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ABSTRACT 

This paper presents a statistical methodology based upon information the- 
ory for adjusting mortality tables to obtain exactly some known individual 
characteristics, while obtaining a table that is as close as possible to a stan- 
dard one. Applications to unisex pricing and incorporation of physician opin- 
ions are discussed. 

I. INTRODUCTION 

A common problem in actuarial science concerns the use of known in- 
formation about an individual to adjust a standard mortality table to reflect 
the individual's underwriting characteristics. Using the adjusted table, the 
actuary can price life contingent financial instruments. In this paper we 
present a statistical approach to mortality table adjustment that simulta- 
neously adjusts survival probabilities at all ages in a consistent, logical man- 
ner. We obtain a life table that is "as close as possible"~ to the standard 
table and that exactly exhibits the given individual characteristics. A topical 
example of such a procedure involves the problem of using a unisex life 
table for pension calculations. One can start with the unisex table and then 
systematically adjust for the particular individual characteristics to reflect 
his or her expected life length, or a 50 percent confidence interval on the 
life length, and so on. 

A prototype of the general situation we consider here has been discussed 
by Lumsden [5]. We summarize the problem as follows: In testifying as an 
expert witness about the economic loss due to the wrongful death of an 
individual, an actuary is asked to adjust a standard mortality table to obtain 
a table appropriate for a particular individual. A physician testifies, as an 
expert witness for the same side as the actuary, that the expected remaining 
life of the decedent at the date of an untimely death was m years. The actuary 

* Mr. Brockett, not a member of the Society, is a member of the Department of Finance and Applied 
Research Laboratories at the University of Texas at Austin. 

The precise definition of the "closeness" of two tables will be given in the next section. 
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64  STATISTICAL ADJUSTMENT OF MORTALITY TABLES 

must value a temporary life annuity in order to testify about the present value 
of the future lost earnings. In order to do so in a manner consistent with the 
physician's testimony, the actuary must construct a mortality table which 
has ex = m, where x is the age of the decedent. If the standard table satisfies 
this condition, then there is no problem. However, since this is usually not 
the case, we suppose that, for the standard table, ex --# m. 

Here we show explicitly how to obtain an adjusted table that is as indis- 
tinguishable as possible from the standard table and that satisfies the phy- 
sician's constraint e x = m. 

The method we use is based on the principle of minimum discrimination 
information explained in the next section. In section III the prototype prob- 
lem of life table adjustment is carried to a numerical conclusion. Since our 
prototype example is discrete in character, we phrase all the formulas for 
the discrete case. Section IV gives extensions and further results. 

I1. MINIMUM DISCRIMINATION INFORMATION ESTIMATION FOR DISCRETE 

DISTRIBUTIONS 

Consider the problem of distinguishing between two probability densities 
f and g after observing the value t of the random variable under study. In 
the application considered here, f and g will correspond to potential densities 
for the survival time of the individual. The technique presented here, how- 
ever, is applicable to other problems of interest to the actuary (e.g., see 
Brockett [ 1 ]). 

Now, for distinguishing between two densities f and g, the statistic 
In [f(t)/g(t)] is a sufficient statistic and represents the log odds ratio in favor 
of the observation having come from f. It can be thought of as the amount 
of information contained in the particular observation t for discriminating in 
favor of f over g (cf. Kullback [4]). In a long sequence of observations from 
f ,  the long-run average log odds ratio is 

( f(t)~ ~ ,  (2.1) E, l n g ~ ]  = ~ f i t , ) l n  
l g(tt) 

which represents the expected amount of information in an observation for 
discriminating between f and g. In the statistics and engineering literature 
this quantity is called the divergence between the densities f and g and is 
denoted by I (f Ig). It is not difficult to show that I (/" Ig) -> 0, with I (f Ig) 
= 0 if and only if f = g. Thus, the size of 1 (f]g) is a measure of the 
closeness of the densities f and g. Such a global measure of closeness of 
densities will be very useful for adjusting mortality tables. 
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Suppose that we are given a density function g, and we wish to find 
another density f that is as close as possible to g, and that satisfies certain 
moment constraints, such as 

1 = Oo = Y h, 

0| = ~ al  (tt) f t ,  

(2.2) 

Ok = ~ ak (tl) f l  , 

For example, if al (t) = t, then the first constraint says that the mean f o r f  
is known to be 01. Similarly, by taking a~ (t) to be unity on a certain interval 
and zero off the interval, we arrive at a constraint on the probability for that 
interval. This would be useful, for example, if one wanted to use a medical 
study that gives decennial survival probabilities; however, yearly (or more 
frequent) survival probabilities are required~ One would then find a survival 
density that was as close as possible to a standard mortality table, and that 
reflected the decennial survival rates quoted by the medical study. 

To phrase the problem mathematically, we desire to find a vector of  
probabilities f = (fl, f z  . . . .  ) that solves the problem 

min I O~g) (2.3) 

subject to the constraints (2.2). Here g = (gl, g2 . . . .  ) is the vector of 
probabilities corresponding to the standard probability distribution. 

Brockett, Charnes, and Cooper [2] show that the problem (2.3) has a 
unique solution, which is of the form 

f t  = gt exp [ -  (130 + 1) - 131al(tt) -- . . .  -- 13kak(tt)], (2.4) 

where the 13i's are constant parameters selected in such a way that the con- 
straints (2.2) are all satisfied. They further show that the parameters 13i can 
be obtained easily as the dual variables in an unconstrained convex pro- 
gramming problem, viz., 

min~] { g i e x p [ - ( 1 3 o +  1) - f$1at  ( t t )  - . . . - 1 3 ~ k  ( t t ) ] }  (2.5) 
- (13o + 0t13! + . . .  + Ok13D. 
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The solution to (2.5) can be obtained easily by any of a number of efficient 
nonlinear programming codes. In the following section we use the Newton- 
Raphson technique. 

I l l .  I N F O R M A T I O N - T H E O R E T I C  L I F E  T A B L E  A D J U S T M E N T S  

The study of life contingencies is intrinsically a study of biostatistics. For 
example, the life expectation is the expected value of a random variable K 
that equals the integral number of years a person now aged x will live. We 
have K = 0 with probability qx, K = ! with probability Px qx+ 1, etc. 

According to the standard mortality table, the distribution of the random 
variable K is given by the (to - x + 1) dimensional probability vector g 
= (go, g1 . . . . .  g ,,-x), where g, = k P × q x ÷ , f o r k  = 0, 1 , . . .  , to  - x 
- -  1 .  

Consider now the problem of finding the mortality table that is as close 
as possible to the standard table, and that satisfies certain given constraints. 
This translates into finding a probability distribution f = (fo, f l  . . . . .  
f ,  - x) for the random variable K that satisifies the desired constraints. If, 
for example, the desired constraints involve the expectation of functions 
such as those given in section II, then the density (2.4) is the least distin- 
guishable density from g among the class of all densities satisfying the 
constraints. 

Returning to the problem considered by Lumsden [4], the physician has 
testified that the expectation of life for the decedent is m more years. Thus, 
the constraint set is 

1 = ~ , f t ,  m = ~, k f ,  (3.1) 

(all sums are over {0, 1, 2 . . . . .  to - x}). Appealing to the principle of 
minimum discrimination information, we select the density f to satisfy 

min I (f]g) = min ~ 3~ In (f/]gt) 

subject to the constraints (3.1). 
We could now of course apply the result (2.4) directly; however, it is 

perhaps more instructive to show how to obtain the desired density directly 
by standard methods in this simple situation. Let n = to - x. The probability 
distributions that we are considering can be viewed as n + 1 vectors f = 
(fo, f l ,  . . . .  fn) that satisfy fk >-- 0, Xf, = 1, and Y&fk = m. Letting 130 
and 131 denote the Lagrangian multipliers for the equality constraints (3.1) 
allows us to replace the original problem: minimize the function 
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L (f, 13) = ~ fk In ( fklgk) - -  130 (1 -- ~ f k )  - -  13~ ( m  - -  ~ k f  k) 

subject to f k  >- 0, k = 0 . . . . .  n. The n + 3 first-order conditions found 
by differentiating with respect tofo ,  f l  . . . . .  fn, 13o, and 131 are as follows: 

In (Algk) + 1 + 13o + k131 = 0, k = 0  . . . .  , n; 

- 1  + ~ ] f k  = 0; 

- m  + Z k f k  = O. 

The first n + 1 equations give fk = gk  exp (--  1 -- 13o -- k131) for k = 
0 . . . . .  n. The last two equalities allow us to find the parameters l + 13o 
and 131. Consider the function ~b(130 = Z g k e  -k~. Since Zfk = l ,  we have 1 
= E g k e  - I - m - ~ '  = e - t - ~  ~b(131). Therefore, 1 + 13o -- In ~b(131). Because 
d~'(13) - -  - Z g k k e  -k~, we obtain 

+'(131)  = - E k g k  e-k~ '  = - e "  + ~°)Y&gke-  i - ~o - k~, = 

- e(' + ~°) Z k f k  = - -  e ~' + 13o) m = - -  d~(131)m. 

Thus, in order to find the precise numerical value for 13~, we solve 

(1)'(130 = - qb(131)m, 

or equivalently, 

d 
d13 In [(~)(13)] m 

for 13 = 131- We then may obtain the other parameter 13o through the equation 
1 + 13o = In d~ (131). After we have the two parameters 130 and 131, we 
easily calculate the desired density fk = gk e -(j + ~o+a,k). 

We used Newton ' s  method to solve d[ln t~b(13)]/d13 = - m  for 131- Recall 
that to solve an equation o f  the form F(13)= 0 by Newton ' s  method, one 
uses the recursion relation 
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f3J +l = [3J - F([3J) / F'([3J). 

In our case F( [3)=  d[ln qb([3)]/d[3 + m, and this reduces to 

qb'([3)/qb([3) + m 
fl+l= f l  I 

{+,,([3)+([3) _ [,I,,([3)]2} / 

+'(flY) qb ([3/) + mqb (f l)2 
= f l  - {+, ,  ( f l ) +  ( f l )  _ [ 4 ,  ( f l ) ] 2 } ,  

S T A T I S T I C A L  A D J U S T M E N T  O F  M O R T A L I T Y  T A B L E S  

~ = ~  

where qb([3) = Y~gke k13, qb'([3) = - Xkgke k~, a n d  qb"([3) = ~,k2gke k~. 

F o r  illustrative purposes, we shall do a numerical example that is a special 
case of  the above. The standard table used is the U.S.  Population Table for 
1978. The life lost is a male, aged 45, having a life expectancy of m = 8 
years. The standard and adjusted tables are shown below (Table 1). In this 
example we found 1 + [30 = - 3 . 0 8 0 6  and 131 = 0.18417,  so that the 
adjusted table satisfies fk = (21.7715)gk (0.838) k. 

T A B L E  1 

ADJUSTED AND STANDARD MORTALITY TABLE FOR MALE AGE 45.  

YEAR 
k 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

13 
14 
15 
16 
17 
18 
19 

0.00444 
0.00493 
0.00548 
0.00608 
0.00673 
0.0O746 
0,00825 
0.00905 
0.00985 
0.01068 
0.01153 
0.01249 
0.01370 
0,01525 
0.01706 
0.01907 
0.02113 
0.02315 
0,02504 
0.02688 

m 

STANDARD 
TABLE 

ROBABILITY 

gt 

0.00444 
0.00491 
0.00543 
0.00599 
0.00659 
0.00726 
0.0O796 
0.00866 
0.00935 
0.01003 
0.01072 
0.01147 
0.01243 

0.01365 
0.01503 
0.01652 
0.01795 
0.01925 
0.02034 
0.02129 

STANDARD 

TABLE 
SURVIVAL 
FUNCTION 

tk 

1.0O000 
0.99556 
0,99065 
0.98522 
0.97923 
0.97264 
0.96539 
0.95742 
0.94876 
0.93941 
0,92938 
0.91866 
0.90719 
0.89476 
0.88112 
0.86608 
0.84957 
0.83162 
0,81236 
0.79202 

ADIUSTED 

TABLE 
RATE 

q~ 

0.09667 
0.09840 
0.10041 
0.10244 
0.10444 
0.10681 
0.10918 
0.11091 
0.11191 
0.11253 
0.11265 
0.11307 
0.11486 
0.11850 
0,12319 
0.12840 
0.13318 
0.13706 
0.13959 
0.14124 

ADJUSTED 

TABLE 

PROBABILrI'Y 

ft 

0.09667 
0.08888 
0.08178 
0.07506 
0.06868 
0.06290 
0.05743 
0.05197 
0.04662 
0.04164 
0.03699 
0.03295 
0,02968 
0.0271 I 
0.02484 
0.02270 
0.02052 
0.01831 
0.01609 
0.01401 

ADIUSTED 
TABLE 

SURVIVAl, 
FUNCIION 

Ii 

1,0O000 
0.90333 
0.81445 
0.73267 
0.65762 
0.58893 
0.52603 
0.46860 
0.41663 
0.37000 
0.32837 
0,29138 
0.25843 

0.22875 
0.20164 
0.17680 
0.15410 
0,13358 
0.11527 
0.09918 



TABLE 1---Continued 

STANDARD 
STANDARD TABLE 

STANDARD TABLE SURVIVAL 
YEAR AGE TABLE RATE PRO BA B ILi'I'Y FUNCTION 

t x q~ g~ /~ 

20 65 0.02875 0.02216 0.77073 
21 66 0.03085 0.02309 0.74857 
22 67 0.03323 0.02411 0.72548 
23 68 0.03603 0.02527 0.70137 
24 69 0,03922 0.02652 0.67610 
25 70 0.04264 0.02770 0.64959 
26 71 0.04628 0.02878 0.62189 
27 72 0.05030 0.02983 0.5931 I 
28 73 0.05483 0.03088 0.56327 

29 74 0.05982 0.03185 0.53239 
30 75 0.06528 0.03268 0.50054 

31 76 0.07113 0.03328 0.46787 
32 I 77 0.07740 0.03364 0.43459 
33 I 78 0.08400 0.03368 0.40095 
34 , 79 0.09100 0.03342 0.36727 
35 80 0.09829 0.03281 0.33385 

36 81 0.10591 0.03188 0.30103 
37 82 0.11366 0.03059 0.26915 

38 83 0.13421 0.03202 0.23856 
39 84 O. 13845 0.02860 0.20654 

40 85 0.13979 0.02488 0.17795 
41 86 O. 15229 0.02331 0.15307 
42 87 0.16524 0.02144 0.12976 
43 88 0.17778 0.01926 0.10832 
44 89 0.18964 0.01689 0.08906 

45 90 0.20152 0.01454 I 0.07217 
46 91 0.21481 0.01238 0.05763 
47 92 0.28758 0.01301 0.04525 
48 93 0.27789 0.00896 0.03224 
49 94 0.18381 0.00428 0.02328 
50 95 0.26173 0.00497 0.01900 
51 96 0.27789 0.00390 0.01403 

52 97 0.29289 0.00297 0.01013 
53 98 0.30562 0.00219 0.00716 
54 99 0.32054 0.00159 0.00497 
55 100 0.33192 0.00112 0.00338 
56 101 0.34447 0.00078 0.00226 
57 102 0.35560 0.00053 0.00148 

58 103 0.36789 0.00035 0.00095 
59 104 0.38009 0.(~023 0.00060 

60 105 0.38838 0.00015 0.00037 
61 106 0.40000 0.00009 .0.00023 

62 107 0.38750 0.00005 0.00014 
63 108 0.45578 0.00004 0.00008 
64 109 0.33750 0.00002 0.00005 
65 110 O. 50943 0.00002 0.00003 
66 II1 1.00000 0.00001 0.00001 

Totals 1.00000 28.47310 =, 

ADJUSTED 
TABLE 
RmE 

q; 

0.14239 
0.14394 
0.14599 
0.14905 

0.15289 
0.15682 
0.16072 

0.16513 
0.17033 
0.17606 
0.18234 
0.18899 

0,19587 
0.20288 
0.21003 

0.21720 
0.22403 

0.23070 
0.26092 
0.26276 

0.25731 
0.26945 
0.28346 

0.29318 
O. 30897 
0.31864 
0.33171 
0.41086 
0.40325 

0.28013 
O.36107 

0.35313 
0.44711 
0.27441 
1,00000 
1.00000 
1,00000 
1.00000 
1.00000 
1.00000 

1.00000 
1.00000 
1.00000 
1.00000 
1.00000 

1.00000 
1.00000 

ADJUSTED 
TABLE 

PROBABILn'Y 
/k 

0.01213 
0.01051 
0.00913 
0.00796 

0.00695 
0.00604 

0.00522 
0.00450 
0.00387 
0.00332 
0.00284 
0.0ff240 
0.00202 
0.00168 
0.00139 

0.00113 
0.00092 
0.00073 
0.00064 
0.00047 
0.00034 
0.00027 
0.00020 

0.00015 
0.00011 
0.00008 
0.00006 
0.00005 
0.00003 
O.00O01 
0.001301 

0.00001 
0.00000 
0.00~00 
0.00000 
0.00000 
0 . 0 0 0 ~  
0.0(3000 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 

0.00000 
0.000130 
0.00000 

ADJUSTED 
TABLE 

SURVIVAl, 
FtnqcnoN 

t l  

0.08517 
0.07304 
0.06253 

0.05340 
0.04544 

0.03849 
0.03246 
0.02724 
0.02274 
0.01887 

0.01555 " 
0.01271 
0.01031 
0.00829 
O.OO661 

0.00522 
0.00409 
0.00317 
0.00244 
0.00180 

0.OO133 
0.00099 

0.00072 

0.00052 
0.00036 
0.00025 
0.00017 
0.00012 
0.00007 
0.00004 

0.00003 
0.00002 
0.00001 
0.00001 
0.00000 
0.00000 

0.00000 
0 . 0 0 ~ 0  
0 .00)00 
0.00000 
0 . 0 0 0 ~  
0.00000 
0.00000 
0.00)130 

0.00000 
0.00000 
0.00000 

=e,  1.0tx~00 7.99995 = e; 

*Standard table is U.S. Pol~ladon Table for 1978. Adjusted table is the result of requiring 
years, while selecting the table as close as possible to the standard. 

the expectation of life to be eight 
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IV. CONCLUSIONS A N D  EXTENSIONS 

The technique presented in the previous section also could be used in 
underwriting individual life insurance or annuities. If an underwriter had an 
estimate of remaining life expectancy as the result of a medical examination, 
this method could be used to construct a mortality table that then would be 
used to calculate the gross premium. If the expectation was close to the 
tabular value, then the resulting gross premium would be close to the stan- 
dard. If the expectation was less than this value, this method would produce 
a gross premium that is larger. However, the resulting deviation from the 
standard value would reflect only the known information that the life ex- 
pectancy of the candidate for insurance is not average. If the standard table 
is a unisex mortality table, and the information gathered from the medical 
examination (e.g., family history, smoking habits, drinking habits, medical 
abnormalities, and the like) is translated into relative risk measures by con- 
sultation with pertinent medical studies, then this information easily may be 
incorporated into the constraint set (2.2). The resulting adjusted life table 
reflects only individual characteristics and hence is not sex-biased. In a sense 
we are giving the candidate the benefit of the doubt by making the individ- 
ual's mortality table as close as possible to the standard. The numerical 
computations involved in implementing the proposed procedure, even when 
there are many constraints (much information gathered about the potential 
insured), are carried out easily using the unconstrained dual mathematical 
programming problem (2.5). One can envision an underwriter adjusting a 
standard table in his or her own office interactively and obtaining premium 
quotes immediately that are simultaneously statistically valid for risk pooling 
purposes, and also sufficiently individually tailored to satisfy recent court 
rulings on sexual discrimination. 

The technique can be extended in other directions as well. It may be true 
that different mortality tables have different shapes that reflect the various 
different causes of death and their rising and falling incidence at different 
ages of life. For example, if a person has cirrhosis of the liver, the shape 
of this person's mortality curve may be different from the standard. If the 
actuary actually has concrete information about this shape, then the shape 
of the desired curve can be input easily into the constraint set (2.2). Increas- 
ing mortality rates, for example, are input in the form f , - - f /+  1 ~ 0. Smooth- 
ness also can be input in the form of second-difference constraints. In fact, 
the information-theoretic method exposed here also can be used as a mor- 
tality graduation technique with monotonicity and smoothness constraints 
forced by (2.2). We shall pursue this topic elsewhere. If the actuary does 
not have any concrete information on how the curve shape should be changed, 
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then it would be incorrect to input any forced shape other than the standard. 
In effect our technique allows the actuary to input any prior information 
actually possessed, just as Bayesian analysis would do, without the subjec- 
tivity of Bayesian prior distributions. At any rate, the mortality table ad- 
justing techniques allows for adjustment in a statistically valid manner. 

A final extension of our technique also should be mentioned: the inequality 
constrained case. If, for example, the medical doctor projected a l ife ex- 
pectancy of between five and twelve years as opposed to exactly eight years 
in our numerical example, then the second constraint in (3.1) would become 
an inequality rather than an equality constraint. This may be handled by 
introducing slack variables into the convex programming problem (2.3). 
Charnes, Cooper, and Seiford [3] show that the numerical computation of 
the Lagrange multipliers is accomplished easily in this case by reference to 
the dual convex programming problem that has only nonnegativity con- 
straints. Thus, the computations in the inequality constrained situation are 
carried out easily on any computer. 

REFERENCES 

1. BROCKE'rr, PATRICK L. "Using a Standard Distribution and Client Data to Obtain 
a Client Loss Distribution," PCAPP, XXXIV (1984--85), 503-11. 

2. BROCKE'rr, PATRICK L., CHARNES, A., and COOPER, W. W. "MDI Estimation via 
Unconstrained Convex Programming," Communications in Statistics, IX, Ser. B, 
No. 3 (1980), 223-34. 

3. CHARNES, A., COOPER, W. W., and SEIFORD, L. "Extremal Principles and Optimi- 
zation Dualities for Khinchine-Kullback-Leibler Estimation," Mathematische Oper- 
ationsforschung und Statistik, Series Optimization, IX, no. 1 (1978), 21-29. 

4. KULLBACK, S. Information Theory and Statistics. New York: John Wiley & Sons, 
1959. 

5. LUMSDEN, WILLIAM F. "Why to Avoid Testifying to an Annuity-certain for Life 
Expectancy," PCAPP, XXXI (1981-82), 416-33. 





DISCUSSION OF PRECEDING PAPER 

A L L A N  C.  W E A V E R :  

This interesting paper raises some issues upon which I'd like to comment. 
In section I, does the actuary and the physician have the same understand- 

ing of terms used in testimony? What does the physician mean exactly by a 
life expectancy of eight years? He might mean that half the number of lives 
in a group similarly afflicted (as the decedent was afflicted) would die before 
eight years. Note that the authors' adjusted table shows that half the group 
dies after six and a half years. In that case, it seems the "known"  infor- 
mation is different for the actuary and the physician. 

In section III, one of the problems with Newton's method in testing for 
convergence is when it is programmed on a computer, it has the tendency 
for the algorithm to oscillate between two or more final values rather than 
to converge to one final result. This tendency can be alleviated by estab- 
lishing tolerance limits and by testing convergence by changes on the largest 
parameter, which in this case is (~" ([3). The nature of the problem also 
suggests an initial trial value of [31 as zero. As much precision as possible 
is desirable. While the procedure described is ideally suited for APL, in 
other languages looping and indexing time can be saved by separately de- 
fining the summation element gk. e-k~i or gk/e k~i within the loop as, say, 
term t since the program will need ~,t, ~,kt and ~,k.k.t for the iteration. The 
adjustment (negative) then becomes: 

(~,t) (~,k't) - m(~,k.t) 2 

(Ek)  (Ek .k . t )  - (Ek. t )  v 

and convergence can be tested on the Y~ k.k . t  value. After the result 131 is 
obtained, 1 + 130 = In Y,t. 

I suggest some techniques to complete the authors' table at high ages. 
After the fk values are calculated, normalize them by fk (adjusted) = fk 
(formula)/Yfk since one constraint was that Efk= 1. Rounding should be 
avoided until the final values are printed. The adjusted table survival prob- 
ability can then be determined by cumulative subtraction of thefk value from 
1, ensuring an ultimate zero rather than a residual. The adjusted q values 
can be determined by dividing the fk's by the adjusted table survival prob- 
abilities. The differences become significant toward the end of the table. 
For example, I found q values of .41393 and .42784 at ages 98 and 99, 
respectively. 
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The results in developing values on the adjusted table seem counterintui- 
- 1  - 130  

tive. It is clear that fk = gk when e c-tl~°K~ll = 1 = e 0 or k = 
131 

where the result should be greater than t o - x ,  but this does not always seem 
assured. Since the initial g values were higher on the adjusted table, this rela- 
tionship implies that the life gets more hardy as it ages relative to the standard 
table. It seems difficult to build in the constraint qlx >_ qx, but the constraintfk 
----- gk could be handled as described in the text. 

The choice of the standard table is lacking in that the table is not smooth, 
particularly between ages 90-95. The expectancy in the adjusted table is so 
much less than the standard table that possibly a disabled life table should be 
considered instead. Such tables exhibit altogether different characteristics from 
standard life tables, l Unless the standard table to be used (as recommended by 
the authors) is stipulated by law or by agreement between the parties, another 
table should have been chosen. Using PBGC Table V as the standard produces 
intuitively more acceptable results. Another point that should be remembered is 
that the value from a U.S. population table for age x + 10 will represent the 
rate for a generation born ten years earlier than the rate for age x. A single life 
will follow the mortality of the cohort. The bias involved may be considerable. 

I (AUTHORS' REVIEW OF DISCUSSION) 

PATRICK L. BROCKETT AND SAMUEL H. COX, JR.: 

We appreciate Mr. Weaver ' s  considered discussion of our paper. We have 
only a few comments to add. 

In section I, the problem of communication between the doctor (or other 
expert) and the actuary must be resolved in any framework, whether it be 
the information theoretic method we propose, or a Bayesian method, or some 
other method of analysis. The actuary must determine what the doctor means 
before "known information" truly has been obtained. If it turns out that the 
doctor truly means that the median is eight years rather than the mean, then 
a median constraint must be used. This is easily done. The constraint f8 + 
f9 + • - - + f,~-x = 0.5 would replace Xkfk = 8, but the rest of the analysis 
would be identical. The function ai(t) used in (2.2) changes as noted in the 
paragraph following (2.2). Thus, the solution (2.4) is changed accordingly. 
Communication, as Mr. Weaver notes, is an important aspect of this anal- 
ysis. 

In the computation, we used the Newton-Raphson method as the numerical 
technique because our readers are very likely to be familiar with it since it 
has been on the Society of Actuaries examination syllabus for a long time. 

1Robert T. McCrory, "Mortality Risk in Life Annuities," TSA XXXVI (1984) 309--49. 
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It is simple and easy to program. Mr. Weaver's suggestions are important 
for those who wish to write their own program using this method. However, 
Newton-Raphson may not be the best computational method available. The 
numerical analysis publications on nonlinear mathematical programming form 
a rapidly growing and widely available literature. We have taken advantage 
of this in other work where we have had many constraints of both the equality 
and inequality type. In such problems, we have approached the computa- 
tional portion from the dual convex programming side given in (2.5) and 
used highly developed nonlinear programs such as GRGII and SUMT alluded 
to at the end of section 2. Using these canned computer packages alleviates 
the computational problems. 

It is interesting that Mr. Weaver finds the results in developing values on 
the adjusted table counterintuitive. As Mr. Weaver notes, the constraint 

fk  >-- gk 

can easily be included in our method. The constraints 

q'x -> qx 

are satisfied in our particular example, however they may not be in some 
other application of our technique. If it is necessary that the annual proba- 
bilities (or rates) do not increase, then we suggest applying the technique 
we outlined on the annual rates directly. The technique is not restricted to 
probability distributions. The objective function would be 

l(q'xlq~) --- ~,q'xln(q'x/eqx), 

and we would minimize it subject to the constraints expressed in terms of 
the annual probabilities. The paper by Brockett and Zhang [1] considers 
graduation methods using the annual probabilities with linear equality, ine- 
quality and quadratic inequality constraints on an information theoretic func- 
tional. It applies to the situation described by Mr. Weaver. This is a much 
deeper problem which our paper does not address. 

Mr. Weaver's comment on our standard table is very pertinent. Anyone 
desiring to adjust a standard table must first select an appropriate standard 
table to adjust. Certainly the tables Mr. Weaver mentions should be consid- 
ered as candidates for the standard table. In our paper, we present a new 
statistical technique and illustrate it with a numerical example. Our choice 
of an illustrative table was not meant as a recommendation for its use in a 
particular problem. 
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