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ABSTRACT 

In this paper we show how to obtain tight upper and lower bounds on 
E[h(X)] for a given function h, and a random variable X with three known 
moments ix, o.2, and p. The improvement possible when we have the ad- 
ditional knowledge that X is unimodal is also discussed. We show how these 
bounds can be used in calculating the probability of ruin and in setting initial 
reserve levels when we have only incomplete information concerning the 
statistical distribution of the loss variable. 

I. INTRODUCTION 

In this paper we shall present some mathematical formulas concerning 
bounds of fairly general function of a random variable when the only knowl- 
edge we have about the random variable is the lower order raw moments. 
Thus we could obtain tight upper and lower bounds on the variance o .2 of  a 
random variable X given only its mean ix, obtain tight bounds on the skew- 
ness (third central moment) p in terms of the mean and variance, obtain 
bounds on the expected value of h(x) where h (4) (x) ~ 0 in terms of the first 
three moments, and so on. We then show how to use the technique of 
Kemperman (1971) to obtain even tighter bounds when we assume addi- 
tionally that the random variable in question is unimodal. As an application, 
we bound the ruin probability of  risk theory. 

II. OPTIMAL BOUNDS USING PARTIAL MOMENT KNOWLEDGE 

Our goal in this section is to show how to determine tight upper and lower 
bounds for the expected value of a function of some random variable with 
given moments. The tool necessary for this development is the celebrated 
Markov-Krein theorem from the theory of Chebychev systems of functions. 

* Mr. Brockett, not a member of the Society of Actuaries, is Associate Professor of  Actuarial 
Science and Finance and with the Applied Research Labs, University of Texas at Austin. 
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50 OPTIMAL RUIN CALCULATIONS 

Stated mathematically, the problem considered in this section is the follow- 
ing: Given a random variable X on [a,b] with central moments ix = 
(ixo, ix l, ix: . . . . .  ixk), and given a function h(x) on [a,b] find the tightest pos- 
sible bounds on E[h(X)], the expectation of h(X). This problem has numerous 
applications, among which are optimal choice of retention limits in stop loss 
reinsurance with partial information (compare DeVylder, 1983) optimal crit- 
ical claim size in a bonus system with partial information, (compare DePril 
and Goovaerts, 1983) and ruin theory calculations when there is only partial 
stochastic information concerning the size of loss distribution. It is the latter 
which we shall use throughout to illustrate, although the technique presented 
is very general and capable of many insurance applications. 

Let ix - -  ( i x l , i x 2  . . . . .  ixk) be a point in the moment space M k consisting of 
all k tuples consistent with the first k moments of some probability measure 
v on the interval [a,b], i.e., such that 

ix; = x" v (dx) 

for i - -1 ,2  . . . . .  k, for some measure v. Additionally, let h(x) be a function 
which is (k + l) times differentiable with h(k+l)(x)>0 on [a,b]. As a cor- 
ollary to the Markov-Krein theorem from Chebychev systems (compare Kar- 
lin and Studden, 1966) the following theorem is developed in Brockett 0984). 

THEOREM 

2. la) If the mean ix is given, then for any random variable X on [a,b] 
with mean ix we have 

h(ix)<--E[h(X)]<-h(a)p + h(b) (1 -p ) ,  

(b - ix) 
P -  ( b - a )  

The measure vl which assigns mass p to the point b and 1 - p  to the point 
a is called the upper principal representation for the moment point ix. 

b) If ix and o.2 are given, then for any function h with h(a)(x) -> 0, and 
any random variable X on [a,b] with mean ix, and variance o -2, we have 



where 

OPTIMAL RUIN CALCULATIONS 

h(a)p + h(~)(1-p)<--E[h(X)]<_h(~2) q + h ( b ) ( l - q ) ,  

0.2 0.2 

P = 0.2 .~_ (a - Id , )  2, 61 = Ix a - - I x  

0.2 ( b -  Ix)2 
62 = Ix - b - I x  and q - 0.2 ..1_ ( b -  ~L) 2" 
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The measure v~ which assigns probabili ty q to the point 62 and ( 1 -  q) to 
the point b is called the upper principal representation of  (Ix,0.2). The mea-  
sure v 0 which assigns probabili ty p to the point a and probabili ty 1 - p  is 
the point ~ is called the lower principal representation of  the moment  point 
(Ix,0.2).  

c) If  Ix,0.2, and p are given, then for any function h with h (4) (x) >-- O, 
and any random variable X on [a,b] with mean Ix, variance 0.2, and third 
moment  p = E(X-Ix )3 ,  we have 

h(rh)q + h('q2)(l-q)<-E[h(X)]<-h(a)pl + h(~)p 2 -I- h ( b ) ( l - P l - P 2 ) ,  

where 

I~ P -- (a + b - 2Ix)0. 2 
= + Ix, 

(a - Ix)(b - Ix) + 0.2 

and 

0.2 + (1~ - I x ) ( b -  Ix) 
Pl = ( b - a ) ( ~ - a )  ' (2.2) 

0.2 + (b - Ixi(a - Ix) 
P2 = ( 6 -  b ) ( ~ -  a)  ' 

o-x/Fr;  
~h = 20. 2 + Ix, 

p+vTZ  
+ Ix, (2.3)  "q2 = 20.2 
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1 p q = - +  
2 2 ~ "  

The measure Vl which assigns probabilities Pl to a, P2 to 6, and 1 - P l  - P 2  
to b is called the upper principal representation, and the measure v o which 
assigns probabilites q to "qt and 1 - q  to "q2 is called the lower principal 
representation of (~,cr2,p). 

Notice that in all possible situations the upper and lower principal repre- 
sentations of the given set of moments are themselves probability measures 
possessing the given moments. Thus the inequalities in theorem 2.1 are 
actually tight, in other words, attainable bounds which cannot be improved 
without requiring additional information about the random variable involved. 
Another useful fact which should be noted is that the upper and lower prin- 
ciple representations do not depend in any way upon the function h which 
is used. 

As mentioned previously, theorem 2.1 has numerous applications (for 
example, when h ( x ) =  ( x - t )  2 and p~ is given we derive bounds on stop loss 
variance). In the next section we shall explicitly develop one such applica- 
tion. 

III. APPLICATION: ASSESSING THE PROBABILITY OF RUIN USING 

INCOMPLETE LOSS DISTRIBUTION INFORMATION 

Consider the collective risk model as described in the new Society of 
Actuaries study note on risk theory [1]. We shall only briefly sketch the 
model here since the development in [1] is quite complete. The cash Surplus 
at time t is defined to be 

U(t) = u + ct - S(t),  t>-O. 

Here U(0) = u is the initial surplus, c is the rate at which premiums are 
credited to the fund in dollars per year, and S is the stochastic claims process: 

S(t) = X l  + . . .  + Xu(o,  

where N(t)  is a Poisson process with parameter h and the Xi>-O are the 
independent and identically distributed loss variables, t Ruin is said to occur 
if U(t)<--O, that is, if the cash surplus falls below zero. 

~As noted in Bowers et al.[I], the usual compound Poisson model for the claim process S(t) can 
be extended to an autoregression model with dependent Xi's. Again an "adjustment coefficient" is 
the pertinent determinant in the formula for the probability of ruin. Our method of analysis can 
easily be extended to incorporate this generality. We leave it to the reader to make the obvious 
modifications, after consulting our section I1 and the development in Bowers et al.[I]. 
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We are interested here in determining the probability that there is eventual 
ruin as a function of the initial reserve U(0) = u .  Let us denote this proba- 
bility by ~(u). The main theorem of chapter 12 of Bowers et al. (1982) is 
that the ruin probability is exactly equal to 

e-RU 
O~(u) = E[e_RU~r) l T<oo], (3.2) 

where T =  inf{t:t->0 and U(t)<0} is the time of ruin, and R is the so-called 
adjustment coefficient which depends upon three things: the distribution of 
the losses, X, the frequency with which losses occur, h, and the load factor 
0, which was used for setting the premiums. By definition the adjustment 
coefficient is the smallest positive solution to the equation 

1 + (1 + O)txr=Mx(r), 

where X is a random variable having the common distribution of the losses, 
IX=E[X], and hix(1 + 0) = c is the premium charged, and Mx(r)=E[e rx] 
is the moment generation function for X. As shown in [1], there is a unique 
positive solution R to the above equation provided only that 0>0.  

Assuming now that we have only partial knowledge about the loss variable 
X, we do not know Mx(r) and hence cannot directly solve (3.2). We can, 
however, use the partial information about the moments of X to determine 
bounding curves on Mx(r)= E[exp(rX)]. We have from theorem 2.1 with 
h(x) = exp(rx) for r>0 ,  

Mo(r) <- Mx(r) <- Mr(r), 

where Mo(r) and Ml(r) denote the moment generating functions of the lower 
and upper principal representations for the moments of the loss distribution 
which we have. Thus if a < X --- b and IX, ~r z = var (X) and p = El(X- 
IX)3] are known, then one can numerically solve, by the Newton-Raphson 
method or the successive bisection method, for example, for Ro and R~, the 
adjustment coefficients corresponding to the upper and lower principal rep- 
resentations of the given moments. For all r --- 0 the curves satisfy Mo(r) <- 
Mx(r) <- Ml(r) since the extremal measures Vo and vl do not depend apon 
r in h(x)= exp(rx). At r = 0, the functions Mo, Mx and Ml are equal to 1 
and have slopes of ix. Since 0>0,  the graph of 1 +(1 +0)txr has a slope 
which is strictly greater than ix, and hence this straight line starts out strictly 
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above the curves M 0, Mx and Ml. For r > 0, the curves Mx, Mo, and M~ 
are convex since all moment-generating functions of positive variables are. 
Hence 1 + (1 + 0)lxr intersects these curves exactly twice, once at zero and 
once at a positive value. The intersections for the positive values are pre- 
cisely in order Ml, Mx and Mo from left to right as shown in Figure 1. 
Hence the corresponding adjustment coefficients must satisfy R1 < R < R 0 
as pictured in the following chart. (See Bowers et al., 1982, for a rigorous 
proof that the curves are convex and intersect the line exactly one time for 
r > 0 . )  

Ml(r) 
/ M x ( r )  
/ / M o ( r )  

R1 R R o 
) r" 

Figure 1 : 
Bounds on the Adjustment Coefficient using partial information 

As noted in Bowers et al. (1982), if a - X -< b then, from the above 
formula for qJ(u) we easily obtain the bounds on the ruin probability, namely 
exp (-Rx(u + b)) <- O(u) <- exp (-Rxu). Now given the moments of the loss 
distribution, X, we may determine the upper and lower principal represen- 
tations from the formulas of theorem 2. i, and hence we can solve numeri- 
cally for R o and R~ on the computer by successive bisection or Newton- 
Raphson techniques. These values are just the adjustment coefficients corre- 
sponding to the principal representations assuming v o and v~ respectively are 
the " t rue"  distribution for X. We find the following bounds on the ruin 
probability using partial information: 
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exp ( - R o  (u + b)) --< ~(u) -< exp (-Rtu). 

As an example, consider a group medical insurance policy which covers 
from the first dollar of loss up to a maximum of $5000. Assume that mo- 
ments Ix, (r 2, and p of claim size are known and the rate of frequency of 
claims, h, is also known. We will approximate R, the adjustment coefficient, 
using the numerical values a --- 0, b = 5,000, and the mean Ix = 139. 
Next we will include the information that cr 2 = 39,975 into the calculation, 
and finally include the skewness measure p = 57,320,000. It should be 
emphasized that the bounds on R are tight in the sense that both equalities 
are possible. These bounds cannot be improved without specifically obtain- 
ing more information about X. 

The equations defining the principal representations in theorem 2.1 were 
solved in the two moment and three moment cases. Then, using the principal 
representations as the distribution for X, the adjustment coefficient Rj and 
Ro were found exactly as described earlier and as described in Bowers et al. 
[1]. Table 1 presents the numerical results. The values of R t can be used to 
give upper bounds on O(u), the ruin probability, because ~(u) -< e -R*' -< 
e Rl". If it is desired to know the value of u which will insure that the ruin 

TABLE I 

BOUNDS UPON THE ADJUSTMENT COEFFICIENT USING ONLY MOMENT INFORMATION.* 

Premium 

Load Factor Number of Moments Rj × 10 4 R I × 10 4 

0--- . |  

0 ~ .3 

0 ~ .4 

0.375 

3.021 
3.741 

0,708 
4.504 

5.958 

1.001 

5.522 
7.345 

1.278 

6.239 
8.305 

13.503 
4.400 

3.913 

25.482 
8.303 

6.753 

36.233 
11.806 
8.948 

45,973 
14.980 

10,722 

*Notice particularly how quickly the width of the interval of indeterminancy decreases as more 

moments are included. 
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probability ~(u) is smaller than some permissible level, say .05, then one 
can solve the equation e - R l "  = .05 for u and obtain u = -ln(.O5)/Ri. For 
load factors 0 = . 1, .2, .3, .4, and for one, two or three moments known 
about X, this technique results in the following values of u given in table 2. 
One cannot improve upon these bounds unless more knowledge about X is 
gathered since the distribution v~ is entirely consistent with the given moment 
knowledge. 

TABLE 2 

THE INITIAL RESERVE U NEEDED TO INSURE THE PROBABILITY OF EVENTUAL INSOLVENCY LESS 
THAN .05, USING ONLY MOMENT INFORMATION CONCERNING THE LOSS VARIABLE X. 

Premium Intial Reserve 
Load Factor Number of Moments Used Required -ln.O5/Ri 

0 = . 1  

0 ~ .2 

0 ~ .3  

0 ~ .4  

$79,886 
9,916 
8,008 

42,313 
6,651 
5,028 

29,927 
5,425 
4,079 

23,441 
4,802 
3,607 

IV. IMPROVEMENTS IN THE BOUNDS WHEN THE RANDOM VARIABLES ARE 

KNOWN TO BE UNIMODAL 

Often more is known about the return distribution than just the first few 
central moments. For example, the distribution is frequently known to be 
unimodal. In this section we show how to use this information to improve 
the Chebychev system bounds. Slightly more general and advanced pre- 
sentations of these results may be found in Kemperman (1971) and Karlin 
and Studden (1966). 

The starting point for incorporating unimodality into the bounds is the 
result due to L. Shepp who gives the following interpretation of Khinchine's 
famous characterization of unimodality. He shows that a random variable Z 
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which is unimodal about zero has the representation Z = U V  where U and 
V are independent,  and U is uniformly distributed on [0,1 ]. (See Feller, II,  
1971, p. 158). We now use the technique of  Kemperman  (1971) to transfer 
the moment  problem from the original variable Z to the auxiliary variable 
V. We then find the appropriate bounds for V and then transform back to 
obtain bounds for Z. To  make this more precise, we note that i fX  is unimodal 
with mode m, then Y = X-m is unimodal with mode  0, and hence by 
Khinchine 's  theorem Y = U V  with U uniform on [0,1]. Using K e m p e r m a n ' s  
techniques we transform the moment  problem on X to one on V by noting 
that for any function h,E[h(Y)] = E[h*(V)], where 

h* (x )=  E [ h ( U V ) I V = x ]  = _1 fx h(t)dt  
X JO 

In particular, the relationship between the moments  of  Y and the moments  
of  V is found by taking h ( x ) =  x k. We then have 

1 
h*(x) - - -  xk; 

(k + 1) 

so,E[V k] = ( k +  1)E[Yk]. The mean,  variance,  and skewness of  the auxiliary 
variable V are now calculated in terms of  the mean,  variance and skewness 
of  Y, and hence of  X, as follows 

P,v = E[V] = 2E[Y] = 2 (ix x - m) ,  

oar = E[V 2) - (E[V]) 2 = 3ElY z] - 4(E[y])  2 

= 3o~v - (E[YI 2 = 3Oax - ( ~ - m )  2, 

Pv = E [ V - ~ v ]  3 = E[V 3] - 3E[V2]E[V] + 2(E[V]) 3 

= 4E[Y 3] - 18E[y2]E[Y] + 16 (E[Y]) 3 

= 4p r  - 6E[Y]o2v + 2(E[Y]) 3 

= 4px - 6(IXx - m)o~x + 2(Ix x - m) 3. 

(4.1) 
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Using this same integral relationship again, we note that finding bounds 
on E[h(X)] subject to X being unimodal with mode m and given moments 
is equivalent to finding bounds on E[h*(V)] subject to the moment constraints 
(4.1) on V, where 

h * ( x )  = - h ( t  + m ) d t .  
x 

By theorem 2.1 we already know the solution to this transformed problem. 
Substituting the moments from (4.1) into the formulas describing the bounds 
in theorem 2.1 yields the results stated below. Note that the end points for 
X ,  a<- X <- b ,  transform into end points a*<-V<-b*  where a * = a - m  and 
b* = b - m .  Summarizing, we now have the following theorem. 

THEOREM 

4.1 Suppose X is unimodal with mode m, mean P~x, variance Crx 2, third 
central moment (skewness) Px, and X is bounded between a and b. Let 

h * ( x )  = - h ( t  + m ) d t .  
x 

i) If h(3)(x)>0, then the best possible bounds on E[h(X)] using only uni- 
modality, mean and variance are 

h * ( a  - m ) q  + h*(~l)(1 - q ) < - E [ h ( X )  ]<-h*(~2)(1 - p )  + h * ( b -  m ) p ,  

where 

3cr2x - ( p. x - m)2 
~1 = 21.Lx -- 2 m  -- 

a + m _ 21.L x ' 
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3o'2 - (~x - m) 2 

q = 3 ~ x -  (IXx- m) 2 + (a + m - 2la,x) 2' 
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62 = 2 ~x - 2m 
30"2 - (P-x - m) 2 

b + m _ 21a, x ' 

3° '2  - ( ~ x  - m )  z 

P = 3~x - (IXx - m) 2 + (b + m - 21Xx) z" 

ii) I f  h(4)(x)>O, then the best possible bounds on E[h(X)] using only uni- 
modality, mean, variance, and skewness are 

h*(rll)q + h*('q2)( 1 - q)<-E[h(X)]  <-h*(a  - m ) p l  

+ h*(6)p2 + h * ( b  - m)(l - P l  - P 2 ) ,  

where Pl ,  Pz ,  6, Xh, Xlz, and q are obtained by substituting a* = a - m  and 
b* = b - m  together with the moments 

IXv, o'2, and P v  of  equations (4.1) 

into the formulas of  theorem 2. l(c). 

We now return to our prototype example involving ruin theory. 

V. T H E  P R O B A B I L I T Y  O F  R U I N  W H E N  T H E  L O S S  V A R I A B L E  IS K N O W N  T O  BE 

U N I M O D E L  

In this section we continue the application of  section III; however,  now 
we shall include the information concerning unimodality as outlined in the 
previous section. 
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The critical impact of the loss distribution X on the probability of ruin 
t~(u) with initial reserve u came through the adjustment coefficient R. This 
was the point of intersection of the moment generating function Mx(r) = E(e rx) 
with the line 1 + (1 + 0)lxr. If we know the first few moments of X and its 
mode m, then we transform the moment problems involved in the calculation 
of Ixx(r)= E[exp(rX)] as follows (compare section IV): 

Mx(r) = E[e rx] = e rm E[er~X-m)] = ermEh*(V), 

where 

1 (x e r x -  1 
h*(x) = - Jo e"YdY = - -  

x rx 
. .  

The auxiliary variable V has moments given by (4. I). We now use theorem 
2.1 to bound E[h*(V)], and hence bound Mx(r). The bounds for Mx(r) 
correspond to the moment generating functions for the upper and lower 
principal representations for V given the moments (4.1) multiplied by e T M .  

Once we have determined the principal representations, we find their ad- 
justment coefficients by finding their intersection with the line 1 + (1 + 0)lxr. 
To be explicit, we find the intersection of the curves 

E [ er(m+V)-erm] 
ermE.o[h*(V)] : .OL. - ~  ~ 

and 

er(m + V) _ erm ] 
ermE~[h*(V)] = Evil ~ J 

with the line 1 +(1 +0)txr in order to find the bounds on the adjustment 
coefficient. This is shown graphically in figure 2. 

As a numerical illustration, we return to the example of section III. Here 
we shall assume additionally that the loss distribution is known to be uni- 
modal with the most likely or modal value m = 37.5. Our best bounds on 
the adjustment coefficient R are now obtained by translating the original loss 
variable moments from X to V, via equation (4. i), then using theorem 2.1 
to find the explicit formulas for the principal representations for V, and then 
calculating the bounds for Mx(r). The corresponding numerical values for 
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// EM'~l~)r(m + v) - erm)/rV' 

~ / / E v ~  erm)/rV] 

~ 1 + ( 1 + 0 ) ) I r  

R1 R Ro 

Figure 2: 
The best bounding curves for Mx(r) given unimodality, and 
their corresponding bounds upon the adjustment coefficient. 

to find the explicit formulas for the principal representations for V, and then 
calculating the bounds for Mx(r). The corresponding numerical values for 
the adjustment coefficient R as determined by the computer using successive 
bisection to solve (3.2) are given in table 3. Note that in each situation, the 
bounds obtained by using the unimodality assumption are strictly tighter than 
those obtained without unimodality. These bounds cannot be improved with- 
out further information about the loss variable X. Additionally the bounding 
extremal measures are of the form UV + m where V has one of the principal 
representations for its distribution, and U is uniform. Hence, the extremal 
measures are continuous and unimodal and have the desired moments and 
mode. 

The upper and lower bounds on the adjustment coefficient can be trans- 
lated into estimates for the initial reserve u needed to insure a probability of 
eventual ruin of a prespecified size in the same way as outlined in table 2. 
The calculations involving unimodality will yield more accurate estimates 
for this initial reserve than would the calculations given in table 2. 

Vi.  S U M M A R Y  

It is very common in risk management and insurance to need to calculate 
E[h(X)] for some random variable X and some function h. In most cases the 
statistical distribution for X is not known with certainty, and approximations 
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TABLE 3 

BOUNDS ON THE ADJUSTMENT COEFFICIENT FOR THE LOSS DISTRIBUTION OF TABLE 1" 

Premium load i Number of Lower bound l Upper bound 
Factor 0 i moments used , x 10 4 ,i x 104 

0 = . 1  ] 

0 ~ .2 

0 = .4 

3.32 
3.81 

5.15 
6.21 

6.37 
7.79 

7.26 
8.90 

4.35 
3.91 

8.12 
6.72 

11.43 

8.87 

14.38 
10.58 

*If the loss is known to be unimodal. 

must be made. In this paper we have shown how to use the moments of X, 
and possible unimodali ty ,  to obtain bounds upon E[h(X)] which are as tight 
as possible or, cannot  be improved. The very important problem of risk of 
ruin calculations with incomplete information concerning the loss distribu- 
tion was used as an illustration, and the rather easy numerical computations 
resulted in quite tight bounds on both the probability of ruin, and the required 

initial reserve. 
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