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ABSTRACT 

Mortality patterns among the aged have attracted considerable actuarial 
attention in recent years, with good cause. Accurate projections are essential 
in planning for the needs of the increasing numbers of aged persons in our 
population. Moreover, a careful study of mortality patterns will aid in the 
effort to understand the aging process. 

A second matter of great interest is the difference between mortality rates 
among males and females. It is well established that female rates are sig- 
nificantly lower than male rates during youth and middle age and that the 
difference gradually lessens in advanced age. Some recent studies have in- 
dicated a "crossover ,"  with female rates exceeding male rates beyond some 
age around 100. This is qualitatively different from a convergence of rates 
and requires careful attention. 

The purpose of this paper is to develop some statistical tests for the sig- 
nificance of observed crossovers. Two tests based on nonparametric com- 
parisons of mortality experience and one method involving graduation of the 
observed rates are applied to data presented by Bayo and Faber [ 1 ]. For the 
first data set, charter beneficiaries of Social Security, the tests indicate that 
the observed crossover is not statistically significant. The second data set, 
Medicare recipients, appears to offer significant evidence of a crossover at 
about age 102.5. 

1. A MODIFIED WILCONXON TEST 

The Wilcoxon test is a standard test for equality of distribution that can 
be modified slightly to obtain a useful tool in the analysis of the crossover 
question. It is appropriate for relatively small data sets, like the "charter 
beneficiaries" group in Bayo and Faber, where not too many individuals 
are recorded with the same age at death. 

The basic one-sided Wilcoxon test (described, for example, in Elandt- 
Johnson and Johnson, [5], 231-40) begins with random samples X I . . . . .  X,, 
and Yi . . . . .  Ym from two unknown distributions. The question is whether 
the distributions are consistently ordered, Fx(x) <- Fv(x) for all x. The Wil- 
coxon statistic W is the sum of ranks of the Xi within the set {Xi,Yj}, where 
rank 1 is assigned to the smallest, rank 2 is assigned to the next smallest, 
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and so on until rank n + m  is assigned to the largest. The null hypothesis 
Fx(x) <- FAx)  is rejected if W is significantly smaller than would be expected 
if the two distributions were equal. 

The charter beneficiaries data consist of sex, year and month of birth, and 
year and month of death for each individual. Let X i, Y~ be the "calendar 
age"  at death (measured in years and months) of females and males, re- 
spectively. There are a number of  " ' t ies," but not enough to invalidate the 
procedure. In fact, errors of ranking are likely. For example, a person born 
in late January 1873 who died in early January 1973 would be recorded as 
a death at age 100, but actually would have been younger at death than 
someone born in early January 1873 who died in late December 1972 and 
consequently was recorded as a death at age 99 years 11 months. It seems 
reasonable to hope that there is no consistent bias in such errors. 

It will be convenient here to reverse the usual order and assign rank 1 to 
the oldest death (male, aged 107) and so on, with higher ranks indicating 
death at younger ages. This reverse ranking permits examination of deaths 
above age x for different values of  x without changing anything important. 
The hypothesis that female mortality rates are consistently lower than male 
rates will be rejected if W, the sum of female ranks, is too large. 

How large is too large? If we had exact ages at death of n females and 
m males with no ties and if mortality rates were identical for both sexes at 

all ages, then the ranks of female deaths would be one of the (n + m )  subsets 

of size n of  the integers 1,2 . . . . .  n + m - - a n y  such subset with equal prob- 
ability. Since the sum of all these integers is I/,_(n+m) ( n + m +  1), the 
average rank is ~/2(n + m + 1). Under the hypothesis of equal distribution, 
the expected value of the sum W of female ranks is ~/2n(n + m + 1), and its 
variance is ( l /12)nm(n+m+ 1). Critical values for n and m no greater than 
25 have been tabulated by Pearson and Hartley 191. For larger values, the 
normal approximation is commonly used. 

Table 1 gives the results of  applying this Wilcoxon test with various initial 
ages. The ages x listed are calendar ages of female deaths; n is the number 
of females, and m the number of males, recorded as dying at age x or older. 
The oldest female death was recorded at age 105 (and 0 months), and as- 
signed rank 3 because two males were recorded as dying at higher ages. 
The two values given for W are determined by different methods of treating 
" t i e s . "  The larger value,Wo, results from assigning an average rank to each 
of the individuals in a group with the same calendar age at death, and the 
smaller value, W', from assuming that, within such groups, the females all 
died older than any of the males. The difference between these two values 
is an indication of the extent to which ties affect the outcome. 
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TABLE 1 

W I L C O X O N  A N A L Y S I S  O F  C H A R T E R  B E N E F I C I A R I E S  D A T A  
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105.00 . . . . . .  
103.92 . . . . . .  
103.25 . . . . . .  
102.83 . . . . . .  
102.67 . . . . . .  

102.00 . . . . . .  
101.75 . . . . . .  
101.50 . . . . . .  
100.75 . . . . . .  
100.67 . . . . . .  

100.58 . . . . . .  
100.50 . . . . . .  
100.33 . . . . . .  
100.25 . . . . . .  
100.17 . . . . . .  

1 0 0 . 0 8  . . . . . .  
100.00 . . . . . .  
99.92 . . . . . .  
99.83 . . . . . .  
99.75 . . . . . .  

99.67 . . . . . .  
99.58 . . . . . .  
99.17 . . . . . .  
99.08 . . . . . .  
99.00 . . . . . .  

98.92 . . . . . .  
98.83 . . . . . .  
98.75 . . . . . .  
98.67 . . . . . .  
98.50 . . . . . .  

98.33 . . . . . .  
98.25 . . . . . .  
97.75 . . . . . .  
97.58 . . . . . .  
97.50 . . . . . .  
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14 
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24 
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42 
46 
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52 
54 
56 
61 
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2 
l0 
13 
14 
15 

23 
25 
31 
41 
41 

44 
46 
54 
56 
58 

58 
58 
60 
6O 
63 

65 
68 
78 
8O 
83 

87 
88 
93 

100 
104 

112 
118 
143 
153 
156 

WIL(+OXON 

l ATLSTICS 

w. 

3 
15 
30.5 
67.5 
88 

148 
182 
260 
312 
366 

422.5 
482.5 
619.5 
692.5 
768.5 

846.5 
925.5 

1.088.5 
1,172.5 
1.259 

1 , 4 4 0  

1,726.5 
2,052 
2,394 
2,632 

2,756 
3,141.5 
3,681.5 
3,825 
4,126 

4.285.5 
4,618.5 
5,006.5 
5,419.5 
6,487 

w' 

3 
15 
30 
67 
87 

146 
180 
253 
304 
358 

413 
472 
6O5 
677 
752 

830 
909 

1,070 
1,154 
1,239 

1 , 4 1 g  
1 , 7 0 0  
2.02 I 
2,360 
2,595 

2,717 
3,101 
3,631 
3,771 
4,068 

4.225 
4,552 
4,935 
5,344 
6,404 

Lrt,n,t R 

CRI I I('AL 

VAt t l i  (5c/c) 

(none) 
22 
39 
69 
88 

166 
20 I 
294 
402 
439 

504 
564 
734 
806 
881 

934 
989 

1,128 
1,187 
1 , 2 9 1  

1,448 
1,699 
2,103 
2,382 
2,613 

2,788 
3,082 
3,588 
3,875 
4,194 

4,529 
4,922 
5,934 
6,517 
7,333 

N/.)R MAI.AZ.I~D 

Wll COX(IN 

1.225 
.430 
.673 

1.620 
1.713 

• 903 
.956 
•672 

- .255 
• 172 

.173 

.293 

.101 

.22O 

.325 

.647 
• 949 

I. 246 
1.510 
1.355 

1.582 
1.862 
1.316 
1•719 
1.754 

1.475 
1.944 
2.066 
1.441 
1.380 

.763 
•583 

- .951 
- 1.189 

- .390 

The upper critical value (at the 5 percent level) was taken from Pearson 
and Hartley for ages 101.75 and above, and calculated by the normal ap- 
proximation at younger ages. It is easy to check that the normal approxi- 
mation would not give very different results for ages at which there are at 
least 20 survivors. The last column gives the observed W o in standard de- 
viational units above the mean. For example, at age 105, with two males 
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and one female surviving, the mean of W is 2 and its variance is 2/3, so 
that the observed W o is 1.225 standard deviations above the mean ( 3 - 2  + 1.225 
× x/-U~). 

Note in Table 1 that at ages 99.58, 98.83, and 98.75 even the smaller 
value W' exceeds the critical value. These ages are interspersed with others 
at which the result is less significant. Not surprisingly, at ages below 97.75 
the observed value of Wo is less than "expec ted"  under the null hypothesis. 

At first glance, the result at age 98.75, more than 2 standard deviations 
above the mean, seems highly significant. But we must be suspicious of the 
significance level because of the sensitivity to the initial age x. In fact, we 
have not used a pure Wilcoxon test but a "worst-case" test, selecting a 
posteriori the initial age that gives the most highly significant result. In order 
to decide how significant this is, we must examine the distribution not of 
the usual Wilcoxon, but of this "worst-case" statistic. 

Let W(x) be the value of Wo obtained with initial age x (that is, ranking 
all deaths at age x and above), and 

W(x) - E{W(x)] 
Mw = maxg.s ...... ~,,, Var [W(x)] 

Both expectation and variance are to be calculated under the assumption of 
equal distributions. The upper limit x,,, is the greatest age to which at least 
one male and one female survive; this keeps VarlW(x)] positive. Mw is the 
new test statistic, and the null hypothesis will be rejected if Mw is too large. 
(The data would permit us to take the maximum as x ranges between 91 and 
x,,,. It is virtually certain that the maximum value will occur at an age x 
larger than 95, since female mortality rates are significantly lower than male 
rates at the younger ages.) 

"Too  large" means above the upper critical value (for the selected sig- 
nificance level) of the distribution of M under the equal-distribution hypoth- 
esis. In theory, this distribution could be obtained from the known distribution 
of W, but the analysis could be formidable. A simpler alternative in this 
case is a Monte Carlo estimate of FM. 

If we had exact values of Xi and Yj--and if there were no ties--then the 
distribution of M would not depend on the assumed common distribution of 
X and Y. Here there are ties, and more occur at the ages where there are 
more deaths (the younger ages). Nevertheless, the Monte Carlo method used 
here ignores the effect of the distribution/;x; this simplifies the computations 
and probably does not affect the result much. 

The Monte Carlo program began with 397 "males"  and 127 "females"  
(the numbers of survivors to age 95 in the charter beneficiaries group) and 
randomly assigned an integer between 1 and 524 to each as a surrogate for 
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age at death. This produces some ties but not so many as observed in the 
actual data. The individuals were then ranked according to these random 
integers, Wilcoxon statistics calculated for groups of survivors to age x, and 
the value of the test statistic Mw determined. The program output for each 
run gave, besides the value M, the number of females and males surviving 
to the "age" that produced the maximum. The reason for this additional 
information is that the normalizing transformation is essentially equivalent 
to using the normal approximation to F w, which is not appropriate if the 
number of survivors is less than about 20. (An examination of the critical 
values given in Table i will show that, for small numbers of survivors, the 
exactly tabulated critical value is consistently higher than that produced by 
the normal approximation.) Of 200 runs, 69 produced M values greater than 
the observed 2.066. Even after discarding the 7 of these that were based on 
consideration of fewer than 30 survivors, it appears that about 30 percent of 
the time we should expect Mw to be at least as large as observed in the 
charter beneficiaries data, if mortality rates were actually equal for males 
and females. 

Table 2 lists the largest 100 values of M w produced in 200 runs, with 
asterisks indicating runs that found a maximum with fewer than 30 survivors. 

TABLE 2 

MONTE CARLO VALUES FOR Mw, MAXIMUM NORMALIZED WILCOXON STATISTIC 
(Largest 11)13 in 200 runs) 

1.81197 
1,82160 
1.83541 
1,84258 
1.84637" 

1.85164" 
1.85164" 
1.85164" 
1.85812 
1.86039 

1.86306 
1,86865 
1.87023 
1.87228 
1.88781 

1.88837 
1.89443 
1.89945 
1.90553 
1.91881" 

1.92879" 
1,93742 
1.95979 
1.96383 
1.96396" 

1.97253 
1,98649 
2,00000* 
2.00195 
2.00347* 

2.06589 
2.07786 
2.08768* 
2.09212 
2,09265 

2.09980 
2.10273 
2.11688 
2.11884 
2.12013 

2.12132* 
2.12258* 
2.14682 
2.15575 
2.16242* 

2.18054 
2.18650 
2.18711 
2.23325 
2.23441 

2.24045 
2.24164 
2.24919 
2.24994 
2.26367* 

2.3O134 
2.30274 
2.32617 
2.32906 
2.35461 

2.35470 
2.37129 
2.37975 
2.38062 
2.38210 

2.39600 
2.42831 
2.44875 
2.46179 
2.50000 

2.51966 
2.52842 
2,59808* 
2.60736 
2.65826 

2.66700 
2.67017 
2.68860 
2.69974 
2.72136 

2,72179 
2.72571 
2,72646 
2.73635 
2.75880 

2.76487 
2.82626 
2.87222 
2,89200 
2.91670 

2.94107 
2.97065 
3.02093* 
3.09094 
3.21020 

3.24159 
3.28290 
3.53641 
3.69444 
4.12350 

*Runs having a maximum Mw at an age with fewer than 30 survivors. 
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The significance of the observed value of 2.066 appears to be far less than 
it first seemed. A value o f M  w greater than 2.9 would be required to reject 
the null hypothesis at the 5 percent level, 

l l .  A M O D I F I E D  K O L M O G O R O V - S M I R N O V  TEST 

The Medicare data presented by Bayo and Faber are more extensive, still 
" c l ean , "  and almost complete. Since exposures were obtained by summing 
deaths, and some deaths above age 105 were estimated, one eventually must 
consider the effect of possible errors in those estimates. But first it is nec- 
essary to develop a test suitable for this data set, which shows far too many 
ties for the Wiicoxon test. 

The one-sided Kolmogorov-Smirnov test for equality of distribution be- 
gins with two empirical distribution functions, F°(x) and F°(x), and rejects 
the hypothesis Fx(x) <- Fr, (x) if the statistic D = max (FOx (x) - F~(x)) is 
too large. In the case of complete data based on n samples of X and m 
samples of Y, critical values of D (depending on n and m) are tabulated, for 
example, by Kim and Jennrich [6]. If n and m are larger than 100, the 

normalized statistic (/n-~m)n'm D gives a simple indication of significance. 

In analyzing the crossover question, we consider survival beyond age x, let 
x vary, and look for the most significant result--the largest normalized 
statistic. Then, as before, we must determine how significant that is. 

Define n(x) to be the number of females and re(x) the number of males 
assumed to survive to age x (the "exposure"  figures in Bayo and Faber, 
Table 6), and let 

D(x) = maxt( m(x + t) n(x+t)~ 
\ m(x) n(x) J '  

I n(x) m(x) D(x). 
Mxs = maxx n(x) + re(x) 

The data permits maximization only over positive integral values for t, 
and x = 95.5, 96.5 . . . . .  105.5. (Left-censoring prohibits our taking 
x-<94.5.) Table 3 shows the D(x) values and their normalizations. 

The maximum value, 1.65814, occurring at age 102.5, appears to be 
significant at the 1 percent level. Once again, as in the Wilcoxon case, the 
issue is clouded by the a posteriori selection of an extreme value, and a 
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T A B L E  3 

KOLMOGOROV-SMIRNOV ANALYSIS OF MEDICARE DATA 
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AGI ~ I It(i I t t t (~) 

95•5 . . . . . . .  
96 .5  . . . . . . .  
97.5 . . . . . . .  
98•5 . . . . . . .  
99.5 . . . . . . .  

100.5 . . . . . . .  
101.5 . . . . . . .  
102.5 . . . . . . .  
103.5 . . . . . . .  
104.5 . . . . . . .  
105.5 . . . . . . .  
106.5 . . . . . . .  
107.5 . . . . . . .  

17,014 
12,515 
8 ,969 
6 ,309 
4 ,289  
2 ,890 
1,890 
1,250 

772 
453 
234 
148 
84 

14,494 
10,148 
6 ,908 
4 ,767  
3 ,146 
2 ,049 
1,319 

829 
554 
362 
208 
116 
92 

NORMAl I Z I ( I )  

KOLMOGOR(I~ -SMIRNO'* 

D(I)  ! SIAII'~Iff" 

.00060 10 .05285 

.00180 9 . 13456 
• Oral.()2 8 . 2 5 1 1 3  
• 0(-)654 7 .34097 
.01156 6 .49236 
.02054 5 .71136 
.03477 3 .96905 
.07427 2 1.65814 
• 07234 2 1. 29923 
.06871 3 •97469 
• 08333 2 •87447 

computer simulation is a convenient way of estimating the distribution of 
MKs under the hypothesis of equal survival functions for males and females. 
Such a simulation also will compensate for the fact that the data set here 
violates several of the conditions usually required for applying the Kolmo- 
gorov-Smirnov test: too many ties, distribution function available only at 
discrete times, and questionable normalization at the highest ages. 

Because the Medicare data gives age at death by calendar year only, rather 
than the monthly intervals available for the charter beneficiaries data, and 
because of the considerably greater volume of data, there are thousands of 
ties. Consequently, it is not reasonable to ignore the effect of the distribution 
of deaths. The simulation suggested here has some similarities to the "'boot- 
strap" method (Diaconis and Efron [31, and Efron, [4]) in using the empirical 
distribution function as a basis for generating random samples for the Monte 
Carlo experiment. The major steps are as follows: 

1. The observed ages at death (males and females together) are taken as 
defining an empirical survival function past age 95.5. 

2. Beginning with 14,494 "males" and 17,014 "females" at age 95.5, the 
numbers of deaths at each age are generated as binomial random varia- 
bles, approximated by the normal. Since the exposure is about 100 lives 
of each sex, even at age 106.5, the normal approximation is acceptable. 

3. The maximum normalized Kolmogorov-Smirnov statistic MKs is calcu- 
lated as shown previously. 
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4. Steps 2 and 3 are repeated several hundred times to obtain an estimate 
of the distribution of MKs. From this we can estimate the significance of 
the observed 1.658. 

The output from 600 runs of this simulation is summarized in Table 4. 
The observed 1.658 is significant at the 1 percent level, and we can reason- 
ably reject the hypothesis that female mortality rates are consistently lower 
than male rates for this population. 

TABLE 4 

ESTIMATED CRITICAL VALUES FOR Mks FOR MEDICARE DATA 

I 
~50 [ 25 .lO 05 OI 

FM~s( I -- Ct) .8318 I 1.0352 1.1919 1.3196 1.6533 

The ten largest values of Mxs in 600 runs were: 

1.5289 1.5456 1.6245 1,6533 1.7557 
1.8245 1.8354 1.8452 1,9452 2.0857 

As noted earlier, deaths at ages 105 and up, and thus exposures at earlier 
ages, were partly estimated from the experience of other cohorts. Could 
errors in the numbers here invalidate the significance of crossover? It is a 
simple matter to revise Table 3 by subtracting one constant from the expo- 
sures for males and adding another to the exposures for females and, then, 
to recalculate Mrs. In order to lower MKs to 1.32, the approximate critical 
value for the 5 percent level, it would be necessary to subtract 20 from m(x), 
or add 30 to n(x), or some combination of these. That is, if imputed male 
deaths are as much as 10 percent too high, or imputed female deaths about 
12 percent too low, our result is still significant. Errors of this magnitude 
are possible but do not seem likely. 

111. A TEST BASED ON GRADUATION 

An important objection can be raised concerning the two methods de- 
scribed previously: they only reject (or fail to reject) the hypothesis 
~ < q m  without really addressing the more fundamental question of the pat- 
tern of mortality rates. What we would like is a means of comparing the 
entire sequences of rates. Recognizing that the observed rates involve sto- 
chastic variation from "t rue"  underlying rates, the actuary's traditional method 
has been to graduate, then compare. 

Unfortunately, the standard graduation methods do not provide estimates 
of accuracy. Of course, we recognize that different methods may lead to 
different graduated values (and maybe to a different answer to the crossover 
question), so we do not claim that the graduated values are the true values, 
but we need an estimate of how close they are likely to be. 
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The problem of obtaining confidence bands for distribution functions and 
hazard functions has been the subject of research by Liu and Van Ryzin [7], 
]8], Wahba [10], and others in the past few years. The most promising 
method for the crossover question is that of Cheng and Iles [2]: select a 
parametric family for the survival function; obtain a confidence region for 
the parameter values; and look at the envelope of curves determined by 
parameter values within the region. 

The first two data sets presented by Bayo and Faber are particularly well 
suited to this method because their statistical structure is clear, both being 
essentially complete studies of narrow cohorts of lives. The third set, using 
census populations and vital statistics deaths, would require different analy- 
sis. 

The method used here assumes a force of mortality of the form ( p o l y n o m -  

ial) X e "~ + ( p o l y n o m i a l ) ,  with a confidence region for the parameters 
determined by a likelihood ratio. This involves constructing a likelihood 
function, estimating its maximum value, and finally taking as a confidence 
region that region on which the likelihood is sufficiently close to the max- 
imum. 

For the charter beneficiaries data, the likelihood function is 

~x = II t, Px  Lqx*ti, 
12 

where the product is taken over all individuals of specified sex who survived 
at least to age x (as approximated by calendar year and month of birth and 
death). The ith individual died at calendar age x + t i. Initial tests suggest that 
Gompertz's law gives a maximum likelihood near the maximum obtained 
with first-degree polynomials (5 parameters instead of 2). Following standard 
statistical procedures, we would reject the Gompertz hypothesis and use the 
more complex mortality law only if l n ~  could be improved by as much as 
I/2(7.81) = 3.905 (see example in Elandt-Johnson and Johnson, page 75). 
The maximization routine functioned poorly with more than three parame- 
ters, and it is possible that the observed improvement of only .01 is too low. 
Nevertheless, it was decided to use Gompertz's law throughout. This choice 
has some precedent and has an additional advantage in this situation: the 
crossover age for two Gompertz forces of mortality can be calculated di- 
rectly. 

It was helpful to transform the parameters, expressing age in centuries 
and setting ~t x = a e t ~+b) .  These parameters are related to the familiar 
Gompertz parameters via the equation 

a e ~L~+b) = I O O B  c IOOx 
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whence a = 100 In c c = e " I 1 ° °  

b = In (B) - In In c B = a et'/lO0. 

Then the function we seek to maximize is 

lnJ '  = - e  . . . .  I, ~ ( e " " -  1) + ~ ln(l - exp { - e  ....... ,~t '(e"/l~-°° - 1)}). 

Maximum likelihood estimators for a few initial ages x are given in Table 
5. The erratic variation from age to age indicates the instability of  the esti- 
mators: In ~ varies quite slowly with the parameters so that widely different 
values of  ( a , b )  produce nearly equal values of  ln~.  As a result, minor 
changes in survival times result in large changes in the maximum likelihood 
estimators. This is distressing because the survival times here are only ap- 
proximate. Fortunately, the crossover age also varies slowly with the param- 
eters. The crossover age is that age at which the force of mortality is equal 
for the two sexes, thus, 

a m e"*,: +t,,,,~ = a f e . , ~ , . t , ?  

whence 
b,,, - b f  + ln a,,, - l n a  t 

X = 
a t - -  a m  

All the calculated crossover ages are about 99. Recall that the Wilcoxon 
test used earlier showed the most significant result at age 98.75. With this 
in mind, we look more carefully at the situation with initial age 98, 

Table 6 gives values of In~  for initial age 98 and some different values 
of the parameters a and b. The maximum values are approximately - 548.953 
for males and - 2 1 7 . 4 7 7  for females. The statistic 

( a , b )  
- 2  In - -  

would be approximately X2(2) if a and b were the true values of the param- 

eters, and ,~ and b the maximum likelihood estimators. Thus, an approximate 
97.5 percent confidence region for the parameters consists of those pairs of 
parameter values that give lnJ  ~ within 3.689 of the maximum, that is, at 
least - 5 5 2 . 6 4 2  for males and at least - 2 2 1 .  166 for females. 

A further translbrmation of the parameters to V2(a - b )  and 5(a + b) facil- 
itates the graphic representation of these regions in figure 1. The "male ' "  
region is smaller because the more extensive data on males implies narrower 
confidence intervals. (The f a c t  that the " m a l e "  region lies essentially within 
the " ' female"  region is coincidental, The maximum likelihood point for the 
female parameters lies outside the male region, and thus tighter regions, 
such as the 90 percent confidence regions, would not have so much overlap.) 



TABLE 5 

M A X I M U M  LIKELIHOOD ESTIMATORS FOR C H A R T E R  BENEFICIARIES D A T A  

Igl I IAL MALES FIMM IS CRt)SSOV~:R 
At, l:, 

~/ b a b J.GI 

)8 8.506 - 6,867 20.896 - 20.1)53 99.170 
)7 8.300 - 6 , 6 2 9  20.633 - 19.780 99.245 
)6 . 3.516 - , 9 6 1  20.357 - 19.487 99.576 
)5 . . . . . . . . . . .  5.738 - 3,670 12.332 10.968 99.066 

TABLE 6 

SEI .ECTED V A L U E S  OF LN ~ [=UNCTION }:OR C H A R T E R  BENEFICIARIES D A T A  

M t~LI:S FI MAI.liS CR/)SSO ~, ER 

In'J u In I AGE 

20 
15 
9 
8.5 
7.5 
3 
0.3 

19.2 
- 13.8 

- 7 . 2  
- 6 . 9  
- 5 . 5 1  
- 0 . 1 2  
+ 4 . 8  

- 5 5 2 . 5  
- 5 5 1 . 5  
- 5 5 2 , 3  
- 549.1 

552,4 
- 5 5 2 , 1  
- 5 5 1 , 1  

42 
20.9 
10 
8 
7 
3 
0.5 

- 42 
- 2 0 . 1  

- 8 . 6  
- 6 . 5  
- 5 . 3 5  

0.0 
+3 . 85  

- 2 2 1 . 0  
- 2 1 7 . 5  
- 2 1 9 . 1  
- 220,7 
- 2 2 0 . 6  
- 2 2 1 . 1  
- 2 2 1 . 1  

100.3 
101.2 
129.5 
67.9 
18.2 

none 

219.6 

15 

+ 1o 

0 I 1 I / 

0 5 10 15 2 0  25  30  35 4 0  

I/2 ( a - b )  

FIG, 1 . - - 9 5 ~  Confidence regions for transformed Gompenz  parameters. 
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The substantial overlap of the two regions means that we cannot confidently 
distinguish between male and female mortality patterns for this data set. 

If the two regions did not overlap, we could conclude that the mortality 
patterns were significantly different, and then turn to the question of whether 
the difference includes a crossover, and at what age. The method of Cheng 
and lies [2] would be to construct envelopes for the two force-of-mortality 
functions, using parameter values in the confidence region. For the crossover 
question, an easier alternative is to estimate a 95 percent confidence interval 
for the crossover age. With probability approximately 95 percent, the cross 
product of the two-parameter confidence regions includes the " t rue"  param- 
eter values a,,,, bin, at, and bf. The maximum and minimum values of cross- 
over age calculated from parameters within this region gives us an approximate 
95 percent confidence interval for crossover age. The last column of Table 
6 gives the crossover age corresponding to a few pairs of  points. It is clear 
that the calculated crossover age can be arbitrarily large or unreasonably 
small. Thus, the data here are not sufficient to reject, at the 5 percent level, 
a hypothesis such as "the crossover age is above 200."  

Parametric methods like this one tend to be more powerful than nonpar- 
ametric methods. In this case, we have found that the parametric method 
confirms the result of the Wilcoxon test, namely that the data are insufficient 
to draw a firm conclusion regarding crossover. It is possible that more ex- 
tensive data (such as that on Medicare recipients) would give confidence 
regions like those in figure 1 but smaller so that the possible a-values would 
not overlap, and then we might have a useful confidence interval for cross- 
over age. 

Finally, one should note that any conclusion about crossover drawn from 
any of the tests described here would properly apply only to the particular 
population studied. To apply it to the general population would require an 
assumption that the studied population was " typica l , "  an assumption that 
would appear unwarranted in the case of the charter beneficiaries. The more 
extensive Medicare data is more interesting from this viewpoint. 

Vaupel and Yashin [I 0] have given an interesting discussion of crossovers 
and other surprising effects of heterogeneity. 
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