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RECURSIVE FORMULAS FOR 
COMPOUND DIFFERENCE DISTRIBUTIONS* 

B E DA C H A N  

ABSTRACT 

Recursive formulas satisfied by the numbers of claims are lifted to recur- 
sire formulas satisfied by the amounts of aggregate claims. The derivation 
relies on only an elementary technique--power series solutions to differential 
equations. The formulas are useful in the application of risk theory and are 
computationally efficient. 

I. INTRODUCTION 

This paper reviews recursive formulas for aggregate claim distributions 
that have appeared recently in much actuarial literature ([2]; [5]; [17]; [20]; 
[211; [22]; [24]). It presents a general method of lifting difference equations 
to derive this genre of formulas using one simple mathematical tool--the 
power series solutions to differential equations. 

Section II is an exposition on recursive formulas. With occasional refer- 
ences to section I for definitions and notations, it can be worked through 
easily in detail. Sections III and IV give a thorough development of the 
method of lifting difference equations applied to other more general distri- 
butions. As the derivation gets heavier, following through the equations 
requires concentration and patience. For a picture of how the method works 
in general, a cursory browse would probably suffice. 

Throughout this paper, all random variables will assume nonnegative in- 
tegral values. For such a random variable Z, we denote its probability gen- 
erating function by 

Gz(s) = E(s z) = ~ Pr {Z = j}sJ = Z(s). 
j = o  

Consider a sum of a random number of random variables 

aN = X l  -.~ X 2 - . ] - . . . - [ -  XN , 

* Thanks to the referees for suggesting improvements and pointing out references, and the Natural 
Sciences and Engineering Research Council of Canada for research support. 
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where Pr{N = k} = nk, Xi's are identically distributed as X with Pr{X = 
k} = x~; N and Xi's are independent. For example, when N is Poisson, SN 
has the well-known, compound, Poisson distribution. In general, when {ni} 
satisfies a difference equation, we say SN has a compound difference distri- 
bution. It is easy to show that 

GsN(S) = Gjv (Gx(s)). (1) 

See ([4], pp. 286-87). 
We introduce these notations to be followed throughout: 

Gsu(S) = ~_~ s i s  j = S ( s ) ,  
j = o  

GN(s) = ~ nj s: = N (s), 
j = o  

Gx(s) = ~ xj s i = X(s). 
j = o  

For example, (1) will be simplified to 

S(s) = N (X(s)), 

a basic formula used many times later. What this formula says is that the 
power series S(s) is a function (that is, N) of another power series X(s). If 
N is a simple enough function, executing the function N on a power series 
would be easy. Remark 3 in section II describes that raising to a power and 
taking the exponential are easy executions on power series, and that these 
executions give recursive formulas for compound Poisson, compound bi- 
nomial, and compound negative binomial distributions. 

Executing certain N on a power series could be difficult. In fact, N func- 
tions, such as those considered in section IH, are not even in closed form. 
However, we observe that difference equations (recursive formulas) for {ni} 
lead to differential equations satisfied by N(s). These equations can then be 
lifted by using equation (1) and the chain rule to differential equations sat- 
isfied by S(s). By standard techniques of power series solutions to differential 
equations, differential equations satisfied by S(s) lead to difference equations 
(recursive formulas) for {si}. Thus, difference equations satisfied by the 
numbers of claims are lifted to difference equations satisfied by the amounts 
of aggregate claims. As an illustration of the general method, it is first 
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applied in section II to cases where simpler methods would suffice. In section 
III, it is applied to cases where this general method would be necessary. 

II. THE KATZ DISTRIBUTIONS 

Katz ([13]; [14]; [12], pp. 37--43) studies a system of discrete distributions 
satisfying the following first order linear difference equation 

(k + l) nk+l = (a + bk)  nk, k = 0, 1 ,2  . . . .  ; a > 0 ; b <  1. (2) 

As mentioned in [13], equation (2) includes Poisson [a + bk  = h], binomial 
[a + bk  = (p/q) (r - k)], and negative binomial [a + bk = q(r  + k)] 
distributions as special cases. The advantage of equation (2) is that a and b 
can be chosen to fit data without specifying any of the classical models. 
This can be done graphically by fitting a line through {(k, (k + l)n,+ l ink),  
k = 0, 1, 2 . . . .  }, as done in Ord [19]. Alternatively, a and b can be found 
by solving 

E(N)  = a/(1 - b) ,  
Var(N) = a/(1 - b) 2. 

The above equations are derived from (i) in the following theorem and using 
([4], p. 266, (1.9), (1.11)). The following theorem lifts equation (2) to a 
difference equation satisfied by {si}. 
THEOREM. I f  

(k + 1)nk+l = (a + bk)nk,  k = 0, 1 ,2  . . . . .  a > 0 ,  b <  1, (2) 

then  

dN aN 
( i )  - 

ds 1 - bs '  

S '  aS  
( i i )  - 

X' 1 - bX '  
n 

(iii) (1 - bxo) (n + 1)s~+l = ~ [a(k + 1) + b(n - k)]xk+lS~_k.  
k=O 

(3) 

Proo f .  Multiply equation (2) by s k and sum from k = 0 to k = oo to obtain 
(i). Use equation (1) and the chain rule on (i) to obtain (ii). Cross multiply 
(ii) and consider the coefficient of s" to obtain (iii). 

Many recursive formulas that have appeared recently in ([2]; [5]; [17]; 
[20]; [21], [22]; and [24]) can also be derived as special cases of equation 
(3), with appropriate values of a and b. More results, such as the first two 
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remarks that follow, can be derived by imitating the easy proof of the theo- 
rem. 
R e m a r k  1: If 

d N  
- N(s )a ( s )  + b(s),  

ds 

then 

dS dX 
ds - [S(s)a(X(s))  + b(X(s))]--~s" 

For example, Crow and Bradwell [3] studied a system of discrete distribu- 
tions satisfying 

(k + C)nk+l = a n , , k  = O, 1 , 2  . . . . .  a > O , c > O .  

Imitating the proof of (i), we derive 

d N  
S-~s  = (as + 1 - c )N  + (c - 1)n0, 

which can be lifted to 

X S '  = (aX  + 1 - c )SX '  + (c - l)no X', 

which generates a recursive formula for {s;}. In general, an nth order, linear, 
differential equation on N can be lifted to an nth order, linear, differential 
equation on S. 
R e m a r k  2: If no = 0, 

(k + l)nk+l = (a + bk)nk, k = 1 , 2  . . . . .  a > O, b < 1, 

then 

(i) 
d N  a N  + n I 

ds 1 - b s '  

S '  aS  -4- n 1 
(ii) - 

X '  1 - b X '  

(iii) (1 - bxo)(n + 1)sn+ l 
n - I  

= ( a s o + n l ) ( n + l ) x , + l  + ~ [ a (k + l )  
k = 0  

+ b ( n - k ) ] X k + l  s , _k .  

For example, the logarithmic series distributions have a + bk  = qk.  
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Remark 3: When {hi} satisfies equation (2), N(s) can be solved explicitly. 
In fact, 

and 

By (1), 

and 

N(s) = [(1 -b s ) / ( l  -b ) ]  -a/b if b 4 : 0  (see [12], p. 40), 

N(s) = e "(s-I) i f b  = 0 (see [12], p. 91). 

S(s) = [ I - b X ( s ) / ( l - b ) ]  -a/b if b 4: 0, (4) 

S(s) = e ~(x(~) - ~) if b = O. (5) 

As pointed out by Shiu [23], equation (4) leads to equation (3) by applying 
the J.C.P. Miller formula, a formula known to computer scientists (see [7], 
p. 12, (4)), and equation (5) leading to equation (3) is an exercise of medium 
difficulty ([16], p. 514, Exercise 4, solution on p. 656; [8], p. 43, Problem 
6). 
Remark 4: Many recursive formulas that have been rediscovered recently in 
actuarial literature have been known all along to statisticians. Compound 
Poisson is type A; compound binomial and compound negative binomial are 
type B; and compound logarithmic is type C in [15]. The recursive formula 
for the compound Poisson distribution made its debut even earlier ([18], p. 
47, (48); [1], p. 357, (15)). 

III. T H E  G E N E R A L I Z E D  W A R I N G  D I S T R I B U T I O N S  

As illustrated by Remark 3 of the last section, going from difference 
equation on {hi} to differential equation on N(s) to differential equation on 
S(s) to difference equation on {Si} is unnecessary when N(s) is expressible 
in closed form. Indeed, the theorem of the last section is presented in a 
format to illustrate a general systematic method, valid even when N(s) is 
not in closed form. The case considered in this section is as such. 

Consider the second order linear difference equation 

(a + k)(13 + k) 
nk (6) nk+l = (~ + k) (k + 1) 

satisfied by the hypergeometric, the negative hypergeometric, and the beta- 
Pascal distributions. Distributions satisfying equation (6) were considered 
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by Guldberg ([6], p.45) and were named generalized Waring by Irwin [10]. 
Ord[  19] described a graphical method to differentiate a discrete distribution 
for satisfying equations (2) or (6). Irwin ([9]; [10]; [11]) studied the gen- 
eralized Waxing distribution and its application to accident theory. When N 
has a generalized Waring distribution, SN is said to have a compound gen- 
eralized Waring distribution. 

o e  , 

With the boundary condition ~ nk = 1, the solution to the difference equa- 
k=0 

tion (6) is 

ot[ k] [3[ k] 
n k = [F(~, [3; ~/; 1)] - l  ~/tk] k! 

Recall that et [k], the ascending factorial, is defined by 

ct t~l = et(~+ 1 ) . . .  (ct + k - 1 ) .  

Thus, 

N(ot, 13; ~; s) = ~ nk S k = F (et, 13; ~; s)/F(a, {3; ~/; 1). 
k=0 

(7) 

H e R ,  

~ et[k] 13[k] 
F(ot, 13; ~/; s) = k=o ~/[k] k! s~ (8) 

is the hypergeometric function. 
In this section, we shall show that the difference equation (6) leads to a 

first order differential equation on N. (Compare with (i) in the theorem.) 
This equation can be lifted by using equation (1) to a differential equation 
on S. (Compare with (ii) in the theorem). It then leads to difference equations 
(recursive formulas) for {si}. (Compare with (iii) in the theorem.) Thus, 
again, difference equations on {ni} are lifted to difference equations on {si}. 

The differential equation on N promised earlier is 

N' (or, 13; "/; s) = [et13{~/ - et - 13 - 1]N(ot + 1, 13 + 1; ~/ + 1; s). (9) 



RECURSIVE FORMULAS 177 

Verification requires equations (7), (8), and the following standard fact 

F(a ,  13; 7; 1) = 
F ( ~ ) F ( ~  - a - 13) 

F ( ~  - ~)F(~ - 13)' 

but is straightforward. By using equation (1) for parameters {a,13,~/}, 
{e~+ 1,13 + 1,3,+ 1} . . . . .  i.e., 

S(a + j ,  13 +j ;  ~/+j; s) = N(a +j ,  13 +j; ~/+j; X ( s ) )  , 

j = 0 , 1 , 2 , . . . ,  
(lO) 

and the chain role, we lift the differential equation (9) for parameters {a,13,~/}, 
{ a +  1,13+ 1,~/+ 1} . . . . .  i.e., 

N' (a +j,13 +j;~/+j;s) = [(oL + j )  (13 + j ) / ~  - ~ - 13 - j -  11 
N ( o t + j +  1,13+j+ 1 ; ~ + j +  1;s) , 

j = 0,1,2 . . . . .  

to  

S'(oL +j,13 +j;~/+j;  s) = [(a +j)(13 + J)/7 - a - 13 - j -  1]X' (s) 
S ( a + j +  1,13+j+ 1;~/+j+ l;s) , 

j = 0,1,2 . . . . .  
( l l )  

It then leads to difference equations for {si} as follows. Recall that 

S(~, 13; 7; s) = ~ sk ~ .  
k=O 

Let s+k denote the coefficient o f s  k in S(a + 1, 13 + 1; ~/ + 1; s), 

S(a + 1,13 + 1;7 + 1;s) = ~ s+ks  k, 
k=O 
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and let s+2k denote the coefficient of s k in S(a + 2, [3 + 2; ~/ + 2; s), 

S(a + 2, 13 + 2;~/ + 2 ;s)  = ~ s+2~s k, 
k=O 

and so on. Consider the coefficient of s" in equation (11) with j = 0 to obtain 

(n+l ) s , ,+ t  = [¢x[3 /y - ,~ - [3 -1 ]  ~ ( /+  1)xj+l S+n_j. (12) 
j = 0  

With j = 1,2 . . . . .  

(n+ l)s+n+t = [(et+ 1)(13+ 1 ) / q t - a - 1 3 - 2 ]  
n 

Z ( J ' { - 1 ) X j + I  S + 2 n - j ,  
j = O  

(12 + ) 

(n + l)S+2n+ 1 = [(Or + 2)(13 + 2)/~/-  a - 13 -.3] 

~ ( j+ l )x j+ l  s+3 ,_ j ,  
j = O  

(12 +2) 

and so on. The system of equations (12), (12+), (12 +2 ) . . . .  are used to 
compute { s i }  recursively: 

F(ct'13;3';x°) F (a  + 1,13 + 1 ;y + 1 ;Xo) F(et + 2,13 + 2 ; ' /+  2;to) SO -- _ _  +~ 
F(ct,13D/;I) s+°  = F(ct+ 1,13+ I;- /+ 1;I) s -o = F (c t+2 ,13+2 ;~+2 ;1 )  

a 13 (a+ 1)(13+ l) 
S 1 XI S+O S+ 1 XlS~20 

~l - et - 1 3  - 1  ~t - a - 1 3  - 2 

2s2 ( x  is  ÷ j + x z s  +o) 
-y - c~ -13  - 1  

The first row of this system of equations comes from equation (10) with 
j = 0,1,2 . . . .  and equation (7). The first column of equations, starting from 
the second equation, comes from equation (12) with n=0 ,1 ,2 ,  . . . ; the 
second column, equation (12 + ) with n=0 ,1 ,2 ;  . . .  ; the third column, 
equation (12 +2) with n = 0,1,2, . . . , and so on. For example, to compute 
s2, we need the six equations displayed. To compute s i ,  we need ( i+  1) 
(i + 2)/2 equations arranged in a triangular shape following the scheme that 
is displayed by these equations. 
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IV. GENERAL CASES 

In sections II and III, we illustrate the method of lifting difference equa- 
tions on {ni} to difference equations on {si}. The method will work on lifting 
equations other than (2) and (6). 
Exercise: Note that the Waring distribution ([12], p.250) satisfies 

(k + 1 + k)n~+l = (a + k)n k. 

Lift it to a difference equation on {si}. 
However, difference equations on {r/i} involving more parameters than in 

(2) or (6) should be introduced only when simpler models cannot fit the 
data. Here, we borrow the principle of  parsimony from the time series theory 
that the smallest number of parameters should be used for adequate repre- 
sentation. We refer again to [14] for fitting models described by equations 
(2) and (6) to data. 

In recent papers, recursive formulas are derived either by power series 
methods ([2]; [17]) or by Laplace transforms ([21]; [22]; [24]). In this paper, 
we choose to use power series because it is more elementary to do so. As 
a final remark, we wish to note the origin of  similarity between the two 
methods. Let 

Lz(t) = E(e -~z) = Gz(e -t)  

denote the Laplace transform of the distribution of a nonnegative, integral- 
valued, random variable Z. We note that equation (1), the starting point for 
the power series method, is paired with 

Ls~, (t) = GN(Lx(t)), 

the starting point for the Laplace transform method via the transformation 
s = e  - t .  
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DISCUSSION OF P R E C E D I N G  .PAPER 

ELIAS S. W. SHIU: 

Dr. Chan is to be complimented for a mathematically elegant paper. As 
he points out at the end of section II, various recursive formulas have been 
rediscovered many times. In fact, the J. C. P. Miller formula was known 
to Euler as early as 1748 ([1], p. 3); other occurrences of the formula are 
also reported in [1]. On the other hand, the most recent rediscovery of the 
recursive formulas is [3]. I would also like to mention that the recursive 
formula for the compound Poisson distribution can be found in [2], since 
the late H. L. Seal had referred to this fact twice ([4], [5]). 
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(AUTHOR'S REVIEW OF DISCUSSION) 

BEDA CHAN: 

I wish to thank Professor Shiu for adding valuable references and con- 
tributing his encyclopedic knowledge of the literature. One recent addition 
to the power series derivation of recursive formulas is [27] where formulas 
in [2] of  the paper for random variables are generalized to random vectors. 
The paper lacks sufficient discussion on computational efficiency of recur- 
sive formulas. Fortunately Biihlmann's recent paper [25] comparing com- 
putational efficiency of recursive formulas and fast Fourier transforms fills 
this gap. 

As mentioned in section IV, the method of lifting difference equations on 
{ni} to difference equations on {si} will work in general. This can be described 
by the following diagram: 
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AE on (si} = ~-DE on S(s) 

o~n chain rule 
AE on {ni} ~ ,~ DE N(s) 

where the horizontal one-to-one correspondences are consequences of the 
theory of characteristic functions, or the general theory of Fourier trans- 
forms. (In the diagram, AE stands for difference equation and DE for dif- 
ferential equation.) 

We now discuss briefly two ideas related to the paper. From (1) we obtain 

KsN(S ) = KN(Kx(s)) 

where Kx is the cumulant generating function for X. Recursive formulas 
involving cumulants are thus obtained. These formulas are useful for asymp- 
tomatic analysis. 

Next, consider 

GN(S) = GM(Gc(s)) 

where N comes from M i.i.d, clusters C's .  If  each cluster C has i.i.d, claims 
X's,  then 

Gs(s) = GM(Gc(Gx(s ) ) ) .  

The recursive formulas in the paper can be extended to two stage formulas 
for compound cluster random variables. Clustering processes have been used 
to study computer failures [26] and earthquakes [28]., 
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