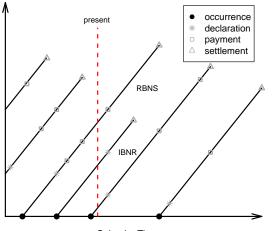
A hierarchical model for micro-level stochastic loss reserving joint work with K. Antonio¹ and E.W. Frees²

44th Actuarial Research Conference Madison, Wisconsin 30 Jul - 1 Aug 2009


A hierarchical model for micro-level

E.A. Valdez University of Connecticut Storrs, Connecticut

¹U. of Amsterdam ²U. of Wisconsin – Madison

Dynamics of claims reserving

Development

Calendar Time

A hierarchical model for micro-level stochastic loss reserving

E.A. Valdez

Synopsis

- Put focus on RBNS claims: Reported But Not Settled.
- Use micro-level data to predict future development of open claims.
- Develop a hierarchical model.
- "A hierarchical model for micro–level stochastic loss reserving."

A hierarchical model for micro-level stochastic loss reserving

E.A. Valdez

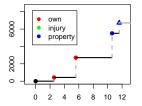
- Data are from the *General Insurance Association of Singapore.*
- Observations are from one company over 10-year period: Jan 1993 – Jul 2002.
 - \Rightarrow "present moment" in this case–study is 25 Jul 2002.
- Policy file: characteristics of policyholder and vehicle insured
 - \Rightarrow age, gender, vehicle type, vehicle age, . . .
- Claims file: keeps track of each accident claim filed with the insurer
 - \Rightarrow linked to policy file, contains accident date.
- Payments file: reports each payment made during observation period.
 - \Rightarrow linked to claims file, with payment date, size and type.

A hierarchical model for micro-level stochastic loss reserving

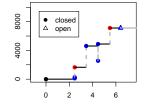
Motivation
Data
Literature
Data structure
Statistical approach Time to events Payment type Payments
Prediction
Conclusion

- A claim will have multiple payments during its run-off.
- Payment types may be:
 - own damage (O) (including injury, property, fire, theft);
 - injury (1) to a party other than the insured;
 - property damage (P).
- Combinations of these types may also occur.
- Frees and Valdez (2008, JASA) summarized the many payments per claim into one single claim amount.

Motivation
Data
Literature
Data structure
Statistical approach Time to events Payment type Payments
Prediction
Conclusion
Conclusion

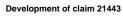

A hierarchical model for micro-level stochastic loss reserving

E.A. Valdez

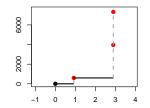


Motivation
Data
Literature
Data structure
Statistical approach Time to events
Payment type
Payments
Prediction
Conclusion

Development of claim 7



Acc. Date 12/14/1999


Development of claim 9942

Acc. Date 08/18/2001

Development of claim 24076

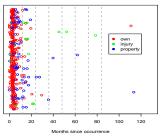
Acc. Date 04/25/1995

A hierarchical model for micro-level stochastic loss reserving

E.A. Valdez

Arrival Year 1998

owninjuryproperty


100 120

80

Months since occurrence

Arrival Year 2000

20 40 60

0

Months since occurrence

page 7

A traditional actuarial display

- Run-off triangle: aggregate claims per arrival year (AY) and development year (DY) combination.
- Run–off triangle for property (*P*) payments: (in '000s, non–cumulative)

Arrival				Deve	lopment '	Year				
Year	1	2	3	4	5	6	7	8	9	10
1993	205.3	847.6	226.3	77.9	47.9	40.6	10.2	1.8	0.0	0.6
1994	1,081.3	1,750.4	534.7	153.8	73.0	51.1	16.2	37.3	5.8	
1995	900.9	1,822.7	578.5	202.0	54.1	48.2	9.5	1.3		
1996	1,272.8	1,816.9	583.7	255.2	44.2	24.1	11.4			
1997	1,188.7	2,257.9	695.2	166.8	92.1	12.9				
1998	1,235.4	3,250.0	649.9	211.2	74.1					
1999	2,209.8	3,718.7	818.4	266.3						
2000	2,662.5	3,487.0	762.7							
2001	2,457.3	3,650.3								
2002	673.7									

- Common statistical techniques: chain–ladder, distributional, Bayesian, GLMs, ...
- Modeling individual claims run-off is less developed in the literature.

Motivation
Data
Literature
Data structure
Statistical approach Time to events Payment type Payments
Prediction
Conclusion

Micro-level data: literature

 Suggestions from actuarial literature: England and Verrall (2002), Taylor and Campbell (2002), Taylor, McGuire, and Sullivan (2006).

Some actuarial papers:

- Arjas (1989, ASTIN), Norberg (1993, ASTIN), Norberg (1999, ASTIN);
- Haastrup and Arjas (1996, ASTIN);
- Larsen (2007, ASTIN);
- Zhao, Zhou, and Wang (2009, IME).
- Statistical resource: Cook and Lawless (2007), Statistical analysis of recurrent events.

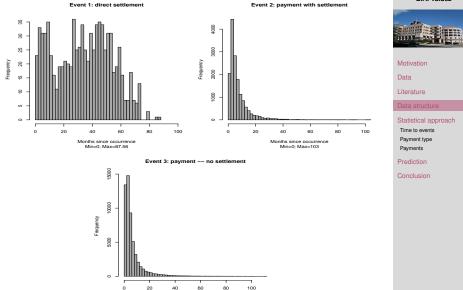
A hierarchical model

for micro-level stochastic loss

Observable data structure

- total number of claims in the data set is n = 43,729;
- N_i, number of "events" in development period of claim i;
- *T_{ij}*, time of event *j*, in months since the accident date (*T_{i0}* = 0 is accident date and *T_{iNi}* is settlement date);
- *C_i* time of **censoring**;
- E_{ij} type of event j. We distinguish:
 - event type 1: direct settlement without any payments;
 - event type 2: payment with settlement;
 - event type 3: payment without settlement.
- *M_{ij}* type of payment for event *j* of claim *i*.
- *P_{ijk}* size of payment of type k (k being 'own damage' (O), 'injury' (I) or 'property' (P)) for event j of claim i.

A hierarchical model for micro-level stochastic loss reserving

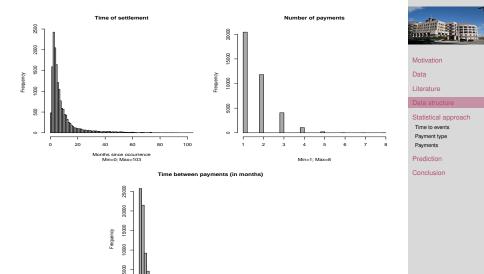

E.A. Valdez

Timing of events, per event type

A hierarchical model for micro-level stochastic loss reserving

E.A. Valdez

80 100


40

0

Time of settlement, number of payments, times between payments

0

0 20 40 60 80 100

page 12

A hierarchical model

for micro-level stochastic loss

reserving E.A. Valdez

Payment types

A hierarchical model for micro-level stochastic loss reserving

E.A. Valdez

Motivation

Data

Literature

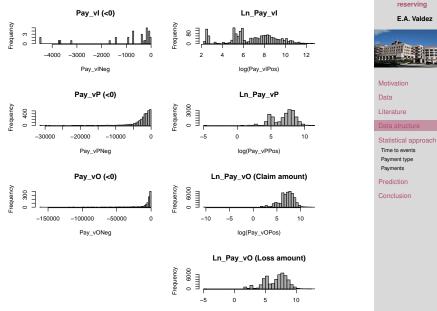
Data structure

Statistical approach

Time to events

Payment type

Payments


Prediction

Conclusion

Number of payments per type:

	Claim Type				
	(1)	(O)	(P)		
Number	1,417 (1.95%)	45,950 (63.3%)	21,775 (30%)		
	(I,O)	(I,P)	(O,P)	(O,I,P)	
Number	107 (0.147%)	319 (0.439%)	3017 (4.16%)	9 (0.012%)	

Distribution of payments

log(Pay_vONoExPos)

A hierarchical model

for micro-level stochastic loss

Model formulation

- A claim *i* ($i = 1, ..., n_c$) is a combination of
 - accident date ('AD_i');
 - set of covariates C_i;
 - development process X_i:
 X_i = ({E_i(v), M_i(v), P_i(v)})_{v∈[0, T_{iNi}]};
- Development process X_i is a jump process. 3 building blocks are used:
 - *E_i*(*t_{ij}*) := *E_{ij}* is the type of the *j*th event in the development of claim *i*, occurring at time *t_{ij}*;
 - If this event includes a payment, its payment is given by *M_i*(*t_{ij}*) := *M_{ij}*;
 - Corresponding payment vector is P_{ij}.

E.A. Valdez

Time to events

Intensity modeling with single type of events at times t_{ij}:

$$L_i = \left(\prod_{j=1}^{N_i} \lambda_i(t_{ij})\right) \exp\left(-\int_0^{\tau_i} \lambda_i(u) du\right).$$

- $[0, \tau_i]$ is the period of observation of subject *i* with $\tau_i = \min(T_{iN_i}, C_i)$.
- λ_i(t) is the event intensity (or hazard rate) at time t for subject i.
- For multitype events: each "subject" is at risk of *m* different types of recurrent events.
 - Specify intensity function for each type of event (k = 1, ..., m) with $\lambda_{ik}(t)$.

A hierarchical model for micro-level stochastic loss reserving

E.A. Valdez

Time to events

- How to specify the intensity functions λ₁(t) (for event 1), λ₂(t) (for event 2) and λ₃(t) (for event 3)?
- Techniques from survival analysis: (k = 1, 2, 3)
 - exponential: $\lambda_k(t) := \lambda_k$;
 - Weibull: $\lambda_k(t) := \alpha_k \gamma_k t^{\alpha_k 1} e^{-\gamma_k t^{\alpha_k}};$
 - Cox model: $\lambda_k(t) := \lambda_{0k}(t) \exp(\mathbf{z}'_k \beta_k);$
 - piecewise constant:

 $\lambda_k(t) = \begin{cases} \lambda_{k1} \text{ for } 0 \le t < t_{k1} \\ \lambda_{k2} \text{ for } t_{k1} \le t < t_{k2} \\ \vdots \\ \lambda_{kd} \text{ for } t_{kd-1} \le t < t_{kd}. \end{cases}$

A hierarchical model for micro-level stochastic loss reserving

Motivation
Data
Literature
Data structure
Statistical approach
Time to events
Time to events Payment type
Payment type
Payment type Payments

Hazard rates per event type

Hazard Rate -- Type 1

A hierarchical model for micro-level stochastic loss reserving

E.A. Valdez

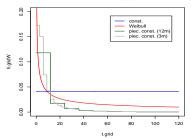
Literature

Data structure

Statistical approach

Time to events

Payment type


Payments

Prediction

Conclusion

Hazard Rate -- Type 3

Payment type

- *M_{ij}* represents the combination of payments observed at *t_{ij}*.
- 7 combinations are possible: *I*, *O*, *P*, (*I*, *O*), (*I*, *P*), (*O*, *P*) and (*O*, *I*, *P*).
- Claim type is modeled with multinomial logit model:

$$Pr(M_{ij} = m_{ij}) = \frac{\exp V_{ij,m}}{\sum_{s=1}^{7} \exp (V_{ij,s})},$$

with $V_{ij,m} = \boldsymbol{x}'_{ij} \boldsymbol{\beta}_{M,m}$.

- Covariate information used in multinomial model:
 - Type of vehicle, vehicle age, age of driver;
 - Arrival Year, Development Year.

E.A. Valdez

Payments

- Given M_{ij} for the event at time t_{ij}, P_{ij} gives corresponding severities.
- For the sign of a payment, use:

$$I_{ijk} = \begin{cases} 1 \text{ if } P_{ijk} > 0 \\ 0 \text{ if } P_{ijk} < 0, \end{cases}$$

and
$$s_{ijk} = Pr(I_{ijk} = 1)$$
.

• Use logistic regression to model the sign of *P*_{ijk}:

$$logit(\boldsymbol{s}_{ijk}) = \boldsymbol{x}_{ij}^{'} \boldsymbol{\beta}_{S,k}$$

- Covariate information used in logistic models:
 - Development year;
 - Number of previous injury/own damage/property payments.

A hierarchical model for micro-level stochastic loss reserving

E.A. Valdez

Negative part of payments

• Burr regression:

$$f_P(\boldsymbol{\rho}) \;\; = \;\; rac{\lambda eta^\lambda au \boldsymbol{
ho}^{ au-1}}{(eta + oldsymbol{
ho}^ au)^{\lambda+1}},$$

with $\tau_{ijk} = \exp(\mathbf{x}'_{ijk}\beta_{P,k})$ with *k* for payment type.

used for 'Property' and 'Own Damage' payments

• GB2 regression:

$$f_{P}(p) = \frac{|\alpha|p^{\alpha\gamma_{1}-1}\beta^{\alpha\gamma_{2}}}{B(\gamma_{1},\gamma_{2})(\beta^{\alpha}+p^{\alpha})^{\gamma_{1}+\gamma_{2}}},$$

with $\alpha \neq 0, \beta, \gamma_1, \gamma_2 > 0, B(\alpha_1, \alpha_2)$ the usual beta function and $\beta_{ijk} = \exp(\mathbf{x}'_{ij}\beta_{P,k})$.

used for 'Injury' payments

A hierarchical model for micro-level stochastic loss reserving

E.A. Valdez

Positive part of payments

 Inspired by the histograms of the positive payments, we used a mixture of lognormal regression models:

$$\log(P) \sim w_1 N_1(\mu_1, \sigma_1^2) + w_2 N_2(\mu_2, \sigma_2^2) + w_3 N_3(\mu_3, \sigma_3^2),$$

where w_1 , w_2 and w_3 are weights, specified as

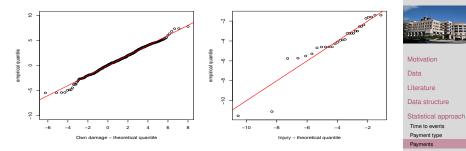
$$w_1 = \frac{\exp(a)}{\exp(a) + \exp(b) + \exp(c)},$$

$$w_2 = \frac{\exp(b)}{\exp(a) + \exp(b) + \exp(c)},$$

$$w_3 = \frac{\exp(c)}{\exp(a) + \exp(b) + \exp(c)},$$

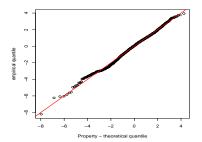
and $N_i(\mu_i, \sigma_i^2)$ is a normal distribution with mean μ_i and variance σ_i^2 .

 Covariate information is incorporated in the weights and parameters μ_i and σ²_i (i = 1, 2, 3). A hierarchical model for micro-level stochastic loss reserving

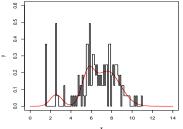


Motivation
Data
Literature
Data structure
Statistical approach
Time to events
Payment type
Payments
Prediction
Conclusion

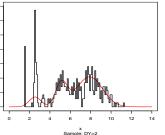
QQ plots on the negative payments


A hierarchical model for micro-level stochastic loss reserving

E.A. Valdez


Conclusion

Histograms of the positive payments - own damage


Positive Own Damage Payments (log scale) 0.4 0.7 0.6 0.3 0.5 0.4 ~ 02 ~ 3 5 0.0 0.0 10 12 2 0 2 e 8 14 0 x Sample: DY=1

Positive Own Damage Payments (log scale)

Payment type Payments Prediction

Motivation

Literature

Data structure

Statistical approach Time to events

Conclusion

A hierarchical model for micro-level stochastic loss reserving

Prediction of RBNS claim reserves

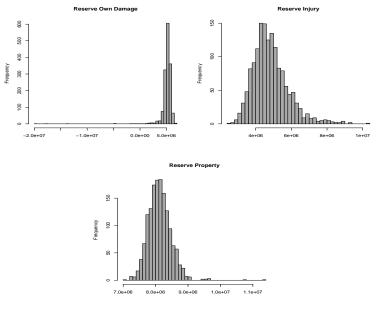
- Step 1: simulate the next event's time interval
- Step 2: simulate the exact time of the next event
- Step 3: simulate the event type
- Step 4: simulate payment type
- Step 5: simulate payments
- Step 6: stop or continue, if necessary depending on whether settled or not

E.A. Valdez

Motivation Data Literature Data structure Statistical approach Time to events Payment type Payments Practicion

Conclusion

Resulting predictive distributions of reserves - by type


A hierarchical model for micro-level stochastic loss reserving

E.A. Valdez

Conclusion

Concluding remarks

- Main idea: claims reserving using statistics for recurrent events.
- The hope is to improve the prediction of reserves using detailed micro-level recorded information.
 - the cost is the additional complexity in the modeling involved.
- Additional work to be done:
 - comparing the results with traditional reserving methods.
- Similar methodology to other areas of actuarial statistics e.g. recurrent episodes in workers' compensation.

E.A. Valdez

A hierarchical model for micro-level stochastic loss reserving

E.A. Valdez

Motivation

Data

Literature

Data structure

Statistical approach

Time to events

Payment type

Payments

Prediction

Conclusion

page 28

Thank you!