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ABSTRACT* 

This paper will investigate the problem in estimating qx using data ob- 
tained from insurance company records. For the ith life, let [x + ai,x + bi] be 
the age interval for which observation is possible (0 ~< ai < bi <~ 1). This 
life is observed from age x + a  i to either death, withdrawal, or age x q - b  i 
where observation terminates. For data of this form, maximum likelihood 
estimators are derived under both the assumptions of a uniform distribution 
of deaths and a constant force of mortality within the unit age interval 
[x,x+ 1]. The estimators for partial data (frequency counts of deaths and 
withdrawals) and full data (ages at death and withdrawal) are developed. 
These estimators are compared with the usual actuarial estimators and the 
product limit estimator, using a Monte Carlo study and asymptotic results. 

1. INTRODUCTION 

The Problem 

Consider the problem of estimating qx. Since qx is a population parameter, 
its true value can never be known with complete accuracy, but it may be 
estimated from sample data. The simplest approach is to run a binomial 
experiment, where we start with a random sample of N lives (all aged x, 
selected from the population of interest) and observe them for a one-year 
period. If D denotes the random number of observed deaths among these N 
lives, then D/N provides the appropriate estimator of qx- 

In studies based on insured lives, this ideal solution is not applicable. 
Rather than actually conducting an experiment, the data used in mortality 
estimation is taken from records that insurance companies maintain on the 
lives they insure. Some insureds who are under observation at age x may 
let their policies lapse prior to attaining age x + l, and, consequently, we 
lose track of what happens to them. These lives prematurely withdraw from 

*My thanks to Smart Klugman for suggesting this project and to Jim Hickman and Cecil Nesbitt 
for their useful comments on an earlier version of the manuscript. 
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observation, and any deaths among them that occur after withdrawal but 
before age x + 1 are unobservable and cannot be counted in D. In this case, 
D will be less than the actual number of deaths resulting from the original 
N lives, and D/N will underestimate qx. 

This problem arises because there are two causes of decrement (death and 
withdrawal) which are competing for lives. Observation on a life can ter- 
minate by only one of these two causes, which are operating simultaneously. 
The ratio D/N is estimating the probability of an observed death, but q~, is 
the probability of an actual death, whether observed or unobserved. 

One remedy is to use the so-called actuarial estimator 

D 
0x - 1 ' (1.1) 

N - - W  
2 

where W equals the random number of lives that withdraw. Notice that in 
the ratio DIN, each life contributes a count of one to the denominator or 
exposure. When a life withdraws, it loses the potential for contributing to 
D; consequently, it should not contribute a full unit to the exposure. Assum- 
ing that, on the average, withdrawals occur at age x + V2, we deduct a half 
unit  of exposure for each withdrawal, which produces the estimator given 
by (1.1). 

An alternate explanation of (1.1) is obtained by assuming that half the 
withdrawals occur at age x and half at age x + 1. This is equivalent to 
running a binomial experiment where we begin with a sample of size N - 
VzW. Since D deaths are observed, the estimator of qx is (1.1). 

This paper contains a unified treatment of maximum likelihood estimators 
for qx, derived from models which make allowance for withdrawals. A 
summary of these estimators is contained in Appendix A. The major reason 
for considering maximum likelihood estimators is that under mild conditions 
they are asymptotically efficient. That is, among a large class of consistent 
estimators that have asymptotic normal distributions, there is none that has 
a variance any smaller than that of the maximum likelihood estimator when 
N is large. Thus, in the case of large sample sizes, we expect the maximum 
likelihood estimator to be better than other consistent asymptotically normal 
estimators. 

Most of the maximum likelihood estimators in sections 2 and 3 have been 
previously derived by other writers, for example, Steelman [13], Elveback 
[8], Chiang [5] and [6], and Elandt-Johnson and Johnson [7]. In particular, 
the development of the full data maximum likelihood estimators in section 
2 is similar to that given by Steelman [13]. 



MAXIMUM LIKELIHOOD ALTERNATIVES 79 

The Basic  Random Withdrawal Model  

With respect to the age interval [x , x+  1], each life in the sample is ob- 
served from age x until it either dies, withdraws, or attains age x +  1. For 
each life, we observe the method by which observation terminates and the 
time (T), measured from age x, at which this termination occurs. (If obser- 
vation terminates on a life at age s, then T = s - x . )  In order to model T, 
we associate with each life a pair of  independent random variables Y and Z 
which are the times to death and withdrawal, respectively, each being mea- 
sured from age x. Then T = min(Y,Z, 1). For example, if Z < Y and Z < 
1, then T = Z and withdrawal will be observed at age x + Z. 

The independence of Y and Z is necessary for the development of  the 
likelihood function in the random withdrawal model. In practice, the validity 
of  this assumption deserves careful scrutiny. 

We assume throughout that Y is a continuous random varible, and, unless 
otherwise stated, we also assume that Z is continuous. We shall call this the 
random withdrawal model since Z is considered a random variable. The case 
where Z is considered nonrandom is called the fixed withdrawal model and 
is treated in section 3. 

The parameter of  interest is qx = P[Y <~ 1] = 1 - px. Let Qx = P[Y 
~< Z, Y ~< 1], which is the probability of  an observed death. Clearly, qx ~> 
Qx- Following Jordan [9], we shall call q,, the rate of  death and Qx the 
probability of  death. Corresponding to withdrawal, we analogously define 
rx = P[Z <<- 1] and R~ = P[Z <<- Y, Z <<- 1] as the rate and probability of  
withdrawal, respectively. The distribution functions of  Y and Z are denoted 
respectively by F(°) and H(°); for example, tqx = P[Y <~ t] = F(t) .  The  
density functions, when they exist, will be denoted by the corresponding 
lower case letters f(°) and h(o). Finally, the forces of  death and withdrawal 
at age x will be denoted by I~x and vx, respectively. In order to simplify 
notation, we may delete the subscript x, unless needed for clarity, and merely 
write q, r, Q, and R. 

To see how q and Q are mathematically related, we condition on Y = t 
and obtain 

Q = P [ Y < - Z , Y  < - 1] 

f2 = [1 - H(t)] dF(t) (1.2) 

= q - H(t)dF(t)  
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= q - qr  + f ~  F( t )dH( t )  

= q[1 - r ( 1 - c ) ] ,  (1.3) 

f; c = F(OdH(t ) !  qr  = P [ Y  <~ Z I Y <~ 1, Z <~ 1], 

which is the conditional probability o f  an observed death given that death 
and withdrawal are due to occur before age x + 1. 
Similarly, 

R = P [ Z < - Y , Z  < - l] 

fo = [1 - F(t)]dH(t)  

= r [ l - q c ] .  (1.4) 

Using traditional actuarial notation, we note the alternate form for Q: 

Q = (1 - trx)(1 - tqx)lxx+, dt. (1.5) 

Since tqx = F(t )  and trx = H(t),  the equality o f  (1.2) and (1.5) is clear. 
Let Di be an indicator random variable that equals 1 if the ith life is 

N 

observed to die and 0 otherwise. Then D = ~ Di. Similarly Wi will be the 
I 

N 

indicator variable for withdrawal, and W = ~ W i is the total number of  
I 

withdrawals. Finally S = N -  D - W denotes the number of  lives surviving 
under observation to age x + 1. 
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Unidentifiability of qx 

Generally our data consists of observations on Ti, Di, Wi, i = 1 . . . . .  N. 
However, suppose we have only the summary statistics D and W. How can 

we estimate q? We know that D/N p Q and W/N ~ R, where P-~ denotes 
convergence in probability. As N ~ ~, D/N and W/N will grow closer to 
Q and R. From observing D and W, the most we could ever hope to learn 
about the model are the values of Q and R and, consequently, any functions 
of them. Suppose we consider the limiting case (N = oo) and assume we 
have the exact values of Q and R. What, then, is q? The problem is to solve 

Q = q [ 1 - r ( 1 - c ) ]  (1.3) 

and 

R = r[1-qc]  (1.4) 

for q. We have two equations in three unknowns (q, r and c), and unfor- 
tunately there is not a unique solution. So even if we are given the values 
of Q and R, we cannot uniquely determine q. It is in this sense that we say 
q is not identifiable. This undesirable result was previously observed by 
Lindley [11]. Based only on D and W, it is impossible to construct a con- 
sistent estimator of q, unless we are willing to impose additional assumptions 
on the model. 

In particular, the actuarial estimator 

D 
-- 1 (1.1) 

N - - W  
2 

is generally not a consistent estimator of q. Since 

D p Q 

N - I w  1 - 1 ' 

1 
the actuarial esitmator will be consistent if and only if Q/(1 - ~ R )  = q. This 

is equivalent to 
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fo F(I)H(1) F(t)dH(t) - 2 -  F(1-----~' 

which is satisfied if 

F(x) = 1 - 1/(l+kH(x))"2, 0 <- x -< 1 (1.6) 

where k is any positive constant. Thus if (1.6) holds~ the actuarial estimator 
(1.1) does converge in probability to q. This result is a special case of 
Theorem 1 in Breslow and Crowley [4]. 

Date-to-Date Studies 

In anniversary-to-anniversary studies, each life comes under observation 
at an integer (insuring) age, and if it is neither a death nor a withdrawal, it 
leaves observation at an integer age. In this case the basic random withdrawal 
model is appropriate since each life observed within the unit age interval [x, 
x + 1] must begin observation at age x (assuming x is integral), and continue 
under observation to age x + 1, unless previously removed by death or with- 
drawal. 

However, complications arise in date-to-date studies, since within the age 
interval [x, x + 1], some lives may begin observation after age x, and some 
may be " fo rced"  to withdraw if the study ends before they can attain age 
x + 1. TheRe possibilities are illustrated in Figure 1. The history of each life 
is represented by a 45 ° line which connects the points where observation 
began and ended. With respect to the age interval [35,36], both lives (1) 
and (2) entered into observation at age 35'/4 and terminated observation at 
age 353/4. Life (1) was a withdrawal, whereas life (2) was a forced with- 
drawal. 

It is important to distinguish between withdrawals and forced withdrawals 
since they can play different roles in the likelihood function. For the age 
interval [x, x +  1], a withdrawal is a life that terminates observation after 
age x and before age x + 1, while alive, and before the study ends. This type 
of withdrawal corresponds to a lapsing policy-holder. A forced withdrawal 
occurs in [x, x +  1] when a life is under observation and between ages x and 
x +  1 when the study ends. Within a unit age interval, any life whose 45 ° 
line is to the upper right of the dashed line (see Figure 1) is a potential 
forced withdrawal. For example, at the moment life (3) attained age 36 it 
became a potential forced withdrawal for the interval [36,37], but it was 
never a potential forced withdrawal for [35,36]. 
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Fig. l--Age--date diagram for mortality data. 

Typically in mortality studies a single life may be observed over several 
consecutive unit age intervals. In this paper, all definitions and terminology 
will be with respect to a single age interval, [x, x +  1]. For example, life (3) 
in figure 1 was a survivor in [35,36] but a death in [36,37]. When reference 
is made to the age that a life entered into observation, it will be with respect 
to a particular age interval. Thus, it is permissible to say that life (3) entered 
into observation at age 35V2 and at age 36, since each is correct for the 
appropriate age interval. N will denote the number of lives observed between 
ages x and x +  1. For the data in figure 1, N = 3 for the interval [35,36], 
and N = 1 for the interval [36,37]. 

We should note the difference between the data used in actuarial studies 
and the data used in medical studies. In the medical setting, the variable of 
interest is usually not age but rather duration since diagnosis or treatment 
for a certain disease. In this case, we may think of tqx as the probability that 
a patient who has survived x time units since treatment will die within the 
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next t time units. Since all patients start observation at duration 0, the prob- 
lem of late entry is generally nonexistent in medical studies of survival 
analysis. In this sense, there is an added complexity in actuarial data. 

2. M A X I M U M  L I K E L I H O O D  E S T I M A T E S  (MLEs)  IN T H E  R A N D O M  

W I T H D R A W A L  M O D E L  

A Preliminary Example 

Suppose xl . . . . .  xN are observed values of the independent discrete ran- 
dom variables Xl . . . . .  X~,, respectively. If P[Xi=x] = f/(x;0) for some 0 
in the set f~, then the likelihood function is 

N 

L(O) = FI f i (xi;O) , 0 E. ~'~. (2.1) 
i ~ l  

Thus L(0) is the probability of observing, in repeated samples, the values 
actually obtained when the parameter value is 0. The maximum likelihood 
estimate (MLE) of 0 is 0 if 

L(0) --> L(0) for all 0 e IL 

That is, 0 is the parameter value that maximizes the probability of the sam- 
ple. 

If the random variables are continuous, and ~(x;0) denotes the probability 
density function (pdf) of Xi, then the likelihood function is again given by 
(2.1). However, in this case L(0) is not the probability of the sample. ,If we 
abuse the terminology a bit and interpret 

P[x <- Xi -< x + dx] - f / (x ;0)dx  

as the probability that x is the observed value of X i, then the "probability" 
of the sample is essentially 

N N 

I I  ft" (xi;O)dxi = L(O) 1-I dxi. 
i = 1  i = l  

The likelihood function is then obtained by simply removing the differential 
element Ildxi. This method of obtaining the likelihood function will prove 
useful. The idea is to write the "probability" of the sample and then remove 
any differential elements. 

As an example, consider the simplified problem where each life is ob- 
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served from age x to either death or age x + 1, whichever occurs first. Thus, 
withdrawal is impossible and T = min(Y,1). We may view this as a special 
case of the basic random withdrawal model given by Z = oo. In the termi- 
nology of reliability engineering, this is a life testing model with type I 
censoring. 

Our data consist of observations on the random variables D;, Ti, i = 1, 
. . . .  N, and, accordingly, we denote the observed values by di and ti. Now 
the contribution to the likelihood function by the ith life is 

P[t i  <- Ti <- ti + dti ,  D i  = di] 

1 - qx 
- (1 - t,qx) P~x +ti dti 

, i f  d i  = O, t i ---- 1 

, i f  d i = I ,  t i < 1. 

Letting ~ be the subset of subscripts corresponding to deaths and using H 

tO denote 11, the probability of the sample is 

N 

FI P[t i  < Ti < ti + dti ,  D i  = di] - ( i - - q x ~ - d H [ ( l  -- t ,qx) lXx+.dt i]  
i= l  

N 

where d = ~ di is the observed value of the random variable D. To obtain 
1 

the likelihood function, we remove the differential elements so that 

L = (! - q~)N-dIl[(1 -- , ,q~)~+,].  (2.2) 

To find the value of q~ that maximizes (2.2), we must first express t qx 
in terms of qx. This may be done by placing an additional restriction on the 
model. Three common assumptions (see Batten [1 ]) are uniform distribution 
of deaths, the Balducci hypothesis, and constant force of mortality. Using 
Batten's notation, we label these assumptions A, B, and C, respectively. 
Batten discusses the implications and merits of each assumption. While 
assumptions A and C seem generally acceptable, assumption B leads to some 
unreasonable results and is considered only because it leads to a simple 
estimator of q,, when the derivation of the estimator is based on the actuarial 
approach (see section 3). For these reasons we will restrict our attention to 
assumptions A and C, and throughout this paper maximum likelihood esti- 
mators will be derived under both of these assumptions. Table 1 summarizes 
some properties of the three assumptions when 0 -< a < 1, 0 --< t -< 1, and 
O < t + a  < - 1. 
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T A B L E  1 

PROPERTIES OF THE THREE MORTALITY ASSUMPTIONS 

t-aq.r+a 

~x+t 

A 
Uniform 

Distribution 
of  Deaths 

( t -  a)qx 

1 - a q x  
qx 

I - t q ~ ,  

B 
Balducci 

Hypothesis 

(t -- a)q~ 

1-0  -t)q., 
qx 

1 - ( 1  - t )qx  

C 
Constant 
Force of 
Mortality 

1 - -  e -  ~,(t - a )  

Under A, (2.2) reduces to 

L(q) = q a ( 1 - q ~ - a  (2.3) 

and the maximum likelihood estimator of  q is 0 = D/N. (Although we shall 
be careful to distinguish between the random variables T, D, W, and their 
observed values t, d, w, we shall not make a notational distinction between 

the estimator and ~ the estimate. Thus, in the previous example, ~ could 
denote either the estimator D/N or the estimate d/N.) 

There are two levels at which data may be recorded. We may record only 
the indicator variables D~ . . . . .  DN, or, in addition, we may record the times 
TI . . . . .  TN. In the first case, we shall refer to the data as partial, and in the 
second as full. Both cases will be considered in the sequel. 

For the problem under immediate discussion, it is interesting to note that 
the partial data case corresponds to the binomial experiment discussed in 
Section 1. The corresponding likelihood function is (2.3), and this result 
does not require additional assumptions such as A, B, or C. That is, the 
MLE of  q is the same whether we use partial data without additional as- 
sumptions or full data with assumption A. 

Under C, it is convenient to express the likelihood function in terms of  
Ix rather than q. This is permissible since there is a one-to-one correspon- 
dence between these two parameters, which is given by q = 1 - e - ~ .  Then 
(2.2) becomes 

L(Ix) = tx d exp[ - Ix(N-  d) - IxZti] 

N 

= Ixa e x p [ -  ~ L Z l i ] .  
I 
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N 

Hence, i~ = D/Z  Ti, and, accordingly, 
1 

N 

el = 1 - e x p ( - D / ~ T ~ ) .  
1 

Notice that IZ is the number of deaths per total time the N lives were under 
observation within the age interval [x,x + 1 ]. As we shall see, this will always 
be the result for the full data case with assumption C. 

The General Random Withdrawal Model  

We are now ready to extend the basic random withdrawal model to include 
cases where lives may enter observation after age x and may be forced to 
withdraw before age x + 1. 

With respect to the age interval [x,x + 1], let x +  a i be the age where 
observation begins for the ith life. This life is observed until it dies, with- 
draws, or attains age x + b i ,  at which point observation ceases, either by 
forced withdrawal (b i < 1) or the attainment of age x +  1 (b; = 1). Clearly, 
0 <- ai < bi --< 1. If  the age and date at entry are such that the life would. 
be at least x + 1 years of age at the close of the study, then bi = 1. However,  
if the life enters at a point where it does not have the potential to attain age 
x + 1 by the close of the study, then bi < 1. 

We emphasize that the definitions of  ai and bi are with respect to a par- 
ticular age interval. For the interval [35,36] in figure 1, life (1) has a = ~/4, 
b = 1, (2) has a = I/4, b = 3/4, and for (3) a = I/2, b = 1. For the interval [36,37], 
life (3) has a = 0 ,  b =  1/2, and neither (1) nor (2) are members of the sample. 

Let  Ya and Z,, be the random times to death and withdrawal respectively, 
measured from age x + a. We assume Y, and Z,  are independent. The time 
at which observation terminates is 

T = min (a + Y~, a + Z~, b). 

Notice that T is measured from age x rather than age x + a ,  so the age that 
observation terminates is x + T. 

For the generalized model, "survivors"  will refer to those lives which 
are forced to withdraw at the closing date or are observed to reach age x + 1 
prior to the closing date. These are the lives which attain age x +  b while 
under observation. In figure 1, for example, lives (2) and (3) are survivors 
for the age interval [35,36]. The term "withdrawals"  shall refer to nonforced 
withdrawals only. Accordingly, the random variable Wi will be the indicator 
only for withdrawals that are not forced. 
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Let the subsets ~ ,  q~, and ~S contain the subscripts corresponding to lives 
that are observed to die (T=a+Ya) ,  withdraw (T=a+Za),  and survive to 
age x + b  (T=b) ,  respectively. Clearly ~Uq4AJd = {1 ..... N}. Then, for 
example, we shall use ~ and II to denote ~ and 1-I . 

q~ i e ~  ieq/e 
Full Data Problem 

We now analyze the full data problem and construct the likelihood func- 
tion by considering the probability of the sample. 

P[t<-Ti<-t+dt,Di=d, Wi=w] - (1- -b-a  qx+a)(l--b-a rx+a), 

if d =  w = O , t = b  

- (1 --t-a qx+a)( 1 --t-a rx+a)~-I'x+t dt, 

i f d =  1, w = O , t < b  

( 1 - - t _ a  qx+a)( 1-t-a rx+a) Vx+t dt, 

i f d =  0, w =  1, t < b .  

N 
To get the likelihood we form II P[ti<-Ti<-ti+dti,Di=di,Wi=wi] where 

i 

ti,di,wi, i = 1 . . . .  ,N are the observed values and remove the differential 
elements. Thus, 

N 

L = i=lII (1- - t i_a lqx+ai ) (1- - t i_a i  rx+ai)" ~ ~l,x+ti'~qq / lJx+ti. (2.4) 

Since the factors in (2.4) containing r and v do not depend on q or I~, they 
may be absorbed into a constant, and (2.4) becomes 

N 

L ~ i=llI (1--ti-a,qx+ai)'~ ~l'x+t i" (2.5) 

Full Data--Assumption C 

Under assumption C, (2.5) reduces to 
N 

L oc txae-~,~'i-ai) 
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The MLE of  i~ is readily found to be 

N 

= D / ~ ( T i - a i )  , 
I 

and, consequently, 

89 

N 

-- DI~,(T i - ai) 0 = 1 - e , (2.6) 

Again we comment  that 0- is the number of  deaths per total time the N lives 
were under observation within the age interval [x,x + 1 ]. 

This estimator may be extended to the case where x is very large, and it 
is unreasonable to assume ixx+ t is constant for 0 < t <1 .  That is, suppose 
we partition [x,x+ 1] into subintervals [Xo,Xl],(xl,x2],. • . ,  (Xk,Xk+l] where 
x = Xo, x + l  = xk+~, and assume Ixx÷t = ~L i f o r x i  < t < Xi+l, i = O, 
• • .,k. Then the MLE of  q is 

k 

gt = 1 - e 'Z'°txi+l-xi~O' 

where ~i is the ratio of  the number o f  deaths observed between ages xi and 
x;+ ~ to the total time the N lives were under observation within the interval 

[ X i ' X i  + 1 ]" 

Full Data--Assumption A 

Under assumption A, (2.5) becomes 

N ( 1 - - t i ' q  I • ( q )  

N 

= qa. I I ( 1 - a i . q )  -l  
1 

II (1--ti'q). (2.7) 
q44J~ 

0 
Generally, the MLE will be the solution to - -  In L = 0, which may be 

Oq 
written as 

d ~ a, q ~  t i 
- 

i=1 1---ai'0 ~S 1 2 t i ' q  O, (2.8) 

and must be solved by iteration. 
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O O 
NOTE: It is tempting to find the MLE by solving ~qq In L(q)  = 0 or Oq 

L(q)  = 0. However, this may not always work. For example, if d -- 0, 
O 

(2.7) is a decreasing function of q; therefore, ~aa L(q)  < 0 and ~ = 0. On 

O 
the other hand, if d = N ,  ~a L(q)  > 0 and ~ = 1. In general, care should 

be exercised so that these special cases are detected before blindly trying to 
O 

solve - -  In L(q)  = O. 
Oq 

It is interesting to notice that under certain conditions (2.8) yields explicit 
solutions for t~. Suppose a i ~ O, b i ~ -  1 (which is the case for anniversary- 
to-anniversary studies based on insuring age), and for each withdrawal ti - 

V2; then (2.8) stimplifies to 

1 
--W 

d N - d - w  2 
- -  O .  

I -=~0 

The MLE obtained by solving the above equation is 

( 2 N  + D - W)  - N / ( 2 N  + D - W) 2 - 8ND 9 =  
2N 

(2.9) 

Suppose a i ~ O, bi - 1, and half the withdrawals occur at 0 with the other 
half at 1; then (2.8) becomes 

1 
--W 

d N - d - w  2 
- -  0 ,  

1 -c) 1 -c) 

and the solution is 

D 

c ) -  1 ' 
N - - W  

(1.1) 

the actuarial estimator discussed in section 1. 
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Partial Data Problem 

We now turn to the partial data problem where our data consists of ob- 
servations only on Di, Wi, i = 1,. • . ,N. The likelihood function is 

N 

L = II P[D i = d i , W  i --~ Wi] 
i = l  

where di and wi are the observed values. There are three possibilities for 
(di,wi). An observed death, withdrawal, and survival to age x + b i ,  corre- 
spond repectively to (di,wi) = (1,0), (0,1), and (0,0). The probabilities of 
these events are denoted by 

P[Oi = d i ,Wi=wi]  = Q i  for di = 1, wi = 0 

= R i f o r  d i = O ,  w i = 1 

= 1 - a i -  Ri for di = w i = O. 

Then 

N 
• 1 - d i - w i  

L = i=I-ll('~ i-di RT' (1 - Q i - R i )  . (2.10) 

The probabilities Qi,R i have been subscripted since they depend on the values 
of a and b, which may be different for different lives. Temporarily sup- 
pressing the subscripts, Qi and Ri may be written as 

Q = (1- ,_aqx+a)( l  - ,_,rx+~)lXx+ ` d t  (2.11) 

and 

R = fb  (1 - ,_aqx+a)( l  --,_arx÷a)Vx+t dt. (2.12) 

In order to express L in terms of q, we must make a simplifying assump- 
tion on the distribution of time to withdrawal as well as the time to death. 
We shall consider two cases. 
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Partial  Da ta - -Assumpt ion  C 

Corresponding to assumption C, we shall assume that Ixx+t = IX and Vx+ t 
= v for 0 <- t <- 1. Thus, the forces of death and withdrawal are both 
constant over the unit age interval. Then (2.11) becomes 

Q = Ixe -(t-a)(It+~) dt 

tx 

Ix+v 
- ~ ( 1  - e - ( I t ÷  ~ ) h ) ,  

where h = b -  a. Similarly, 

V 
R - (1 - -  e-(i t+~)h).  

Ix+v 

Substituting these expressions into (2.10) yields, 

L = 
I x d v w  - ( I t  + u)h i]  - ( i t  + v ) h i  

• H [ 1  - e  • H e 
( i x + v )  d+~ ~ u q ~  ~S 

Consequently, 

0 lnL d d + w  

O IX IX IX + u 

hi e - (it + u)h i ~ hi 

+ ~ 1 ~ e_ (it +,~)------~ i ~Uq/e ~S 

O In L 0 In L d w 
- -  .~_ - - .  

Ov OIX Ix v 

The MLE's  of IX and v are obtained by solving - -  
O l n L  

- 0 a n d  - -  
0Ix 

(2.13) 

0 l n L  
- 0  

Ov 
w w 0 l n L  

simultaneously. From (2.13), ~ = -~IZ. Substituting ~ for ~ in 0IX - 

0 provides the following equation which may be solved by iteration 

hivhi -- ~ h i ,  (2.14) 
Z iz , 

~ U q / e  
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iv 
where h i = b i - a i ,  and v = e-at*+~). After solving (2.14) for v, we may 
compute ~ by 

D 
4 =  1 - v o + w .  (2.15) 

An explicit solution occurs when a i = 0, b i --- 1. In this case v = s /N  
and 

S o 
tj = 1 - (~)o+w, where S = N - D  - W. (2.16) 

Again assume a i =- 0 and let Nl lives have b i = 1, and N2 lives have b i 
-- V2 with N = N, + N2. That is, N2 of the lives are potential forced with- 
drawals, all at age x + V2. Let D.j,  W.j, S.j be the number of observed 
deaths, withdrawals, and survivors among the Nj lives, j = 1,2. Thus 
N j = D . j +  W. j+  S.j. Using this notation, (2.14) may be written as 

1 ,112t'.4 .a_ 
V ~ v  ~u. 2 T W.2) 

- - ( d . l  + w . O  + = s.l + 1/2s.2.  (2.17) 
1 - v  1 - v  I/2 

The solution for v in (2.17) is 

v = . - ( d  +w2)+X/(d .2+w.2)2+4(2Ni  +N2)(2s.i +s.2 

2(2N1 + N2) 

which together with (2.15) provides a second explicit solution for q- This 
estimator was previously developed by Chiang [5],[6] for use in medical 
follow-up studies. 

Part ia l  D a t a - - A s s u m p t i o n  A 

Finally we consider assumption A. In addition to assuming a uniform 
distribution of deaths, we shall also assume a uniform distribution of  with- 
drawals within the unit age interval [ x , x +  1]. Thus ,qx = t 'qx and trx = r r x  

for 0 --< t -< 1. From (2.11) 
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ba 1 - r  q l - t . r  q 

Q = 1 - a . q  l - a ' r  1 - r q  
~ clt 

hq(  l - kr) 

(1 - aq)(  l - ar) 

where h = b -  a, k = (a + b)/2. Similarly, 

(2.18) 

R 
hr( l - kq) 

o 

(1 - aq)(  l - ar) (2.19) 

Substituting (2.18) and (2.19) into (2.10) produces 
L = H h i q ( 1 - k i r )  • I] h i r ( 1 - k i q )  • H (1-b~q)(1-bi r  ) 

(l -a~q)(1 - a i r )  q/l/ (1 - a i q ) ( l - a i r )  ~S (1 - a i q ) ( l  - a i r )  

0 l n L  
Thus, 

N 

oc qa H (1 - kiq) • I-1 ( 1 - biq)/II (1 - aiq). 

- 0is  
dq 

d N a i  k i  b i  
o 

1 - -  a i ' (  ] 1 - -  k i 'C  1 1 - bi'Cl 
(2.20) 

Again (2.20) may be solved by iteration to obtain ~. It is interesting to 
compare (2.20) with (2.8), which was obtained under assumption A for the 
full data problem. If ti is replaced by k i for withdrawals in (2.8), a reasonable 
approximation, then (2.20) is obtained. Accordingly, if ai - O, b i ~ 1, and 
consequently k i ~ 1/2, then the explicit solution to (2.20) is as given in 
equation (2.9). 

The  Produc t  L imi t  Es t imator  

We conclude this section with a discussion of the product limit estimate 
(PLE) proposed by B6hmer [2] and later developed by Kaplan and Meier 
[10]. The PLE is the full data maximum likelihood estimator of qx when the 
distributions of Y~ and Z,~ are discrete. Its derivation does not require addi- 
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tional assumptions such as A,B, or C. Under the fixed withdrawal model 
(section 3), it is again the full data MLE when Ya is discrete. 

We shall not provide a derivation of the PLE, but we shall explain how 
it is computed. We begin with a simple example involving fifteen lives for 
which ai - O, bi -= 1. The data is displayed in figure 2. There are six deaths 
and five withdrawals which occurred at the ages indicated in the diagram. 

d w d 

• - : " : " ; , I 
XO~X Xl x2 x3 x 4 X S = x +  I 

Subinterval 
sample size: 15 13 8 7 4 

N = I S ,  D = 6 ,  W = S S = 4  

Fig. 2--Dat~ for PLE example. 

First we partition the unit age interval [x , x+  1] into subintervals where the 
end points are given by x , x +  1, and any age at which a withdrawal occurred. 
The subintervals are [x,xl],(xl  ,x2] ,(X2,X3],(X3,X4] ,(X4,X "I- 1]. For the unit age 
interval the survival probability is 

4 

1 - - q x  = Px  = [ I  ( X i + l _ x i P x i )  , 
i = 0  

where Xo = x and x 5 = x +  1. Since withdrawals do not occur within a 
subinterval, we may estimate the survival probability xi÷ ~-x; Pxi using the 

concept of a binomial experiment. For example, ~2_xv0xl = 10/13, since 

there are thirteen lives under observation after the withdrawal at age x~ and 
ten of these lives survived to age x2. The PLE of q~ is then 

4 

0x = 1 - II  ( ~ i . l _ x / x i )  
i=O 

14 10 8 5 4 
= 1  

15 13 8 7 4 

Notice that any deaths that occurred at the same age as a withdrawal are 
counted as deaths in the subinterval immediately preceding their occurrence. 
Thus the death at age x4 is assumed to have occurred in the interval (Y3,X4].  

An alternate method of computing the PLE is given by the formula 

~1 = 1 - H N - j  (2.21) 
j d  N - j +  1" 
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~ = I - F I  N - j  
j d  N - j +  1' (2.21) 

To find the s e t J  we first order the ti's, that is, to) <-- • . -  t(~ o. If there are 
any ties between times of deaths and withdrawals, the deaths receive the 
smaller subscripts. Then J is the set of ordered subscripts corresponding to 
times of deaths. In the example, J = {1,3,4,5,9,10}, and (2.21) is 

14 12 11 10 6 5 

15 13 12 11 7 6' 

which agrees with the previous result. 
The PLE of qx may not always exist. To see this, suppose we alter the 

previous example so that the four survivors become withdrawals at age x4. 
Then D = 6, W = 9, S = 0. Since we do not observe any lives from x4 
to xs, there is no way to estimate xs-x4Px4 and, consequently, qx; unless, of 

course, we are willing to impose some additional assumptions on the model. 
Computation of the PLE may be extended to the generalized model where 

ai ~ 0 or bi ~ 1. Actually the inclusion of forced withdrawals does not 
create a problem since they are treated exactly as withdrawals were in the 
previous computation. That is, in computing the PLE no distinction is made 
between withdrawals and forced withdrawals. New entrants, that is, obser- 
vations for which a i > O, are also treated like withdrawals, except the 
subinterval sample size is increased by one for each new entrant. To illustrate 
this, we consider the data displayed in figure 3 (new entrants are denoted 
by n). The number of starters, that is, observations for which a i -- 0), is 
ten, and there are four new entrants, so N = 14. 

e 

; ; ' , ;  I I I I 
x o = x  xl  X2 X3 x4 x~ = x  + | 

Subinter~l 
sample size: I0 9 6 5 6 

N =  14, D = 6 ,  W =  3, S =  5 

Fig. 3----Example of the PLE with new entrants, 
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There are five subintervals and 

4 

= 1 - -  I-I X i + l _ X i l O x i  
i = o  

8 7 6 4 5 
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The PLE will  not exist  if  one of  the subinterval  sample  sizes is zero,  
unless all o f  the lives observed over  some  other subinterval died.  In this 
case ~ = 1. We also note that formula  (2.21) is not appl icable  when the 
data include new entrants. 

Cons ider  the set containing the ages x, x +  1, and all ages where new 
entries or withdrawals  ( including forced withdrawals)  occur. Let  X = X o  < 

Xl < • • • < xk+ ~ = x +  1 be the dist inct  ordered points in this set. W e  m a y  
formal ly  define the PLE as 

k 

qx = 1 -- I-I X i + l _ x i l ~ x i  
i = 0  

k N ( i ) - O ( i )  
= 1 - 1 1  

i=0 N(i)  ' 

where 

D(i )  = the number  of  deaths at ages in the interval (xi ,xi+l],  

M( i )  = (the number  o f  new entrants) - (the number  o f  wi thdrawals)  

observed at age xi, 

N(0) = the number  o f  starters, and 

N(i)  = N ( i - 1 )  - O ( i - l )  + M ( i ) , i  = 1,. • . ,k .  

In effect, N(t) is the sample size for the interval (XirTCi+l]:, of  which N ( i ) - D ( i )  

survive to age xi+ 1. 
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3. ESTIMATION IN THE FIXED WITHDRAWAL MODEL 

Fixed  Wi thdrawal  M o d e l  

The fixed withdrawal model arises when the time to withdrawal (Za) is 
treated as fixed but unknown. Since this time is no longer subject to random 
variation, we shall use the notation z a rather than Za. Alternatively, we may 
arrive at the fixed model by starting with the random model and conditioning 
on Z a = Z a. 

The time to termination of observation, measured from age x, is then 

T = min(a + Ya, a + z~, b) 

= min(a + Ya, c), 

where c = min(a + z~, b). For each life we know that a ~< c ~< b, but the 
precise value of c is unknown. However, for lives that are withdrawals or 
survivors, observation ceases at age x + c, so the value of c is observed. For 
lives that are deaths, observation ceases prior to age x + c, and c remains 
unknown. Thus, {c i ; - /¢  ~ }  must be treated as unknown parameters. 

In the fixed withdrawal model, a life is observed from age x + a to either 
death or age x + c where observation ceases. The only relevant data is Ti,Di, 
i = 1 . . . . .  N. Withdrawals and survivors may be combined and treated as a 
single group; however, to maintain consistency, we shall continue to keep 
them separate. 

Ful l  Da ta  Prob l em  

From 

P [ t < ~ T i ~ t + d t ,  D i = d ]  - (1 - - t_aqx+a)~ l , x+t  dr, d = 1, t < c 

= 1 - t _ a q x + a  , d = O, t = c, 

we obtain the likelihood 

N 

L = I I (1-- t i -a i  q x + a i ) "  l-I ~'~x-b-ti" 

Since this is identical to the likelihood given in (2.5), the estimators for the 
full data problem are the same for both the random and fixed withdrawal 
models. In particular, 

/¢ 

Cl = 1 - e - n ~  r'-°'~ (2.6) 
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is the full data MLE for both models under assumption C. 

Partial Data Problem 

The likelihood is 

N 
L = H P [ D i  = 4]  

1 

N 
= ~I adii (1-Qi) 1-d i ,  

1 
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where Qi  (with subscripts deleted) is 

f: Q = (1 --t_~qx+a)lXx+, dt 

= c - a q x + a "  

(3.1) 

Partial Data-Assumption C 

Under assumption C (3.1) is 

Q =  

and the likelihood is 

1 -- e - ~ ( c - a ) ,  

L(~,ci, i¢~) = II [ I - e- ~f~i-ai)] . I-[ e - ~(ci- ai). (3.2) 
ffl:t.J:S 

To maximize L(Ix, ci, i e ~ ) ,  we first fix ~ and maximize with respect to 
ci, i ~ ~ .  Since L increases with ci (i ~ ~ )  and ai <~ ci <~ bi, then di = bi. 
Thus, 

L(ix,di ,  i e ~ )  = I I [ 1 - - e - ~ ' t b i - a i ) ]  • H e -~(ci-ai). 
q/etA~S 

Then --0 In L(lx,~i,i¢.~ ) = 0 may be written as 
Otx 
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ht~e-~hi : ~ ( c i - -a i )  
1 - -  e - ~ h i  q 4 ~ S  

(3.3) 

where h i = b i -  a i. An iterative solution will provide ~ and, consequently, 
= 1 - e - a  
For the special case a i -~ O, b i = l ,  we obtain from (3.3) 

since c i : bi = 1 for i ~ ~S. 

= 1 - e  - 6  

D 

D + ~ c i 
~VU~ 

D 

N - W +  ~ c i 
cW 

(3.4) 

(3.5) 

I 
I f  ~ c  i = -~- W) then (3.5) reduces to the partial data actuarial estimator 

cW 

D 
4 -- (l.l) 

I 
N--W 

2 

Also notice that (3.4) agrees with the exposure concept of the Balducci- 
based actuarial estimator. Deaths receive exposure from entry to age x + 1. 
All others receive exposure equal to the duration of their observation. 

P a r t i a l  D a t a - - A s s u m p t i o n  A 

Under assumption A, (3.1) becomes 

(c  - a ) q  a -  
1 - a ' q  ' 

a n d  

L : l - I  ( C i  - -  a i ) q  l-I 1 - ci " q 

1 -  a i • q q4/U~S 1 -  a i • q " 
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OlnL 
- Ois 

dq 

N ai Ci 

~1 1 - a  i • 0 q / l~_S 1 - -C  i " 0 
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- 0 .  ( 3 . 6 )  

Notice the similarity between (2.20) and (3.6). If the c's for withdrawals 
are replaced by (a+b)/2 in (3.6), the result is (2.20). 

The Actuarial Estimator 

We shall end our discussion of estimators with a consideration of the full 
data actuarial estimator 

D 
q~ = N (3.7) 

(ci-  ai) + ~ (I - ci) 

We have previously noted that under certain conditions, including ai -- 0, 
b i -~ 1, some of the MLE's agree with the actuarial estimator. Although we 
have not found a model for which (3.7) is the MLE of q~ in the general 
case, (3.7) may be derived under assumption B as a modified method of  
moments estimator (see Broffitt and Klugman [3]). 

We have previously noted that under certain conditions, including a; - 0, 
bi - 1, some of the MLE's agree with the actuarial estimator. Although we 
have not found a model for which (3.7) is the MLE of qx in the general 
case, (3.7) may be derived under assumption B as a modified method of  
moments estimator (see Broffitt and Klugman [3]). 
The method of moments technique begins with 

N 

E(D) = ~ ci-azqx +ai" (3.8) 

Then the right-hand side is expressed in terms of qx, and the left-hand side 
is replaced by D. The solution for qx in the resulting equation is the method 
of moments estimator (MME). 
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Using assumption B, we have 

Hence (3.8) becomes 

E ( D i )  = ci-at~x+ai  

I - -a lqx  + a i - c i - a i P x +  ai " I - c z q x  + ci 

1 - a t q x + a i - E ( l  - D i )  1 - c t q x + c i  

[( 1 -- ai) -- E (  1 - Di ) (  1 - ci)]q x. 

E ( D )  = [ ~ ( 1  - a i )  - ~ ( l  - c i ) E ( 1  - D i ) ] q  x . (3.9) 

The modification which produces the actuarial estimator is to replace E(1 - D i )  

by 1 - D i  in (3.9). The resulting equation for computing the modified MME 
is 

and, thus, 

D = [ ~ ( 1  - a/) - ~ ( 1  - c/)(l -D;)]4x 

D 
(3. 10) 

~ ( 1  - a i )  - ~ ( 1  - ci)(1 - D i )  

which is the same as (3.7). 

4. COMPARISONS 

P r e l i m i n a r i e s  

Up to this point we have been concerned with determining plausible es- 
timators for qx. In this section we shall compare some of these estimators 
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to see which ones do the best job in estimating qx. Four estimators will be 
compared: 

D 
B P -  

N - ~ W  

D 
B F =  

N 

~ ( T i - a i )  + ~.  ( I - T / )  

N 

CF = 1 - e-°t~/r'-a'~ 

PL = 1 - 
k 

l - I  x i  + I - x / x i "  
i = 0  

BP and B F  are the partial data and full data actuarial estimators; CF is the 
full data MLE under assumption C; and PL is the product limit estimator. 
For the three estimators BP, BF,  and CF, the first letter in the two letter 
designations denotes the assumption under which the estimator was derived, 
B for Balducci and C for constant force of mortality. The second letter 
denotes the data type, P for partial and F for full. These four estimators 
seem to be the logical ones for comparison. While BP and B F  are the 
currently used actuarial estimators, CF and PL were the only MLE's appli- 
cable in the a * 0, b * 1 case that did not require an iterative solution. 
This should not be construed as an indictment against MLE's,  whose cal- 
culation requires iteration. In fact, Steelman [ 13] has indicated that the con- 
vergence is very rapid. 

It is interesting to notice that when W = 0, a = 0, and b = 1, then B P  
= B F  = PL = D/N. Thus, if there are few withdrawals, new entrants, and 
forced withdrawals, these three estimators should give nearly equal results. 

Since qx is generally quite small (except for extreme ages), it is of interest 

N 
to compare the estimators in this case. Let 6 = D / ~ ' , ( T i - a i ) ,  

1 
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then 
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~z 
- - < _ B F < _ I 3 .  
l+~  

and 

~z 
- - < _ C F  <_I3.. 
l+O, 

Thus, 

[BF-CFI ~ IZ - ~ <- ~2, 
l+~ 

which will be small when qx is small. 
The upper bound of ~2 will generally be crude. A more representative 

comparison can be made by assuming the average age of observed deaths 
is x + Y2; then 

B F -  
O, 

1 
• l + ~ a  

1 2  1 1 
- -  ~1~--~1,  " ~ 1 ~ 3 - - ~ 1 ~ 4 " 3  L-  - • 

and 

1 132 1 [ j 3 _  1 ~14 CF = 1 - e -~  = I ~ - ~ .  + ~ ~ + . . . .  

Ignoring terms of degree 4 and higher, 

1 
IB F - C FI "- ~ f~ 3 . 

Thus for small qx, B F  and CF should be quite close. If, in addition, there 
are few withdrawals, new entrants, and forced withdrawals, all four esti- 
mators will give nearly equal results. 

It is rather interesting to notice that the estimates BP, CF, and PL must 
each be between 0 and 1, whereas B F  may take on any nonnegative value. 
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To see this, suppose we observe only one life which began observation at 
age x + a  and died before age x +  1. Then B F  = 1/(1 - a ) ,  and as a - * l ,  
BF--> + ~ .  This undesirable result must surely stem from the unreasonable- 
ness of the Balducci assumption. 

It is also of  interest to note that P L  is an unbiased estimator of qx. To see 
this, suppose we condition on the ages of  withdrawal, new entry, and forced 
withdrawal. Within this conditional setting, 

k k 

E ( 1-I xi+ I -~O~i) = E[E( 1-I xi+ 1 - x f l x i  ~V(k))]  
i=O i=O 

k - I  

= E[E( l-l xi+ ~ -xp~ilN(k))" E(xk +1 -x~P~klN(k))] 
i=O 

k - I  

= Xk+ I - x k P x k  E(i~=o= Xi+l - x p x i ) "  

The last two equations follow, since given N(k), X k + l - - X ~ X k  is clearly 
independent of the previous/~'s and is an unbiased estimator ofxk ÷ ~ --xkPXk" 
In general, 

j j - I  

E( H xi+ l -xi P~i) = ~j+ 1 -~jPxj E(  I-I xi+ I -x~O~i), J = 1, • • • ,k. 
i = 0  i=O 

Consequently, we obtain 

k k 

E( 1I xi ÷ I -xi Pxi) = 1-I ~i + l - x ~ i  " E(~ l - xObxo) 
i = 0  i=  l 

= Px" 

Thus, since the conditional expectation (given the ages of withdrawal, new 
entry, and forced withdrawal) of  P L  is qx, unconditionally, we have E ( P L )  

= (Ix- 

Asympto t i c  Dis tr ibut ions  

Our comparisons will be based mainly on the probabilities P[l~x-q~l ~ 
e]. For each estimator these probabilities will be computed for various values 
of  N and e. The distributions of  B P  and PL are discrete (PL must be a 
rational number), while the distributions of  B F  and C F  are mixtures of  
discrete and continuous distributions (P[BF = 0] = P [ C F  = 0] = P[D = 

0] > 0). Rather than attempting to derive the exact distributions of these 
estimators, probabilities will be approximated using Monte Carlo techniques 
and asymptotic distributions. The asymptotic distributions will be determined 
under the random withdrawal model and only for the a - 0, b - 1 case. 
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Derivations of the asymptotic distributions are provided in Appendix B. 
Each estimator has a normal asymptotic distribution. We denote this by 

V ~  (~-m#) D N(O,'r~), 

2 where m 0 and "r 4 are the asymptotic mean and variance of ~. Appendix B 
contains formulas for mBe, msF,  mcF, (meL = q), ~ e ,  ~ F ,  ~cF, and X2L . 
These formulas are in terms of F(') and H('), the distribution functions of 
Y and Z, respectively. 

Our comparisons will be based on two different sets of assumptions for 
F(.) and H(-). 

Distribution Assumpt ion A: F(t) = qt, 0 <- t <- 1 

H(t)  = rt, O <- t <- 1 

Distribution Assumpt ion C: F(t) = 1 - e  -~a, 0 <- t <- 1 

H(t)  = 1 - e - ~ t ,  O <-- t < - 1. 

Under assumption A, the times to death and withdrawal are uniformly dis- 
tributed within the unit age interval [x ,x+ 1], and under C, the forces of 
mortality and withdrawal are constant in [x , x+ 1]. Appendix B contains the 
formulas needed for computing the asymptotic means and variances under 
assumptions A and C. 

Under assumption C, mcF = q and ~cr simplifies to 

, r 2 e -  Ix(Ix+v)e -2~ 
1 - e - ( ~ + v )  " 

Since under C both C F  and PL  are consistent estimators of q, and since CF 
is the MLE in this model, we know that a'br - ~/.. However, it is still of 
interest to compare their magnitudes. The asymptotic efficient of PL relative 
to CF is 

[ 1 A R E ( P L , C F )  - T2eL el/2(~ + 0 _ e- !/2(~ + O , under C. 
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TABLE 2 

VALUES OF A R E ( P L , C F )  UNDER ASSUMPTION C. 
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p + v ARE(PL,CF) 

2.0 0.724 
1.0 0.921 
0.5 0.979 
0.1 0.999 

Since lim ARE(PL,CF) = 0, for large values of IX + v, CF will be vastly 

superior to PL. On the other hand, lim ARE(PL,CF) = 1, so for small 
v. + u--*O 

values of  ix+v, CF will be better than PL but not by very much. Table 2 
provides a few values for ARE(PL,CF). When ~ + v = 0.5, for example,  
PL, based on 1000 observations, would have the same variance as CF, based 
on 979 observations. Again we see that for small values of q and r, there 
is little difference in the performaces of  CF and PL. 

Numerical Results 

For selected values of q and r, Table 3 displays the means and variances 
of the asymptotic distributions of  the four estimators under the assumptions 
A and C. As a check on these asymptotic values, we have included the 
means and variances when the sample size is 100. These were obtained from 
a Monte Carlo Study where 1,000 replications were generated. It appears 
that the agreement between N = 100 and N = oo is quite good. 

In all but one case, PL has the largest a "2 and smallest tm- ql, and BP has 
the smallest "r 2 and largest Im-ql .  The one exception is distribution as- 
sumption A, q = 0.3, r = 0.1, where CF has the smallest a "z and largest 
Im-ql- The estimators BP and BF always tend to underestimate q. This is 
also true for CF under assumption A. Under C, CF is asymptotically un- 
biased, and so is PL under any assumption. Finally, we note that (for the 
range of q and r values reported) increasing either q or r produces the 
predictable result that x 2 increases and [ m - q l  increases. Results similar to 
those noted here have been reported in other Monte Carlo studies; for ex- 
amples see Steelman [13] and Miller and Hickman [12]. 



TABLE 3 

A S Y M P T O T I C  M E A N S  A N D  V A R I A N C E S  F O R  S E L E C T E D  V A L U E S  O F  q A N D  r .  

Distri- 

q r bution N 
i i i 

0.3 0.6 A oo 
100 

C oo 
100 

i i i 

0.3 0.3 A oo 
100 

C o~ 
100 

i i i 

0.3 0.1 A oo 
100 

C oo 
100 

I I I 

0.1 0.3 A oo 
100 

C oo 
100 

1 I I 

0.05 0.3 A oo 
100 

' C 

I00 
i i i 

0.01 0.3 A oo 
100 

C oo 
100 

B P  B F  C F  P L  

m "r 2 m x 2 m "r 2 m "r 2 
i i i I i 

0.2819 0.2535 0.2877 0.2675 i 0.2913 0.2782 0.3000 0.3384 
0.2822 0.2535 0.2882 0. 2639 0.2917 0. 2742 0.3010 0.3362 

0.2723 0.2500 0.2935 0.2864 0.3000 0.3090 0.3000 0.3530 
0.2711 0.2423 0.2924 0.2800 0.2989 0.3024 0.2992 0.3505 

t i i i 
0.2923 0.2299 0.2948 0.2354 0.2948 0.2332 0.3000 0.2550 
0.2896 0.2296 0.2923 0.2368 0.2924 0.2346 0.2974 0.2574 

0.2923 0.2299 0.2974 0.2386 0.3000 0,2445 0.3000 0.2550 
0.2897 0.2409 0.2949 0.2500 0.2978 0.2558 0.2972 0.2691 

i i i i 

0.2977 0.2163 0.2984 0.2179 0.2966 0.2105 0.3000 0.2226 
0.2978 0.2207 0.2986 0.2210 0.2968 0.2126 0.3003 0.2265 

0.2982 0.2165 0.2992 0.2183 0.3000 0.2182 0.3000 0.2222 
0.2968 0.2098 0.2978 0.2116 0.2988 0.2136 0.2986 0.2145 

I I I I 

0.0991 0.1032 0.0994 0.1041 0.0996 0.1048 0.1000 0.1077 
0.0985 0.1092 0.0988 0.1097 0.0991 0.1108 0.0995 0.1130 

0.0984 0.1026 0.0997 0.1054 0. 1000 0.1066 0.1000 0.1085 
0.0979 0. i 002 0.0992 0.1029 0.0995 0,1039 0.0997 0.1062 

I I I I 

0.0498 0.0552 0.0499 0.0554 0.0499 0.0557 ' 0.0500 0.0566 
0.0490 0.0536 0.0491 0.0538 0.0492 0.0543 0.0491 0.0547 

0.0493 0.0547 0.0499 0.0561 ~ 0.0500 0.0564 0.0500 0.0572 
0.0495 0.0562 0.0501 0.0574 0.0502 0.0580 0.0500 0.0578 

i i i i 

0.0100 0.0116 0.0100 0.0116 0.0100 0.0116 0.0100 0.0118 
0,0100 0.0113 0.0100 0.0113 0.01013 0.0113 0.0100 0.0116 

0.0099 0.0115 0.0100 0.0118 0.0100 0.0118 0.0100 0.0119 
0.0100 0.0117 0.0101 0.0120 0.0101 0.0120 0.0101 0.0121 
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For the case a --- 0, b -- 1, figures 4 through 9 display plots of P[ [~-  q[ 
-< e] against sample size, for each estimator and for selected values of q, 
r, and e. The values in figures 4, 5, 6, and 8 were computed under distri- 
bution assumption A. Figure 7 provides values computed under assumption 
C, and figure 9 applies to both assumptions A and C. 

For each combination of q, r, •, and N, P [ lq -  q[ <-- •] was computed for 
each estimator by using the asymptotic normal approximation. The choices 
for N were 10, 32, 100, 316, 1,000, 3,162, 10,000, and 31,623. ThEse 
values were selected so that loglo (N) would be evenly spaced. 

Each curve in figure 9 represents all four estimators and both distribution 
assumptions A and C. For each combination of q, r, N, and • in figure 9, 
eight values (since there are four estimators and two distribution assump- 
tions) of P[l#-q[  -< •] were computed. In nearly every case, these eight 
values were within 0.01 of each other. This allowed the use of a single curve 
to represent all four estimators and both distributions. The one exception 
was q = 0.1, • = 0.005, and assumption C, where BP fell off slightly at 
the larger values of N. 

The smaller we take q, the larger N must be for the normal approximation 
to be accurate. To check the asymptotic values, empirical distributions were 
generated for each estimator. For each combination of q, r, N, and distri- 
bution assumption, 1,000 samples of size N were generated. For each of 
these samples, BP, BF, CF, and PL were computed. This provided empirical 
distributions from which P[I#-  ql - •] was calculated. For the smaller values 
of N, if there was significant disagreement between the asymptotic and 
empirical calculations, P[I'~-ql - •] was not plotted. This accounts for the 
missing values in figures 4 through 9. 

Let ~ represent BP, BF, or CF, and let m be the mean of the corresponding 

asymptotic distribution. Then, since ~ p m, 

tim P[lO-q[ -< •] -- 1, if [ m - q [  <-- • 
g ~  

= 0, if Im-q[  > •. 

That is, P [ l q -  q[ -< •] approaches 1 or 0, depending on whether the asymp- 
totic bias is less than or equal to • or greater than •. This explains why some 
of the curves bend back toward the horizontal axis as N ~ oo. 

A general inspection of figures 4 through 8 reveals that for N <- 316, all 
estimators have essentially equal values of P[I4-  ql -< e]. (Of course, there 
was some variability in these values, usually 0.02 or less, but this was not 
deemed large enough to warrant plotting multiple points.) For large values 
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Fig. 4--P[],F-q] ~ .e]  versus N, q = 0.5, r = 0.3, Dis~budon A. 
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Fig. 5 - - P l i 4 - q i  ~ El versus N, q = 0.3, • = 0.6, Distribution A. 

yF 
i i i t i i i 

10 100 1,0(30 10,000 
N 

,~ = 0 . 0 2  



MAXIMUM LIKELIHOOD ALTERNATIVES 111 
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0 9  I 
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0.5 

0.4 

0.3 
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PL 

• F 

i I i t i t i 
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N 
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F ¢ .  6 - - ~ l l ~ d  ~ ~l versus N,  q = 0.3, r = 0.3, Dislribution A. 
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0.3! 
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I0 

BF 

t i I i 
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N 
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= 0.01 E = 0.02 

Fig. 7 - - P [ ] ~  ~; ~| vct~us N, q = 0.3, • = 0.3, Distribution C. 
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Fig. 8--Pll~'q~ ~ ~;] versus N, q = 0.3, • = 0.1, Disuibution A. 
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Fig. 9---PiJ0--q I - el versus N, Distributions A and C. 
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T A B L E  4 

COMPARISONS AMONG BP,  BF,  CF,  PL FOR a -~ 0, b =-- 1 
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0.~ 
0.3 
0 .3  
0 .3  
0 .3  
0.1 
0 .05 
0.01 

,c} 
:c c 

Comparisons 

BP < CF < BF  < PL 
BP < BF  < CF < PL 
B P < B F  = C F < P L  
BP < BF  < PL = CF 
CF < BP < BF < PL 

BP = BF  = CF  = PL 

of N, P L  is by far the best estimator when the distributions are A, and 
essentially as good as C F  when the distributions are C. (Clearly, for large 
enough N, a consistent estimator will always be better than an inconsistent 
one.) 

Using ql < q2 to denote that q2 is preferred to 41, table 4 summarizes 
the comparisons displayed in figures 4 through 9. 

To complete the analysis, a few comparisons were made in the a ~e 0, b 
1 case. The calculations of P[J4-q]  -< ~] were based on Monte Carlo 

experiments with uniform distributions of death and withdrawal, (q ,r)  = 

(0.3,0.3), (0.1,0.3), and N = 10,32,100,316, and 1,000. 
Values of a and b were generated at random as follows: specify proba- 

bilities c~ and 13, and generate Xi ,Xz, independent and identically distributed 
uniform random variables on the interval (0,1). Then let 

a = 0 with probability (x 
= min(Xi,X2) with probability 1-(x 

b = 1 with probability 13 
= m a x ( X i , X 2 )  with probability 1-13. 

After computing a, we must generate Ya and Za. Assumption A implies 

and 

P(Ya <- t) = tq , 0  <-- t <- l - a  

I - a q  

= unspecified , t > 1 - a  

P(Za <- t) = tr , O ~ t <- 1 - a  

1 - a r  

= unspecified , t > 1 - a .  
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A convenient way to compute Ya is 

Ya = I[UI <- (1-a).]o "U2 4- l[Ul > 
1 - a q  

(1 - a)q] 2, o 

1 - aq 

where I[.] is the indicator function, and UI and U2 are independent random 
variables; UI is uniform on (0,1), and U2 is uniform on (0,1 - a ) .  That is, 

Ya = U2 with probability (1 - a ) q ,  and Y~ = 2 (any value greater than 1 - a  
1 aq 

(I - a)q 
will do) with probability 1 Z~ may be generated in an analogous 

1 - a q  
manner. 

For each combination of q, r, N, or, and [3, 1,000 samples were generated, 
and the estimators were computed. The resulting empirical distributions were 
used to calculate P[lt)-ql  -< el. Figures 10, l l ,  and 12 display the results. 
Notice that figure 12 does not contain values for PL, since et = [3 = 0 
implies a > 0, b < 1, and, consequently, PL does not exist. 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 CF /~ BF 

0.I P~, 
0 

10 100 1,000 

e = 0 .005  

I0 I00 1,000 
N 

• = 0.01 

10 100 1,000 
N 

e = 0 .02  

Fig.  10---P[ l~-q I ~ ~] versus N ,  q = 0 .3 ,  r = 0 .3 ,  ct = i3 = 0 .5 ,  Distribution A. 

I0 I00 1,000 
N 

= 0.04 
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APPENDIX A 
SUMMARY OF MAXIMUM LIKELIHOOD ESTIMATORS 
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Dis 
TRII J- 

MODEL/DATA TIO 

A 

RANDOM/ 
PARTIAL 

( 

RANDOM A 
OR 

~XED/ 
FULL 

MAXIMUM LIKELIHOOD ESTIMATORS 

0 implicitly defined 

Ifai -~ O, bi -~ I, ~ = 
(2N + D -  W) - ~/(2N + D -  W)Z- 8ND 

2N 

implicitly defined 

(S )  ° 
I f  ai ==-- O, b =-- 1, 0 = 1 -  ~ DTw 

1 
If al =- O, bi ---- 1 for Ni lives, bi =- ~ for N 2 lives, 

D 

whir;  J + w 

[ - ( D ' 2 + W ' 2 ) +  " k / ( D ' 2 + W ' 2 ) z + 4 ( 2 N ' + N 2 ) ( 2 S " + S ' 2 ! ]  2 2 ( 2 N ,  +N2) 

implicitly defined 
1 

If a i -~ O, b i =-- 1, T/ = ~ for W / D '  s, C 1 = 

(2N  + D - W)  - ~ / ( 2 N  + D - IV) 2 - 8 N D  

2 N  
If a i =-- O, b i =- l ,  T i = 0 for half 

the W / D ' s  and T i = 1 for half the W / D ' s ,  Cl - - -  
1 

N - 

D 

N 
c -o,y(,-o? 

~ = l - e  i 

implicitly defined 

A If a i =-- 0,  b i =- 1, ci = 
( 2 N  + D - W)  - X / ( 2 N  + D -  14/) 2 - 8 N D  1 

for W / O ' s ,  ~1 = 2 N  

FIXED/ t~ implicitly defined 
PARTIAL If a i 7 ) O ,  b i =-~ 1, cl = 

C N - W + ~ c i  (this is the a -= O, b =- 1 

q/¢ 
actuarial estimator) 

I D 
I f  a i =-- O, b i =-- 1, Y, e i = ~W,  t ! - - -  

c W l 
N 

*No distribution assumption is needed on time to withdrawal. 
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Fig. 1 l--P[l~,-ql  ~ E l versus N, q = 0.1, r = 0.3, a = IB = 0.5, Dista'ibudon A. 
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Fig. 12 P l l ~ q l  -< e] versus N, q = 0.1, • = 0.3.  ct = IB = 0. Distribution A. 

cj 
~ CF,BB~F BP 

10 100 1,0(30 
N 

qE = 0 . 0 4  

We now notice a substantial difference in the estimators for N --- 1,000, 
especially in figures 10 and 12. BF, CF, and PL provide similar results and 
are superior to BP. The poor performance of BP is to be expected, since it 
is not designed for the a * 0, b * 1 case. 
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APPENDIX B 

This appendix contains developments of the asymptotic distributions of  
BP, BF, CF, and PL. 

For PL the asymptotic distribution is a special case of theorem 5 in Bres- 
low and Crowley [4], and is given by 

D 2 
V ~  (PL - meL) -"~N(O,r pL) (B. 1) 

where 

mpL = q 

fo f (t) ,r~L = ( l - - q )  2 [l_F(t)]2[l_H(t)] dt. 

(B.2) 

The notation in 03.1) indicates that the distribution function of ~ (PL - mr,L) 
converges to the distribution function of a normal random variable with mean 
0 and variance 'r~ L, as N ~ oo. 

Notice that the other three estimators may be written in terms of averages. 
That is, for a - 0, b --- 1, 

BP - 1 _ '  (B.3) 

l- w 

D 
B F -  1 - W  (B.4) 

and 

CF = 1 - e -° / r ,  (B.5) 

where 

N N N 

-O = E o i / g ,  W = E wi]g,  T = E Ti/g, 
1 i 1 

N 

V i = (1 - Z i ) W i ,  a n d  ~ = '~  Vi/N. 
1 
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We may then take advantage of the following theorem to determine their 
asymptotic distributions. 

THEOREM:Let[XI1, . .  [X~N]beindependentandidenticallydistributed 
Ly, j ", 

bivariate random variables with mean [ E J  Oy 

or"il= [,:x Then 
trix L Yi J L trxy tr2 " 

(F] - ([°o] I ( i )  %/N - D N , z , 
L O'xy O'y 

(ii) ~ [g(X,Y)-g(Ox,Oy)] ~ N(O,'r2), 

where 

"c 2 = g~cr~ + gZcr2 + 2g,gz%y, 

0 0 
gl = ~xxg(0x,0y), g2 = ~yg(Ox,Oy). 

Result (i) is simply the bivariate form of the usual central limit theorem. 
Result (ii) tells us how to get the asymptotic distribution of a function of 
two sample means. 

Applying result (ii) we obtain the asymptotic distributions of (B.3), (B.4) 
and (B.5). Let 0o = E(Di), Ow = E(Wi), Ov = E(Vi), OT = E(Ti), if2 = 
Var(Vi), tr 2 = Var (Ti), and crro = Cov(Ti,Di). Then 

D 
V ~ ( B P  - mBp) ~ N(O, T2p), 

D 
V ~ ( B F  - mBF) ~ N(O, "r2F), 

D 
and V ~ ( C F  - mCF) ~ N(O, rbF), 
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where 

and 

1 
mat, = 0o/(1 - =0w), 

Z 

mBF = 0D/(I -- 0V) , 

mcF = 1 - e -  O J O t  

,r2p _ 0D(1--0D) + 020W(1--0W) 020W 

(1 --10W) 2 4(1 10 4 l ' 2 -~  w) (1-~0w) 3 

,r2F _ O0(1--O0) + ~ 0 2  2020V 
(1 - -  OV) 2 (1  - -  OV) 4 (1 - -  OV) 3' 

[ 0D(o.~ 0D) 02Dff2T 2 c r : o ]  
r2F = e-20°/Or + O-~r OT J "  

For extreme values of  q, the distributions of  these estimators will be highly 
skewed unless N is very large. Hence,  the normal approximation should be 
used with caution. 

The following formulas provide the means for computing m and "r 2 for 
BP, BF, and CF. For PL, mpL = q and "r2L is given in (B.2). 

fo E(Di) = [1 - H(t)]f(t)dt (B.7) 

E(Wi) = [l - f(t)]h(t)dt (B.8) 

fo E(V~) = (1 - t)k[1 -- F(t)]h(t)dt (B.9) 

E(~)  = k f ] : -~[1  - F(t)][1 - tI(t)ldt (B.10) 

E ( r ~ i )  = t[1 - H(t)lf(t)dt. (B. 11) 

Under A and C the values of  (B.7)-(B. 11) and (B.2) are given below. 
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Distr ibut ion  Assumpt ion  A:  

1 
E(Di)  = q - ~rq 

1 
E(Wi)  = r - ~rq 

1 1 
E(Vi)  = ~r - ~rq 

1 1 
E(V~i ) = -~r - T~rq 

1 1 1 
E(Tg) = 1 - -~r - ~q + ~rq 

2 2 1 
E(7~i ) = l - ~r - ~q + ~rq 

1 1 
E ( Z i O i )  = ~ q  - ~rq 

1 
'rZpL = q(1 - ~q) 

(q__ r---)2 
+ 

q2 ( 1 - q )  

q - r  

, i f q  = r 

, i f q  = / r .  
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D i s t r i b u t i o n  A s s u m p t i o n  C :  

E ( D i )  - Ix [I - e -(~+~)] 
t x + v  

E(Wi)  = __lJ E (D  i) 

13 
E ( V i )  - ( l ~ + u )  2 [ l ~ + u -  1 + e  -o'÷~)] 

E(V~i ) = u -  2E(Vi) 
Ix +u 

E(T~) = _I E(D~) 

2 
E(T~i) - ( i .z+u) [1 - e -0"+") - ( ix+v)e - (¢+~) ]  

E(H) E(TiDi) = -~ 

i ~ + ~  
_ _ _  ( e t , +  ~ -  l ) e - 2 ~ .  

121 
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DISCUSSION OF PRECEDING PAPER 

RALPH E. EDWARDS~ 

In this paper, we have an exposition of the theory of mortality measure- 
ment, presented with reasonable brevity and expounded so that those with 
outdated mathematics can (with the use of some imagination as to the mean- 
ing of unfamiliar terminology) review the modern approach. Many practicing 
actuaries would benefit from studying this paper to understand the path by 
which future students are likely to be educated. 

I mentioned unfamiliar terminology. Professor Broffitt specifies " m i l d "  
and "asymptotically efficient" conditions, but "in most instances" (even 
if wrong) may be adequate for the nonstudent reader. I have more trouble, 
however, with maximum likelihood estimators (MLE). In elementary statis- 
tics, the variance is smallest when measured from the average or mean. 
There is no reason for the mean not to be derived from the variance by 
minimization, but if MLE really is the mean, perhaps it should be so stated. 

My out-of-date mathematics encountered particular difficulty with the de- 
velopment from equation (2.1) to the equation following (2.3). The latter 
derives from differentiation of (2.3) with respect to q, which provides d(1 - q )  

- ( N -  d)q as the quantity to be set equal to zero. This result was interesting 
because the Balducci Hypothesis was not used in that derivation. The MLE 
equaling D/N and not involving q seems to mean that q is a theoretical 
concept associated with the deaths provided that ! - q be associated with the 
survivors. It would seem that Balducci ought to be applicable, since it as- 
sumes thatp  = l - q .  

This notion about equation (2.3) led to the observation that N is supposed 
to be large, so that L(q) has a very small numeric value. This seems anom- 
alous where the associated name implies likelihood. To understand this, I 
considered the expansion of k(p + q)m with k large. This is a representation 
of k samples of m items each. We are concerned with just one of the k 
samples, and this is represented by one of the terms of the expansion which 
contains pV. qm-v as a factor. The multiplier of this factor (in the expansion) 
is of no significance except as it relates this sample to the other k -  1 samples. 
By stopping at this point, we have an explanation of the small numeric 
value, since we are accustomed to the restriction that p + q = 1. 

Tracing back from (2.3) to (2.2) led to the paper's preceding material. 
An arithmetic approach suggested letting q = u = .01 and dt = i/10,000. 
The contribution to the likelihood function by a life that survives is .99, but 
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.00000099 for a life that dies. In examining the survivors, or rather, one of 
them, let the survivors of I x be measured over successive small intervals of 
time, these being At. The successive values are 

Ix+At l . r + 2 A t -  Ix+at l x + 3 A t -  l~+2at 

Ix ' Ix ' lx ' 
t - i  

and so on. If we sum and substitute integration, the result is Jo (1 - q )  dr. 

I did not work out a similar progression for a single death and suspect it can 
only be obtained for a number of them, but analogy suggests that the result 
in the paper requires an integration from zero to one. It also seems necessary 
that the suggested removal of differential elements not occur. I am not sure 
what this does for the left side of (2.2), but the right side becomes 

(1 - qx) dt  11 (1 - ,qx) ux+t dt  . 

In this result, the first integral has the value of I - q x .  The foregoing is 
purely conjecture, but this version of (2.2) yields (2.3) and also does so for 
the Balducci Hypothesis. 

One of the fundamental relationships relating to this paper is the equation 
D = N . q  - W . k .  D is the number of observed deaths, N the number of 
lives at the beginning of the observation year, W the withdrawals during the 
observation year, and k an unknown such that W . k  is the number of deaths 
in the observation year among those who first withdrew. (More precisely 
the number desired in W . k  is based on the assumption that the incidence of 
mortality is not altered by withdrawal.) 

The unknowns in the equation are W . k  (and not just k) and the value 
sought is q. Mathematically, a single equation with two unknowns cannot 
be solved. Additional information about the D and W components enables 
the Product Limit Estimator method to be used. A solution which begs the 
question requires the investigator to obtain W.k .  One I do not recall seeing 
in print could exist if the death and withdrawal rates were related, as, for 
example, two withdrawals for each concurrent death. 

Investigators have assumed that this is as far as theory can go. They turned 
to see what happens if the withdrawals are concentrated at a particular time 
during the observation year. Even then, as Gershenson I says " i t  is evident 
that some assumption needs to be introduced if we are to det-.'rmine qx-" 
But if an assumption needs to be introduced when withdrawals are concen- 
trated, it is obvious that a solution requires assumptions to be made when 
withdrawals occur at a few or many different times. The fact that a contin- 

l H. Gershenson. Measurement of Mortali~, (Chicago: Society of Actuaries, 196t). 
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uous function might apply to withdrawals is, then, obviously of no help 
except where the incidence of death and withdrawal violates the assumption 
of independence. 

The reason for bringing the foregoing out in great detail is that the paper 
attributes the unidentifiability of q to a 1979 publication. Admittedly the 
unidentifiability of q relates to two equations with three unknowns, but this 
can hardly be significant when they are derived from one equation with two 
unknowns. The unidentifiability of q, except that it was called indetermi- 
nance, was known and discussed when I was a student several decades ago. 

In view of Professor Broffitt's giving credit to Lindley, it seems appro- 
priate to note Professor Broffitt's use of A and C to identify two of his 
required assumptions, taking his source as Bratten's text. In A R C H  1978.2, 
which dates after Bratten, Dr. Thomas N. E. Greville attributes C to Mr. 
Frank Weck, a current Fellow of our Society. Bratten suggests that A is an 
offshoot of de Moivre's hypothesis that d~ is constant for all values of x. 
However, Dr. Greville (TASA XLIV, 33-35) more recently attributes the 
origin of this not to de Moivre, but to a particular characteristic differen- 
tiating it from Balducci. 

It is traditional that the denominator of the observed mortality rate (where 
D is the numerator) be a function called the exposure. An obvious modifi- 
cation of Professor Broffitt's formula (2.9) seems to provide N as the ex- 
posure. However, the formula immediately preceding (2.9) may be solved 
for D/q,  giving an exposure of N - IAW(I / ( I  - J/zq)). Professor Broffitt 
states that formula (2.8), from which (2.9) is derived, can be solved by 
iteration. A few years ago, I wrote a piece dealing with the solution of (2.8) 
printed in A R C H  1983.1. In that article I suggest an approximation such that 
the need for iteration can be avoided. 

Even if there is merit to some of my conjectures, this paper is a valuable 
contribution to our literature. To assemble and prepare so much material 
must have been a long and arduous task. We are greatly in Professor Brof- 
fitt's debt. 

JAMES M. ROBINSON:  

A B S T R A C T  

My compliments go to Mr. Broffitt for his timely introduction of maxi- 
mum likelihood estimators of mortality rates to the actuarial community. 
Other professional disciplines, such as biostatistics, have been concerned 
with the development of statistical inference techniques aimed at extracting 
survival probabilities from past data. Mr. Broffitt 's paper goes a long way 
toward establishing constructive communication lines to tap this external 
wealth of ideas and techniques. 
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This discussion expands upon the implications of possible correlation be- 
tween the times until death and lapsation for an insured population. Spec- 
ulation about the structure of the mortality and lapsation processes and the 
impact of certain external influences leads to a possible model of the joint 
process in which these two components are not independent. Problems of 
model identifiability are reviewed. The mortality estimators developed in 
the preceding paper under the independence assumption are analyzed assum- 
ing the proposed dependent model holds. Finally, pricing decision impli- 
cations are discussed in light of the previous findings. 

A N T I S E L E C T I V E  L A P S A T I O N  

In the introduction to his paper, Mr. Broffitt warns against careless use 
of the independence assumption. The usual form of experience data available 
from insurance company records does not provide a basis for measuring the 
degree of dependence between the mortality and lapsation processes. Lack- 
ing testable data, we are left with intuition and common sense to assess this 
problem and properly adjust the business decisions required to manage the 
mortality risks of insurance companies. The last section of this discussion 
will provide an example of the potential penalties of avoiding this analysis. 

It is reasonable to assume that the participation or nonparticipation of a 
given individual in an insurance contract has little or no effect upon the 
mortality process. That is, there is no direct connection between the rate at 
which one physically deteriorates and the status of one's insurance policy. 
It is much more likely that an insured's physical condition and level of 
exposure to the risk of death have a significant effect upon the possibility 
of policy lapsation, however. Healthy individuals should be more vulnerable 
to the various forces acting to encourage lapsation than would those in poor 
health. Likewise, insureds exposed to lower levels of risk of accidental death 
are logically more mobile than those at higher levels. Healthy individuals 
in nonhazardous occupations should hold a lower perceived value for their 
insurance coverage relative to an insured with a higher probability of death, 
assuming both are paying the same premium. Also, the low-risk insured 
should be able to satisfy underwriting requirements for alternative coverage 
elsewhere. The high-risk insured is not likely to be-able to find replacement 
coverage at a favorable premium rate. So, the main ingredients for antise- 
lective lapsation have been formulated--a group of insureds paying the same 
premium rates divided between those who perceive themselves to be low 
risk and those with a less favorable view of their life expectancy. The attri- 
tion in the former subgroup will be greater than that of the latter, and the 
population of persisting insureds will become more heavily skewed toward 
the high-risk, uninsurable category. 
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Most actuaries have considered this problem subjectively and many have 
adjusted pricing assumptions in some manner to account for this potential 
adverse mortality if unusually high pressure for lapsation is anticipated. 
Quantifying this adjustment has been difficult lacking usable past experience 
from which one might study the degree of antiselection. 

This problem most likely will become more prevalent. Recent innovations 
in policy structure encourage healthy individuals to lapse and seek new 
coverage at lower rates. In particular, select-and-ultimate premium structures 
present the actuary with a spiral of difficult pricing assumptions. The graded 
premium levels enhance the pressure to lapse in favor of low, first-year 
rates, which in turn increases anticipated mortality, which requires ever 
steeper premium levels, which further fuel lapsation, and the cycle contin- 
ues. Only those unable to meet underwriting standards for new coverage 
will be able to resist the temptation to roll over their coverage. Furthermore, 
traditional product pricing will have to be adjusted to anticipate higher lap- 
sation as a result of the availability of those low-premium alternatives. 

Rate classification considerations cause increases in the possibility of an- 
tiselective lapsation. The increasing use of smoking status is a good example. 
The creation of policies with favorable nonsmoking premium rates should 
create pressure for nonsmokers to lapse in favor of these tailored rates. 
Smokers will be satisfied with the status quo, paying rates based on mortality 
assumptions appropriate only for a mix of smokers and nonsmokers. Again, 
we have a situation in which the lapsation process is tied directly to perceived 
mortality. 

These situations arise because of a lack of homogeneity in insured groups. 
In the select-and-ultimate case, this dichotomy develops over time as pre- 
viously healthy lives migrate into the high-risk category. In the smoker- 
nonsmoker case, the split arises when a new rate classification parameter is 
introduced and competitors make lower rates available to the new low-risk 
subgroup. This partition is the basis for the following model for the joint 
mortality/lapsation process. 

DEPENDENT MODEL 

As in Mr. Broffitt's paper, we define Y as the time until death and Z as 
the time until lapsation of an insured persisting to attained age X (and policy 
duration N). Since we may not observe the time of death once lapsation has 
occurred, and since we are only interested in the age interval, [X,X + 1 ], we 
observe the random variable T = min (Y,Z, 1) and an associated indicator 
of the cause of failure, death, or lapsation. At this point, most analyses 
assume that Y and Z are independent, proceed to construct the resulting 
distribution for T, and estimate the process parameters from the sample 
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values of T. The following dependent joint distribution for Y and Z is pre- 
sented as a plausible alternative: 

1. Assume that mortality may be well represented by a constant hazard rate 
(i.e. force of mortality) over any unit age interval. 

2. Assume that lapsation arises from exposure to some constant censoring 
force throughout the year. This is a questionable provision, since most 
lapsation occurs at premium payment epochs and on policy anniversaries. 
So, unless premiums are paid frequently, lapse pressure will be uneven 
over the policy year. However, for exemplary purposes this structure 
should suffice. 

3. Given the force of mortality and lapse intensity, the random variables Y 
and Z are independent. 

4. Within a cohort of insured lives aged X, there is a distribution of forces 
of mortality and lapse intensities. Furthermore, these parameters are neg- 
atively correlated. That is, individuals exposed to high mortality are sub- 
ject to lower pressures to lapse. Rather than adopting a continuous joint 
density, however, the cohort is split into two subgroups. We might con- 
sider one group smokers and the other nonsmokers or one group select 
and the other nonselect. Refinements are certainly justified, but for sim- 
plicity of calculation and presentation, we limit our partition to two cat- 
egories. 

5. Assume that the overall lapse intensity is a funtion of external factors, 
including the availability of lower-premium alternative coverages. Vari- 
ations in these environmental factors are not spread evenly across the 
cohort of insureds, however. High-risk individuals may even be totally 
indifferent to such factors if their chances of satisfying competitor un- 
derwriting requirements are small. Thus, it may be reasonable to assume 
that any fluctuation in external lapse forces is concentrated on the low- 
risk group. 

We may formulate these assumptions using the following notation: 

u~ is the force of mortality of the low-risk group. 
u2 is the force of mortality of the high-risk group. 
v~ is the force of lapsation of the low-risk group. 
v 2 is the force of lapsation of the high-risk group. 
p is the fraction of the cohort in the low-risk group. 
f (y /u)  is the density of Y, conditional upon the force of mortality, u. 
f (z /v)  is the density of Z, conditional upon the force of iapsation, v. 

Assumption 1 implies f (y/u)  = ue -uy, y>-O, and assumption 2 implies f (z /  
v) = ve -v ' ,  z>-O. So, the unconditional joint density of Y and Z isf(y,z) = 
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p u l ,  Vl, e -u'y e -v'z + ( l - - p ) u 2 v 2 e - U ~ V e  -~'-z for y-->0 and z->O. With this 
density, we may now calculate the probabilities of various observed events. 

1. P { T  = 1} = P{y>-l, Z - l }  = pe-(",+v,  ) + (1-p)e-(",.+vP . 

2. P { T  = t, T = Y) = P ( Y  = t, Z > t} 

= pu,e-(" ,+~,  )t + (1-p)u2e-%+v2 )t, O<t< 1. 
3. P ( T  = t , T  = Z )  = P { Z  = t, r > t }  

= pvle-(U,+V, )t + (l-p)v2e-(U2+V2)t, 0 < t < l .  

Probability 1 corresponds to observing an insured persist throughout the year, 
probability 2 to observing a death at time t, and probability 3 to observing 
a lapse at time t. From this, we can construct the likelihood function for a 
given sample. 

L(Ul,U2,Vl,V2,p) = {pe-(~,+~, ) + (1-p)e-(",+vP; ~ 

X l-I  {PUle-(U,+V, )yi + (1--p)u2e-(U2+V,. )yi} 
i = l  
tl C 

× FI {prle-(U,+~, )zi + (l-p)v2e-%+v:)'-i} 
i = 1  

where n s is the number surviving the year, 
nf  is the number dying during the year, 
nc is the number lapsing during the year, 
Yi is the time of the ith observed death, and 
zi is the time of the ith observed lapse. 

We may now attempt to find maximum likelihood estimates of the unknown 
parameters by maximizing L over feasible choices of u,,  u2, vl, v2, and p. 
This appears to be analytically intractible, and some iterative technique is 
probably the best approach. Once we have these estimates, we can analyze 
the dependence between Y and Z, say, by calculating the covariance or 
correlation coefficient for the model. 

Cov(Y,Z) = p(l -p)(u2-uO(v2-vO/UlU2VlV2. If Uz>Uj and Vz<Vl ,  then 
we have negative correlation. The correlation coefficient is obtained by di- 
viding by the square root of the product of the variances of Y and Z, which 
are given by the following. 

Var(Y) = {(1-p)u 2 + p u  2 + p(l-p)(uz-uOZ}/u~u22 

Var(Z) = {(1-p)v 2 + p v  2 + p( l -p) (v2-v02}/v2v  2 . 

For example, if we estimate/5 = .5, /~ = .01, ~2 = -10, f~ = .30, and 
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~2 = .05, then we might estimate c6v(Y,Z) = -375 ,  var(Y) = 7075, 
vgir(Z) = 275, and c6rr(Y,Z) =- - . 2 7 .  

The model parameters can be estimated and used to forecast mortality 
experience for future cohorts of insureds, with the effects of antiselective 
lapsation properly included if lapse rates are accurately predicted. However, 
this is acceptable only if we are certain that the form of the model is correct. 

IDENTIF1ABILITY 

If the estimated parameters are only meaningful in the context of the true 
underlying model, how may we test the validity of the proposed model? 
Given that we always observe the minimum of the time until death and the 
time until lapsation, there is no way to judge whether the assumed form of 
the process better explains the observed than some other model, in fact, it 
can be shown (appendix A) that any likelihood function obtained from a 
dependent joint distribution for Y and Z can always be obtained from a 
different joint distribution in which Y and Z are independent. That is, there 
is an independent model, which will fit the data as well as the proposed 
model. For the previous model, the independent counterpart is given by the 
following. 

f(y) = u(y) exp{-  u( t )d t}  , where 

p u l e - ( " , + v ,  )~ + (1-p)uze-("2+v2)t 
u(t )  = p e - ( " , + v ,  )' + (1-p)e-("2+u? ' 

fo' f l z )  = v ( z )  exp{-  v( t )dt}  , where 

p v l e - ( " , ÷ v ,  )~ + (1-p)v2e-("2+"9 t 
v ( t )  = 

pe-(U,+v,  )t + (1-p)e-(U2+V2 )t 

andfly,z) = f ( y ) f ( z ) ,  y>-O and z-->0. 

The likelihood function for this model is the same as that for the dependent 
model. So, if we estimate the parameters of this new model, they will be 
the same as those of the old model. The interpretation of these parameter 
estimates and statistics calculated from them, e.g. the "covariance" and 
"correlation coefficient," are entirely different. We consider the expression 
/~ (1 -/~)(t~2-/~1)(I)2- Vl)//~l/~21~ll~ 2 to be an estimator for the covariance of 
Y and Z only if the original model is correct. Within the context of the 
independent model, this odd collection of terms is virtually meaningless. 
The sample covariance in the latter case will always be zero by design. 
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All of this indicates that the data will not tell us which model is correct. 
The data will only give us the best parameterization within a preselected 
family of distributions for Y and Z. If the family is too broad, this para- 
meterization is not likely to be unique. If we select a very small family of 
distributions, the fit may be unique, but there will be no empirical support 
for the selection. In short, if we don't  observe the dependent portion of the 
process, then we can only speculate on its structure. This is exactly what 
has been done to create the dependent model being used herein. The data 
will neither support nor dispute the model's accuracy relative to other models 
with the same likelihood function. 

For the remainder of this discussion, we assume that the dependent model 
is accurate and consider the implications for estimation of mortality rates 
and their subsequent application in pricing insurance contracts. 

P E R F O R M A N C E  O F  M A X I M U M  L I K E L I H O O D  A N D  A C T U A R I A L  

E S T I M A T O R S  B A S E D  O N  I N D E P E N D E N C E  A S S U M P T I O N S  

W H E N  D E P E N D E N T  M O D E L  H O L D S  

Several estimators of the mortality rate in the absence of lapsation were 
discussed by Mr. Broffitt. Two of these will be discussed here. 

1. CF - The maximum likelihood estimate of qx given full data, i.e. 
times of failure, and based upon a model assuming indepen- 
dent exponential distributions for Y and Z, i.e. constant forces 
of mortality and lapsation. 

Recall that CF = 1 - e  -°~, where D = n/n,  the fraction of 
t l  

individuals observed to die, and T = _1 ~ T i ,  the average 
n i = l  

exposure per insured. 
BF - The traditional actuarial estimator of qx given full data and a 

Balducci distribution for deaths within a year. 

Again recallBF = 1 _ ~ ,  whereV = - ViandVi is  1 - Z i  
tl i=l 

if Ti = Zi and Vi is zero otherwise. 

The asymptotic distributions of CF and BF are calculated using 
Mr. Broffitt's approach as presented in appendix B of his paper. 
Recall that: 

D 
(CF - mCF ) ~ N(O, T2F) a s  N ~ 0% 

. 
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and 

D 
" V ~  ( B F  - mBF ) ~ N(O, T~F ) a s  N ~ 

where 

mCF = 1 -- e-°°l°r; 

mnF  = 0o/(1 -- 0v); 

T2F = e -2oo,or {0o (1 - 0o) 
02 

.r~ F _ { 0O ( 1 -  0D) 
(1 - - O v )  2 h- 

O D = E (Di); 

0T = E (Ti); 

Ov = E (Vi)', 

0 -2 = V a r  (Ti);  

0 - D T  = C o y  ( D  i, T i ) ;  

0-zv = Var (Vi). 

02  0-2 20-DT Oo 

+ o~ o-----~ }; 

0 2 ~2  202o Ov 

( 1  - 0 0 4  (I- --- Ov) 3 }; 

These expected values, variances, and covariances can be calculated under 
the dependent model as follows. 

E (Di) _ pu_____~l ( 1 -  e -%+",  )) + (1-p)u______2 ( l_e_O,:+v?);  
u 1 --]-v 1 u2 -~- v 2 

_ _ _  ( l  - p )  
E (Ti) P (1 - e-(",+v, )) + - -  (1 - e - (%+"? ) ;  

111 -I- V 1 U2-.~- V 2 

E (vi) 

V ~ ( ~ )  

E(Ti  2) 

p v l  (ul+Vl_l+e_(U+V,)) + 
(UI"[-Vl)  2 

( l - p ) v 2  ( U z + v z _ l + e _ ( U ~ + , Q ) ;  
(U2nt-VZ) 2 

= E(Ti  2) - E(Ti)2; 

2p 
(1 - e - ( " ,+v~  ) - (Ul + vOe-C", +v, )) 

(Ul + Vl) 2 

20 -p) 
"+- (U 2"+- 1,2) 2 (1 - e-(U2+Vz ) - (u 2 q- v z ) e - ( U 2 + V 2 ) ) ;  
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Cov(Di,  Ti)  = E ( D i T i )  - E ( D i ) E ( T i ) ;  

E ( D i ~ )  

Vat(V3 

E(Vi  2) 
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pul  (1 -e-(U,+", ) - (ul +vOe-° ' ,+v ,  )) 
(U I q-Vl) 2 

C1 -P)u2 
+ ~ 2 - ~ v ~  (l-e-(U2+v2) - (uz+v2)e-(U2+"P); 

= E(Vi 2) - E(Vi)2; 

VI 

= P Ul-~Vl 
f 

+ ( 1 - p )  
I12 

t U 2 --1-- V 2 

2v, } 
(Ul ..[..1/,t)3 (U I -]'-V I -- I +e-(",+v, )) 

2v2 } 
(u2+v2)3  ( u z + v  2 - 1 +e-(U,-+v,)) . 

The following example is presented to contrast the asymptotic distributions 
of C F  and B F  under Mr. Broffitt's assumption C, constant and independent 
mortality and lapsation, against the dependent model. Consider the following 
hypothetical situations: 
Case 1: Assumption C holds and q = . 0 5  and r = . 3 0 ,  u= .05129  and 

v = .35667. 
Case 2: The dependent model holds with p =  .5, Ul = .02532, u2= .07796, 

v1=.69135,  and v2=.10536. These values are chosen to make 
q =  1 - p e  -u, - (1 - p ) e - " :  = .05 and r =  1 - p e - * ' ,  - (1 - p ) e - V ~  
= .30. 

In both cases, the probability of death in the absence of lapsation is .05 and 
the probability of lapsation in the absence of death is .30. We can find the 
asymptotic means and variances of C F  and B F  under case 1 from Mr. 
Broffitt's table 3. The corresponding values for case 2 are computed man- 
ually from the previous formulas. The following table summarizes the r e -  

suits. 
Item Case 1 Case 2 
mcF .0500 .0534 
T~F .0564 .0604 

mBF .0499 .0534 
~ F  .0561 .0624 

Not surprisingly, both estimators overstate the probability of death in the 
absence of lapsation, if we assume case 2 holds. The negative correlation 
between mortality and lapsation creates antiselective increases in mortality 
rates when r =  .30, and the estimators assume this higher rate is also appli- 
cable when r = 0. 
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P R I C I N G  I M P L I C A T I O N S  

Is this bias a serious problem? It is if the ultimate objective of the study 
is to predict mortality in the absence of policyholder lapsation. But, in 
practice, published mortality rates are typically melded with lapse assump- 
tions appropriate for a product being priced. If these lapse rates are com- 
parable to those exhibited in the mortality study, there should be little concern. 
If, however, the actuary anticipates heavy lapse activity, then the published 
mortality rates may be dangerously inadequate. 

To exemplify this problem, we will initially consider pricing a one-year 
nonrenewable, continuous-premium, term policy, ignoring expense and profit 
loadings. If the pricing actuary ascribes to the independence assumption, 
then the following premium rate calculation might result. The actuary esti- 
mates that the average policy will remain in force six months before lapsing. 
This may seem drastic, but the only people buying nonrenewable coverage 
are likely those in need of temporary protection for a period of less than a 
year. If premiums are paid continuously, the individual may lapse at the 
instant that the protection is not longer needed. It is granted that this is not 
a common pricing situation, but it provides an extreme example of antise- 
lective lapsation over one year. The actuary assumes a constant force of 
lapsation of 2.00, which produces an expected time until lapse of .5 years. 
The actuary now consults an appropriate mortality table and selects q as the 
mortality rate. Again, the force of mortality is assumed to be constant. The 
actuary calculates u = - I n ( 1 - q ) .  lgnoring interest, the formula for the 
premium rate, GP, is 

F 1  t ' l  

GP In  P{T > t}dt = ],~ P{T = t, T = Y}dt 
r l  

GP J o e  -O'+') 'dt  = Jo ue -O'+')t dt , under the independence model, 
I ' l  

= U JO e-(U+V)t d t .  

So, GP = u, regardless of the projected value of v, the force of lapsation. 
Let us now speculate that the underlying mortality/lapsation process, which 

generated the mortality table and which will govern the experience of the 
policy, is of the dependent form. Assume that the mortality table process 
arose from the case where p = .80, Ul --- .01, u 2 = .  10, v I = .25, v2 = .05. The 
asymptotic mean for BF is .02603 in this case. This is the value of q used 
by our actuary, and the premium will be calculated as G P =  .02637. Now 
reconsider the integrals in the pricing formula. 

fo P{T > t}dt = E(Ti) and P{T = t, T = Y} dt = E(Di). 
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We have previously derived formulas for these quantities in the dependent 
case. If we assume that only the low risk insureds will lapse at a rate 
v l = 2 . 0 0  and the high risk lapse at v2=.05,  then E ( T i ) = . 5 3 0 4 0  and 
E ( D i ) = . 0 2 2 0 2 .  The app rop r i a t e  p r e m i u m  rate is G P = . 0 2 2 0 2 /  

.53040 = .04151. If the dependent model is correct, our actuary will expe- 
rience a loss of 57 percent of premium revenue over the year. 

This example considers only the effect of an incorrect independence as- 
sumption over a single year. If we now allow antiselection lapsation to 
continue from one policy year to another, the effects can be even more 
pronounced. We will use the same policy, but allow renewal up to the fifth 
anniversary. Each year, the payment rate increases to the next attained age 
level. In this setting, we will assume that the population of insureds is 
composed of select and nonselect lives. Initially, everyone is select and 
p =  1.00. We assume that a select and ultimate mortality table is used in 
pricing, and this table is based upon a dependent process in which 15 percent 
of persisting select lives migrate to the nonselect category at the end of each 
policy year. Assume that the mortality study uses C F  = 1 - e --~/r  to estimate 
the mortality rate for each policy year. The expected tabular mortality rate 

will be m c F  = 1 - e  -°°~°r. If the actuary again as'sumes independence, G P  

will be set to - ln(l - mCF) = Oo/Or. 

The following table summarizes the dependent model assumptions under- 
lying the mortality table experience. 

Policy 
Duration Ul u2 vl v2 

3 .010 .100 .30 .05 
.011 .110 . 2 0  .05 

2 .013 .130 .15 .05 
3 .016 .160 .10 .05 

.020 .200 .10 .05 
5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

p Oo Or GP = ONOT 

1.0000 .00860 .860 .010 
.8500 .02368 .905 .026 
.7169 .04228 .921 .046 
.6123 .06520 .928 .070 
.5392 .09170 .916 .100 
.4856 . . . . . . . . . . . . . . . . . .  t . . . . . . .  

Of particular importance in this example is the evolution of the values o fp .  
These values represent the split between low and high risk groups among 
the persisting policyholders. For example, p = .6123 at the start of the fourth 
policy year. This is obtained by computing the probability that an insured 
persists in the select category for three years and dividing by the probability 
of surviving in either group for three years. The critical concern in this 
model is the deterioration of the p values if the select group is subject to 
greater pressure to lapse. 

The following table indicates the same data as the previous table, except 
the select lives are subjected to ever increasing pressure to lapse. 
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Policy 
Duration ut u2 vl v2 p 0O Or OdOr 

) . . . .  010  .100 .30 .05 1.0000 .00860 .860 .010 
.011 .110 .70 .05 .8500 .02194 .747 .029 

2 . .  .013 .130 1.30 .05 .6508 .04154 .682 .061 
3. .016 .160 2 .00  .05 .3188 .10050 .752 .134 
~ . .  .020 .200 2 .50 .05 .0607 .16666 .853 .195 
5 . . . . . . . . .  ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0056 . . . . . . . . . . . . . . . . . . . . . . . . . .  

If these lapse assumptions are plausible pricing assumptions, then we see 
that the initial premium rate is appropriate, but the renewal rates become 
increasingly inadequate. This is due to the antiselective development of the 
makeup of the persisting population. 

The large differences in appropriate premium levels at latter durations 
should be discounted to some extent, since few will survive to these dura- 
tions. If we compute total premium collections and total claim payments 
over the five year period, we obtain .05468 and .07857, respectively. This 

- produces an overall loss of 44 percent of premium revenue. 
It is evident from these examples that significant penalties may arise it 

the actuary assumes independence too quickly. 

S U M M A R Y  

Policy lapsation may be significantly influenced by the perceived risk level 
of the insured. Evolving policy structure and rate classification schemes have 
encouraged a growth in antiselective lapsation. However, since we may not 
directly observe the mortality process following policy termination, we can- 
not quantify this effect and may only speculate on its significance. Tradi- 
tional actuarial and maximum likelihood estimators of mortality rates may 
be safely applied only if anticipated future lapse pressure is similar to that 
experienced by the cohort of lives upon which the tabulated probabilities of 
death are based. Substantial losses may be encountered if the actuary blindly 
applies the independence assumption in pricing a contract. Even a short- 
term coverage form can be significantly underpriced. Longer-term contracts 
accumulate the effects of unfavorable lapsation from year to year. Higher 
external lapse pressure will quickly skew the persisting population toward 
the high risk policyholder. The challenge to the pricing actuary is to assess 
this rate of decay and appropriately adjust expected experience factors. The 
model identifiability problem leaves this problem to the actuary's common 
sense and sound judgment. 
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APPENDIX A 

It will be shown that if statistical inference is used to obtain the distribution 
of the minimum of the time until death, random variable Y, and the time 
until lapsation, random variable Z, and an associated indicator, random var- 
iables A, which records the cause of termination, then a joint distribution 
for Y and Z exists which is consistent with the imputed distribution for the 
minimum and the indicator and for which Y and Z are independent. 

Letf(t,~) be the known joint density for T=min(Y,Z) and A. 
We wish to find frO') and fz(z), densities for Y and Z, such that 

(i) P{T > t, A = 0} = fr(s)P{Z > s} ds and 

(ii) P{T > t, & = l} = fz(s)P{Y > s} ds 

where A = 0 implies death and & = 1 implies lapsation at time T. Let 
F(t,~) = P{T > t, A = ~}, Fz(z) = P{Z > z}, and Fr(y) = P{Y > y}. 

Then (i) plus (ii) yields 

F(t,O) + F(t, l)  = Jt ~ [fr(s)Fz(s) + fz(s)Fr(s)]ds 

~ d 
= - -~s [Fv(s)Fz(s)]ds 

= Fv(t)Fz(t) 

Differentiating (i) gives us fit,O) = fv(t)Fz(t). 
So, we combine these results to obtain 

IF(t,O) + F(t, ] 
frO) = [ -F~t) 1 ) j .  f(t,o) 

And fr(t) _ fit,O) 
Fr(t) F(t,O) + F(t, l)  

d fit,O) 
- dt In Fr(t) = F(t,O) + F(t, l)  

{fo  s0, 
Fr(y) = exp - F(s,O) + F(s, I) I 
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Similarly, Fz(z) = exp - F(s,O) + F(s,1)ds . 

We have found marginal distributions for Y and Z which produce any given 
joint distribution for T and &. So, if we hypothesize a dependent joint density 
for Y and Z and formulate the implied distribution for T and A, there exists 
some distribution for Y and Z, which produces this same distribution for T 
and z~ but is such that Y and Z are independent. 

This development assumes thhe random variables Y, Z, and T have ab- 
solutely continuous distribution functions so that the densities exist. For a 
more extensive discussion of this nonidentifiability issue, see Johnson and 
Johnson, Survival  Models  and Data  Analysis ,  pages 277-80, John Wiley 
and Sons, Inc. 

H.J. BOOM: 

To borrow a phrase from Donald Jones [6], there is no doubt that the 
Broffitt paper "will  be a valuable contribution to the education of future 
generations of actuaries." With this in mind, I propose to consider the 
implications that this paper is likely to have on the development of the course 
of reading for Part 5, rather than enter into a discussion of the contents of 
the paper itself. 

In the literature, numerous papers have appeared in which the traditional 
methods of constructing mortality tables were severely criticized (see, for 
instance, Weck [9], Seal [8], Jones [6], Hoem [4] and later [5]). Most of 
this criticism was directed toward the lack of proper statistical justification 
for the methods of estimation involved and toward the use of what has 
become known as Balducci's assumption and is referred to in the current 
paper as "Assumption B . "  This assumption, requiring a decreasing force 
of mortality in each unit age interval even if the force of mortality is in- 
creasing from each year of age to the next, is now generally regarded as 
inferior to alternative assumptions such as those of a constant force of mor- 
tality ("Assumption C")  or a uniform distribution of deaths ("Assumption 
A") .  

In 1946, the Balducci assumption was still regarded as the only one mer- 
iting any serious consideration (Marshall [7]); Weck [9] made a strong case 
for Assumption C in 1946, but both official Society textbooks, Gershenson 
[2] in 1961 and Batten [1] in 1978, although considering the alternative 
Assumptions A and C in some detail, still restricted all further development 
almost exclusively to the use of B. 

Broffitt's paper meets the criticism on both counts: the maximum likeli- 
hood principle provides a solid basis for the development of the estimators 
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from the statistical point of view, and, of the three assumptions, only the 
more realistic ones, A and C, are used in the main body of the paper--B 
receiving only a passing mention, mostly for the purposes of comparison. 

A paper like this, giving a thorough and comprehensive treatment on the 
subject matter of a major portion of one of the Society's examinations, can 
hardly fail to affect the prescribed course of reading. Just what form this 
will take will be one of the responsibilities of the Education and Examination 
Committee, and it will be quite a while before the corresponding changes 
will become effective. Meanwhile, it may be fruitful to speculate on some 
of the implications of Broffitt's paper. 

It would seem almost unavoidable that the course of reading will require 
the MLE principle as the fundamental theoretical basis for estimating mor- 
tality measures, and that the Balducci assumption, with its associated "ac- 
tuarial estimator" (formula 3.7 in the paper), will fade into oblivion. Whether 
both assumptions A and C or C alone will survive is problematic---A has 
the advantage that it is the standard basis for approximations in the recom- 
mended Part 4 life contingencies text; however, other considerations could 
make a stronger case for C. 

Students should develop a thorough understanding of the random as well 
as of the fixed withdrawal model; each of these, both in full data and partial 
data cases, should be capable of deriving the MLE equations. However, in 
further development, probably less emphasis should be given to those equa- 
tions whose solution requires an iterative process (even if special cases, with 
a -- 0 and b -= 1, would allow explicit solutions). Thus, only the full data 
random and fixed withdrawal models under Assumption C and the product 
limit estimator, i.e. the ones referred to as CF and PL, would receive major 
emphasis. This is well deserved, since Broffitt's comparisons show clearly 
that we may expect these to be consistently at least equal to the others when 
the "quali ty" of the estimators is examined. 

The product limit estimator, which leads directly to an estimator for the 
mortality rate q itself, also has the advantage that it does not require any 
further assumptions about the mortality pattern within the age interval. On 
the other hand, the full data random and fixed withdrawal models, with 
Assumption C, lead to estimators for the average force of mortality Ix, from 
which q is then still to be calculated by q = 1 - e x p ( - i x ) ;  however, the 
expression for Ix is in the form of a simple fraction of which the numerator 
is the number of observed deaths. This allows the intuitively attractive inter- 
pretation of the denominator being the precise "exposure" to the risk of 
death (in this case we could speak of exposure to the force of mortality), 
with each individual's contribution consisting of the exact amount of time 
that the individual is under actual observation, while alive, and during the 
year of age being considered. This is intuitively superior to the concept of 
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exposure familiar to us in the actuarial estimator/Assumption B combination, 
since the awkward nonsense of having to expose the already dead still further 
to the " r i s k "  of death is avoided. 

Direct application of the resulting formulas requires, of course, that the 
"full  data"  will indeed be available. But with the now omnipresent com- 
puters and their almost limitless record-keeping capabilities this will, in 
practice, not prove to be too much of an objection. (In any case, as suggested 
by Greville [3], page 50, one can always avoid tabulating exact ages at death 
by making appropriate assumptions as to average age at death). For the CF 
case, this could lead to exposure formulas for Iz very much like the familiar 
Balducci-based formulas for the actuarial estimator ~, distinguished from 
these only by the absence of the awkward Balducci correction for the deaths. 

Formulas of  both the CF and the PL type could be easily adapted to 
estimating mortality rates from valuation schedules and recorded deaths. 
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(AUTHOR'S REVIEW OF DISCUSSION) 

JAMES D. BROFFI'I'T: 

Many of Mr. Edwards 's  comments refer to the method of maximum like- 
lihood which was popularized by R. A. Fisher approximately sixty years 
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ago. A simple example may be helpful in clarifying why maximum likeli- 
hood estimators are preferred to method of moments estimators. 

Suppose X~ . . . . .  XN is a random sample from a population with pdff(x;O) 
where the value of 0 is unknown and is to be estimated. Let m(O) = EXi 
be the mean of the population. Mr. Edwards suggests that 0 could be esti- 
mated by minimizing E(Xi - re (O) )  2. This is equivalent to solving re(O) = 

for O, which is precisely the method of moments. 

As an example, suppose 

affx;O) ---- Ox °-I, 0 < x <  1 
= 0 , otherwise 

where 0 < 0 <  1. Then m(O) = 0/(0 + 1) and the method of moments estimator 
is O" = X/(1 -YO. Since the likelihood function is 

L(O) = O N ('lTXi) 0-1 , 0 < 0 <  1, 

the MLE is 0 = N / E ( -  I n Xi). 
Which estimator is better? Comparisons are often based on asymptotic 

results since they are usually easier to obtain. In this example, both esti- 
mators are asymptotically unbiased so the comparison is in terms of vari- 
ances. It may be shown that for large N, 

Var(6) 1 
= l + - -  

Var(()) 02 + 20' 

so Var (0) < Var(0). This is true in "most  instances," i.e., MLEs are 
asymptotically more efficient. Even though we are working with asymptot- 
ics, often the asymptotic results are accurate for relatively small N. 

When our data consist of independent observations--some continuous and 
some discrete--the likelihood is the product of the p d f ' s  of the continuous 
observations, times the product of the probability mass functions of the 
discrete observations. In (2.2) the continuous observations correspond to the 
observed times of death which have p d f  

f(t) = (1--tqx)tXx+,, 

and thus provide the factor 

lI [( 1 - ,,qx)lXx+,]. 

The discrete observations correspond to those lives for which T; = 1 or 
equivalently D i = 0. Since there are N - d  such observations and P[Di = 
0] = 1 - q x ,  they contribute the factor 

( 1 - qx) N- a 
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My use of the differential element was intended to give a probabilistic 
interpretation to the development of the likelihood. I thought this was easier 
since actuaries are quite comfortable with interpreting (1 -tqx)ixx+tdt as the 
probability that (x) dies at age x + t (or more accurately between ages x + t 
and x + t + dr). The p d f  is obtained by forming this probability and then 
removing dr. 

Applying the Balducci assumption to (2.2) produces the "simplification" 

L = (1--q)'Vqd/lI[1--(1--t,.)q] 2, 

which does not lead to an explicit form for the MLE. 
My congratulations to Mr. Robinson on formulating and analyzing a very 

interesting model which allows dependence between Y and Z. This clearly 
displays the consequences of erroneously assuming independence. 

The lack of dependence of G P  on the force of lapsation may be attributable 
to other factors besides independence between Y and Z, e.g., continuous 
premiums or the constant force assumption. Under independence and as- 
sumption A 

1 
E(Oi)  q - ~rq 

G P -  - 
E(Ti)  1 1 1 ' 

1 - ~r - ~q  + ~rq 

which is an increasing function of r. Under independence and assumption 
C, and assuming a single premium, 

G P  = E(Di)  - Ix [1-e-I~'+")], 
ix+v 

which is decreasing in v. 
Professor Boom has expressed, quite skillfully, an opinion shared by many 

actuaries. The estimation of mortality rates should be placed on a sound 
statistical foundation which is based on an assumption more reasonable than 
the Balducci hypothesis. 

The comparisons in section 4 did not provide a clear choice between C F  
and B F .  However, C F  is a maximum likelihood estimator, is based on 
assumption C, and is easy to compute. Unless more detailed comparisons 
prove otherwise, this makes C F  a clear choice over BF.  It will indeed be 
interesting to see how the Part 5 syllabus develops. 


