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COMPUTING THE PROBABILITY OF EVENTUAL RUIN 

ERIC S. SEAH 

ABSTRACT 

Shiu derives two formulas for calculating the probability of eventual ruin 
in a collective risk model. This paper implements one of the formulas by 
incorporating an algorithm to reduce round-off error due to convolution. It 
gives the results of the programs for some claim distributions. The usefulness 
of these two formulas is also discussed. 

1. INTRODUCTION 

An important problem in the collective risk theory, which has over the 
years attracted a great deal of interest, is the computation of the probability 
of rain. Some recent works include [1], [4]-[6], [9], [11]-[19], [22]-[25], 
[27]-[29], [31]-[34], [36]-[39], [41], [42], [44], [46]-[52]. In this paper, 
we implement one of the formulas for probability of ruin recently derived 
by Shin [48]-[50], by incorporating an algorithm to reduce round-off error 
due to convolution. 

We follow the notation of Bowers et al. [8]. Let N(t) be a Poisson 
process that counts the number of claims up to time t, t>_O and E[N(t)] = Xt. 
Also, let/'1, X2, X3 ... be mutually independent and identically distributed 
random variables for individual claim amounts, with Pr(X~<__x)=P(x) and 
E(X~) =pl < ® for all i. Assume N(t) is independent of random variables {X,}. 
Then the aggregate claim process SN<,), defined by SN~,>=XI+X2+ ... +Xjv<,>, 
is said to be compound Poisson. 

For a given relative security loading 0 (where 0>0), let c be the premium 
rate. Thus c = ( 1 +  0)plY.. 

The ruin function ~(u) is defined as the probability that the risk reserve, 
u + c t -  SN<,), is ever negative. Here, u is the amount of risk reserve at time 0. 

2. THE FORMULAS 

In Bowers et al. [8], two formulas for ~(u) are presented (see p. 352 and 
p. 363): 

e-RU 

, ( u )  = E[e Ruc > i r < ,0] (2.1) 
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® 0pl  r 
o e~ [1 -- *(x)] dx = 1 + (1 + O)pl r - Mx(r) (2.2) 

An explicit evaluation of the denominator in (2.1) is generally not possible; 
exceptions include the case in which the claim amount distribution is ex- 
ponential and the case in which u =0 .  For Formula (2.2), an inversion is 
required to evaluate ~(u), which again only works for some families of claim 
amount distributions, such as a mixture of exponential distributions (see [3, 
p. 45] and [17]). Thus, these two formulas are not practical for general claim 
amount distributions. 

For large values of initial risk reserve u, an efficient method for evaluating 
~(u) is the use of Lundberg's asymptotic formula (see [3], [10], [20], [21], 
and [45]). However, situations involving large values of u are not very 
interesting, because in these cases the ~(u)'s are quite small in general (see 
Appendix 2). In practice, insurance companies are constrained by limited 
capital and resources, and hence small values of u are the more interesting 
cases. The purpose of this paper is to examine formulas that can be used to 
calculate ~(u) efficiently for relatively small values of u. 

Let us consider the case in which the individual claim amount random 
variables X~ take values on positive integers only; that is, p(n)=Pr(Xi=n)=c, 
for all i and n = 1, 2, 3 . . . . .  where c,,_>0 and ~,~_~ cn = 1. 

Using operational calculus methods, Shiu [48]-[50] derives the following 
two formulas for ~(u): 

Oe~ {1 + ~ e - " k ~  ckj[a(k-u)~} (2.3) 
, ( u )  = 1 1 + 0 k=~ j=~ j[ 

Oe u ~ e_,k C7 [a(k - u)~ (2.4) 
, (u )  = 1 +----O k=L,J+l J=' J! 

In these formulas, 

c7= x ,=  

fo r j  = 1, 2, 3, ... ; [_u_J is the largest integer less than or equal to u; and 
a is the Lundberg security factor, which is given by a = hc - ~ = [(1 + 0)pl]- ~. 

We note that both (2.3) and (2.4) are exact, and we can implement them 
easily on computers. 
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3. CONVOLUTION PLANNING 

The coefficients {c~'~]. in (2.3) and (2.4) can be evaluated by the formula 

m + n ~ k  

(see, for example, [26, p. 402]). Using this formula, a total of ( j - 1 )  con- 
volution operations are used to compute thej-th convolution c~J, where k = 0, 
1 . . . . .  This can result in significant buildup of round-off error in c~, es- 
pecially when the initial risk reserve u is large and when j increases with u. 
The number of convolution operations can be reduced significantly by re- 
sorting to the more general convolution formula: 

-~" 2 * *h c7 c~,g c~, 
m + ~ k  

whereg  + h = j .  
For example, to compute c~ g, one can compute c~ '2, c~ '4, and c~ 's in that 

order, by using a total of three convolution operations (instead of seven). It 
turns out that in this case, three is the minimum number of convolution 
operations required for j = 8. 

The problem of finding the minimum number of convolution operations 
required for c~ 'J is equivalent to finding the minimum number of multipli- 
cations for computing .v, where j is integral. In fact, the problem has been 
well studied and is known as an "addition chain" in computer literature 
[30, pp. 441-53]. For example, to calculate x s (or c~ '~) using the minimum 
number of multiplications (or convolution operations) is equivalent to finding 
the smallest number of additions to produce 8 from 1 (2 = 1 + 1, 4 = 2 + 2, 
8 = 4 + 4 ) .  

Finding an optimal "addition chain" for an arbitrary integer j can be 
tricky and time-consuming, especially whenj  is large. To avoid the problem 
of enumerating the optimal "addition chain," we use the following heuristic 
(see also [35]). 

The heuristic stems from the observation that i fx  is the number of binary 
digits and y is the total number of l ' s  in the binary representation of an 
integer j ,  then j can be obtained from 1 using exactly x + y - 2  additions. 
We first perform (x -1 )  additions to get 2, 22, 23, ..., 2 x-l,  and then use 
( y -  1) additions, combining those powers of 2 (there are y of them) that 
have a corresponding 1 in the binary representation of j .  We illustrate this 
by using a larger value o f j  as an example. Let j  = 1,000= 1,111,101,0002, 
then x = 10, y = 6, and the number of additions is 10 + 6 - 2 = 14 (2 = 1 + 1, 
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4 = 2 + 2 ,  8 = 4 + 4 ,  1 6 = 8 + 8 ,  3 2 = 1 6 + 1 6 ,  6 4 = 3 2 + 3 2 ,  128=64+64 ,  
256 = 128 + 128, 512 = 256 + 256, 768 = 256 + 512, 896 = 128 + 768, 
960=64+896 ,  992 = 32+960,  1 ,000=8+992) .  Thus, we first use nine 
additions to obtain 2, 4 . . . .  ,512,  and then five operations to add 8, 32, 64, 
128, 256, and 512. 

Denote the number of convolution operations required for c~'J using this 
heuristic by/-/j, and the minimum number of convolution operations required 
for c~'J by Oj. The following table gives the frequency distribution of the 
difference, D = H i - O j ,  forj  = 1 to 1,024 inclusive (the largest difference of 
5 occurs when j =  1,023). We note that although Hj is greater than Oj in 
most cases, it is of the order 2"log2j, which compares favorably to (/ '- 1). 

C~dinality of 
D U : U j - O j - O }  

0 
1 
2 
3 
4 
5 

Total 

307 
385 
260 

49 
22 

1 

1,024 

We implement the heuristic for c~ 'j, j = 2 ,  3, ..., in an orderly manner, 
by calculating c~ 'j as a convolution of c~ 'g and c~ 'h, where g+h =j, and g 
and h are chosen such that Hs+H, + 1 =Hi. The following algorithm is used 
to determine g and h from j .  

1. I f j  is a power of 2, s e tg  and h to j/2. 
2. I f j  is not a power of 2, find the last 1 in the base 2 representation of 

j ,  and let k be its position counted from the right-most digit. Setg = 2 k-1 
and h = j - g .  

We illustrate this algorithm by the following two examples: 

1. c~'4: Since 4 is a power of 2, we set both g and h to 2, and convolute 
c~ '2 and c~ '2 to determine c~ '4. 

2. c~'5: Since 5 = 1012, we have k =  1, g =  1, and h = 4 .  Hence, c~ '1 and 
c~ '4 are used to calculate c~ s. 
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4. AN IMPLEMENTATION OF FORMULA (2.3) 

We implement Formula (2.3) by using the programming language APL, 
incorporating the heuristic discussed in the last section. A listing of the 
programs is given in Appendix 1. 

The main function to invoke is called RUIN. Other functions include 
CALCPROB, CREATECSTAR, CREATEP, and SPLIT. Function SPLIT 
accepts an integer j and determines g and h such that g+h =j and 
Hg+Hh + 1 =H:, as described above. Function CREATECSTAR calculates 
{c~'J]. for j = 1, 2 . . . . .  l_u[ and k = 0, 1, .... [_uJ. Function CREATEP sets 
up a vector for claim probabilities, and function CALCPROB sums the series 
given by Formula (2.3). 

We ran the programs for various values of u and O against the following 
three claim distributions, which have been referred to in various earlier 
works. The results are listed in Appendix 2. 

(1) p(x) = 1 forx = 1 and 0 otherwise (see, for example, [2]). We calculate 
~(u) for O=0.01, 0.02 . . . .  , 0 .06  and u = l ,  2 . . . .  , 10. 

(2) 
x p¢~) 

4 
6 
8 

10 
12 
14 
16 
20 
25 

0.15304533960 
0.07882237436 
0.11199119040 
0.10432698260 
0.09432769021 
0.10925807990 
0.09727308107 
0.18073466720 
0.07022O59474 

(3) 

This example can be found in [7], [34], [40], and [43]. 
We calculate , (u)  for 0=0.25,  0.50, 0.75, 1.00 and u = 0 ,  25, 50, 
75, 100. 

x t,(z) 

I 0.5141 
2 0.3099 
3 0.0639 
4 0.O220 
5 0.0194 
7 0.0096 
8 0.0276 
I0 0.0036 
12 0.0041 
13 0.0019 
15 0.0013 
16 0.0226 
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This example can be found in [5]. 
We calculate O(u) for 0=0.10,  0.20, 0.30, 0.40, 0.50 and u =  100, 
200, 300, 400. 

Formula (2.3) involves summing a finite alternating series and works well 
for relatively small u. However, as the initial risk reserve, u, increases, we 
run into two problems: run-off error and overflow. The computer and the 
APL system on which the programs are run maintain approximately 15 
decimal digits of precision. The run-off error problem is caused by the fact 
that as u gets larger, exp(u) increases rapidly, and consequently an increasing 
number of decimal digits have to be chopped off. The overflow problem is 
caused by the fact that each number is stored by using a fixed amount of 
memory in the computer. Thus there is an upper limit for the magnitude of 
numbers that can be represented. 

Note that the convolution planning that we employ can only delay the 
buildup of round-off error; it cannot solve the problem. 

5. FORMULA (2.4) 

Formula (2.4) requires summing an infinite series. Because the series is 
not alternating, this might be expected to be a good formula for computing 
~(u). Unfortunately, in implementing this formula, we found that the con- 
vergence is very slow. Using Example (1) in Section 3, with 0 = 0.01 and 
u =  1, we need to let k go up to about 185,000 before we obtain seven 
decimal digits of accuracy for ~(u). In this case, we also encounter run-off 
error and overflow problems. Therefore, Formula (2.4) is not practical for 
computing. 
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APPENDIX 1 

LISTING OF APL PROGRAMS 

~RUIN[O]v 

[0 ]  X RUIN C;TH~TA;U;A;Pt;P;CSTA~ 
[I] ^ X is the vector c£ claim amounts, and C is the associated ~robabilities 
[2 ]  ~(v/X!O)/~XIT1 
[33 ~(IE'4~t-¢/C)/EXIT2 
[4] LP:'Initial risk reserve? (To quit the ~rogram, enter  a negative number)' 
C5] ~(o>u+a)/o 
[G] 'Enter relative securit~ loading' 
[7] THETA~D 
[8] A&÷(I+THZTA)xPI~+/XxC 
[9] CREATEP 
[10] CRIAT~CSTAR 
[It] CALePROB 
[ t 2 ]  3 t p' ' 
[ t 3 ]  ~LP 
[143 EXIT1:'Nonpositive claim amounts' 
[15] 40 
[16] EXlT2:'Probabilities do not add u~ to one' 

vCE[ATEP[03~ 

[0 ]  ¢~EATEP 
[1 ]  P~( t¢[ /×)~O 
[2 ]  P[ t*×]~C 



oCALCP~OB[D]o 

[0 ]  CALC~OB;X;SUM;T 
[ I ]  SUM~O 
[2 ]  X~O 
C3] LP:~((LU)<Kek+t)/£HD 
[4] Te+/(~ t~CSTA~[~+t ; ] )xx \ (X~AxX-U)÷~ 
[5 ]  SUM~SUM+Tx*-AxK 
[~] ~LP 
[73 END:'Claim amounts ',~C 
[3] 'Probabilities ',$X 
[g] 'Initial ~isk  reserve ',~U 
CiO] '~elative secu~it~ loadin~ ',~THETA 
[ t l ]  'Probabilit~ o£ ruin ',~I-(*A~U)x(I+SUM)xTHETA÷I+TH~TA 

[01 
i t ]  
[2 ]  
[31 

[5 ]  
[6] 

[B] 

[91 
[ t 0 ]  
[ t t ]  
[ t 2 ]  
[13] 
[14] 
[t5]  
[163 
[17] 
[18] 
[19] 

~CR£ATECSTA~[O]~ 

CRZAT[CSTA~|~:I~V;Vt|T 
R~I*LU 

1~2 
LP:~-SPLIT ! 
J~t 
VI*pO 
LPt :V I *Vt ,CSTA~[ ;V [2 ]~ I ]~ .x~(  * t tJ )4¢CSTA~t ;V[ I ]~ I ]  
~(R2J~J~t ) /L~t  
CSTA~CSTA~,$U'J, 

+0 

In implementing these programs on oOmpu~er$ wit~ l a rge r  meDorw 
(such as mainframes or mini-computers),  the fo l l ow ing  2 l i nes  

m of  code are much more e f £ i o i e n t ,  and can rep lace l i nes  [5 ]  to  [9 ]  
above. 

T~(R,~)t( "l+tl)$((i,2)pOCSTA|tIVCl]+i]),(1,1)~ 
CSTA~CSTAI,eCSTA|t;V~2]+t]~.~T 

v S P t l ~ Q ] v  

[0 ]  Z~SPLIT N;D;T,V 
[ t ]  V~( ( I)~t +r 21N)p2)TN 
[2 ]  4(i=+/V)/END 
[3 ]  Z~2;( T~D-(eV)t t )¢V 
[4] ~:T+IJe~ 
IS] Z~Z, 2~V 
[G] 40 
[73 END:Ze2$H+2 
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PROBABILITIES OF RUIN 

EXAMPLE 1 

u 0.01 ! 0.02 0.03 0.04 0.05 0.06 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.973351 
0.954660 
0.935920 
0.917509 
0.899459 
0.881765 
0.864420 
0.847415 
0.830745 
0.814403 

0.947735 0.923100 
0.911928 0.871624 
0.876707 0.821935 
0.842772 0.774975 
0.810151 0.730698 
0.778792 0.688951 
0.748648 0.649590 
0.719671 0.612478 
0.691815 0.577485 
0.665037 0.544492 

0.899395 
0.833582 
0.771222 
0.713398 
0.659909 
0.610432 
0.564664 
0.522328 
0.483166 
0.446940 

0.876577 
0.797650 
0.724222 
0.657403 
0.596747 
0.541690 
0.491712 
0.446346 
0.405165 
0.367784 

0.854602 
0.763686 
0.680622 
0.606423 
0.540311 
0.481409 
0.428928 
0.382169 
0.340507 
0.303386 

EXAMPLE 2 

0 
25 
50 
75 

100 

o 

0.~ 0.50 0.~ 
0.800000 0.666667 0.571429 
0.433995 0.232316 0.141606 
0.222739 0.072766 0.030113 
0.114114 0.022685 0.006349 
0.058463 0.007072 0.001339 

1.00 

0.500000 
0.094198 
0.014607 
0.002236 
0.000342 

EXAMPLE 3 

u 0.1 0.2 

100 0.522132 0.308428 
200 0.307110 0.118771 
300 0.180699 0.045752 
400 0.091223 0.016231 

0.3 

0.199082 
0.054149 
0.014725 
0.003896 

0.4 

0.137226 
0.027873 
0.005654 
0.001105 

0.5 

0.099443 
0.015734 
0.002482 
0.000383 

431 





DISCUSSION OF PRECEDING PAPER 

B E D A  C H A N :  

We congratulate Dr. Seah for his contributions towards the implementa- 
tion of exact calculation of ruin probabilities. Although many exact formulas 
are known to theorists, it is algorithms such as the APL programs in the 
paper that deliver applications to practitioners. 

Another well-known group of exact calculations is that ruin probabilities 
for a combination of exponential claims can be computed exactly as a com- 
bination of exponentials. In this discussion, we use a combination of two 
exponentials to approximate the claim distributions in the three examples in 
the paper. 

In a compound Poisson claim process with claim amounts distributed as 
a mixture of exponentials 

n 

p(x )  = ~ A, 13, e - ~  (1) 
i=1 

for x > 0 where all A~ > 0 and Y'7~1A~ = 1, the ruin probability is also a linear 
combination of exponentials 

, (u)  = ~ G e-r" (2) 
i=1 

where {rl, . . . ,  r~} are solutions to the adjustment coefficient equation 

(1 + O)p, = Mx(r)  - 1 
r 

and {Cx . . . . .  C,} are determined by the partial fractions of 

M 4r)- 1 
Cri  0 r 

i-~ r~ - r 1 + 0 Mx(r)  - 1" (3) 
(1 + 0)p~ 

r 

See Bowers et al. [1, §12.6] for details. This result was later extended by 
Dufresne and Gerber [3] to the case in which the claim distribution is a 
translated (density function moved by "r to the left) combination (where the 

433 
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Ai's need not be positive of exponentials. They found that the coefficients 
C:s  are the solution to the system: 

[B--------2--~ C, = 1, i = 1 . . . .  , n, (4) 
k - 1  13t r ,  

and gave Ck explicitly. An alternative expression for the solution for (1) was 
given in Chan [2]: 

,,,.j, r,  - r ,  , - 1  13, (5 )  
i=l  

Following Shiu [4] we consider r---)13~ in (3) to obtain 

C+ ri = 0 

,.11Bk ~S r, 1 + 0 

To solve (6) consider 

k -- 1 . . . .  , n. (6) 

C,r ,  = e 

~o~ x - r~ 1 + e 1 + e ~=~ (x h )  

where the two sides are different expressions for the same rational function 
of (degree n - 1/degree n) with simple poles {rl, . . . ,  r,,} and takes the value 
0 /1+0  atx=131 . . . . .  13,,. Multiply b y x - r k  and let x = r k  to obtain 

rI (13, - 

0 i - 1  (7) Ck = 1 + O ~- 
11 (r, rk) rk 
i÷k 
i=1 

Comparing the two explicit solutions for Ck, (5) and (7), we obtain the 
following equality, which can be used for checking the roots {r,} of the 
adjustment coefficient equation. 

n 
H r =  0 
,-1 13, 1 + O (8) 
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p(x) = 13v 
"y-13 

"t 
"1-13 

where 0<13<',/. From 

For approximating the three examples in the paper, consider the family: 

(e - ~  - e-~') for x > 0 

13e_a, 13 "/ - 13 ~/e- ~' ~ for x -> 0 (9) 

1 1 e(x) 

1 1 
V a r ( X )  = + - -  

we notice that for a fixed value of E(X), Var(X) fails in the range of 

E(X) 2 
< Var(X) < E(X) 2 

2 

where the lower bound is not attained--but approached by ~ / w a n d  the 
upper bound is attained by 3, = ~o. In the three examples, 

E(X) = 1 Var(X) = 0 
E(X) = 12.61243786 . Vat(X) = 39.89429478 
E(X) = 2.2896 Var(X) = 7.50993184 

where the variances are all out of range, fitting the first two moments with 
a member of this class, as described by (9), is not possible. The closest fit 
is provided by matching E(X) and getting the closest Var(X): 

matching E(X) minimum Var(X) 
matching E(X) minimum Var(X) 
matching E(X) maximum Var(X) 

In Example 1, with (13,,,t)=(1.999, 2.001), the. four comers in the ruin 
probability table are 

0.978130 0.879896] 

0.868490 0.444304] 
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Further squeezing (13,~/) to (2,2) does not improve the four comers towards 
the exact values in Example 1. Our values are higher because the approxi- 
mating claim distribution has the same mean but variance= 1/2, whereas the 
original X -  1 has variance = 0. 

In Example 2, with (13,'y)= (0.15758, 0.15958) the four comers of the 
table are 0,] 

o o.oo  46,  

In Example 3, with (13,~/)=(1/2.2896, ®), the four corners of the table 
are 

0.0171486 3.171 10 -7 1 

1.15107 10 -7 3.41238 i0-26J 

The class (9) is the sum of two independent exponentials. In general, 
these are known as Erlang distributions. We found that the sum of four 
independent exponentials of parameters (0.29442, 0.31022, 0.32602, 0.34182) 
has the same mean and variance as Example 2. Formulas (5) or (7) can then 
be used to compute the exact probability of ruin. We would then have 
discrete and continuous models for which exact expressions for ruin prob- 
abilities are readily computable for contrast and comparison. 
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HANS U. GERBER: 

Recently Shiu derived Formula (2.3), which gives the probability of ruin 
for the case in which the claim amount distribution is discrete. The great 
merit of Seah's paper is that it shows that this formula can be successfully 
applied. 
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In his program Seah calculates C~J recursively with respect to j ,  which is 
the traditional way to calculate convolutions. An alternative possibility is to 
calculate C~J recursively with respect to k (for each j),  according to the 
formulas 

c7 = 

c7=  n k _  j 1) C~+, C~L~ for k = j  + 1 , j  + 2 . . . .  

See De Pril [1], who also discusses the case in which C1 =0.  I do not know 
how useful this alternative method might be for computing. 

In general, a claim amount distribution is not discrete. Then two methods 
of discretization are possible. To describe them, we recall Beekman's con- 
volution formula: 

here 

1 - q , ( u )  = 

with 

e .L 
Z (1 + 0) 

1 +  0,1-o 

1 - HCu) = IICu)/H(0), 

® ® 

x x 

which can be interpreted as the stop-loss premium, considered a function of 
the deductible x. 

The first method consists of discretizing the function H, which leads to 
an approximation that can be calculated recursively; see references [24] and 
[41] in Seah's paper. Dufresne and Gerber [2], [3] carry out this discreti- 
zation systematically to obtain lower and upper bounds for the probability 
of ruin. 

A second method would now be to discretize the claim amount distribu- 
tion, P,  so that Shiu's formula and Seah's program can be applied. If the 
discretization is carried out appropriately, one can also get lower and upper 
bounds for the probability of ruin. For example, one might replace the 
original distribution P by the distribution 15 that is obtained by dispersing 
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the probability mass to the adjacent integers without changing the mean; see 
Gerber and Jones [4]. Then one can prove the following inequalities: 

l=I(x) > II(x), but I'I(0) = II(0), 

f/(u) ~ H(.),  

B*"(u) ~_ H*"(u), 

~,(u) > ¢(u). 

In a similar fashion we can obtain lower bounds for the probability of ruin, 
for example, by modifying P by concentrating the probability mass 
appropriately. 
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ELIAS S.W. SHIU: 

Dr. Seah is most kind in giving me credit for Formulas (2.3) and (2.4). 
These two formulas are easy consequences of the formulas 

0 ~ "  E[(u - S,){ e~("-s,)], u > O, (D.1) 
l + O j . . o  . ~ ' .  

¢(u) = I 

and 

¢(u) = 1 

respectively. For a->0, 

" a a  

+ 0  

x.+ = {o" x _ > 0  
x < 0 "  

u > O, (D.2) 
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Formulas (D.1) and (D.2) are equivalent to [12, p. 61, formula (17)] and 
[7, formula (5.55)], respectively. I would like to supplement this paper by 
proving (D.1) and (D.2). Alternative proofs can be found in [4], [5], [10] 
and [11]. 

Define the non-ruin function 

, ( u )  = 1 - , ( u ) .  

The function 6 is monotonic increasing; it takes the value 0 on the negative 
axis and 

lira 6(u) = 1. (D.3) 

Consider a small time interval (0, s). Under the Poisson hypothesis, the 
probability that a claim will occur in that interval is hs+o(s).  Hence, for 
u_>0, the non-ruin function d~(u) satisfies the relation: 

, ( u )  = x s e [ , ( u  + cs  - x ) ]  + (1 - x s ) ~ ( u  + cs)  + o(s) .  (D.4)  

Dividing (D.4) by s, rearranging and letting s tend to 0 + ,  we obtain the 
integro-differential equation 

0 = x e [ ~ ( u  - x ) ]  + c4 , ' (u )  - x~(u) ,  u > 0, 

or 

$'(u) = a{~b(u) - E[, (u  - X)]}, u > 0. (D.5) 

The convolution of two functions g and h is defined by 
® 

(g * h)(x) = J g(x - t) h(t) dr. (D.6) 

Note that 

g , h  = h . g .  

If g and h are zero on the negaive axis, then (D.6) becomes 
x 

(g * h)(x) = Ig(x - t) h(t) dt. 
o 
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Letp(x) denote the derivative of the probability distribution function P(x). 
If P(x) is not differentiable, then p(x) is a generalized function [13]. Let 
~(x) denote the Dirac delta function. Then Equation (D.5) becomes 

+'(u) = a[+(u) - (+ *p)(u)] 

= a{[~(u) - v ( u ) ]  * ,l,(u)}, u > 0. (D.7) 

With the definition 

f(u) = a [ ~ ( u )  - p(u)], (9.8)  

Equation (D.7) can be written as 

d~'(u) = ( f ,  +)(u), u > 0. (D.9) 

We are to seek a function 4, which is zero on the negative axis and satisfies 
conditions (D.3) and (D.9). 

Letf*°(x)=8(x); for n = l ,  2, 3 . . . .  , define 

f*"(x) = f(x) • f*t"-')(x). (D.10) 

As 

(g * h)' = g * (h'), (D.11) 

d 
au u° = ~(u) 

and 

d u"+ u"+ -1 
= n =  1 , 2 , 3 , . . . ,  

du n! (n - 1)!' 

one can check that (any scalar multiple of) the function 

~] f*"(u) * u~ (D.12) 
,,-o n! 

satisfies Equation (D.9) and is zero on the negative axis. Hence, we have 
the formula 

+(u) = +(o) X p"(u) ,u~ ,-o n! (D.13) 

The value of d~(0) will be determined later, using condition (D.3). 
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Substituting 

f*"(u) = a"[~(u) - p(u)]*" 

= a" ~ (-X)J (~.)p*~(u) 
./=0 

into (D.13) and interchanging the order of summation yields 

<b(u) = ~b(O) 2 a" uq. 1 
j -o  j !  * (n --- j ) t  J 

® 

= d~(O) ~, (-a)iP*J(u) * (u~ e ~'÷) 
j=o j !  

® 

= ~,(o) ~ ( - a ) J  e [ (u  - S~)~ e*-S,~.]  

~-o j!  ' 

which is (D.1), provided that 

6(0) = 0(1 + e) - ' .  (D.14) 

To prove (D.14), we integrate (D.7) with respect to u from 0 to w: 
w 

~(w)  - (k(0) = a I ~ ( w  - x)  [1 - P(x)]  dx.  (D.15) 
o 

Letting w tend to + = in (D.15) and applying the Lebesgue dominated 
convergence theorem, we obtain 

aa 

l - , ( O ) ; a  [ l - P ( x ) l a x ; a p ~ = l + o ,  
o 

which gives (D.14). 
The simplest way to prove (D.2) seems to be the approach given in [4]; 

see also [6]. Let U(t) denote the risk reserve at time t, 

u(t)  = u + ct - s , ,~.  

Since 0>0,  

Pr[lim U(t) = ~] = 1. 
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If ruin occurs, there is necessarily a last upcrossing of the risk reserve at the 
level 0. Hence, the probability of ruin can be expressed in terms of the 
probability of such a last upcrossing of the risk reserve at the level 0. By 
considering the number of claims n, prior to this last upcrossing, and the 
time t at which this last upcrossing occurs, we have 

o~ 

,(u) = ~,.~ j 

(I thank Dr. Beda Chan for helping me figure out this formula.) Let s =u +ct.  
As h t = a ( s - u ) ,  Formula (D.16) becomes 

® e -"(s-") [a(s-u)]"  
E .~x n] 

oo 

= ~ n! n = l  

/ 
, / f*"(s)  / [1 - ,I,(o)] 

}° 
dj'*.(s) 1 + o' 

Pr(Xi = 1) = c, = 1. 

Then Formulas (2.3) and (2.4) in the paper become 

~(u) = 1 1 + ~ j ~ o  j! \ 1  + O] 

and 

[ u)] L~ 1 (j - U/ ' exp  - (D.18) 
O(u) = 1 + 0j~ +,fi  \1 + 0] ~ ' 

u - j  exp (-~---~)(D.17) 

respectively. Formula (D.17) was given by Erlang in 1909 for a telephone 
delay problem and by Feller in 1934 in the context of collective risk theory 
([1, (5)], [3, XIV.(2.11)], [8, (4.12)]); this result has been rediscovered 
many times. Formula (D.18) can be found in [1, (10)], [9, 3.3.2.1.(2)], [7, 
(5.58)], [8, p. 108] and [4, (29)]. Segerdahl [9, p. 283] wrote that a proof 
of (D.18) had so far only been published for integral values of u, but he 

which is (D.2). 
Consider the special case in which all claim amounts are one, that is, 
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had a general proof in manuscript. Arfwedson [1] also gave a formula for 
the probability of ruin within a fixed finite time period under the assumptions 
that the claim amounts are unity and that u is an integer. Arfwedson's 
formula for the finite-time ruin probability can be found in [2, (135)], [9, 
section 3.8.2.2.4] and [8, (4.20)]. Seal [8, (4.20)] did not require u to be 
an integer. 
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R.J .  VERRALL'- * 

Seah, in common with many authors, considers calculating the probability 
of eventual ruin by evaluating an infinite sum. Verrall [3] takes a different 

• Dr. Verrall, not a member of the Society, is Lecturer, Department of Actuarial Science and 
Statistics, City University, London, England. 
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approach that appears to offer a high degree of accuracy and efficiency. 
This approach, and the direction of some current research, is outlined below. 

Consider Equation (2.2) in Seah. This is the moment generating function 
(m.g.f.) of 1 -  O(x) and can therefore be inverted by using Laplace theory. 
An accurate approximation, called the saddlepoint approximation in statis- 
tical applications, was developed by Esscher [1] and Daniels [2]. This can 
be applied to Equation (2.2) (which is the m.g.f, of a random sum), when- 
ever Mx(r) exists. 

A further development also contained in Verrall [3] is the use of the 
empirical m.g.f, to give a nonparametric or bootstrap approximation to the 
probability of eventual ruin. 

A focus of current research work is to derive an approximation based on 
Edgeworth expansions that does not rely on the existence of the m.g.f. I 
hope to be able to report on this in the near future. 
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(AUTHOR'S REVIEW OF DISCUSSION) 

ERIC S. SEAl-I: 

I thank Dr. Chan, Dr. Gerber, Dr. Shiu, and Dr. Verrall for their dis- 
cussions, which add immeasurably to the value of the paper. 

Dr. Chan points out that, for a claim amount distribution that is a com- 
bination of exponentials, there is an exact formula for ruin probabilities, 
which involves a combination of exponentials. He illustrates how a combi- 
nation of exponentials can approximate a claim amount distribution. One 
situation in which this technique can be extremely useful is when only the 
(sample) mean and variance of the claim amounts are available. 

Dr. Gerber comments that there is an alternative way to calculate c~J, 
which is to proceed recursively with respect to k (for each j). This approach 
is useful if we are interested in c~ j, for some fixed j .  However, if we need 
to compute c~'J for all k = 1, 2 . . . .  [.u.J and j = 1, 2 . . . . .  k, the recursive 
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method does not seem to offer any significant computational advantage over 
the method used in the paper (note that u is the initial risk reserve). 

Dr. Gerber and Dr. Dufresne demonstrated their computer software, "Risky 
Business--An Eduational Software," at the University of Manitoba, and it 
has proved to be a very useful teaching tool. 

Dr. Shiu points out that Formulas (2.3) and (2.4) can be obtained easily 
from Formulas (D.1) and (D.2). It is interesting to note that the summation 
terms in (D.1) and (D.2) are closely related to the following two results (see 
[3]): 

[ ] E E d(Sj + x y - '  i 
,=o j[ e-'(s'+'° = x - (1) 

[ ] E e  .,(s; +xy 1 
j-o J! e-,,cs,+x) = 1 - aw" (2) 

Here, x=/=0, E[Xi]= O,, S j = X I + X = +  ...  +Xj,  and lap, l<1. 
Both Dr. Gerber and Dr. Shiu refer to the non-ruin function 

, ( u )  = 1 - ,(,,). 
Consider the aggregate loss process { S ( t ) - c t ,  t > 0}, which measures the 
excess of aggregate claims over the premiums received. It turns out that the 
non-ruin function is the distribution function of the maximum of this aggre- 
gate loss process; that is, FL(u) = ~b(u), where 

L = max {S(t) - ct}; 

see [1, pp. 361-62]. By considering the times when the aggregate loss 
process assumes new record highs, the maximal aggregate loss L can be 
decomposed as 

L = L 1  + L 2  + ... + L u ,  

where N is the number of record highs, and L~ is the difference of aggregate 
loss between the ( i -1)- th  and i-th record highs (the 0-th record high is 0). 
Since N has a geometric distribution and L~, L2 . . . .  are mutually independent, 
identically distributed, and independent of N, Beekman's convolution for- 
mula as referred to by Dr. Gerber can be easily derived. Note that the 
distribution function H(u) in Beekman's convolution formula is the distri- 
bution function of L;; see also formula (12.5.3) on p. 360 of [1]. 
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As pointed out by Dr. Gerber, in the case of a non-discrete claim amount 
distribution, one can use the method of  discretization before applying For- 
mula (2.3). In addition to the references given by Dr. Gerber, interested 
readers may wish to refer to [2], [4], [5]. 

Dr. Verrall is correct to point out that many formulas for ruin probabilities 
involve evaluating an infinite sum and hence are approximate in nature. 
However, Formula (2.3) has only a finite number of terms and is an exact 
formula. Note that Formula (2.4), which does involve an infinite series, has 
been found to be impractical for computing. 
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