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ABSTRACT 

The goal of  this paper is to dispel the prevailing belief that American- 
style options cannot be valued efficiently in a simulation model, and thus 
remove what has been considered a major impediment to the use of sim- 
ulation models for valuing financial instruments. We present a general 
algorithm for estimating the value of American options on an underlying 
instrument or index for which the arbitrage-free probability distribution 
of paths through time can be simulated. The general algorithm is tested 
by an example for which the exact option premium can be determined. 

1. INTRODUCTION 

Mathematicians seem to resort to simulation models to analyze a prob- 
lem only when all other methods fail to yield a solution. In financial 
economics, evidence of this tendency to avoid simulation models is found 
in the proliferation of published binomial and multinomial lattice solu- 
tions (or their equivalent) to the problem of valuing instruments with 
cash flows or payoffs contingent on interest rates or stock prices [1], [2], 
[4], [5], [8], [9], [10], [12], [13], [14], [15], [16], [17], [18], [19], [20], 
[21], [22], and [23]. The standard approach to valuing an American op- 
tion is to utilize a one-factor (continuous) model of the stochastic price 
behavior of the option's underlying asset, then create a binomial or mul- 
tinomial (discrete) connected lattice representation of that stochastic pro- 
cess, and finally solve the valuation problem by backward induction on 
the lattice. Market-makers who deal in today's complicated financial in- 
struments and investors who buy and sell them are beginning to sense a 
need for more realistic multifactor models of the stochastic dynamics of 
interest rates, foreign exchange rates, stock prices, and commodity prices. 
These more complex models demand analysis by simulation, because 
constructing approximate solutions (whether by means of lattices or oth- 
erwise) to the nonlinear differential and integral equations to which they 
give rise is extremely difficult. 
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In general, the use of simulation models for valuing financial instru- 
ments has been restricted to assets that have path-dependent cash flows 
or payoffs, for example, mortgage-backed securities, including collater- 
alized mortgage obligations (CMOs), and esoteric derivative instru- 
ments, such as "look-back" options [7], [11]. (An exception, at least in 
the academic literature if not in practice, is the paper by Boyle [3], which 
examines how Monte Carlo simulation can be used to value European- 
style options.) Indeed, it has been thought that simulation models could 
not be used to value American-style options efficiently, if at all ([7], [8], 
and Pedersen's discussion of [24]). Ideally, a broker-dealer would like 
to be able to use a single method to value its entire book, and a financial 
intermediary would like to be able to use a single method to analyze its 
entire asset-liability condition. I believe that simulation models offer that 
possibility. 

Simulation models consume large amounts of computer processing time, 
and some problems have heretofore required too much execution time to 
be handled practically by simulation. However, the arrival of powerful 
workstations, servers, and parallel-processers has rendered simulation 
feasible in many situations where it previously was not, a condition that 
can only improve with time as the pace of major technological advances 
accelerates. In many situations, a single sample of paths can be generated 
and then used repeatedly to value many different instruments, for ex- 
ample, a dealer's entire book of interest rate swaps, caps, floors, and 
swaptions; a dealer's entire book of stock index derivatives or of cur- 
rency swaps and options; or a financial intermediary's entire portfolio of 
fixed-income securities. Simulation may not be the best method when 
each financial instrument must be valued on the basis of its own random 
sample of paths, but this situation can often be avoided by designing the 
simulation properly. 

The algorithm for valuing American options is described in Section 2 
and tested by an example in Section 3. The issue of bias in the estimator 
of the option premium is examined in Section 4, after which the example 
is revisited in Section 5. Finally, Section 6 summarizes the paper. 

2. THE VALUATION ALGORITHM 

A textbook by Cox and Rubinstein [6] provides a comprehensive treat- 
ment of the subject of options. We assume that the reader is familiar 
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with the general subject area, including various models for pricing op- 
tions. For convenience, the option's underlying asset is referred to as a 
"stock," but the entire development in this section applies to any type 
of asset or index for which the arbitrage-free probability distribution of 
paths through time can be simulated. In my earlier paper [24] we discuss 
what is meant by "arbitrage-free" and show how arbitrage-free paths of 
interest rates can be sampled stochastically. The example in Section 3 
of this paper utilizes paths of stock prices that are sampled from a prob- 
ability distribution that is arbitrage-free because its mean has been ad- 
justed appropriately. 

We consider how to evaluate put and call options on a stock. The 
options are exercisable only at specified epochs t~, t2 . . . . .  tN, which are 
indexed l, 2, ..., N for convenience. The origin of time is t = 0, which 
is indexed as epoch 0. The options can be considered to be first exer- 
cisable at epoch 0 or at epoch 1, as appropriate. A path of stock prices 
is a sequence S(0), S(1), S(2) . . . .  , S ( N ) ,  in which the arguments of S 
refer to the epoch indexes at which the stock prices occur. Al l  paths of 
stock prices emanate from the initial stock price S(0). The simulation 
procedure involves the random generation of a finite sample of R such 
paths and the estimation of option prices from that sample. The k-th path 
in the sample is represented by the sequence S(0), S(k ,  I), S(k,2) . . . . .  
S ( k , N ) ,  in which the first index refers to the path and the second index 
refers to the epoch. Two paths of stock prices are represented in Figure 
1. Let d ( k , t )  be the present value at epoch t on path k of a $1 payment 
occurring at epoch t+ 1 on path k. Let D ( k , t )  be the present value at 
epoch 0 of a $1 payment occurring at epoch t on path k, computed as 
the product of the discount factors d ( k , s )  from s=0  to s = t -  1. 

Assume that the option has strike prices that can depend on the date 
of exercise but not on the stock price at the time of exercise. Let X(1), 
X(2) . . . .  , X ( N )  denote the sequence of exercise prices at epochs 1, 2, 
..., N, respectively. Typical stock options have a constant strike price 
X independent of date of exercise, but typical call options in private 
placement bonds do not. The intrinsic value l ( k , t )  of the option on path 
k at epoch t can now be defined as: 

~maximum [0, S ( k , t )  - X(t)] for a call option 
l ( k , t )  I ~.maximum [0, X ( t )  - S (k , t ) ]  for a put option. 
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FIGURE 1 

Two ILLUSTRATIVE PATHS OF STOCK PRICES 
SAMPLED FROM A DISCRETE-TIME CONTINUOUS-STATE MODEL 

OF STOCK PRICE MOVEMENTS 

S(j, t) / / ~  . .e  

~ / "N,w..--"f Pathj 

Path k 

S(k, t) 

Epoch t 

Finally, let z(k,t) be the "exercise-or-hold" indicator variable, which takes 
the value 0 if the option is not exercised at epoch t on path k and which 
takes the value 1 if the option is exercised at epoch t on path k. Clearly, 
either z(k,t)=O at all epochs t along path k or z(k,t,)= 1 at one and only 
one epoch t,  along path k. If such a t ,  exists, it is the date at which the 
option is exercised on path k. 

The price of any asset is known at epoch 0 if its cash flows are known 
at all epochs along all possible paths. That price is calculated in two 
steps: first, compute for each path k the present value at epoch 0 of the 
asset's cash flows along that path using the path-specific discount factors 
D(k,t), and second, average across all paths the present values computed 
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in the first step. The paths must be drawn from the appropriate arbitrage- 
free distribution. More details on this general valuation procedure can 
be found in my paper [24]. On a given stock price path, the "cash flow" 
for an option is 0 at every epoch other than the one at which the option 
is exercised. At exercise, the option's "cash flow" is equal to its payoff, 
which is its intrinsic value. Assuming the usual situation that all ran- 
domly sampled stock price paths are equally likely with probability weight 
R- J, we can express the option premium estimator by the following equa- 
tion: 

Premium Estimator = R -l E E z(k,t)D(k,t)l(k,t). 
all all 

paths epochs 
k t 

Thus, to estimate the price of the option, we need to estimate the 
exercise-or-hold indicator function z(k,t), given a fmite sample of R paths 
drawn from an arbitrage-free distribution of paths. The algorithm pre- 
sented in this section for estimating z(k,t) mimics the standard backward 
induction algorithm implemented on a connected lattice for estimating 
the value of an American option. A discussion of this standard technique 
can be found in the textbook by Cox and Rubinstein [6]. 

The backward induction is begun at the latest epoch at which the op- 
tion can be exercised, that is, at its expiration date. On that date, rep- 
resented by epoch N, the option, if it is still "alive" on path k (that is, 
not previously exercised), will be exercised if and only if l(k,N)>O. The 
general step of the backward induction performed at an arbitrary epoch 
t involves determining whether it is optimal to hold the option for pos- 
sible exercise beyond epoch t or to exercise the option immediately at 
epoch t. This decision is made by comparing the option's "holding value" 
to its "exercise value." The option's exercise value is equal to its in- 
trinsic value and can be directly calculated for each path, because the 
price of the underlying stock is known at each epoch on each path. The 
option's holding value on any path is calculated as the present value of 
the expected one-period-ahead option value. 

Many believe that utilizing the path structure illustrated in Figure 1 
precludes estimation of an option's holding values, because the only point 
from which man)' paths emerge is epoch 0. On any particular path, at 
any epoch t>0,  only a single path is simulated. One might think that 
many paths would need to be simulated from each such point to estimate 
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closely the mathematical expectation of the one-period-ahead option value. 
Unfortunately, such an approach would lead to a multinomial "tree" in 
which the number of paths grows exponentially with the number of ep- 
ochs - -a  computational infeasibility. Instead, computational feasibility 
can be achieved by utilizing the path structure illustrated in Figure 1 and 
then estimating the option's holding value by means of a distinct parti- 
tioning at each epoch of the R paths into Q bundles of P paths each. 
The hope is that the paths within a given bundle are sufficiently alike 
that they can be considered to have the same expected one-period-ahead 
option value; in other words, Q must not be too small. The mathematical 
expectation of the one-period-ahead option value is estimated as an av- 
erage over all the paths in the bundle. Thus, the estimate of the option 
holding value will be good only if there are sufficiently many paths in 
the bundle; in other words, P must not be too small. 

In general, there is at least one bundle in which the decision for some 
paths is to hold the option, while the decision for the rest of the paths 
in the bundle is to exercise the option. Such a bundle generally has a 
"transition zone" in stock price from a decision to hold the option to a 
decision to exercise the option. Specifically, for a call option, there exist 
stock prices SL(t) and S~(t) at epoch t, with SL(t)<Su(t), such that the 
decision is to hold for S<-SL(t) and to exercise for S>-Su(t). However, 
for SL(t)<S<Su(t), the decision is "inconsistenC; that is, there exist stock 
prices Sl(t) and S,(t) such that SL(t)<St(t)<S,(t)<Stj(t), yet the decision 
is to exercise at S=St(t) and to hold at S=S,(t)! The transition zone from 
an unambiguous hold decision to an unambiguous exercise decision often 
extends across several consecutive bundles. The algorithm can be refined 
to eliminate the transition zone by creating a ~sharp boundary ~ at S=S,(t), 
such that the decision is to hold for S<S,(t) and to exercise for S>-S,(t). 

The general step that is performed at epoch t in the backward induction 
algorithm includes eight substeps, as follows: 

1. Reorder the stock price paths by stock price, from lowest price to 
highest price for a call option or from highest price to lowest price 
for a put option. Reindex the paths from l to R according to the 
reordering. 

2. For each path k, compute the intrinsic value l(k,t) of the option. 
3. Partition the set of R ordered paths into Q distinct bundles of P paths 

each. Assign the first P paths to the first bundle, the second P paths 
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to the second bundle, and so on, and finally the last P paths to the 
Q-th bundle. We assume that P and Q are integer factors of R. 
For each path k, the option's holding value H(k,t) is computed as 
the following mathematical expectation taken over all paths in the 
bundle containing the path k: 

H (k,t) = d(k,t)P -~ 
all j 

in bundle 
containing k 

V(j,  t+ 1). 

The variable V(k,t) is fully defined in substep 8 below. At epoch 
N, V(k,N)=I(k ,N)  for all k. 
For each path k, compare the holding value H(k,t) to the intrinsic 
value l(k,t), and decide "tentatively" whether to exercise the option 
or to hold it. Define an indicator variable x(k,t) as follows: 

f l  if l ( k , t )>  H(k,t) Exercise 
x(k,t) 

to if H(k,t) >- l(k,t) Hold. 

Examine the sequence of O's and l ' s  {x(k,t); k= 1, 2 . . . . .  R}. De- 
termine a sharp boundary between the hold decision and the exercise 
decision as the start of the first string of l 's ,  the length of which 
exceeds the length of every subsequent string of O's. Let k,(t) denote 
the path index (in the sample as ordered in substep 1 above) of the 
leading 1 in such a string. The transition zone between hold and 
exercise is defined as the sequence of O's and l ' s  that begins with 
the first 1 and ends with the last 0. An example is given below: 

Boundary 

0 0 . . . 0 1 1 0 0 0 1 1 1 1 1 0 0 1 . . .  11 

Define a new exercise-or-hold indicator variable y(k,t) that incor- 
porates the sharp boundary as follows: 
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{~ f°r k>-k*(t) 

y(k,t) = for k < k,(t). 

8. For each path k, define the current value V(k,t) of the option as 
follows: 

l I(k,t) if y(k, t )= 1 

V(k,t) = (H(k,t)  if y(k,t) = O. 

After the algorithm has been processed backward from epoch N to 
epoch 1 (or epoch 0 if immediate exercise is permitted), the indicator 
variable z(k,t) for t<-N is estimated as follows: 

J l  ify(k,t) = l andy(k,s) = 0 for all s < t  
z(k,t) (o otherwise. 

This completes the description of the algorithm for valuing an American 
option. 

The partition of R paths into Q bundles of P paths each can be char- 
acterized by defining a "bundling parameter" a by means of the equation 
Q=R ~, and therefore, P=R ~-~. It is clear that 0<-a---l. The value a = 0  
corresponds to the partition into a single bundle of R paths, and the value 
a = l  corresponds to the partition into R bundles of one path each. A 
particular American option valuation algorithm can now be fully de- 
scribed by the sample size R, the technique used to sample paths, and 
the bundling parameter a. If ot is restricted to rational numbers, we can 
fix a and take sensible limits as R---~ to investigate the convergence 
properties of the option premium estimator. For example, with a = 2 / 5 ,  
we can examine sample sizes equal to 25 , 35 , 45 . . . .  paths for which we 
can study the estimators associated with the partitions Q=22, 32, 42 . . . .  
bundles and P=23, 3 3, 4 3 . . . .  paths per bundle, respectively. 

For any exercise-hold decision algorithm with c~ fixed and 0 < a <  1, it 
can be proved that the option premium estimate must converge to the 
proper result as R--,zc. This follows from the observation that the al- 
gorithm for determining the exercise-hold decision variable is based on 
the standard backward induction algorithm for valuing American options 
and that all sources of error arise from P, Q, and R being finite. For 
finite R, imprecision in the premium estimates arises because: (1) the 
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continuous distribution of stock prices at each epoch is not sampled finely 
enough and (2) the mathematical expectation in substep 4 above is ap- 
proximated by an average over a finite number of paths. Imprecision of 
the first type can be reduced by increasing Q, the number of bundles. 
Imprecision of the second type can be reduced by increasing P, the num- 
ber of paths per bundle. For fixed R, increasing Q means decreasing P, 
and vice versa, implying a tradeoff between the first and second types 
of imprecision. However, if o~ is held constant at some value in the in- 
terval (0,1 ), then both types of imprecision are eliminated simultaneously 
as R---~ oo, because then both Q--~o~ and p---+oo. 

The distinction between the variables y(k,t) and x(k,t) disappears as 
R----~oo and ot is held constant at a value other than 0 or 1. As R----~oo, the 
boundary between a decision to exercise the option and a decision to 
hold the option becomes sharper and sharper; that is, at each epoch, the 
transition zone with alternating strings of 1 's and O's occurs over a smaller 
and smaller interval of stock prices. Defining a sharp boundary by means 
of substep 6 above generally improves the convergence of the algorithm 
considerably for any a in the interval (0,1) and also generally broadens 
considerably the interval of et over which the option premium estimates 
are good. In general, the option premium estimate based on a given sam- 
ple size, sampling technique, and bundling parameter is more accurate 
when a sharp exercise-hold boundary is determined than when it is not. 
However, the ultimate convergence of the exercise-hold decision algo- 
rithm to the exact option premium does not depend at all on whether 
substeps 6 and 7 above are implemented. If substeps 6 and 7 were omit- 
ted from the algorithm, x(k,t) would be used in lieu of y(k,t), both in 
substep 8 and in the calculation of z(k,t). 

3. AN EXAMPLE 

To test the algorithm presented in the preceding section, we consider 
the situation of a non-dividend-paying stock. Let S(t) denote the price 
of the stock at time t. We assume that the random variable ln[S(t)/S(O)] 
is normally distributed with mean ~t and variance 0.2t. We further as- 
sume that the yield curve is flat and that interest rates are constant over 
time at an annual effective rate r. For the distribution of stock price 
movements to be arbitrage-free over time, it must be true that Ix= In[ 1 + r] 
-0"2/2. Refer to the textbook by Cox and Rubinstein [6] for a proof of 
this statement. 
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When a non-dividend-paying stock is the underlying asset, the price 
of an American call option must be exactly the same as the price of an 
otherwise identical European call option [6]. The price of an American 
put option must be no less than the price of an otherwise identical Eu- 
ropean put option, but the former will in general exceed the latter [6]. 
Therefore, we test the valuation algorithm on a put option that is first 
exercisable in one quarter of a year and is exercisable every quarter of 
a year thereafter until its expiration in three years. The stock price has 
logarithmic volatility tr equal to 30 percent. The initial price of the stock 
S(0) is 40; the strike price X of the option is 45 at all epochs; and the 
annual effective interest rate r is 7 percent. Paths of stock price move- 
ments are generated randomly by stratified sampling of the standard nor- 
mal density as described in my paper [24]. Random samples of size 
7!=5,040 are used so that many different partitions can be examined. 
Table 1 lists the values of the bundling parameter a that correspond to 
each of the 60 different partitions of 5,040 paths into equal bundles. 

The exact price of the three-year American put option with quarterly 
exercise intervals was determined to be 7.941 by using a binomial lattice 
with 1,200 time periods constructed according to the procedure described 
in Cox and Rubinstein [6]. This is approximately 1.61 higher than the 
price of the corresponding three-year European put option. Using a sin- 
gle sample of 5,040 paths, the exercise-decision algorithm described in 
the preceding section was tested for all partitions having at least 12 bun- 
dles but no more than 420 bundles. The results are displayed in Fig- 
ure 2. 

In Figure 2, the solid line connecting "diamonds" corresponds to ap- 
plication of the algorithm without substeps 6 and 7-- that  is, with a tran- 
sition zone from hold to exercise, not a sharp boundary between hold 
and exercise. The broken line connecting "squares" corresponds to ap- 
plication of the algorithm with substeps 6 and 7 included--that is, with 
a sharp boundary between hold and exercise. The horizontal line across 
the graph at a vertical axis value of 7.941 marks the exact option pre- 
mium. Figure 2 clearly demonstrates the importance of including sub- 
steps 6 and 7 in the algorithm. When a sharp boundary is determined, 
the option premium estimates are essentially flat across an interval from 
a=0 .29  to a=0 .71  and cover a range of only 12 cents. However, when 
only a transition zone is utilized, the option premium estimates rise more 
or less steadily as the bundling parameter is increased and cover a range 
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TABLE 1 

BUNDLING PARAMETER ALPHA FOR VARIOUS PARTITIONS OF 5 , 0 4 0  PATHS 

Number 
of Bundles 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
12 
14 
15 
16 
18 
20 
21 
24 
28 
30 
35 
36 
40 
42 
45 
48 
56 
60 
63 
7O 

Paths 
per Bundle 

Bundling 
Parameter 

Alpha 

Partition 

Number PaSs 
of Bundles per Bundle 

72 70 
80 63 
84 60 
90 56 

105 48 
112 45 
120 42 
126 40 
140 36 
144 35 
168 30 
180 28 
210 24 
240 21 
252 20 
280 18 
315 16 
336 15 
360 14 
420 12 
500 10 
560 9 
630 8 
720 7 
840 6 

1008 5 
1260 4 
1680 3 
2520 2 
5000 1 

Partition 

5040 
2520 
1680 
1260 
1008 
840 
720 
630 
560 
504 
420 
360 
336 
315 
280 
252 
240 
210 
180 
168 
144 
140 
126 
120 
112 
105 
90 
84 
80 
72 

0 . 00000  
0.08131 
0.12887 
0.16261 
0.18879 
0.21017 
0.22825 
0.24392 
0.25773 
0.27009 
0.29148 
0.30956 
0.31765 
0.32522 
0.33904 
0.35140 
0.35712 
O.37279 
0.39087 
0.39896 
0.41700 
0.42035 
0.43270 
0.43843 
0.44652 
0.45409 
0.47217 
0.48027 
0.48599 
0.49835 

Bundling 
Parameter 

Alpha 

0.50165 
0.51401 
0.51973 
0.52783 
0.54591 
0.55348 
0.56157 
0.56730 
0.57965 
0.58296 
0.60100 
0.60913 
0.62721 
0.64288 
0.64860 
0.66096 
0.67478 
0.68235 
0.69044 
0.70052 
0.72991 
0.74227 
0.75608 
0.77175 
0.78983 
0.81121 
0.83739 
0.87113 
0.91869 
1.00000 

of approximately 63 cents, more than five times the range obtained when 
a sharp boundary is utilized! 

To study the efficiency of estimation, the "70 bundles by 72 paths per 
bundle" partition was used on 1,000 independent samples of 5,040 paths 
ach. Each sample gives rise to an estimate of the put option premium. 
The frequency histogram of these 1,000 estimates is plotted in Figure 3. 
The mean of the estimates is 7.971 and the standard deviation of the 
estimates is 0.053. The solid line graph superimposed on the frequency 
histogram is that of a normal density function with the same mean and 
standard deviation as the option premium estimator. We can see that the 
algorithm produces premium estimates that are normally distributed. What 
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FIGURE 2 

PREMIUM ESTIMATES FOR 3-YEAR AMERICAN PUT OPTION 
(5,040 Paths Partitioned 40 Ways into Exercise-Decision Bundles) 
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FIGURE 3 

FREQUENCY HISTOGRAM FOR ~ = 0 . 5 0  PREMIUM ESTIMATOR 
(Based on 1,000 Samples of 5,040 Paths Each) 
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seems surprising is that the premium estimator is biased. The mean es- 
timate of $7.971 is 3 cents higher than the exact premium of $7.941, 
which is about 17.9 times the standard deviation of 5 . 3 / ~  cents. 
Despite the bias, the algorithm can estimate the option premium quite 
tightly. 

4. ESTIMATOR BIAS 

In this section, we investigate the source of the bias in the option 
premium estimates that was discovered by means of the example pre- 
sented in the last section. It turns out that the bias arises because the 
"optimization" is done over a finite sample. The bias vanishes in the 
limit of infinite sample size. The description of the exercise-decision 
algorithm in Section 2 makes it evident that estimating the premium for 
an American option is equivalent to estimating the exercise-hold stock 
price boundary at each epoch at which the option can be exercised. Ac- 
cordingly, we determined the "exact" boundary between holding and 
exercising the put option at each of the 12 exercise-decision epochs by 
using the Cox-Rubinstein binomial lattice that was described in the pre- 
ceding section. With full knowledge of the exact exercise-hold bound- 
aries, the American option premium was estimated again by simulation 
using the same 1,000 samples of 5,040 paths on which the results shown 
in Figure 3 were based. The resulting frequency histogram of the pre- 
mium estimates is shown in Figure 4. 

In Figure 4 the premium estimates are normally distributed. The stan- 
dard deviation of the estimates is 5.3 cents, the same as in Figure 3. 
However, the mean of the estimates is $7.943, only 0.2 cents higher 
than the exact premium. This deviation is not statistically significant at 
a 5 percent level of confidence, since it is only about 1.2 times the stan- 
dard deviation of 5 .3 /~1000  cents. Thus, with full knowledge of the 
exact exercise-decision boundaries, the American option premium esti- 
mator is unbiased, even for finite samples of paths. We must conclude 
that the process of estimating the exercise-hold boundaries from a finite 
sample of paths introduces the bias. The following analysis demonstrates 
the truth of this assertion. 

The exact price of an American option is the value given by the pre- 
mium estimator equation in Section 2 when the infinite sample space of 
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FIGURE 4 

FREQUENCY HISTOGRAM FOR ~BEST ~ PREMIUM ESTIMATOR 
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stock price paths and the exact exercise-hold boundaries are used. De- 
termining the exact price of the option is equivalent to finding the ex- 
ercise-hold boundaries at all exercise-decision epochs that maximize the 
value given by the premium estimator equation when the infinite sample 
space of stock price paths is used. An approximation to the exact price 
is obtained by finding the exercise-hold boundaries at all exercise-de- 
cision epochs that maximize the value given by the premium estimator 
equation when afinite sample of R stock price paths is used. A different 
approximation to the exact price is obtained by implementing the back- 
ward induction algorithm with eight substeps at each epoch that was 
described in Section 2. This latter estimate of the exact option price is 
itself an approximation to the former estimate of the exact option price, 
by reason of the construction of the backward induction algorithm as an 
optimization. 

Let Ei denote the option premium estimate obtained when the i-th sam- 
ple of R paths is used together with some premium estimation method. 
The dependence of the estimate on the estimation method used is denoted 
by an appropriate superscript. The superscript oo-optimal is used to rep- 
resent the estimation method that utilizes the exact boundaries deter- 
mined from the infinite sample space of stock price paths. The super- 
script R-optimal is used to represent the estimation method that utilizes 
the boundaries that optimize the value given by the premium estimator 
equation when the finite sample of R paths is used. Finally, the super- 
script R-algorithm is used to represent the estimation method that utilizes 
the boundaries determined from the eight-substep backward induction 
algorithm applied to the finite sample of R paths. As a consequence of 
the definitions of the various estimates and the construction of the dif- 
ferent estimation methods, the following inequalities hold for any sample 
i consisting of R paths: 

e?°p"m°' <- E, and E, <- E, 

Thus, the means of the various estimators computed over any finite 
number of samples of R paths each also satisfy the same inequalities. In 
practice, the strict inequality will hold "almost surely." When the sample 
size is infinite, the inequalities become equalities. Because the o~-optimal 
estimator is unbiased, the first inequality demonstrates that the R-optimal 
estimator must always have positive bias. The bias tends to zero as R---~. 
Furthermore, the second inequality demonstrates that the R-optimal es- 
timator must be positively biased relative to the R-algorithm estimator. 
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The relative bias tends to zero as R---->oo. It is indeterminable whether the 
R-algorithm estimator has positive or negative bias with respect to the 
~-optimal estimator. The two inequalities also show that we should not 
try too hard to "perfect" the R-algorithm estimator in the sense of making 
it better approximate the R-optimal estimator, because the latter always 
has positive bias relative to the unbiased oo-optimal estimator. 

5. EXAMPLE REVISITED 

Now that we understand that the sign of the bias of the R-algorithm 
estimator is indeterminable, but is likely to be positive if the R-algorithm 
estimates the R-optimal exercise-hold decision boundaries closely, we 
should conduct further empirical studies of the bias. Table 2 presents 
results obtained by using the R-algorithm estimator of Section 2 on 100 

TABLE 2 

STATISTICS FOR or=0.50 ESTIMATORS OF PREMIUMS FOR AMERICAN PUT OPTIONS 
(STOCK PRICE Vot~xILrrv OF 30 PF~CEr,rr) 

Stock Price: 40 
Option Expiration: 3.00 Years Stock Volatility: 30 Percent 
Exercise Interval: 0.25 Years Annual Interest Rate: 7 Percent 

Estimator 
Strike Price 'Exact' Premium* Estimator Meant Estimator Bias Standard Deviationt 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

I00 

0.003 
0.046 
0.242 
0.744 
1.689 
3.172 
5.247 
7.941 

0.003 
0.046 
0.239 
0.744 
1.694 
3.185 
5.268 
7.968 

0.000 
0.000 

-0 .003  
0.000 
0.005 
0.013 
0.021 
0.027 

0.001 
0.005 
0.012 
0.020 
0.027 
0.038 
0.044 
0.055 

11.255 
15.136 
19.469 
24.100 
28.894 
33.764 
38.665 
43.576 
48.491 
53.407 
58.323 

11.289 
15.161 
19.485 
24.109 
28.899 
33.763 
38.662 
43.574 
48.486 
53.400 
58.316 

0.034 
0.025 
0.016 
0.009 
0.005 

-0.001 
-0 .003  
-0 .002  
-0 .005 
-0 .007  
-0 .007  

0.063 
0.059 
0.054 
0.044 
0.034 
0.028 
0.024 
0.017 
0.015 
0.014 
0.012 

*Calculated using the Cox-Rubinstein binomial model with 1,200 time intervals. 
tCalculated using a simulation model with 100 samples of 5,040 paths and exercise boundary 
determined by first dominant string of 1 's  in the transition zone. 
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independent samples of 5,040 paths each by using a partition of 70 bun- 
dles by 72 paths per bundle. Results are shown for 3-year American put 
options with strike prices ranging from 10 to 100 in multiples of 5. All 
other assumptions are the same as in the earlier example. The "exact" 
premiums were calculated as before, by using the Cox-Rubinstein bi- 
nomial lattice with 1,200 time intervals. The estimator bias ranges from 
a low of - 0 . 7  cents to a high of +3.4  cents. The standard deviations 
of the estimates peak at 6.3 cents for a put option somewhat in the money. 
The premium estimates must be considered very accurate. 

Table 3 presents results similar to those in Table 2, but for a partition 
of 504 bundles by 10 paths per bundle. In this case, substep 6 of the 
exercise-decision algorithm was refined to account not only for the first 
dominant string of l 's  in the transition zone but also the last dominant 
string of O's in the transition zone. As in substep 6, a boundary index 
is determined as the start of the first string of 1 's, the length of which 

TABLE 3 

STATISTICS FOR ct=0.73 ESTIMATORS OF PREMIUMS FOR AMERICAN PUT OPTIONS 

(STOCg I~ICE VOt~TILnX OF 30 PERCENT) 

Stock Price: 40 
Option Expiration: 3.00 Yenl-s Stock Volatility: 30 Percent 
Exercise Interval: 0.25 Years Annual Interest Rate: 7 Percent 

I Estimator 
i 

Strike Price 'Exact' Premium* Estimator Meant Estimator Bi~ Standard Deviationt L 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 

0.003 
0.046 
0,242 
0,744 
1.689 
3.172 
5.247 
7,941 

11.255 
15.136 
19.469 
24.100 
28.894 
33,764 
38. 665 
43.576 
48.491 
53.407 
58,323 

0.003 
0.048 
0,246 
0. 750 
1.697 
3.178 
5.255 
7.943 

11,260 
15,139 
19.468 
24.094 
28.889 
33.752 
38. 654 
43. 566 
48,480 
53,398 
58.315 

0.000 
0.002 
0.004 
0,006 
0,008 
0.006 
0.008 
0.002 
0.005 
0,003 

-0 .001  
- 0 . 0 0 6  
- 0 . 0 0 5  
- 0 . 0 1 2  
-0.011 
- 0 . 0 1 0  
-0 .011  
- 0 . 0 0 9  
- 0 . 0 0 8  

0.001 
0.005 
0,012 
0.018 
0.028 
0,039 
0,049 
0,052 
0.066 
0.059 
0.058 
0.049 
0.037 
0.034 
0.032 
0,021 
0.02 I 
0.020 
0,016 

*Calculated using the Cox-Rubinstein binomial model with 1,200 time intervals. 
tCalculated using a simulation model with 100 samples of 5,040 paths and exercise boundary 
determined by dominant strings of both O's and 1 ' s  in the transition zone. 
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exceeds the length of every subsequent string of O's. Another boundary 
index is determined as the end of the last string of O's, the length of  
which exceeds the length of every previous string of l's. In many cases, 
the two boundaries are identical, but if not, the dominant O-string bound- 
ary must occur before the dominant 1-string boundary. The boundary 
index actually used in the revised algorithm is the arithmetic mean of 
the two boundary indexes, rounded appropriately. The estimator bias shown 
in Table 3 ranges from a low of - 1 . 2  cents to a high of +0 .8  cents. 
The standard deviations of the estimates are generally a little higher than 
their counterparts in Table 2. 

Table 4 presents results similar to those in Table 3, except that the 
stock price volatility has been doubled to 60 percent. Again, the esti- 
mator biases are small, ranging from - 0 . 8  cents to +2.4  cents. The 
standard deviations of  the estimates are much larger, but are still very 
small when expressed as a percentage of the exact premiums. 

TABLE 4 

STATISTICS FOR ot=0.73 ESTIMATORS OF PREMIUMS FOR AMERICAN PUT OPTIONS 
(STOCK PRICE VOLA'nLrrv OF 60 PERCENI) 

Stock Price: 40 
Option Expiration: 3.00 Years Stock Volatility: 60 Percent 
Exercise Interval: 0.25 Years Annual Interest Rate: 7 Percent 

Estimator 
Strike Price 'Exact' Premium* Estimato~ Meant ! Estimator Bias Standard Deviationt 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 

0.486 
1.409 
2.810 
4,636 
6.834 
9.357 

12.162 
15.220 
18,504 
21,986 
25.650 
29,475 
33.453 
37,566 
41,798 
46.137 
50.571 
55.086 
59.670 

0.489 
1,414 
2.815 
4.643 
6.840 
9.367 

12.180 
15.240 
18,526 
22.009 
25.667 
29.493 
33.477 
37.584 
41.809 
46.139 
50.567 
55.078 
59.662 

0.003 
0.005 
0.005 
0,007 
0.006 
0.010 
0.018 
O.O2O 
0,022 
0.023 
0.017 
0.018 
0.024 
0,018 
0.011 
0.002 

- 0 . 0 0 4  
- 0 . 0 0 8  
- 0 , 0 0 8  

*Calculated using the Cox-Rubinstein binomial model with 1,200 time 

0,013 
0,022 
0,034 
0,044 
0,054 
0,064 
0,075 
0,088 
0,102 
0.120 
0,118 
0.131 
0.129 
0.148 
0.145 
0,149 
0,149 
0,144 
0,144 

intervals. 
tCalculated using a simulation model with 100 samples of 5,040 paths and exercise boundary 
determined by dominant strings of both 0's and 1 's  in the transition zone. 
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6. SUMMARY AND CONCLUSIONS 

This paper has presented an algorithm for valuing American options 
in a path simulation model and has demonstrated its accuracy by an ex- 
ample involving a put option on a non-dividend-paying stock for which 
the exact premium could be determined. The demonstration of the ex- 
istence of a useful algorithm for valuing American options in a path 
simulation model should remove what has been perceived as a major 
impediment to the use of simulation models in valuing a broker-dealer's 
derivatives book and in analyzing the asset-liability condition of financial 
intermediaries. 

In many situations involving the use of multifactor models to describe 
realistic market price behavior, simulation is the only method that can 
handle the American option valuation problem satisfactorily. Further- 
more, it is usually straightforward to apply a simulation technique, whereas 
solving complicated partial differential equations numerically generally 
requires great care as well as sophistication in applied mathematical 
methods. This paper has not dealt with some of the complexities that 
arise in determining exercise-hold decision boundaries when multifactor 
stochastic models of asset price behavior are utilized. Empirical studies 
that I have conducted suggest that some modification to the algorithm 
presented in this paper is required to handle those situations adequately. 
For example, the bundling must often be carried out in at least two di- 
mensions rather than the single dimension presented in this paper. Boundary 
points become boundary lines or surfaces. 
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DISCUSSION OF PRECEDING PAPER 

JACQUES F. CARRIERE: 

First, I want to say that I greatly enjoyed Dr. Tilley's paper. Second, 
I want to embellish this paper by relating it to the theory of stopping 
times and by presenting a variation of Dr. Tilley's valuation algorithm. 
When I read the article, it struck me that the algorithm was very similar 
to one that Chow, Robbins and Siegmund [1] presented in their treatise 
about optimal stopping times. I believe that restating the backward in- 
duction result given there [1, p. 50] will be useful, even though this 
result is well-known. The ensuing discussion is an application of this 
backward induction technique. 

Let t=0,  1 . . . . .  N and let I, denote the intrinsic value of an American 
option at time t. Let Dr denote the price of a zero-coupon bond that is 
purchased at time 0 and matures at time t>0 with a unit redemption value 
and let d,=D,+JDt. Let P,=Dt×It denote the present value of  the option 
and let X,=(X~., . . . . .  Xm.3 denote the state variables. Let 

denote the history (sub-cr-field) and suppose that I, is a measurable func- 
tion with respect to ~,. Let V, denote the discounted value of the Amer- 
ican option and let H, denote the discounted holding value. According 
to [1], VN=PN, and for t = N - 1  . . . . .  1, we must have 

V, = max{P. Ht}, 

where H,=E(V,+~]~,), and for t=O, we must have 

V0 = H0 = E(V,I~0) .  

Moreover, Chow et al. [1] suggest that the optimal exercise strategy is 
to exercise at the first time that V t = P t  . This means that 

z~=I{V ,=H~ for s < t  and V,=P,}  

is the exercise indicator function. The result in Chow et al. [1] also states 
that 

Vo = E z,D,I, o 

521 
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and that 

Vo >- E z*D,l, o 

for any other exercise indicator function z* that is measurable with re- 
spect to 3,.  In other words, V0 is the value of the American option. 

Let us give an equivalent representation of the backward algorithm 
that conforms better with the paper's algorithm. Define 

V*=V, /O ,  and H*=d,E(V*+,]~,). 

Then we must have Vffv=lu, and for t=N-1  . . . . .  1, we must have 

V* = max{/,, H*}. 

Moreover, we must have Vo=H~ because do=D~. The exercise indicator 
function can now be written as 

z , = I { V * = H *  for s < t  and V*=I,}.  

The example in this paper is a Markov example with one state variable 
X,. This means that 

E(v,*+,IK) = E ( v * , l x , ) .  

The key to calculating Vo is to calculate or approximate the conditional 
expectation 

E(V*+,IX,) for t = 0 ,  1 . . . . .  N 

or equivalently to approximate the exercise indicator function zt. The 
valuation algorithm proposed by Dr. Tilley uses an approximation of 

E(V*,~,)  

(substeps l to 4) to get an approximation of z, (substeps 5 to 8), which 
is subsequently used in the empirical analog of the American option val- 
uation formula 

Vo = E z t D t l t  . 
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The major contribution of this paper is the demonstration that V0 can be 
estimated by a Monte Carlo simulation, a technique that many research- 
ers thought would be computationally impossible. The advantage of the 
simulation technique is that it can readily be generalized to handle op- 
tions that depend on a multivariate state variable Xt. 

We know that the value of the American option is equal to 

Vo = doE(V~lXo). 

This means that if we can construct an unbiased estimator of 

E(V*I~,) for each t = 0, l . . . . .  N, 

then the backward algorithm will yield an unbiased estimate of Vo. With 
this approach, it is not necessary to approximate the exercise indicator 
function z,, because we are not using the equivalent option valuation 
formula 

Vo = E z t D ~ l  t X 0 . 

Therefore, I investigated a variation of the algorithm that refines substep 
4 and excludes substeps 6 and 7. 

From the Markov property we know that 

V*+t = max{I,+ t, H* l} 

is a function of the state variable X,+,. Fix t and suppose that we have 
approximated 

V*+,-~ f(X,+,). 
Our problem is to estimate the conditional expectation 

E(f(X,+ ,)~t). 
By simulation, we have R replications of the pair {X~, f(X,+l)}. This means 
that we can use nonlinear regression analysis to estimate 

E(f(X,+ t)~ft) 

in substep 4. I claim that the bundling method proposed by Dr. Tilley 
is actually a regression method, albeit crude. One way of regressingf(X,+ 0 
on X, is to use a spline method. We found that our estimates of V0 were 
almost unbiased when a spline was used in substep 4. Using the paper's 
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example, we found that after 1,000 samples of 5,040 paths, the mean 
of the estimates was 7.963 and the standard deviation of the mean was 
0.0822+X/1,000=0.0026. Obviously, the spline method that we used 
yielded a biased estimator of the true value, 7.941, but its performance 
is comparable to Dr. Tilley's method. Other regression techniques were 
also investigated with good success. 
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HANS U. GERBER AND ELIAS S. W. SHIU: 

Dr. Tilley is to be congratulated for this paper, shattering the myth 
that American options cannot be evaluated by simulations. Indeed, Hull 
and White's recent article ([7], p. 22) states that "Monte Carlo simu- 
lation . . . involves working forward, simulating paths for the asset price. 
It can handle options where the payoff is path-dependent, but it cannot 
handle American options, because there is no way of knowing whether 
early exercise is optimal when a particular stock price is reached at a 
particular time." 

A main difficulty in pricing American options with a finite expiration 
date is the determination of the optimal exercise-hold boundary (as a 
function of stock price and time). Because it was thought that backward 
induction was not possible in a simulation setting, option exercises were 
determined by "myopic" decision rules. Finnerty and Rose ]2] have shown 
that such evaluations of American options are systematically biased. 

The optimal exercise-hold boundary of a perpetual American option 
with a constant exercise price is a fixed stock value independent of time 
[see (4.6) and (4.8) below]. This makes the valuation problem easier and 
closed-form formulas are available. Indeed, closed-form formulas for de- 
ferred perpetual American options can also be obtained. A purpose of 
this discussion is to present these formulas. Note that an upper bound 
for the price of an American option with a finite expiry date is the value 
of the corresponding 13erpetual option. On the other hand, a lower bound 
for the price of an American option with a finite expiry date T is the 
difference between the value of the perpetual option and that of the de- 
ferred perpetual option with deferral period T. 



DISCUSSION 525 

1. The  S tock  P r i c e  Model 

Let S(t) denote the price of a stock at time t, t>-O. We assume that 
{S(t); t>O} is a geometric Brownian motion. Hence, for t>-O, ln[S(t)/ 
S(O)] is a normal random variable, and there exist constants Ix and ~r 
such that 

and 

E(ln[S(t)/S(O)]) = Ixt 

Var(ln[S(t)/S(O)]) = ( r 2 t .  

(Our IX and ~r are the same as those in Section 3 of the paper,) The 
assumption, expressed as a stochastic differential equation, is 

- ~  - Ix+ dt + edW(t),  t >- O, 

where {W(t); t>-0} denotes the standardized Wiener process. We note that 
the process {InS(t); t->0} has stationary and independent increments, and 
many of the results below can be generalized to stock-price processes 
with this property. 

We also assume that the risk-free force of interest is constant, and it 
is denoted by g. The market is frictionless, and trading is continuous. 
There are no taxes, no transaction costs, and no restriction on borrowing 
or short sales. All securities are perfectly divisible. 

Extending the classical Black-Scholes model, we assume that the stock 
pays a continuous stream of  dividends, at a rate proportional to its price; 
that is, there is a positive constant p such that the amount of dividends 
paid between time t and t+dt is 

S(t)pdt. 

Observe that, if all dividends are reinvested in the stock, each share of  
the stock at time 0 grows to e °' shares at time t. 

2. Equivalent Martingale Measure 

A fundamental insight in advancing the Black-Scholes theory of option- 
pricing is the concept of risk-neutral valuation introduced by Cox and 
Ross [1]. Further elaboration on this idea was given by Harrison and 
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Kreps [5] and by Harrison and Pliska [6], To rule out arbitrage oppor- 
tunities in the model, we are to seek the probability measure that is 
equivalent to the original measure and with respect to which the process 

{e-a~S(t)e~'; t >-- 0} 

is a martingale. This probability measure is called the equivalent  mar- 
tingale measure, or risk-neutral measure.  The price of  each option on 
the stock is the supremum of  its expected discounted payoffs,  where the 
expectation is taken with respect to the risk-neutral measure. 

To determine the risk-neutral measure, we observe that, for each con- 
stant h, 

{S(t)h/E[S(t)h]; t >- 0} 

is a positive martingale, with which we can define a change of measure. 
We ([3], [4]) call the new measure the Esscher measure  of parameter h 
and write the expectation, variance, and probability with respect to the 
Esscher measure as E(.; h), Var(.; h), and Pr(-; h), respectively. For each 
measurable function +(-), 

E[t~(S(t)); h] = 

Using the formula 

E[+(S(t))S(t) hI 

E[S(t) hI 

E[S(t) k] = S(O)ke~k,+k2"2/2) ', 

we [3] have shown that 

E(In[S(t)/S(O)]; h) = Ix(h)t 

and 

where 

Var(ln[S(t)/S(O)]; h) = cr2t, 

(2.1) 

Ix(h) = Ix + ho "2. (2.2) 

The risk-neutral measure is the Esscher measure of  parameter h=h*,  
where h* is determined by 

S(O) = E[e-~-~'S( t ) ;  h*], (2.3) 
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o r  

- p = Ix(h*) + t/xr 2. 

It follows from (2.2) that, for each constant k, 

ix(h* + k) = ix(h*) + k~r 2 (2.4) 

= 8 - 9 + (k - 1/2)(r2. (2.5) 

3. European Option Formulas 

Let la(') denote the indicator function, 

1A(X) _ {01 x @ A  
x q ~ A "  

The payoff, at time T, of a call option on the stock exercisable at time 
T with exercise price X is 

I S ( T )  - x ]  l~x~(S(T)). 

Similarly, the payoff, at time T, of a put  option on the stock exercisable 
at time T with exercise price X is 

[X - S(T)] l~0.x)(S(T)). 

For positive constants T, X and Y, let us calculate 

c(S(O), X, Y, T)  = E(e-~r[S(T) - X] I~v.~)(S(T)); h*), (3.1) 

which we need later. 

c(S(O), X, Y, T)  = e-~rE[S(T) b r ~ ( S ( T ) ) ;  h*] 

- e-~rXE[IIr,~)(S(T)); h*] 

= e-~rE[S(T) I<y~(S(T)); h*] 

- e-~rXPr[S(T) > Y; h*]. 

To evaluate the expectation 

E[S(T)I~r~(S(T)) ;  h*], 

we apply the following lemma, which is an immediate consequence of  
(2.1). 
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F a c t o r i z a t i o n  L e m m a  

Let h and k be two real numbers and 9(') a measurable function, Then 

E[S(t)ktp(S(t)); h] = E[S(t)k; h]E[q~(S(t)); h + k]. (3.2) 

Applying the Factorization Lemma [with k= 1, ~(-)=lm~l(.) and h=h*] 
and Formula (2.3) yields 

E[S(T)I~r,~(S(T)); h*] = E[S(T); h*]E[I~v,~(S(T)); h* + 1] 

= E[S(T); h*]Pr[S(T) > Y; h* + I] 

= e~-°)rS(O)Pr[S(T) > Y; h* + 1]. 

Hence 

c(S(O), X ,  Y, T) = e-oTS(O)Pr[S(T) > Y; h* + 1] 

- e-~rXPr[S(T) > Y; h*]. (3.3) 

To evaluate the two probabilities in (3.3), note that 

E(In[S(T)/S(O)]; h* + k) = Ix(h* + k)T (3.4) 

= [8 - p + (k - 1/2)or2]T 

by (2.5). Thus 

Pr[S(T) > Y; h* + k] 

= Pr(In[S(T)/S(O)] > In[Y/S(O)]; h* + k) 

= 1 - * ( l n [ Y / s ( O ) ] - [ B - p + ( k - 1 / 2 ) ~ r 2 ] T )  

TrY- 

where ~(.)  denotes the standardized normal distribution function. Con- 
sequently, 
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{In(S/Y)+(g-P+~---2) T) 
c(S, X, Y, T) = e-°rSdP~ ~ 

{ln(S/Y)+ ( f i -P-22)  T) 
-e-~rXCb\ ~---X/~ , (3.6) 

which reduces to the celebrated Black-Scholes formula when X=Y and 
p=0.  

With similar ease, we can calculate 

p(S(O), X, Y, T) = E[e-~r(X - S(T))I~o,y)(S(T)); h*]. (3.7) 

The resulting formula is 

p(S, X, Y, T)= e-~rX*~ ~-V~ 

{ln(r'lS) - (8 - n + ~)T) 
-e-OrS•\" ~-'-~T . (3.8) 

4. Perpetual American Options 
Under the risk-neutral measure, the process {e-~-P)'S(t); t>-O} is a mar- 

tingale. Also, there exist two numbers 0 for which the process {e-~'S(t)°; 
t->O} is a martingale under the risk-neutral measure. From the condition 

S(O) ° = E[e-~tS(t)°; h*], (4.1) 

we obtain 

o r  

= ~x(h*)O + 1/213r202 (4.2) 

¢r202 + (28 - 29 - ~r2)0 - 28 = 0. (4.3) 
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The roots of  this quadratic equation are 

- ( 2 8  - 2p - 0.2) _ X/(28 - 2p - 0"2) 2 nt" 80.28 

Oo = 20.2 

and 

(4.4) 

- ( 2 8  - 2p - 0.2) + X,/(28 _ 2p - o'2) 2 + 80"28 

01 = 20.2 (4.5) 

Note that the quadratic function on the left-hand side of  (4.3) is negative 
for 0 = 0  (because 8>0)  and for 0=  1 (because 9>0) .  From this, it follows 
that 00<0 and 01>1. 

Applying the optional sampling theorem to the martingale 

{e-a'S(t)°'; t >- 0}, 

we [4] derive the value (at time 0) of  the perpetual American call option 
on the stock with exercise price X, which we denote as C(S(0),  X). The 
optimal exercise-hold boundary turns out to be 

01 
XI - - -  X, (4.6) 

0 1 -  I 

which is independent of the time variable, and the pricing formula is 

t / s \  °, 
= \2(11 (4.7) 

C(S ,X)  I S -  X S >-X~ 

Similarly, applying the optional sampling theorem to the martingale 

{e-~tS(t)°°; t >- 0}, 

we [4] obtain the value (at time 0) of  the perpetual American put option 
on the stock with exercise price X, P(S(O), X). The time-independent 
optimal exercise-hold boundary is 

-00  
x 0  = ~ x ,  ( 4 . 8 )  

1 - 0o  
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and 

I X - S S < X0 

p(s, x)  = { s \oo 

) 
(4.9) 

5. De fe r red  P e r p e t u a l  A m e r i c a n  Opt ions  

We are now ready to determine the value of  the perpetual American 
call option that cannot be exercised for the first n years, 

nlC(S(O), X) = E[e-~"C(S(n), X); h*]. (5.1) 

Writing (4.7) as 

C(S(n), X) = (X~ - X)Xl-°~S(n)°~ l(o.x~(S(n)) + IS(n) - X] l~x, ~(S(n)), 

and applying (3.1), we obtain 

ntC(S(O), X) = (XI - X)X f°'E[e-~"S(n) °'l<o~xo(S(n)); h*] 

+ c(S(O), X, X~, n). 

We can evaluate the expectation by applying the Factorization Lemma 
and Formula (4.1), 

E[e-~"S(n)°'l(o~o(S(n)); h*] = S(O)°'Pr[S(n) < XI; h* + 01]. (5.2) 

Now, by (2.4) and (4.2), 

E[In[S(n)/S(O)]; h* + 0~] = ix(h* + 0t)n 

= [ix(h*) + 0jcr2]n 

= ~ + - ~ - } n .  (5.3) 

Thus 

+ c(S, X, X~, n). (5.4) 
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Similarly, we can determine the value (at time 0) of the n-year deferred 
perpetual American put option on the stock with exercise price X, 

,IP(S(O), X) = E[e-~"P(S(n), X); h*]. (5.5) 

It follows from (4.9) that 

.~P(s, x )  = e ( s ,  x, xo, n) 

ls, ° + + T , , "  / 
+ 

/ X -  Xo)~oo ) * trV~n / (5.6) 

6. N o n . D i v i d e n d - P a y i n g  S tocks  

As the dividend yield rate O tends to 0, the exponent 0, tends to 1 and 
the optimal exercise-hold boundary XI tends to ~. It follows from (5.4) 
that 

lira ,IC(S, X) = S. 
9.-~.0 

The price of a deferred perpetual American call option on a non-dividend- 
paying stock is the current stock price. This result reaffirms the fact 
mentioned in Section 3 of the paper that an American call option on a 
non-dividend-paying stock is never optimally exercised before its ma- 
turity date. 

On the other hand, 

- 2 8  
l i m 0 0 -  cr 2 . (6,1) 
W-'0 

With p=0, (4.8) and (5.6) become 

28 
Xo = - - - ' - ~  X 

28 + 
(6.2) 
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and 

+ cx -  Xo CXolS   , , \ .  c6.3  

respectively. 

7. Execu t ive  S tock  Op t ions  

We were motivated in studying the pricing of deferred perpetual op- 
tions by the problem of valuing executive stock options [9]. These em- 
ployee stock options are American call options with a very long expiry 
date, but there are vesting restrictions prohibiting the executives to ex- 
ercise the options for several years. 

Suppose that an executive is granted an American call option that will 
expire m years from now, and there is a vesting period of n years, m>n. 
If the stock pays no dividends (p=0),  then the option value is the same 
as that of the m-year European call option, c(S(O), X, X, m), which does 
not depend on n. If p>0,  there is no closed-form formula for the option 
value; however, an upper bound is nlC(S(O), X), and a lower bound is 

, ic(s(o),  x)  - ,.~c(s(o), x) .  

8. Severa l  R i sky  Assets  

Our method for obtaining the risk-neutral measure or equivalent mar- 
tingale measure can be generalized to the case of several securities. For 
j=  1, 2 . . . . .  n, let Sj(t) denote the price of the j-th stock at time t and pj 
denote the constant instantaneous dividend-yield rate. Each vector 

h = ( h i ,  h2 . . . . .  hn) 
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determines a positive martingale 

{ Sl(t)h'''S2(t)h2"''Sz(t)h~ " } 
E[Sl(t)h ~ S2(t)h: ... S,,(t)ho ] , t >-- 0 

which, in turn, determines a change of  measure,  the Esscher measure of 
parameter  vector  h. The risk-neutral measure is the Esscher measure  with 
respect to which each process 

{e -I~-p')' St(t); t --> 0}, j = 1, 2 . . . .  , n, 

is a martingale.  For further elaboration, see the second half  o f  our paper 
[3]. 

9. Concluding Remark 
In his address to the 1989 Centennial  Celebration of  the Actuarial 

Profession in North America,  Dr. Tilley [8, p. 535] remarked:  "In case 
there are any doubters about the relevance of  martingales to actuarial 
science, one should note the new street address of  the headquarters office 
of  the Society of  Actuaries, the Amer ican  Academy of  Actuaries,  and 
the Conference of  Actuaries in Public Practice." We certainly concur 
with his sentiment,  as we have just  presented a story of  martingales.  

REFERENCES 

1. COX, J. C., AND ROSS, S. A. "The Valuation of Options for Alternative Sto- 
chastic Processes," Journal of Financial Economics 3 (1976): 145-66. 

2. FINNERTY, J. D.,  AND ROSE, M. "Arbitrage-Free Spread: A Consistent Measure 
of Relative Value," Journal of Portfolio Management 17, no. 3 (Spring 1991): 
65-77. 

3. GERBER, H. U., AND SHltJ, E. S. W. "Option Pricing by Esscher Transforms, ~ 
TSA XLVI (1994), in press. 

4. GERBER, H. U., ANn SHIU, E. S. W. "Martingale Approach to Pricing Perpetual 
American Options," Proceedings of the 4th AFIR International Colloquium, Or- 
lando, April 20-22, 1994, Vol. 2, pp. 659-89. 

5. HARRISON, J. M., AND KREPS, D. M. "Martingales and Arbitrage in Multiperiod 
Securities Markets," Journal of Economic Theory. 20 (1979): 381-408. 

6. HARRISON, J. M., AND PUSKA, S. "Martingales and Stochastic Integrals in the 
Theory of Continuous Trading," Stochastic Processes and Their Applications 11 
(1981): 215-60. 

7. HULL, J., AND WHITE, A. "Efficient Procedures for Valuing European and Amer- 
ican Path-Dependent Options, ~ Journal of Derivatives l, no. 1 (1993): 21-31. 



DISCUSSIOr~ 535 

8. TILLEY, J. A. "Whither Actuarial Science? Borrowing Concepts and Mathematics 
from Other Disciplines," 1989 Centennial Celebration Proceedings of the Ac- 
tuarial Profession in North America, 523-41. 

9. YOUNG, C. K. "What's the Right Black-Scholes Value?" Financial Executive 9, 
no. 5 (Sept./Oct., 1993): 57-9; Letters, 9, no. 6 (Nov./Dec. 1993): 5, 6, 57; 
and 10, no. 1 (Jan./Feb. 1994): 5-6.  

BEI~AMIN W. WLIRZ1FIURGER*: 

Dr. Tilley has provided a stimulating and novel approach to the very 
important problem of valuing American-style options. Section 1 of this 
discussion contrasts the TiUey approach with the mainstream and finds 
a fundamental appeal in the Tilley approach. It is most noteworthy that, 
despite the assertion in a leading textbook [5, p. 402] that "Unfortu- 
nately, American style options cannot be priced with Monte Carlo [i.e., 
stochastic] simulations," Tilley (page 499) does claim to "present a gen- 
eral algorithm for estimating the value of American options [via simu- 
lation]." Section 2, the key section in this discussion, raises some the- 
oretical and practical concerns about the Tilley solution for his stock 
option example. In general, finance/economic theory deals with models 
in which the decision-makers act optimally, subject to the then-available 
(the "ex ante") information. In Tilley's model, however, the decision- 
makers (the decision whether to exercise the option or to hold) do take 
advantage of ex post information (information not yet revealed to the 
market), but do so with arbitrary rules of thumb that are clearly sub- 
optimal. Section 3 follows with some brief comments on the tables. 

The Tilley algorithm is intended to be applicable to the valuation of 
American options on any instrument. Section 4 notes some potential 
problems in extending the analysis from the stock option example to the 
more complex case of fixed-income/term structure dynamics. Tilley's 
example relies on his ability to order the stock prices, but the yield curves 
within many term structure models (for example, even the single-factor 
version of Heath, Jarrow and Morton [3]) do not unambiguously lend 
themselves to a simple ordering. Section 5 concludes. 

*Dr. Wurzburger, not a member of the Society, is in the Investment Policy and Research 
Department at the John Hancock Mutual Life Insurance Company. 
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1. The Lattice Approach and  the Fundamental  Appeal 
of  the Tilley Stochastic Approach 

Many researchers advocate valuing American options via backward 
recursion on a connected lattice, say, a binomial lattice [4] or a trinomial 
lattice [6]. These researchers seem to be relatively unconcerned that strong 
restrictions must be imposed on the underlying term structure dynamics 
in order that the lattice structure be applicable (that is, in order that the 
paths recombine). Ho and Lee [4] represent an extreme version of this 
lack of concern. Although the Ho and Lee algorithm implicitly requires 
(in the continuous-time limit) that yield curves shift in a parallel fashion, 
Ho and Lee do not even mention that they are implicitly imposing this 
strong restriction on the term structure dynamics. 

Tilley represents an important counterweight to the prevailing school. 
His stated goal is to value an American option under any (arbitrage-free) 
model of the asset dynamics. In my view, Tilley has his priorities right. 
We should not adopt term structure models just because they conform 
to our solution algorithms; we should try to create algorithms that can 
handle our views about the term structure dynamics. 

Having mentioned that the Tilley algorithm is intended to be applicable 
to any term structure model, we should also cite the Amin-Morton [1] 
exponential tree (all 2 ~ possible paths), a method that can handle any 
term structure dynamics. The Amin-Morton technique converges onto 
the true value as the step size shrinks; the problem is that the tree grows 
exponentially, and computer limitations therefore restrict us to a small 
number of periods. (Tilley--not in reference to Amin-Morton--char- 
acterizes [page 504] the exponential tree as a "computational infeasibil- 
ity," but Amin and Morton achieve feasibility by restricting themselves 
to 7 to 10 periods.) The brute-force Amin-Morton technique does lack 
Tilley's ingenuity, but it also avoids the arbitrary rules, random scenar- 
ios, and computer programming complexity associated with the Tilley 
algorithm. It would be interesting if Tilley would report the computer 
run time for his technique, so we could determine which of the two 
(Amin-Morton or Tilley) provides the better accuracy for a given com- 
puter run time. 
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2. The Tilley Rule: A Suboptimal Processor  
o f  Ex Pos t  Information 

The "tentative" decision (page 505, step 5), whether to exercise the 
option or to hold, does rely on ex post information. The tentative de- 
cision is in turn transformed into a "new" (that is, final) decision; the 
transforming rule (steps 6 and 7) is asserted rather than derived via 
optimization. 

a. Incorpora t ion  o f  Ex Pos t  Information 

The tentative exercise decision (step 5) relies on information about 
what set of paths actually emanates from the bundle, that is, information 
about which subset of the feasible scenarios was in fact randomly drawn 
by the computer. This represents information that is not available to the 
option holder at the exercise decision time. 

Let us illustrate with an artificial numerical example. Suppose we are 
dealing with a put option at a strike price of 100, and consider a ran- 
domly generated bundle of 50 paths that emanate from nodes where the 
stock price is currently 90. Suppose the process that generates stock prices 
has an underlying drift of 5 - - the  theoretical expected value of the future 
stock price is 95. In this finite random sample of size 50, however, the 
expected value of 95 will not be exactly realized--suppose, say, the 
average price of these particular 50 paths ends up at 85.t This infor- 
mation about the future, that stock prices will in fact be falling on av- 
erage, will induce the put-option owners to hold instead of exercising 
early. (They know something that the market, which expects a mean of 
95, does not know.) This reliance on "ex post" information allows the 
option owners to make excellent exercise/hold decisions and contributes 
an upward bias to the option valuation. 

~The technique of  antithetic variables (which Tilley [1] recommends in conjunction with 
stratified sampling) can usually ensure that the sample mean is equal to the theoretical ex- 
pectation. (In his present paper, Tilley recommends stratified sampling but does not refer to 
antithetic variables.) It is not, however, sufficient to just ensure that the sample mean (of the 
50 paths) is equal to the theoretical mean. The higher moments are also relevant. For example, 
a bundle in which the sample variance exceeds the theoretical variance is likely to induce the 
decision-maker not to exercise the opt ion--and thus take advantage of ex post information. 
It is possible that the recommended stratified sampling may mitigate this sort of  problem, but 
it would be helpful for the author to provide more details on this. 
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b. The Imperfect Rule 

Having ordered the states (back in step 1) and having made a set of 
tentative exercise decisions, the author proceeds to construct a sequence 
of O's and l 's,  where the O's indicate a "tentative" hold decision, and 
the 1 's a "tentative" exercise decision. The l ' s  tend to the right of the 
sequence, at the nodes with the lower stock prices. He then proceeds to 
identify that point in the sequence at which the 1 's begin to dominate; 
the transition point is denoted as a "sharp boundary." 

The Tilley rule for identifying the "sharp boundary" (the first rule is 
on page 505, while page 506 offers an alternative rule) is asserted ar- 
bitrarily, rather than derived from any maximizing rule or general prin- 
ciple of statistical inference. His first rule, for example, identifies the 
"sharp boundary" as "the start of the first string of O's, the length of 
which exceeds the length of every subsequent string of O's." 

While his rule does seem reasonable for his artificial example, namely, 
the sequence of O's and l ' s  on page 505, I thought of the following 
example in which his rule looks less plausible. 

00...00011011011011011011011000 ,L 11... 11 
The arrow indicates where his rule (actually both his rules) would in- 

dicate that the l ' s  begin to dominate; I submit, however, that most ob- 
servers would identify the general switch to l ' s  as occurring much fur- 
ther to the left. An imperfect rule is a factor tending to downwardly bias 
the estimate of the option premium. 

In his primary numerical example [page 512], Tilley overestimates the 
option value: an estimate of $7.97 versus a true (via Cox-Ross-Rubin- 
stein) value of $7.94. In this example, the upward bias from the ex post 
information more than offsets the downward bias from the imperfect rule. 
Tilley seems to welcome the partially offsetting downward bias from the 
imperfect rule and advises [page 515] not to try too hard to perfect the 
rule. 

c. C o m m e n t s  

I regard this reliance on a deliberately imperfect rule as a way of  par- 
tially offsetting another source of upward bias as a very dicey proce- 
dure. How did the author come to advocate his recommended rule? Did 
he experiment with better rules and with worse rules, and reject the better 
(less imperfect) roles because they contributed insufficient downward bias 
to offset the upward bias from the ex post infonuation, and reject the 
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worse rules because they tended to provide too much downward bias? 
If that is the case, we should be wary of extending the rule to another 
context (for example, the fixed income) without first somehow verifying 
that the biases also do roughly offset in that context. 

The author does refer [pages 514 and 515] to the presence of biases. 
I hope that our discussion about ex ante and ex post information has 
helped clarify the conceptual underpinnings of the author's approach. 

From a methodological perspective, it is probably easier to accept the 
reliance on an imperfect rule (for translating the "tentative" decision into 
a "sharp boundary") than to accept the utilization of the ex post infor- 
mation (in the construction of the "tentative" decision.) It is not that 
unusual to find models in financial economics that incorporate an im- 
perfect suboptimal rule, as it is often very difficult to model optimal 
behavior. (This in turn suggests that economic decision-makers may not 
in fact actually optimize.) What is really unusual is that we are dealing 
with a model in which the agents can take advantage of ex post information. 

3. The Tables 

Tables 2 through 4 all display the interesting property that the bias 
becomes negative as the put option becomes more in-the-money. I 'd be 
interested in Dr. Tilley's explanation of this phenomenon. 

The transition from Table 2 to Table 3 involves two changes: a change 
in the Tilley "bundling parameter alpha," as well as a change in the rule 
for selecting the ~sharp boundary." It would be interesting to see the 
separate impacts of these two changes in procedure. 

4. Extending the Tilley P r o c e d u r e  b e y o n d  the Stock Price 
Context: The Order ing  Prob lem 

The Tilley algorithm for the stock option example relies on the ability 
to order the states in a special way: when he divides and bundles the 
states in accord with this ordering, the states within a bundle are similar 
(see page 504, "reorder the stock price paths by stock p r i c e . . .  "). While 
it is clear how to order stock prices, it is by no means obvious how the 
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user ought to order and bundle yield curves. The author should offer the 
reader detailed guidance on how to order yield curves. 2 

To better appreciate the problem, consider the Heath-Jarrow-Morton 
model (even the single-factor version) of the term structure dynamics. 
(This model has attracted much attention, both from academics as well 
as from some investment consulting firms.) Heath, Jarrow and Morton 
do not require that the short rate be Markovian, and the relevant history 
of the realized dynamics cannot be captured by a single yield. Since the 
task of ordering the states basically involves summarizing each state by 
a single number, the ordering step appears problematic in the Heath- 
Jarrow-Morton context. 

The need to order the states would not cause any problems for the less 
general Hull and White or Ho and Lee term structure models. Hull and 
White restrict themselves to Markovian models, so the short rate captures 
all the relevant history, and it would therefore be reasonable to order 
states according to the short rate. The same ordering is also applicable 
to Ho and Lee, inasmuch as Ho and Lee can be regarded as a special 
case of Hull and White [see Hull and White]. 

5. Concluding R e m a r k s  

At the beginning of this discussion, we quoted the Hull textbook that 
"American options cannot be priced with Monte Carlo methods." Til- 
ley's algorithm does price American options with Monte Carlo methods. 
The algorithm is, however, subject to some serious shortcomings: it can 
be viewed as a suboptimal processor of ex post information, and it is 

"Set theory-- the "Well Ordering Theorem"--does  assure us that every set (for example, 
the set of yield curves) can be ordered. (The proof involves Zorn 's  Lemma/Axiom of Choice.) 
The question is how to order the states in a meaningful way, so that the states in the same 
bundle are similar. 

Tilley's stock example readily lends itself to a meaningful ordering because he assumes that 
stock prices follow the Black-Scholes lognormal and are therefore Markovian: in order to 
determine the future distribution, we need only know the current pr ice-- there is no relevant 
incremental information in the path history. The empirical evidence indicates that stock prices 
are in fact non-Markovian, as a period of high volatility is likely to be followed by more high 
volatility. (For a nice survey on this topic, see Engle [2].) Nevertheless, the assumption that 
the stock price is Markovian would probably be regarded by most people as less problematical 
than the assumption that the short rate is Markovian. 

Tilley (page 518)does refer to complexities arising in the "multifactor case," but we have 
noted that even the single-factor Heath-.larrow-Morton model of the term structure does raise 
serious complexities for ordering. My point about "single-factor/multifactor ~ might just be 
reflective of a discrepancy in terminology; it is, however, standard in the literature to refer 
to the non-Markovian Heath-Jarrow-Morton model as a single-factor model. 
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not readily generalizable to the non-Markovian case. (For the Markovian 
case, we do not need to rely on Monte Carlo methods, but can instead 
use Hull and White or other similar methods.)  Despite these problems, 
the author deserves credit and recognition for do ing- -a lbe i t  imper- 
f e c t l y - s o m e t h i n g  that textbooks said could not be done. 
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( A U T H O R ' S  REVIEW OF D I S C U S S I O N S )  

JAMES A. TILLEY: 

I would like to thank Dr. Carriere, Drs. Gerber  and Shiu, and Dr. 
Wurzburger for their discussions of  my paper. 

Drs. Gerber and Shiu present results on the exact analytical evaluation 
of  certain perpetual American options utilizing an equivalent-martingale- 
measure technique they have developed. Their  work provides a mathe- 
matical upper bound on the value of  the corresponding finite-expiration 
American option. They also derive a lower bound for any such option 
by applying their technique to the valuation o f  a perpetual American 
option with a deferred start. Thus, the results of  Drs. Gerber  and Shiu 
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offer a "reasonableness test" of a numerical procedure for evaluating the 
prices of American options in the class to which their work applies. 

Many readers of my paper have done work of their own to reproduce 
the results shown in the paper and to investigate extensions of the tech- 
niques that I have developed. Dr. Carriere is the only one to have sub- 
mitted a formal written discussion. I consider his discussion valuable in 
two important respects. First, he correctly states that the valuation of 
American options is a "stopping time" problem and that the exercise- 
hold indicator function gives the stopping times. His mathematical de- 
scription of  the problem is elegant and concise, and his characterization 
of my approach is accurate. 

Second, Dr. Carriere has investigated variations of the algorithm pre- 
sented in my paper, concentrating on nonlinear regression analysis to 
evaluate the conditional expectations needed to price the American op- 
tion. He indicates that after 1,000 samples of 5,040 paths each (the same 
experiment reported in my paper), he finds a positive bias of +2.2 cents 
in his estimator. By multiplying his reported standard deviation of the 
mean by the square root of 1,000, a standard error of the sample-size- 
5,040 premium estimator equal to about 8.2 cents is found, 2.9 cents 
larger than the 5.3-cent standard error reported in my paper. I believe 
that a smaller standard error is achievable when the backward induction 
method is used to compute only the exercise-hold indicator function than 
when it is used to determine directly the option premium. The intrinsic 
value of the option is known with complete accuracy at each epoch on 
each of the simulated paths of stock prices. That information should be 
used in the most efficient way possible. Pushing all the estimation error, 
the source of which is the finite size of the sample of paths, into the 
determination of the exercise-hold indicator function achieves that 
efficiency. 

Dr. Wurzburger makes comments, raises questions, and notes con- 
cerns in four areas. I address each of these broad areas. To begin with, 
I would like to note that a demonstration that American options can be 
valued properly by means of a Monte Carlo simulation, no matter how 
simple the example (say, a one-factor Markovian process), does fully 
"shatter the myth that American options cannot be evaluated by simu- 
lations," in the words of Drs. Gerber and Shiu. However, Dr. Wurz- 
burger notes correctly that it is important to determine whether the sim- 
ulation method is efficient and extendible to more complicated situations, 
such as Heath-Jarrow-Morton (HJM) term structure processes. 
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I disagree with Dr. Wurzburger's characterization of the simulation 
technique in terms of "arbitrary rules, random scenarios, and computer 
programming complexity." I comment later on the use of rules to de- 
termine a sharp boundary between the decision to exercise the option 
and the decision to hold the option. As to randomness, everyone prefers 
to avoid simulation approaches, but it is well-known that the computa- 
tional intractability of "high-dimensional" integration problems, of which 
the valuation of American options for realistic term structure processes 
is an example, is broken via randomization. In my opinion, Dr. Wurz- 
burger is right to favor realistic, and necessarily complicated, models to 
unrealistically simplistic models that have the apparent advantage of 
computational ease. Realistic models almost invariably require the uti- 
lization of simulation. 

I have personally implemented the Amin-Morton method to which Dr. 
Wurzburger refers. The computer program for the Amin-Morton method 
cannot be characterized as either shorter or less complex than the pro- 
gram that implements the method described in my paper--in my view, 
neither is particularly long or complex. The Amin-Morton paper is valu- 
able in demonstrating that it may not always be necessary to use a very 
large number of periods to gain acceptable accuracy, but even Amin and 
Morton prefer to be able to use a much, much larger number of periods 
than ten. Many problems encountered on a derivatives trading desk de- 
mand that a considerably larger number of periods be analyzed. The 
computational infeasibility of an exponential tree is inescapable. Alter- 
native approaches must be developed. 

Dr. Wurzburger's references to "incorporation of ex post information" 
and "suboptimal processor of ex post information" merit commentary. 
For even the most general problem, computing the conditional expec- 
tation described in substep 4 relies only on historical and current infor- 
mation and on assumptions made about the stochastic process governing 
the evolution of stock prices in the future--in other words, it relies on 
ex ante information only. The technique is essentially equivalent to cal- 
culating the discounted expectation of one-period-ahead prices in any 
multinomial lattice. In a lattice, two or more paths emerge from each 
node. In the typical simulation model, only a single path emerges from 
any epoch on any path. In general, more than a single path must be used 
to calculate an option's holding value accurately. To overcome this prob- 
lem in the simulation model, paths that are considered "nearly" the same 
are bundled together at each epoch, and then all the paths in a bundle 
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are used to estimate the required mathematical expectation. By this pro- 
cedure, in effect, a complicated lattice is created. 

The results from the simulation approximate the exact answer. The 
simulation methodology has validity if the error tends to zero as the num- 
ber of paths tends to infinity. For the example in my paper, as the total 
number of paths in the simulation is increased to infinity, one can both 
shrink the "radius" of the bundle to zero and increase the number of 
paths within the bundle to infinity. In that limit, it can be said that the 
agent makes his or her exercise decision by simulating a number of paths 
that originate from the current observable stock price. In other words, 
only ex ante information is used. While the description of this procedure 
has the right limiting behavior, one might argue that it remains to be 
shown that the actual approximations also have the right limiting be- 
havior. I leave the proofs to mathematicians who have the powerful tools 
required to prove such limit theorems. In the interim, we should be highly 
encouraged by the empirical results that I have presented. They provide 
a strong inducement to undertake more empirical testing and more the- 
oretical analysis of the simulation methodology. 

Dr. Wurzburger's numerical example serves a useful purpose, despite 
the deliberate hyperbole. With any reasonable choice of stock price vol- 
atility, a 95 versus 85 discrepancy in the expected one-period-ahead stock 
price would be a highly unlikely statistical event, even for a sample size 
as small as 50 paths. However, for sake of example, suppose the event 
does occur. The resulting error in the option premium estimate, an up- 
ward bias as Dr. Wurzburger correctly concludes, arises because math- 
ematical optimization techniques are efficient at exploiting biases inher- 
ent in finite-sample-size statistical fluctuations from the mean. The 
inaccuracy originates in the finiteness of the sample size, the affliction 
of any Monte Carlo method no matter how carefully or cleverly variance 
is controlled, but is made more prominent in American option valuation 
because it is an optimization problem. Dr. Carriere discovered the same 
phenomenon in his independent exploration of several variations on the 
simulation methodology presented in my paper. 

Dr. Wurzburger expresses a concern that I have imposed a rule that 
requires the agent to look forward and that this invalidates, or severely 
weakens, my analysis. As most recently pointed out by Dr. Carriere, the 
time at which an agent optimally exercises his or her American option 
is a "stopping time." This means that the determination whether to ex- 
ercise or to hold the option can depend only upon information that the 
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agent has up to that date. Although the agent clearly cannot look into 
the future, he or she is permitted to model the future and to investigate 
what the model states about the future. There should be no objection to 
a procedure in which the agent at any point in time, starting from the 
then-existing yield curve or stock price, simulates future yield curves or 
stock prices and uses that simulation to determine optimal exercise, and 
hence option value. In fact, this procedure is at the heart of much of 
today's well-accepted and heavily used option-pricing methodology. 

Dr. Wurzburger's comments about the rules for creating a sharp ex- 
ercise-hold boundary are similar to those I have received from many 
people who have reproduced the results of my paper. I did indeed ex- 
periment with different reasonable rules, but I did not find any that gave 
bad results. Nor does it seem that anybody else did. The results reported 
by Dr. Carriere are quite close to mine. Why are option premium esti- 
mates at least somewhat sensitive to whether or not a "sharp" boundary 
is determined, but relatively insensitive to the particular rules employed 
for determining a sharp boundary? The reasons are supplied throughout 
my paper. I collect them here, and express them a little differently, to 
respond to Dr. Wurzburger's inquiry. 

Solving the option valuation problem is equivalent to determining the 
boundary point, line, or surface (depending on the dimensionality of the 
problem) between exercise and hold that optimizes the value of the pre- 
mium estimator equation shown in my paper. (As noted above, boundary 
determination algorithms must be based on ex ante information only.) 
In fact, option pricing is a problem in the calculus of variations. Because 
the true solution is "optimal," one knows that small deviations in the 
boundary away from the optimal boundary will generally result in very 
small deviations in the option premium away from its true value. In the 
usual language of the ordinary calculus, the first derivative of a function 
is zero at a local extremum. Unless the second derivative at the extre- 
mum is large in magnitude, small deviations away from the extremum 
result only in small changes in the value of the function away from its 
value at the extremum. Thus, different sensible rules for determining a 
sharp boundary between exercise and hold are very likely to produce 
essentially the same option premium. If that is so, why use any rules at 
all to establish a sharp boundary? Why not rely on the "transition zone" 
estimator? 

The answer lies in the desire to accelerate the convergence of the op- 
tion premium estimation. In my paper, I note that substeps 6 and 7 (the 
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sharp-boundary rules) are completely unnecessary in the limit of an in- 
finite number of paths, assuming that the limit is taken in a proper man- 
ner. Substeps 6 and 7 are very helpful in accelerating the convergence. 
In practice, one utilizes only "modest" sample sizes between 1,000 and 
100,000, and thus wants to enhance convergence. My choice of sharp- 
boundary rules based on dominant strings of O's and l 's  certainly is ar- 
bitrary, but hopefully is reasonable. Several people have pointed out a 
rule that executes faster on a computer and that, incidentally, cures the 
difficulty described in Dr. Wurzburger's example. The rule is easily stated 
as moving all the O's in the string to the left and all the 1 's to the right. 
The boundary is then "obvious" and gives balance to all the O's and l ' s  
computed in substep 5. For the reason described above, use of this im- 
proved rule does not materially alter the estimates of the option premiums. 

I regard the discussion in my paper of the source of bias as essentially 
complete. Ignoring the specific algorithm in the paper for the moment, 
it can be stated that the exact solution to the calculus-of-variations prob- 
lem for any finite sample of paths produces an upwardly biased estimator 
of the true option premium. The upward bias tends to zero as the sample 
size increases and is equal to zero in the limit of infinite sample size. 
However, the calculus-of-variations problem for the finite sample of paths 
seems to be much too hard to solve. One must resort to a good approx- 
imation of the type described in my paper--namely,  bundling paths to 
implement the traditional backward induction procedure, and then uti- 
lizing some sharp-boundary rule to accelerate convergence. The specific 
algorithm adopted may itself introduce some bias but, if constructed 
properly and if the sample size is large enough, should produce an option 
premium estimate that is close to the finite-sample-size optimal calculus- 
of-variations solution. However, the direction of the bias relative to the 
true option premium is indeterminate, 

I accept Dr. Wurzburger's criticism of my comment about not trying 
too hard to perfect the approximation to the finite-sample-size optimal 
calculus-of-variations solution. One approach would be to try to perfect 
the approximation, and then use as large a sample of paths as is com- 
putationally feasible in order to reduce the positive bias to an acceptable 
level. Another approach would be to try to develop a different algorithm 
that has zero bias, even for finite sample size. Positive bias in the pre- 
mium estimator can probably be reduced by creating a distinct bundle 
for each path at each epoch and ensuring that the paths included in that 
bundle produce very nearly the proper one-period-ahead expected stock 
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price. Utilizing the suggested sharp-boundary rule described above might 
eliminate the source of negative bias. I do not know whether it is possible 
to construct a finite-sample estimator that has zero bias. 

Dr. Wurzburger correctly points out that more research needs to be 
undertaken in determining the bundling algorithm. The bundling algo- 
rithm must address the multidimensional nature of the stochastic process 
describing the dynamics of the yield curve or of the option. The radius 
of the bundles must tend to zero as the number of paths in the simulation 
increases. As Dr. Wurzburger's comments might suggest, it is also de- 
sirable that the metric used to compute these radii fully captures the rel- 
evant dynamic process. For the simple stock case presented in my paper, 
the appropriate metric is the usual metric on one-dimensional Euclidean 
space; for path-average (Asian) options on stocks, a metric that incor- 
porates two dimensions is necessary; for yield-curve-based options, it 
would appear that a metric measuring the distance between entire yield 
curves is necessary, although I have obtained good results using a one- 
dimensional metric on the option's payoff formula. I would like to com- 
ment in a little more detail on some of these more complicated situations 
in which the stochastic processes are non-Markovian. 

First, I have done extensive work during the last year with Professor 
Neave of  Queen's University, who has developed numerical algorithms 
to evaluate path-average stock options exactly. The valuation of such 
options provides a good test of the simulation/bundling methods de- 
scribed in my paper because the underlying process is non-Markovian. 
Yet, the process can be made Markovian by considering both the current 
stock price and the current value of the path-average stock price to define 
the current state of the world. The American option valuation problem 
for path-average stock options thus requires bundling in two dimensions: 
stock price in one dimension and path-average stock price in the other 
dimension. The necessary ordering and sharp-boundary algorithms then 
become straightforward extensions of the one-dimensional versions pre- 
sented in my paper. Acceptable commercial accuracy, equal to a fraction 
of the option's bid-offer spread in the market, is achievable in many 
situations by using simulations based on 10,000 paths of stock prices. 
My research on this problem has highlighted the importance of estimat- 
ing a sharp boundary line between exercise and hold for some classes 
of path-average options. 
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Second, whether the underlying stochastic process is Markovian or not 
or whether it is single-factor or multifactor, a lower bound on the pre- 
mium for an3, American option, ignoring the upward bias due to the 
finiteness of the sample size, can be found by a straightforward appli- 
cation of the method described in my paper. Suppose the payoff formula 
for the option isf. Hence, the option's intrinsic value is given by max[0, f ] .  
The paths are ordered by the value of f and then arranged into appropriate 
bundles on the basis of the ordered values of f. If the process for f is 
non-Markovian and/or multifactor, the option premium obtained by this 
application of the techniques described in my paper must, in the limit 
of infinite sample size, be a lower bound to the true option premium, 
because the determination of the boundary at each epoch as a point, 
instead of a line or a surface, is suboptimal. The lower bound can be 
improved by bundling in two dimensions: the payoff function f in one 
dimension and the short-term interest rate, for example, in the other 
dimension. 

Third, a fully general Heath-Jarrow-Morton model of the term struc- 
ture of interest rates is non-Markovian, even for a one-factor version of 
the model! The algorithm presented in my paper can be modified by 
creating a distinct bundle at each epoch on each path. As always, the 
paths included in a bundle must be "close" to each other. In this situ- 
ation, the appropriate definition of closeness, that is, the choice of met- 
tic, should relate to the entire yield curve. Instead of the entire yield 
curve, one might take "key benchmark" maturities along the yield curve 
and include paths in the bundle only if the yields at all the key benchmark 
maturities are sufficiently close. Unfortunately, even using only bench- 
mark maturities, the bundling algorithm becomes a high-dimensional 
"nearest-neighbor" problem. It is computationally intensive, even with 
the massively parallel processing equipment available today. However, 
I have found that the lower bound obtained by using the one-dimensional 
metric based on the option payoff formula suffices for many yield-curve- 
based options. 

I have focused on simulation models because many realistic features 
of the underlying stochastic processes can generally be incorporated quite 
easily. For most sufficiently realistic models, simulation is the natural 
method for solving security valuation problems. Sometimes, it is the only 
method available. Variance-reduction techniques can render simulation 
models quite efficient for securities with path-dependent payoffs and for 
non-path-dependent European options. Efficient algorithms for valuing 
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American options accurately in these realistic models need to be devel- 
oped. A principal purpose of my paper was to induce many different 
researchers to bring their brainpower to this important problem. I am 
gratified by the number and quality of responses I have received, both 
the formal written discussions presented in these Transactions and the 
informal discussions I have had with many academics and practitioners. 




