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ABSTRACT 

Cash-flow matching, or dedication, is an important and practical tool for 
managing interest rate risk. This paper applies the duality theory of linear 
programming to provide insights for generalizing and solving the cash-flow 
matching problem. 

I. INTRODUCTION 

Interest rate fluctuations are a major risk for the insurance and pension 
industry. If assets are invested shorter than the corresponding liabilities, 
reinvestment risk arises because interest rates can fall. On the other hand, 
if assets are longer than liabilities, then liquidation risk or market risk exists 
because interest rates can rise. The concept of cash-flow matching is an 
important and practical tool for managing interest rate risk (C-3 risk). 

Suppose that at time t = 0, a decision-maker (an insurer or a pension fund 
manager) has a stream of liability obligations of amount l, to be paid at time 
t, t =  1, 2, 3 . . . . .  (For simplicity, we assume all cash flows occur at the 
end of time periods.) These liability cash flows {l,} are assumed to be fixed 
and certain. The decision-maker faces the problem of constructing from the 
currently available universe of noncallable and default-free fixed-income 
securities an investment portfolio that will meet the future liability payments. 
With a finite amount of resources, the decision-maker seeks an initial in- 
vestment portfolio with minimum cost such that its cash flow will at least 
meet the projected liability payment for each and every period in the planning 
horizon. 

Letpk denote the current price for one unit of the k-th security and c,., its 
cash flow at time t, t =  1, 2, 3, . . . .  Let nk denote the number of units of 
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the k-th security to be purchased. The decision-maker may seek to find the 
investment portfolio {nk} by minimizing total cost 

~, nk Pk (1.1) 
k 

under the constraints 

and 

~, nk Ck., >-- l, for all t (1.2) 
k 

n~, >- 0 for all k. 

Thus the decision-maker's problem can be formulated as a linear program. 
A main advantage of the cash-flow matching technique is its simplicity. 

To implement the strategy, the decision-maker needs only to know the prices 
of the fixed-income securities available in the marketplace and their future 
cash flows. The decision-maker does not need to worry about the term 
structure of interest rates, duration, convexity, and so on. However, this 
paper shows that the term structure of interest rates actually plays an intrinsic 
role in the method of cash-flow matching. The concept of term structure 
arises naturally as we consider the dual problem of the linear program above. 
By studying the dual linear program, we show how an important and useful 
extension of the classical formulation can be developed. 

Discussions on and numerical examples of the method of cash-flow match- 
ing and related topics can be found in [1], [3], [4], [5, Chapter 19], [6, 
Chapter 14], [7], [8, Chapter 6], [10], [11, Chapter 7], [13], [15], [16], 
[17], [18], [19], [21], [22], [23], and [24]. 

II. DUALITY THEORY OF LINEAR PROGRAMMING 

The basic tool for this paper is the duality theory of linear programming, 
which we now briefly review. Let m and n be positive integers and let 
A = (aij) be a given real m by n matrix. Let b and c be given (column) 
vectors in R" and R", respectively. (Zero vectors are denoted by 0, the 
dimension of which is to be determined by the context.) The standard (pri- 
mal) linear programming problem seeks to determine a vector x->0 in R" 
which satisfies the system of m linear inequalities 

Ax -- b (2.1) 
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(such a vector x is called feasible) and maximizes the so-called objective 
function 

erx = c l x l  + CzX2 + . . .  + cnx, .  (2.2) 

The dual of this problem is to find a vector y_>0 in R" that satisfies the 
system of n linear inequalities 

Ary > c (2.3) 

(such a vector y is called a dual feasible vector) and minimizes the objective 
function 

bry  = b o ' l  + b2Y2 + . . .  + bmy,~. (2.4) 

It is not difficult to verify that the dual of a dual problem is the primal 
problem. 

Obviously, whenever x and y are feasible, 

crx < (yrA)x < y r ( A x )  < yrb  = bry. 

Consequently, 

sup {crx I x -> 0 in R" and A x < b} 
-< inf {bry l Y -> 0 in R" and Ary  ~ c}, (2.5) 

where an empty supremum equals - = and an empty infimum equals + ®. 
The celebrated fundamenta l  theorem o f  l i n e a r p r o g r a m m i n g  ([12, p. 138], 
[9, p. 62]) states that inequality (2.5) is in fact an equality: 

sup {cTx [ X > 0 in R" and A x -< b} 
= inf {bry l Y > o in R" and Ary  --> C}, (2.6) 

unless both the primal and dual problems are infeasible. 
An equality r = s  is equivalent to the pair of simultaneous inequalities: 

r<_s and - r <  - s .  Each real number r can be written as the difference of 
two non-negative numbers, r = r  + - r -  with r+>0,  r - > 0 .  Hence the fun- 
damental theorem of linear programming can be modified as: 

sup {crx [ x unconstrained in sign in R" and A x _< b} 
= inf {bry [ y > 0 in R m and Ary  = c}, (2.7) 

unless both the primal and dual problems are infeasible. For more detail, 
see Section 6.4 of [12] or Section 1.8 of [9]. 
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III. TERM STRUCTURE OF INTEREST RATES 

The linear program formulated in Section I seeks a non-negative vector 
n that minimizes 

under the constraint 

where 

P = ( P l ,  P2  . . . .  ) r ,  

n = ( n , , n 2  . . . .  )T, 

! = ( l l , / 2  . . . .  Y 

C = (Ci,]). 

We call this linear program LP1. 
The problem dual to LP1 is: 

pr n (3.1) 

C~n _ l, (3.2) 

Maximize irv 
v > 0 (3.3) 

subject to 

Cv < p. (3.4) 

We call this linear program LP*I .  How is v interpreted? 
For t =  1, 2, 3 . . . .  , let i, denote the t-period spot rate, that is, (1 +i , ) - '  

is the (present) value at time 0 for $1 to be paid at time t [8, p. 282]. The 
shape of the graph of i, versus t, t>0,  is known as the term structure of 
interest rates ([2, p. 220], [8, p. 282], [14, p. 154]). In a perfect capital 
market, in which there are no taxes, no transaction costs, no arbitrage op- 
portunities, and so on, each noncallable and default-free fixed-income se- 
curity is priced by the spot rates {i,}; that is, for each k, 

cA;, (3.5) 
Pk = (1 + i,) c 

(See also Section II of [20].) Since the vector u =  [(1 +il)  -1, (1 +i2) -2 . . . .  ]r 
satisfies the equation Cu = p, it is a feasible vector, and by inequality (2.5), 
the sum 
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It (3.6) lru 5: 
"7 (1 + i,)' 

is a lower bound for the minimum cost (3.1) of LP1. This is hardly surprising 
since the sum (3.6) is merely the present value of the liability cash flows. 

It seems that an economic interpretation for a vector v, which is feasible 
with respect to LP*I, is that it is a vector of discount factors and the 
objective function lrv gives the "present value" of the liability cash flows. 
However, this is not quite correct. Let 

v =  (vl, v2 . . . . .  vt . . . .  )r; 

if {v,} are discount factors, then we should have the monotonicity condition 

vt > v2 > ... :" vt ... -> 0. ( 3 . 7 )  

But (3.7) is nowhere to be found in LP*I. 
For example, let !=  (1, 12) r, p = (1, 1) r and 

(lo 1 011  
= :.::1. 

The optimal feasible vector v for LP*I is v = (0, 0.9009) r, which does not 
satisfy (3.7). 

re. CARRV-FOI~WARO ALLOWED 

The absence of condition (3.7) is a symptom of a deficiency in the classical 
cash-flow matching model. The requirement that Crn>_l is unnecessarily 
restrictive. The model should at least allow for the carry-forward of positive 
cash balances at zero interest rate. In this section we show that, if this feature 
is included in the model, condition (3.7) is automatically satisfied. It then 
follows from the fundamental theorem of linear programming that the min- 
imum cost of the asset portfolio is the same as the maximum "present value'" 
of the liability cash flows. 

We now generalize the model by allowing the carry-forward of positive 
cash balances at zero or low interest rate. The cost of the optimal investment 
portfolio of the new model should be at least as low as that of the old model. 
Let r be the dimension of the liability vector ! and assume that the asset 
cash-flow matrix C consists of I- columns. Define 

g = Crn - ! (4.1) 
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and let g =  (gl, g2 . . . .  , g,)r. For t---1, 2, 3, . . . ,  " r -1 ,  let r, denote a 
conservative estimate of the one-period reinvestment interest rate at time t. 
For t--- 1, 2, 3, . . . ,  r, let b, denote the (cumulative) cash balance at time t; 
that is, bl =g~ and for t = 1, 2, 3, . . . ,  "r- 1, 

b,÷l = g,+a + (1 + r,) b,. (4.2) 

The decision-maker is to seek an investment portfolio .{nk[nk>_O}, which min- 
imizes the cost 

prn = ~]pknk 
k 

while subject to the condition that the cash balances {b,} are to be non- 
negative. (The formulation given in Section I is a special case of the present 
model with rl =r2 = ... = - 1 . )  

Define 

- 1  0 0 . 0 0 / 
l + r ~  - 1 0 . 0 0 

0 1 +r2 - 1  0 o 
R = • . . . .  ( 4 . 3 )  

b () 1) 1+r,_1 - i  

and b =  (bl, b2, . . . .  b,) r. The generalized problem is: 

Minimize prn 
n > 0 ,  b _ > 0  

subject to 

(4.4) 

, / 4 5 ,  

We call this linear program LP2. Note that the objective function (4.4) can 
be expressed as 
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Since (4.5) is an equality constraint, we apply the fundamental theorem 
of linear programming in the form of (2.7). The problem dual to LP2 is: 

Maximize lrv 
v (4.7) 

subject to 

We call this linear program LP*2. Although there is no explicit sign restric- 
tion on v, in the next paragraph we show that v has to be non-negative 
because the reinvestment interest rates are non-negative. 

Inequality (4.8) is equivalent to the pair of  matrix inequalities: 

Cv < p ,  

which is the same as (3.4), and 

Rrv  ~ O, (4.9) 

which, in turn, is equivalent to the system of linear inequalities: 

(1 + 1",) v,+~ <- v, ,  t = 1, 2, 3 . . . .  , ~" - 1, (4.10) 

and 

0 -< v,. (4.11) 

Since the reinvestment interest rates {rt} should be non-negative, we have 
the monotonicity condition (3.7), vl>-v2>-- . . .  >v ,>-O.  For the example at 
the end of Section III, with the additional condition rl = 0.05, the optimal 
feasible vector v is v = (0.8568, 0.8160) r, which satisfies the monotonicity 
condition. 

For v = (v  1, v2, . . .  , v , )  r ,  define 

(Dr = ( ' V t / V t + I )  - -  1, t = 1, 2, 3, . . . ,  -r - 1. (4.12) 

Then (4.10) can be written as 

G ~ , t = l ,  2 , 3 , . . . , r - 1 .  (4.13) 

Recall that i, denotes the t-period spot rate. For t = 1, 2, 3, . . . ,  

.f, = (i + i,+,)'+' 1 
(1 + i ,) '  

(4.14) 
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is known as the one-period forward rate at time t ([2, p. 221], [8, p. 283], 
[14, p. 155]); it may be interpreted as the market forecast, at time 0, of the 
one-period interest rate at time t. Thus, in choosing a value for the rein- 
vestment rate r,, it might be prudent to ensure that 

0 ~ r, < f,. (4.15) 

Note that condition (4.15) implies that vector [(1 +i~) -1, (1 +i2) -2, . . . ,  
(1+i , )- ' ]  r is a feasible vector with respect to LP*2 and that the present 
value of the liability cash flows (with respect to the current term structure 
of interest rates) is a lower bound for the cost of the optimal investment 
portfolio. 

The optimal value of the objective function in the example at the end of 
Section III is 10.81. By allowing the (positive) cash balance at time 1 to be 
carried forward to time 2, that is, by switching from LP1 to LP2, we expect 
the optimal value to be lowered. Indeed, with !"1 = 0.05, the optimal value 
is lowered to 10.65. The fundamental theorem of linear programming pro- 
vides an alternative explanation, because condition (4.13) in LP*2 represents 
an extra set of constraints not present in LP*I. Now, if we impose further 
constraints on LP*2, the optimal value should come down even further. 
Motivated by (4.13), we might impose the extra conditions that 

s, -> tb,, t = 1, 2, 3, ... , .r - 1, (4.16) 

where {s,} are constants; that is, we consider the formulation: 

Maximize lrv 
V 

subject to 

and 

Cv < p, 

rt<-tbt  < s , , t  = 1 , 2 , 3  . . . .  , r -  1, 

0 < Y r .  

(4.17) 

Is there an economic interpretation for s,? Recall that r, is a one-period 
reinvestment rate at time t. Hence, s, might be conjectured as a one-period 
borrowing rate at time t. This turns out to be true, as we show in Section 
V by means of the fundamental theorem of linear programming. We note 
that (4.17) can be found on p. 249 of [13]. 
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V. BORROWING ALSO AL L OWED 

In Section IV, we improved the classical cash-flow matching model by 
allowing the carry-forward of positive cash balances. If borrowing is also 
allowed, that is, if negative cash balances are allowed and carried forward, 
the cost would be lowered further. The interest rate for borrowing should 
be at least as high as that for investing; otherwise, there would be arbitrage 
opportunities. 

As in Section IV, let C r n - i  = (gt, g2, . . . .  g,)r. For t=  1, 2, 3 . . . . .  
"r- 1, let r, and s, denote the one-period reinvestment and borrowing rates, 
respectively, at time t. (The {s,} will turn out to be the same as those in 
(4.16).) For t=  1, 2, 3 . . . .  , 'r, let b, denote the cumulative cash balance at 
time t. Thus bl =gl ,  and for t = 1, 2, 3, . . . ,  ' r -  1, 

b , . t  = g,÷~ + (1 + rt)b, if b, > 0 (5.1a) 

and 

b,+a = g,+, + (1 + s,)b, if b, < 0. (5.1b) 

The decision-maker is to seek an investment portfolio {nk[n~>0}, which min- 
imizes the cost 

prn = ~.. pknk 
k 

while subject to the condition that the final cash balance, b,,, is non-negative. 
(The formulation in Section IV is a special case of the present one with 
S l Y - - S 2 =  . . .  = + 0 0 . )  

Because the decision-maker should not have risldess arbitrage opportu- 
nities, we impose the condition that r,<st for each t. However, unless r, =s, 
for all t, the mathematical program thus formulated is nonlinear. The for- 
mulation given in Section III is quite well-known; it is frequently used for 
the management of pension fund assets. The present formulation is a very 
obvious generalization, which would lower the portfolio cost. However, it 
is nonlinear. The paper [15] presented two methods to convert the problem 
to a linear one. We now demonstrate that the linearization given in Section 
IV of [15] is a direct consequence of the duality theory of linear programming. 
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We extend LP*2. Let S denote the 'r by ( ' r -  1) matrix 

~ ~ o 0 / 
- ~ -  ~ ~ ~ /  0 sl - 1 -s2  

() b (3 - l - s , _ 1  

Note that the inequality vrS_<0 r is equivalent to (4.16). Consider the fol- 
lowing linear program, which we call LP*3. 

Maximize irv 
¥ 

subject to 

R r v_< 
\ s~/ 

(5.3) 

The problem dual to LP*3 is: 

Minimize (pr Or 0r)y 
y > 0  

subject to 

(CrR S)y = 1. 

The vector y has three obvious components, 

where 

(5.4) 

(5.5) 

(5.6) 

b ÷ = (b{, b~ . . . . .  be) r (5.7) 
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and 

b -  = ( b { ,  b i ,  . . . ,  b ; - , )  r. (5.8) 

We can rewrite (5.4) as 

Minimize nrp (5.9) 
n - > O , b  ÷ > O , b -  >~ 0 

Unscrambling (5.5) in terms of {g,}, we have 

bf - bf = gl,  

b?+l - bT~  = g,+~ + (1 + r , )b7  - (1 + s t ) b ; ,  

t = 1 , 2 , 3  . . . . .  r -  2, (5.10) 

and 

b; = g~ + (1 + r , _ l ) b ~ + _ l  - (1 + s~_x)b~_~. 

This is the desired linearization of the nonlinear problem posed at the be- 
ginning of this section. We call this linear program LP3. 

In general, (5.10) is not equivalent to (5.1a) and (5.1b). However, because 
each borrowing rate is greater than the corresponding reinvestment rate, 
when the linear program is solved, at most one of b +, and bs is nonzero for 
each t, t =  1, 2, 3 . . . . .  "r-1.  Therefore, at optimality (5.10)is equivalent 
to (5.1a) and (5.1b). 

VI. EXAMPLE 

In the formulations above, there is no restriction on the sign of the liability 
cash flows {l,}; that is, we do not require !_>0. Cash-flow matching models 
can be used for the rebalancing of an existing portfolio; negative "liability" 
cash flows may be due to currently owned assets that cannot be or are not 
to be traded. (For the purpose of trading, the models can further be extended 
with the inclusion of bid-ask prices; for a related model that explicitly allows 
for the transaction costs involved in the bid-ask spread, see [4] and [22].) 

As an illustration of all the models presented above, consider the simple 
example: ! = ( 7 , - 4 ,  6, 8 , - 5 )  r, p= (1 ,  1, 1, 1, 1) r and 

1.08 0.085 0.09 0.0925 0.095 / 

0 1.085 0.09 0.0925 0.095 
C r = 0 0 1.09 0.0925 0.095 . (6.1) 

0 0 0 1.0925 0.095 
0 0 0 0 1.095 
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The present value of the liability cash flows under the current term structure 
of interest rates is 

lrC-~p = 10.1501. (6.2) 

The optimal value of the objective function in LP1 or LP*I is 17.6532. 
The optimal value of the objective function in LP2 or LP*2, with 
r x =r2=r3=r4=O.05, is 13.4954. The optimal value of the objective func- 
tion in LP3 or LP*3, with sl =Sz=S3=s4=O.14, is 10.41374, which is very 
close to the present value of the liability cash flows given in (6.2). For a 
larger example, see [7]. 

VII.  CONCLUSION 

In terms of real-world applications, the theory of linear programming is 
one of the most valuable advances in mathematics in this century. From a 
computational point of view, either the simplex algorithm or Karmarkar's 
new method would provide an effective technique for solving large prob- 
lems. From a theoretical point of view, duality provides valuable insights 
into the nature of the underlying problem. By formulating the dual of a 
linear program, a problem can be "turned inside out" and viewed from a 
different perspective. In this paper, the dual formulation shows that the dual 
variables should be interpreted as discount factors. The ratios of the discount 
factors are related to the forward rates. Bounding these rates from above 
and below leads to a new dual formulation, which, in turn, gives rise to a 
much improved primal formulation for cash-flow matching. 
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