usF (xers)ds.

This gives an explicit asymptotic expression for the Laplace transform of τ (x).

We then consider the limiting distribution of τ (x) conditional on (τ (x) <∞). For every

fixed t > 0, by Theorem 2.3,

Pr (τ (x) ≤ t| τ (x) <∞) =
Pr (Dr (t) > x)

Pr (Dr (∞) > x)
∼
∫ t

0
F (xers)ds∫∞

0
F (xers)ds

. (2.2)

If F ∈ R−α for some α > 0, then using Theorem A3.2 of Embrechts et al. (1997) we see

that the convergence
F (xers)

F (x)
→ e−αrs (2.3)

holds uniformly for all s ∈ [0,∞). Therefore, dividing both integrands on the right-hand

side of (2.2) by F (x) then plugging (2.3), we obtain

Pr (τ (x) ≤ t| τ (x) <∞)→ 1− e−αrt,

meaning that the limiting distribution under discussion is exponential.

3 Proof of Theorem 2.1

Lemma 3.1 Let Xk, 1 ≤ k ≤ n be n independent random variables, each Xk distributed

by Fk. If there are n positive constants lk, 1 ≤ k ≤ n, and a distribution F ∈ S such

that Fk (x) ∼ lkF (x) holds for k = 1, . . . , n, then for arbitrarily fixed numbers a and b,

0 < a ≤ b <∞, the relation

Pr

(
n∑
k=1

ckXk > x

)
∼

n∑
k=1

Fk (x/ck)

holds uniformly for all (c1, . . . , cn) ∈ [a, b]× · · · × [a, b] .

Proof. The proof can be given by going along the same lines of the proof of Proposition 5.1

of Tang and Tsitsiashvili (2003) with some obvious modifications.

Lemma 3.2 Consider the renewal counting process {Nt, t ≥ 0} defined in (1.1). There exits

some h > 0 such that EehNt <∞ holds for all t ≥ 0.
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Proof. It is shown in Stein (1946) that, for arbitrarily fixed t0 > 0, there exists some

h > 0 such that EehNt0 < ∞. For every t ≥ 0, we can find a positive integer k such that

(k − 1) t0 ≤ t < kt0. Inductively applying Lemma 2.2 of Cai and Kalashnikov (2000), we can

obtain i.i.d. random variables N̂t0 (1) , . . . , N̂t0 (k) with common distribution as that of Nt0

such that

Nt ≤ Nkt0 ≤p
k∑
i=1

N̂t0 (i) + k − 1,

where for two random variables X and Y, the relation X ≤p Y means that Pr(X > x) ≤
Pr(Y > x) for all x. Therefore, EehNt <∞, as claimed.

Proof of Theorem 2.1:

Arbitrarily choose some positive integer N . Clearly, for t ∈ ΛT ,

Pr (Dr(t) > x) =

(
N∑
n=1

+
∞∑

n=N+1

)
Pr

(
n∑
k=1

Xke
−rτk > x,Nt = n

)
= I1 (x, t,N) + I2 (x, t,N) .

First consider I2 (x, t,N). We have

I2(x, t,N) ≤
∞∑

n=N+1

Pr

(
n∑
k=1

Xke
−rτ1 > x, τn ≤ t < τn+1

)

=
∞∑

n=N+1

∫ t

0−
Pr

(
n∑
k=1

Xke
−rs > x, τn − τ1 ≤ t− s < τn+1 − τ1

)
Pr (τ1 ∈ ds)

=
∞∑

n=N+1

∫ t

0−
Pr

(
n∑
k=1

Xk > xers

)
Pr (Nt−s = n− 1) Pr (τ1 ∈ ds)

≤
∞∑
n=N

∫ t

0−
Pr

(
n+1∑
k=1

Xk > xers

)
Pr (Nt−s = n) dλs.

Applying Lemma 1.3.5(c) of Embrechts et al. (1997) to the above, for every ε > 0 and some

Cε > 0,

I2 (x, t,N) ≤ Cε (1 + ε)

∫ t

0−
F (xers)E(1 + ε)Nt−s1(Nt−s≥N)dλs

≤ Cε (1 + ε) E(1 + ε)NT 1(NT≥N)

∫ t

0−
F (xers)dλs.

By Lemma 3.2, we can choose some ε sufficiently small such that E(1+ε)NT <∞. It follows

that E(1 + ε)NT 1(NT≥N) → 0 as N →∞. Therefore, for all x > 0,

lim
N→∞

sup
t∈ΛT

I2 (x, t,N)∫ t
0− F (xers) dλs

= 0. (3.1)
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Next consider I1 (x, t,N). Using Lemma 3.1, it holds uniformly for all t ∈ ΛT that

I1 (x, t,N) ∼

(
∞∑
n=1

n∑
k=1

−
∞∑

n=N+1

n∑
k=1

)
Pr
(
Xke

−rτk > x,Nt = n
)

= I11 (x, t)− I12 (x, t,N) .

Clearly, for all t ∈ ΛT ,

I11 (x, t) =
∞∑
k=1

Pr
(
Xke

−rτk > x,Nt ≥ k
)

=

∫ t

0−
F (xers) dλs. (3.2)

For I12 (x, t,N), similarly to the derivation for I2 (x, t,N), we have

I12 (x, t,N) ≤
∞∑

n=N+1

n∑
k=1

Pr
(
Xke

−rτ1 > x,Nt = n
)

≤
∞∑
n=N

n+1∑
k=1

∫ t

0−
F (xers) Pr (Nt−s = n) dλs

≤
∫ t

0−
F (xers) dλs

∞∑
n=N

(n+ 1) Pr (NT ≥ n) .

It follows that, for all x > 0,

lim
N→∞

sup
t∈ΛT

I12 (x, t,N)∫ t
0− F (xers) dλs

= 0. (3.3)

From (3.1), (3.2), and (3.3) we conclude that the asymptotic relation (1.5) holds uniformly

for all t ∈ ΛT .

4 Proof of Theorem 2.2

Lemma 4.1 If a distribution F on [0,∞) satisfies (1.4) for some v > 1, then there are

positive constants p, C, and x0 such that the inequality

F (xy)

F (x)
≤ Cy−p (4.1)

holds uniformly for xy ≥ x ≥ x0.

Proof. This is a restatement of Proposition 2.2.1 of Bingham et al. (1989). See also (2.3)

in Chen et al. (2005).
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Lemma 4.2 If a distribution F on [0,∞) satisfies (1.4) for some v > 1, then

lim
t→∞

lim sup
x→∞

∫∞
t
F (xers) dλs∫ t

0
F (xers) dλs

= 0, (4.2)

where the positive constant r and the renewal function λs, s ≥ 0, are the same as introduced

in Section 1.

Proof. For every t ∈ Λ, apply inequality (4.1) to obtain that, for x ≥ x0,∫∞
t
F (xers) dλs∫ t

0
F (xers) dλs

=

∫∞
t
F (xers) /F (xert) dλs∫ t

0
F (xers) /F (xert) dλs

≤ C2

∫∞
t

e−pr(s−t)dλs∫ t
0

epr(t−s)dλs
= C2

∫∞
t

e−prsdλs∫ t
0

e−prsdλs
.

This implies (4.2).

Lemma 4.3 Under the conditions of Theorem 2.2, we have

Pr (Dr(∞) > x) .
∫ ∞

0

F (xers)dλs. (4.3)

Proof. Arbitrarily choose some positive integer N such that Nδ ∈ Λ. Since Pr (θ1 > δ) = 1,

we have

Pr (Dr(∞) > x) ≤ Pr

(
N∑
k=1

Xke
−rτk +

(
∞∑

k=N+1

Xke
−r(k−N)δ

)
e−rτN > x

)
. (4.4)

Write Σδ =
∑∞

k=N+1Xke
−r(k−N)δ, whose distribution does not depend on N . Applying

Corollary 3.1 of Chen et al. (2005),

Pr (Σδ > x) = Pr

(
∞∑
k=1

Xke
−rkδ > x

)
∼ F (x)

∞∑
k=1

F
(
xerkδ

)
F (x)

.

Hence, by inequality (4.1), there is some constant C∗ > 0 such that Pr (Σδ > x) ≤ C∗F (x)

for all x ∈ [0,∞). Next we come back to (4.4). Introduce a new random variable Σ̃δ

independent of {Xk, k = 1, 2, . . .} and {τk, k = 1, 2, . . .} with a tail satisfying

Pr
(

Σ̃δ > x
)

= min
{
C∗F (x) , 1

}
, x ≥ 0.

Therefore, Σδ ≤p Σ̃δ, and

Pr (Dr(∞) > x) . Pr

(
N∑
k=1

Xke
−rτk + Σ̃δe

−rτN > x

)
. (4.5)
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To apply Lemma 3.1, we choose some M1 > 0 and derive

Pr

(
N∑
k=1

Xke
−rτk + Σ̃δe

−rτN > x

)
= Pr

(
N∑
k=1

Xke
−rτk + Σ̃δe

−rτN > x,

N⋃
i=1

(θi ≥M1)

)

+ Pr

(
N∑
k=1

Xke
−rτk + Σ̃δe

−rτN > x,

N⋂
i=1

(θi < M1)

)
= J1 (x,N,M1) + J2 (x,N,M1) . (4.6)

It is easy to prove by induction on N that

J1 (x,N,M1) ≤ Pr

(
N∑
k=1

Xke
−rτk + Σ̃δe

−rτN > x

)
Pr

(
N⋃
i=1

(θi ≥M1)

)
. (4.7)

Substituting (4.7) into (4.6) and rearranging the resulting inequality, we have

Pr

(
N∑
k=1

Xke
−rτk + Σ̃δe

−rτN > x

)
≤ J2 (x,N,M1)

1− Pr
(⋃N

i=1 (θi ≥M1)
) .

Further substituting this into (4.5), applying Lemma 3.1 to J2 (x,N,M1), and letting M1 →
∞, we obtain that

Pr (Dr(∞) > x) .
N∑
k=1

Pr
(
Xke

−rτk > x
)

+ Pr
(

Σ̃δe
−rτN > x

)
≤

∞∑
k=1

Pr
(
Xke

−rτk > x
)

+

∫ ∞
Nδ

Pr
(

Σ̃δ > xers
)

Pr (τN ∈ ds)

≤
∫ ∞

0

F (xers)dλs + C∗

∫ ∞
Nδ

F (xers) Pr (τN ∈ ds) . (4.8)

Apply inequality (4.1) again to obtain that, for some M2 ∈ Λ ∩ (0, Nδ] and all large x,∫∞
Nδ
F (xers) Pr (τN ∈ ds)∫∞

0
F (xers)dλs

≤
CF

(
xerM2

)
Ee−pr(τN−M2)∫M2

0
F (xers)dλs

≤ C

λM2

Ee−pr(τN−M2) → 0, (4.9)

as N →∞. From (4.8) and (4.9), the asymptotic relation (4.3) follows immediately.

Proof of Theorem 2.2:

According to Lemma 4.2, for every ε > 0 there exists some T0 > 0 such that the inequality∫ ∞
T0

F (xers) dλs ≤ ε

∫ T0

0

F (xers) dλs (4.10)
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holds for all large x. By Theorem 2.1 and inequality (4.10), it holds uniformly for all t ∈
(T0,∞] that

Pr (Dr (t) > x) ≥ Pr (Dr (T0) > x)

∼
∫ T0

0

F (xers) dλs

≥
(∫ t

0

−
∫ ∞
T0

)
F (xers) dλs

≥ (1− ε)
∫ t

0

F (xers) dλs.

Likewise, by Lemma 4.3 and inequality (4.10), it holds uniformly for all t ∈ (T0,∞] that

Pr (Dr (t) > x) ≤ Pr (Dr (∞) > x)

.
∫ ∞

0

F (xers) dλs

≤
(∫ t

0

+

∫ ∞
T0

)
F (xers) dλs

≤ (1 + ε)

∫ t

0

F (xers) dλs.

Hence, for all t ∈ (T0,∞] and all large x,

(1− 2ε)

∫ t

0

F (xers) dλs ≤ Pr (Dr (t) > x) ≤ (1 + 2ε)

∫ t

0

F (xers) dλs. (4.11)

By Theorem 2.1 again, the inequalities in (4.11) also hold for all t ∈ ΛT0 (hence for all t ∈ Λ)

and all large x. As ε > 0 is arbitrary, we complete the proof.

5 Proof of Theorem 2.3

Konstantinides et al. (2002) investigated the asymptotic behavior of the ruin probability

of the compound Poisson model. In their model, the surplus process is expressed as

Sr (t) = xert + c

∫ t

0

er(t−s)ds−
∞∑
k=1

Xke
r(t−τk)1(τk≤t), t ≥ 0,

where x ≥ 0 is the initial surplus, c > 0 is the constant rate at which the premiums

are continuously collected, and {Xk, k = 1, 2, . . .}, {τk, k = 1, 2, . . .}, and r are the same as

appearing in relation (1.2). The counting process {Nt, t ≥ 0} generated by {τk, k = 1, 2, . . .}
is a homogeneous Poisson process with intensity λ > 0. The ruin probability is defined as

ψr (x) = Pr
(

inf
0<t<∞

Sr (t) < 0
)
.

10



Theorem 2.1 of Konstantinides et al. (2002) shows that, if Fe ∈ A, then

ψr (x) ∼ λ

r

∫ ∞
x

F (y)

y
dy. (5.1)

Based on relation (5.1) we produce the following result:

Lemma 5.1 Consider the discounted aggregate claims described in relation (1.2), in which

{Nt, t ≥ 0} is a homogeneous Poisson process with intensity λ > 0. If Fe ∈ A, then

Pr (Dr(∞) > x) ∼ λ

r

∫ ∞
x

F (y)

y
dy. (5.2)

Proof. In terms of the model of Konstantinides et al. (2002),

ψr (x) = Pr

(
sup

0<t<∞

(
Dr (t)− c

∫ t

0

e−rsds

)
> x

)
.

It follows that

ψr (x) ≤ Pr (Dr (∞) > x) ≤ ψr (x− c/r) . (5.3)

By (5.1) and integration by parts,

ψr (x) ∼ µλ

r

(
Fe (x)

x
−
∫ ∞
x

Fe (y)

y2
dy

)
=
µλ

r
(K11 (x)−K12 (x)) .

Changing x into x− c/r in the above yields that

ψr (x− c/r) ∼ µλ

r

(
Fe (x− c/r)
x− c/r

−
∫ ∞
x−c/r

Fe (y)

y2
dy

)
=
µλ

r
(K21 (x)−K22 (x)) .

Since Fe ∈ A ⊂ L,

K11 (x) ∼ K21 (x) , K12 (x) ∼ K22 (x) .

In order to infer ψr (x) ∼ ψr (x− c/r), it suffices to show that

lim sup
x→∞

K12 (x)

K11 (x)
< 1. (5.4)

Since Fe ∈ A, there exits some ε, 0 < ε < 1, such that Fe (vx) /Fe (x) ≤ 1 − ε holds for all

large x. Hence, for all large x,

K12 (x)

K11 (x)
=

∞∑
n=1

∫ xvn

xvn−1

Fe (y)

Fe (x)

x

y2
dy ≤

∞∑
n=1

∫ xvn

xvn−1

Fe (xvn−1)

Fe (x)

x

y2
dy

≤
∞∑
n=1

(1− ε)n−1

∫ xvn

xvn−1

x

y2
dy =

v − 1

v − 1 + ε
.

This proves (5.4). Therefore by (5.1) and (5.3), relation (5.2) follows immediately.
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Lemma 5.2 For a distribution F on [0,∞) with a finite positive expectation, if relation

(1.4) with F replaced by Fe holds for some v > 1, then

lim
t→∞

lim sup
x→∞

∫∞
t
F (xers) ds∫∞

0
F (xers) ds

= 0. (5.5)

Proof. Clearly, ∫∞
t
F (xers) ds∫∞

0
F (xers) ds

=
−
∫∞
xert

1
y
dFe (y)

−
∫∞
x

1
y
dFe (y)

=

Fe(xert)
xert −

∫∞
xert

Fe(y)
y2

dy

Fe(x)
x
−
∫∞
x

Fe(y)
y2

dy
.

By (5.4), there is some constant C∗ > 0 such that, uniformly for all t > 0,∫∞
t
F (xers) ds∫∞

0
F (xers) ds

≤ C∗
Fe(xert)
xert

Fe(x)
x

≤ C∗e−rt.

Therefore, (5.5) holds.

Proof of Theorem 2.3:

The proof can be given by copying the proof of Theorem 2.2 with the only modification

that we use Lemmas 5.1 and 5.2 instead of Lemmas 4.2 and 4.3.
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