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ABSTRACT 

In "Statistical Tests of  the Lognormal Distribution as a Basis for In- 
terest Rate Changes" [41, Becker rejects the hypothesis that successive 
interest rate changes are independently, identically lognormally distrib- 
uted. This paper explores some of the implications of this conclusion on 
cash-flow analysis. First, the stable Paretian distribution is described. 
The reasons for using the normal distribution to model the logarithm of 
the ratio of consecutive interest rates are explored and found to justify 
the stable Paretian as well. Stable Paretian parameters are estimated for 
a series of interest rates, and statistical tests are performed. 

Herzog's discussion of Becker's paper points out that a model can be 
wrong but still useful. The questions he raises are (1) What other models 
are available? and (2) How robust is the model to misparameterization? 
Having presented an alternative model, this paper goes on to test the 
sensitivity of cash-flow analysis to the change from the lognormal model 
to the best fitting stable Paretian. Two cash-flow tests are performed with 
identical assumptions except for the distribution of interest rate changes. 
The results differ drastically. 

I. INTRODUCTION 

The actuarial profession is developing a consensus on the proper meth- 
odology for analyzing the cash flows of an insurance company; this con- 
sensus is expressed in [19]. One common assumption in cash-flow anal- 
ysis is that the change in interest rate from period to period is the result 
of a stationary lognormal stochastic process (see [8], [19], [20], [21], 
[25], and [26]). Becker tested four assumptions inherent in this assump- 
tion and found strong evidence for rejecting three of them [4]. Specifi- 
cally, he found that the random variables 

l,+z 
Jt = log, u ,  (1) 

I, 
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where I, is the interest rate at time t, are not stochastically independent, 
are not normally distributed, and do not have a constant variance over 
time. 

Actuarial  Standard o f  Practice No. 7, entitled "Performing Cash Flow 
Testing for Insurers" [2], states that "[t]he actuary should consider the 
sensitivity of the model to the effect of variations in key assumptions. 
• . ." According to Deakins and Tulin [10], "The interest scenario rep- 
resents the single most important assumption the actuary will make . . . .  " 
This paper extends the results of Becker by analyzing the sensitivity of 
the results of cash-flow analysis to this key assumption, the distribution 
of interest rate changes. The assumption that interest rate changes are 
the result of a stationary stochastic process, that is, that they are inde- 
pendent and identically distributed, is retained throughout this paper, while 
the assumption of lognormality is questioned. However, since the in- 
dependence and identical distribution assumptions are both rejected by 
Becker's tests, the results presented should not be taken as a prescription 
for remedying current cash-flow methodology. Rather, they should be 
taken as an indication of the extreme sensitivity of the results of cash- 
flow testing and other types of  risk analysis to model assumptions that 
may not reflect reality. 

II. DISTRIBUTION OF INTEREST RATE CHANGES 

A. Possible  Dis tr ibut ions  f o r  Interest  Rate Changes 

Bachelier demonstrated that, given certain assumptions, economic time 
series would follow the Gaussian or normal distribution [3]. His argu- 
ment has since been modified to the hypothesis that for many types of 
commodities, the logarithm of the quotient of price changes over suc- 
cessive periods is normally distributed. This hypothesis, which can be 
called the lognormal hypothesis, is also commonly applied to interest 
rate changes. That is, if I, is a random variable representing the interest 
rate at time t, then the random variables 

it+ 1 
J, = l o g e -  (2) 

/,  

are assumed to be independently, identically, normally distributed with 
mean zero. As a corollary, 
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It+] = Ire "z', (3) 

where s is the standard deviation of  the stochastic process of interest rate 
changes and the Z, are independent random variables with the standard 
normal distribution. 

The assumption that changes in interest rates or prices of securities or 
commodities are independent, identically distributed lognormal random 
variables is inherent in a substantial amount of financial theory, includ- 
ing the capital asset pricing model [28] and the Black-Scholes model for 
pricing options [6]. It is also virtually universally accepted by actuaries 
for cash-flow analysis, whether used directly or as the basis for the prob- 
abilities in a Markov chain of yield curve shift (see, for example, [8], 
[19], [20], [21], [25], and [26]). 

In 1963 Mandelbrot proposed an alternative to the lognormal hypoth- 
esis [24]. In analyzing changes in the price relativities (that is, the log- 
arithm of the ratio of successive prices) of cotton, he found that the tails 
of the empirical distribution were too large to have come from a normal 
distribution. His proposal, called the stable Paretian hypothesis, is that 
non-normal members of the family of distributions called stable Paretian, 
not the normal distribution, are appropriate for describing changes in 
relativities of commodity prices or interest rates. The stable Paretian dis- 
tribution, of which the normal distribution is a special case, is described 
in the next section. 

B. P r o p e r t i e s  o f  t he  S t a b l e  P a r e t i a n  Dis t rz 'bu t ton  

The stable Paretian distribution, first described in 1925 by Lrvy [23] 
and later described in English by Gnedenko and Kolmogorov [16], is a 
family of probability distributions with the following characteristic func- 
tion: 

(4) 
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where 

/ tan( ; 1 
to(a, t) = , (5) 

(2 In Ill) 
e t = l  ' 

i=~L--1, and exp(w) means e w. A particular member of  the family is 
completely specified by four parameters: or, 13, ~/=c ~, and 8. 

Parameter ot is limited by 0<a-<2.  When ct=2, the distribution is nor- 
mal, with p,=8 and ~z=2"y, since the characteristic function of the nor- 
mal distribution is 

~(t) = E[e i'x] = exp i t x t  . (6) 

Thus, the stable Paretian distribution is a more general category, which 
includes the normal distribution as a specific case. As a decreases from 
2 toward 0, the distribution becomes more "fat-tailed." This property 
led to its being named after the Pareto distribution, which is also ~fat- 
tailed ~ and is discussed in [71 and [17]. Parameter c~ is referred to as the 
characteristic exponent, since it appears as an exponent in the charac- 
teristic function. 

Parameter 13 is a parameter of skewness and is limited by -1<-13-<1. 
When 13=0, the distribution is symmetric. When a = 2 ,  that is, in the 
normal case, the term involving 13 vanishes, so the distribution is 
symmetric. 

Parameter ~ is equal to c a, and consequently ~/and c are both required 
to be positive. The variance of  a stable Paretian distribution with ~ < 2  
is infinite. Other measures of dispersion are needed. Parameter ~ plays 
a role similar to that played by z ,  variance, in the normal case. For 
instance, the sum of n stable Paretian random variables whose distri- 
butions have the same ~ 's  and 13's has a distribution with ~/equal to the 
sum of the ~'s  of the component distributions. Parameter c, which is 
equal to ~/(1/,), plays a role similar to that played by ~, standard devia- 
tion, in the normal case. For instance, a stable Paretian random variable 
is transformed into a standardized stable Paretian random variable by 
first subtracting 8 and then dividing by c. Thus c is a scaling parameter. 
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Parameter 8 is the location parameter. When a >  1, as is generally the 
case in economic and natural phenomena, 8 is equal to the mean of the 
distribution. When ¢t<_ 1, the mean of the distribution is infinite. 

There are no simple expressions for the probability density function 
(pdf), except for three cases. First, when or=2, the distribution is normal 
with Ix=8 and ~z=23'. Secondly, when a =  1 and 13=0, the distribution 
is Cauchy with c and "y (since 3'=c~'=c) both equal to the semi-inter- 
quartile range, that is, half of the difference between the 75th percentile 
and the 25th percentile. And thirdly, when a=0 .5 ,  13= l, 3, = 1, and 8=0, 
the pdf can also be specified [24]. Thanks to Bergstrom, however, there 
are series expansions that can be numerically evaluated to approximate 
the pdf and the cdf [5], [13]. These are discussed in Section III-A. 

The function 

X - 8  
U = - -  (7) 

C 

transforms a stable Paretian random variable X into a standardized stable 
Paretian random variable U with 8=0 and 3'=c ~= 1. This is analogous 
to the standardization of normal random variables, but a standardized 
stable Paretian with et=2 is not a standardized normal. It is, in fact, a 
normal with i~=0 and cr2=23'=2. 

A graph comparing the pdf's of the standardized stable symmetric (13=0) 
Paretian distribution with et=2 (normal) versus et= 1.5 illustrates the dif- 
ferences between the two (see Figure 1). First, for 0-<x<x~, f~.5(x)>~.o(x), 
where f,~(x) is the pdf of a standardized symmetric stable Paretian dis- 
tribution with characteristic exponent of et. Secondly, for x~<x<x2, 
fl.5(x)<fz.o(X). And finally, for x2<x, fl.5(x)>fz.o(x). Similar observations 
can be made about the negative range, since both pdf's are symmetric. 
Table 1 shows several values from the cumulative distribution functions 
for the standardized stable Paretian distribution for five values of et. As 
this table shows, as the value of ct decreases, the amount of probability 
in the tails increases. In other words, the probability of extreme events 
increases as ot decreases. 

This property of ~fat-tailedness" in Mandelbrot's data led him to this 
family of distributions as an alternative to the normal. Becker's data also 
exhibited this property, which he described as high positive kurtosis. 
Cash-flow analysis and other types of ruin theory are concerned with the 
probabilities of extreme situations, that is, those in the tails. The use of 



84  TRANSACTIONS, VOLUME XLV 

FIGURE 1 

PROBABILITY DENSITY FUNCTIONS OF STANDARDIZED STABLE PARETIAN DISTRIBUTION 
FOR TWO VALUES OF ALPHA 

a model such as the lognormal hypothesis, which ignores the high pos- 
itive kurtosis found in the data, will lead to misleading results, since the 
probability of these extreme situations will be understated by that model. 

An instance in which a model reflecting high positive kurtosis could 
have proved useful is the stock market crash of October 1987. When the 
stable Paretian distribution is used as a model for stock price changes, 
large changes in price happen more abruptly than when the lognormal 
distribution is used as a model. In other words, the stable Paretian model 
better reflects the existence of stock market crashes by assigning a higher 
probability to tail events than the lognormal does. Of course, the stable 
Paretian model merely reflects the higher probability of such a crash--  
it could not have predicted the timing. Nevertheless, strategies such as 
portfolio insurance that break down when there are large abrupt changes 
in security prices may have been avoided by using the stable Paretian 
hypothesis [27]. 

An important characteristic of stable Paretian distributions is that they 
generalize the central limit theorem. The central limit theorem states that, 
as n grows without bound, the distribution of the sum of n independent 
random variables--each with finite variance--approaches the normal 
distribution with mean equal to the sum of the means and variance equal 
to the sum of the variances of the random variables. A generalization of  



TABLE 1 

CUMULATIVE DISTRIBUTION FUNCTIONS OF STANDARDIZED SYMMETRIC STABLE DISTRIBUTIONS 

FOR FIVE VALUES OF ALPHA 

u a= 1.00 ! a=1.25 c~= 1.50 or= 1.75 I a=2 .00  

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 

1.00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 
2.20 
2.40 
2.60 
2.80 
3.00 
3.20 
3.40 
3.60 
3.80 

4.00 
4.40 
4.80 
5.20 
5.60 
6.00 
7.00 
8.00 
9.00 

10.00 
11.00 
12.00 
13.00 
14.00 
15.00 
20.00 

0.5000 
0.5159 
0.5317 
0.5474 
0.5628 
0.5780 
0.5928 
0.6072 
0.6211 
0.6346 
0.6476 
0.6601 
0.6720 
0.6835 
0.6944 
0.7048 
0.7148 
0.7243 
0.7332 
0.7419 

0.7500 
0.7652 
0.7788 
0.7913 
0.8025 
0.8128 
0.8222 
0.8308 
0.8386 
0.8458 
0.8524 
0.8642 
0.8743 
0.8831 
0.8908 
0.8976 
0.9036 
0.9089 
0.9137 
0.9181 

0.9220 
0.9289 
0.9346 
0.9395 
0.9438 
0.9474 
0.9548 
0.9604 
0.9648 
0.9683 
0.9711 
0.9735 
0.9756 
0.9773 
0.9788 
0.9841 

0.5000 
0.5148 
0.5296 
0.5443 
0.5589 
0.5733 
0.5875 
0.6016 
0.6153 
0.6288 
0.6420 
0.6549 
0.6674 
0.6796 
0.6914 
0.7028 
0.7138 
0.7244 
0.7347 
0.7445 

0.7540 
0.7717 
0.7881 
0.8030 
0.8166 
0.8290 
0.8402 
0.8505 
0.8599 
0.8683 
0.8761 
0.8896 
0.9010 
0.9105 
0.9187 
0.9256 
0.9316 
0.9369 
0.9414 
0.9455 

0.9490 
0.9550 
0.9599 
0.9639 
0.9672 
0.9701 
0.9755 
0.9794 
0.9823 
0.9846 
0.9863 
0.9878 
0.9890 
0.9900 
O. 9908 
0.9936 

0.5000 
0.5144 
0.5287 

-' 0.5430 
0.5572 
0.5713 
0.5853 
0.5991 
0.6127 
0.6262 
0.6394 
0.6524 
0.6651 
0.6776 
0.6898 
0.7017 
0.7133 
0.7245 
0.7355 
0.7461 

0.7563 
0.7759 
0.7940 
0.8108 
0.8263 
0.8406 
0.8536 
0.8655 
0.8763 
0.8861 
0.8950 
0.9103 
0.9228 
0.9331 
0.9415 
0.9484 
0.9542 
0.9590 
0.9631 
0.9665 

0.9694 
0.9742 
0.9778 
0.9807 
0.9830 
0.9848 
0.9882 
0.9905 
0.9922 
0.9934 
0.9943 
0.9950 
0.9956 
0.9961 
0.9965 
0.9977 

0.5000 
0.5142 
0.5283 
0.5424 
0.5565 
0.5704 
0.5843 
0.5881 
0.6117 
0.6251 
0.6384 
0.6515 
0.6643 
0.6770 
0.6894 
0.7015 
0.7135 
0.7251 
0.7365 
0.7476 

0.7583 
0.7790 
0.7984 
0.8165 
0.8334 
0.8491 
0.8635 
0.8767 
0.8888 
0.8998 
0.9098 
0.9269 
0.9407 
0.9517 
0.9604 
0.9673 
0.9727 
0.9970 
0.9803 
0.9830 

0.9852 
0.9884 
0.9906 
0.9922 
0.9933 
0.9943 
0.9958 
0.9968 
0.9974 
0.9979 
0.9982 
0.9985 
0.9987 
0.9989 
0.9990 
0.9994 

0.5000 
0.5141 
0.5282 
O.5422 
0.5562 
0.5702 
0.5840 
0.5977 
0.6114 
0.6248 
0.6382 
0.6513 
0.6643 
0.6771 
0.6897 
0.7021 
0.7142 
0.7261 
0.7377 
0.7491 

0.7603 
0.7817 
0.8019 
0.8210 
0.8389 
0.8556 
0.8710 
0.8853 
0.8985 
0.9104 
0.9213 
0.9401 
0.9552 
0.9670 
0.9761 
0.9831 
0.9882 
0.9919 
0.9945 
0.9964 

0.9977 
0.9991 
0.9997 
0.9999 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
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this states that the stable Paretian distributions are the only possible lim- 
iting distributions for sums of independent random variables. This gen- 
eralization does not require that the variance of the random variables be 
finite [ 16]. 

Another important property of the stable Paretian distributions is sta- 
bility, from which they get the first part of their name. A property of 
the normal distribution is that the sum of n independent normally dis- 
tributed random variables is itself normally distributed with a mean equal 
to the sum of the means of the summands and a variance equal to the 
sum of the variances of the summands. This property is referred to as 
stability. A generalization of this property is that the sum of n indepen- 
dent random variables from a stable Paretian distribution with the same 
et's and 13's has a stable Paretian distribution with ot and 13 the same as 
in the summands, ~/equal to the sum of the ~/'s of the summands, and 

equal to the sum of the ~'s of the summands. 
Since the stable Paretian distribution shares many of the important traits 

of the normal, it should certainly be considered as a candidate for mod- 
eling the distribution of J,. In fact, since the normal distribution is a 
special case of the stable Paretian distribution, it is already being used 
for this purpose, but with no thought given to the possibility that ot may 
not be equal to 2, that is, that the lognormal hypothesis may be false. 
The next section discusses why the normal distribution has been used 
for this purpose in the past and why the entire family of stable symmetric 
Paretian distributions should be considered. 

C. C o n s i d e r a t i o n s  in Se lec t ing  a Dis t r ibu t ion  f o r  In t e res t  
Rate Changes 

Four reasons can be given for using the normal distribution to model 
changes in the relativities of interest rates. This section explores these 
reasons and discusses the stable Paretian distribution as an alternative. 

First, it is often asserted that interest rates change because of many 
small pieces of information moving through the markets. If it is assumed 
that these changes have distributions that are mutually independent, then 
the central limit theorem would encourage us to use the normal distri- 
bution for the change in interest rates, which is the sum of these small 
changes. Likewise, if we assume that interest rates change due to many 
small multiplicative changes, then the lognormal distribution would be 
appropriate for modeling these changes, since the logarithm of the prod- 
uct is equal to the sum of the logarithms of the multiplicands. 
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A generally unstated assumption in this line of  reasoning is that the 
change caused by each of the pieces of information has a distribution 
that has a finite variance. There is no reason to make that assumption a 
priori, and since the generalization of the central limit theorem states 
that any stable Paretian distribution can be a limiting distribution, this 
argument applies equally well to the lognormal hypothesis or the stable 
Paretian hypothesis. Empirical tests must be used to choose between the 
hypotheses. These tests, described in Section D, reject the lognormal 
hypothesis and generally support the stable Paretian hypothesis. As a 
corollary, the changes in interest rates caused by some of the pieces of 
information must have distributions with infinite variance. 

Secondly, the normal distribution has the property of stability, or in- 
variance under addition, discussed in Section B above. This is a desirable 
trait because, for instance, if the distribution of weekly changes in in- 
terest rates is known, then the distribution for annual changes is known. 
Likewise, if the distribution for each different instrument in a portfolio 
is known and the changes for the different instruments can be modeled 
by mutually independent random variables, then the distribution for the 
portfolio as a whole is known. Because this property is not unique to 
the normal members of  the stable Paretian family, this argument of con- 
venience also applies equally well to either the lognormal hyothesis or 
the stable Paretian hypothesis. Note that this property is unique to the 
stable Paretian distributions, so that the use of  any other distribution 
sacrifices this property. For example, while a mixture of normals [17, 
pp. 49-51] has fatter tails than the normal distribution, it does not have 
the property of stability. 

Thirdly, the normal distribution is convenient because the function for 
the pdf is known and the cdf can be approximated easily by series ex- 
pansion. This justification for the use of the normal distribution is based 
on convenience, not empirical evidence. In addition, a similar argument 
can be made for the non-normal stable Paretian distributions, since 
Bergstrom has derived series for numerically approximating the pdf and 
cdf of any of the symmetric members of the family. Today's personal 
computers have the ability to quickly generate these functions and to 
perform Monte Carlo simulations using non-normal stable Paretian dis- 
tributions. Section III-A discusses the methodology involved. 

Fourthly, one can argue that the normal distribution is "close enough" 
to the true underlying distribution and that the extra work involved in 
using a non-normal member of the stable Paretian family is not justified. 
This question is raised by Herzog in his discussion of Becket's paper 
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[4, p. 59]. The questions raised by this justification are (1) Close enough 
for what purpose? and (2) What evidence is there that the normal dis- 
tribution is indeed close enough? For many purposes, including cash- 
flow analysis, statements are made that are highly dependent on what 
happens in the tails of distributions. Section III of this paper shows that 
there is a substantial difference between the results of two cash-flow 
analyses identical in every way except for the assumption of the distri- 
bution of interest rate changes, raising serious doubt that the normal dis- 
tribution is "close enough." 

Finally, note that the difference between the lognormal hypothesis and 
the stable Paretian hypothesis is merely one of estimating a. Proponents 
of the lognormal hypothesis assert, a priori, that ot is equal to 2. The 
stable Paretian hypothesis states that a is not equal to 2. The next section 
of this paper mentions some of the empirical work that has been pub- 
lished estimating a for various commodities, concluding with parameter 
estimates and statistical tests for 30-year Treasury bonds that are used 
in the cash-flow analysis in Section III. 

D. Statistical Tests of  the Stable Paret tan Hypothesis 

In addition to Becker's paper [4], the lognormal hypothesis has been 
rejected in research on such commodities as common stocks, Treasury 
bills, and cotton (see [11], [24], [28], [29], [31], and [33]). These papers 
rejected the lognormal hypothesis based on parameter estimates of or. 
Roll found values of cx generally between 1 and 1.5 for Treasury" bills. 
Teichmoeller found values of a between 1.6 and 1.7 for a combination 
of 30 common stocks. Mandelbrot, using older, less sophisticated tech- 
niques, estimated ot at 1.7 for cotton prices. Phenomena outside of eco- 
nomics, such as rainfall and sunspots, have also been shown to have 
non-normal stable Paretian distributions [28]. 

Table 2 contains yield rates on 30-year Treasury bonds from 1977 to 
1990 [15]. First, these semiannual (bond-equivalent) rates are converted 
to effective annual rates called i, (where t is the number of months be- 
yond December 1976). For example, il, the effective annual rate for 
January 1977, is (1 + 0.0755/2) 2 - 1 = 0.076925. The realized values 
of the random variable J ,  namely, 

it+ I 
jr = l o g e - - ,  (8) 

it 

are shown in Table 3, ordered from smallest to largest. For example, 
j~=i2/i~=loge(O.078586/O.076925)=O.021363. This jl turns out to be 



TABLE 2 

AVERAGE YIELD TO MATURITY ON 30-YEAR TREASURY BONDS, 1977-- 1990 

Year and Moath Yield Year and Mcinth Yield Year artd Month Yield Year and Menth Yield 

1977 t 1980 1983 1986 
Jan, 7.55 Jan. 10.60 Jan. 10,63 Jan. 9.40 
Feb. 7,71 Feb, 12,13 Feb. IO.88 Feb. 8.93 
Mar. 7,80 Mar. 12,34 Mar. 10.63 Mar. 7.96 
Apr, 7,73 Apr. I 1.40 Apr. 10.48 Apr. 7.39 
May 7,80 May 10, 36 May I O. 53 May 7.52 
June 7,64 June 9,81 June 10. 93 Jun 7.57 
July 7.64 July 10.24 July 11.40 July 7,27 
Aug. 7.68 Aug. I 1.130 Aug. 11.82 Aug. 7.33 
Sep. 7.64 Sep. 11.34 Sep. 11.63 Sep. 7.62 
Oct. 7.77 Oct. 11.59 Oct, 11.58 Oct. 7.70 
Nov. 7.85 Nov. 12.37 Nov. 11.75 Nov. 7.52 
Dec, 7.94 Dec. 12.40 Dec. I I, 88 Dec. 7.37 

1978 1981 1984 1987 
Jan. 8.18 Jan. 12.14 Jan. 1 ! .75 Jan. 7.39 
Feb. 8.25 Feb. 12.80 Feb, ! 1.95 Feb. 7.54 
Mar. 8.23 Mar, 12,69 Mar. 12.38 Mar. 7.55 
Apr, 8.34 Apr, 13.20 Apr. 12.65 Apr. 8.25 
May 8.43 May 13.60 May 13.43 May 8.78 
June 8.50 Jun 12.96 June 13.44 June 8.57 
July 8,65 July 13.59 July 13.21 July 8.64 
Aug. 8,47 Aug. 14.17 Aug. 12.54 Aug. 8.97 
Sep. 8.47 Sep. 14.67 Sep, 12.29 Sep. 9.59 
Oct. 8.67 Oct. 14.68 OCt. l 1.98 Oct. 9.61 
Nov. 8,75 Nov. 13.35 Nov. I 1.56 Nov. 8.95 
Dec, 8,88 Dec. 13.45 Dec. 11.52 Dec. 9.12 

1979 1982 1985 1988 
Jan. 8.94 Jan. 14.22 Jan. I 1,45 Jan. 8,83 
Feb. 9,OO Feb. 14.22 Feb, 1 I. 47 Feb. 8.43 
Mar. 9,03 Mar. 13.53 Mar. I 1.81 Mar. 8.63 
Apr. 9,08 Apr. 13.37 Apr. 11.47 Apr. 8.95 
May 9,19 May 13.24 May I 1.05 May 9.23 
June 8,92 June 13.92 June 10.44 June 9.00 
July 8,93 July 13.55 July 10.50 July 9.14 
Aug. 8,98 Aug. 12.77 Aug. 10.56 Aug. 9.32 
Sep. 9,17 Sep. 12.07 Sep. 10.61 Sep. 9.06 
Oct. 9.85 Oct, 11.17 Oct, 10.50 Oct. 8.89 
Nov. 10.30 Nov. 10.54 Nov. 10.06 Nov. 9.02 
Dec, 10.12 . Dec. . 10.54 Dec. 9,54 Dec, 9.01 

Year and Month Yield 
i 

1989 
Jan. 8.93 
Feb. 9.01 
Mar. 9.17 
Apr. 9.03 
May 8.83 
June 8.27 
July 8.08 
Aug, 8,12 
Sep. 8.15 
Oct. 8.00 
Nov, 7.90 
Dec. 7.90 

1990 
Jan. 8.26 
Feb. 8.50 
Mar. 8.56 
Apr. 8.76 
May 8.73 
June 8.46 
July 8.50 
Aug, 8.86 
Sep. 9.03 
Oct, 8,86 
Nov. 8.54 
Dec. 8.24 



TABLE 3 

ORDER STATISTICS OF THE NATURAl. LOGARfl'HMS t)F THE RATIOS OF CONSECUTIVE INTEREST RATES 
ON 30-YEAR TREASURY BONDS SHOWN IN TABLE _ 

10 

I1 
12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

O& 

1 -0.117362 
2 -0.098192 
3 -0.098182 
4 -0.081515 
5 -0.079678 
6 -0.075699 
7 -0.072763 
8 -0.066891 
9 -0.061176 

-0.059587 

-0.058271 
-0.058073 
-0.055891 
-0.054343 
-0.053673 
-0.052442 
-0.051407 
-0.049751 
-0.047337 
-0.043881 

-0.041173 
-0.038326 
-0.037569 
-0.036708 
-0.036495 
-0.033024 
-0.032077 
-0.030480 
-0.0313038 
-0.028929 

, ~, i O &  O& r OS ,  t i O &  t i 

31 --0.027834 61 --0.006265 91 0.005877 121 i 0.017860 
32 --0,026300 62 --0.005320 92 0.006750 122 , 0.017993 
33 --0.025797 63 --0.004430 93 0.006836 123 0.019232 
34 --0.024723 64 --0.003563 94 0.006881 124 0.019421 
35 --0.024096 65 --0.003504 95 0.007181 125 0.019942 
36 -0.023855 66 -0.002476 96 0.007705 126 0.020463 
37 -0.023708 67 -0.001134 97 0.008306 127 0.021363 
38 -0.022886 68 0.0001300 98 0.008367 128 0.021402 
39 -0.021821 69 0.0000073 99 0.008441 129 0.022229 
40 -0.021469 70 0.0000l~ 100 0.008693 130 0.022414 

41 -0.021119 71 0,000000 101 0,008722 131 0.023585 
42 -0.020744 72 0.000000 102 0.009114 132 0.023828 
43 -0.020517 73 0.000706 103 0.009187 133 0.023855 
44 -0.019421 74 0.000769 104 0.009381 134 0.023937 
45 -0.019358 75 0.001145 105 0.010440 135 0.029229 
46 -0.018944 76 0.001350 106 0.010640 136 0.030038 
47 -0.018069 77 0.001794 107 0.010954 137 0.030367 
48 -0.017818 78 0.002132 108 0.011319 138 0.030821 
49 -0,016667 79 0.002495 109 0.011620 139 0.031268 
50 -0.015727 80 0,002759 110 0,011826 140 0,031490 

5l -0.015126 81 0.00340) 111 0.012311 141 0.035884 
52 -0.014577 82 0.003761 112 0.013547 142 0.036394 
53 -0,012824 83 0.004815 113 0.014835 143 0.037192 
54 -0.012283 84 0.004845 114 0.014987 144 0.037200 
55 -0.011319 85 0.004881 115 0.015066 145 0.038257 
56 -0.010690 86 0.005036 116 0.015778 146 0.038290 
57 -0.010085 87 0.005320 117 0.017191 147 0.039513 
58 -0.009187 ; 88 0.005644 , 118 0.017364 148 0,040638 
59 -0.009114 ~ 89 0.005706 I 119 0.017674 149 0.042361 
60 -0.008897 I 90 0.005844 ' 120 0.017757 150 0.043194 

t OS, 

151 0.043245 
152 0.043948 
153 0,045444 
154 0,045770 
155 0,047510 
156 0.048991 
157 0.051728 
158 0.054540 
159 0.057531 
160 0.061722 

161 0.063561 
162 0,067025 
163 0.068350 
164 0.073195 
165 0.073445 
166 0.090382 
167 0.138547 
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the 127th smallest such ir( t=l ,  2 . . . . .  167), so the 127th entry in Table 
3 is 0.021363. These are the data that are used in the subsequent anal- 
ysis. 

Figure 2 compares the empirical distribution of the j, from Table 3 
with the normal curve. The figures on the horizontal axis are the mid- 
points of each interval measured in sample standard deviations from the 
sample mean. Each interval has a width of 0.5 sample standard devia- 
tions. For instance, the middle interval ranges from -0 .25 sample stan- 
dard deviations between the sample mean to +0.25 sample standard de- 
viations above the sample mean. A casual look at this graph raises doubt 
about the lognormal hypothesis. The number of values observed in the 
center interval, that is, from -0 .25 to +0.25 sample standard deviations 
from the sample mean, is 44, much higher than the 33 that would be 
expected if the distribution were normal. In the intervals centered at 1 
sample standard deviation above and 1 sample standard deviation below 
the sample mean, there were a total of 32 values, compared with the 40 
that would be expected in these two intervals of a normal sample. And 
finally, in all the intervals centered 3 or more sample standard deviations 
from the mean, there were a total of 2 observed values compared with 
an expected number of about 1. 

Even without statistical tests and parameter estimation, the data appear 
to be too "peaked" and "fat-tailed" to have been from a normal distri- 
bution. Again, this result is consistent with Becket's findings that "[e]ach 
[data set] has the same pattern . . . .  IT]he frequency of data near the 
mean is too high [to be normal]; the frequency away from the mean is 
too low; and, significantly, many points are more than three standard 
deviations from the mean" [4, p. 17]. Thus, the lognormal hypothesis 
is rejected, and a good candidate for an alternative appears to be the 
stable Paretian hypothesis, which would better model the observed peaked 
middle and fat tails. 

The stable Paretian alternative is suggested by Becker as one of three 
possible explanations for the results he observed, and it is consistent with 
his three major findings. First, it explains the high positive kurtosis from 
which he rejected the hypothesis of normality. Secondly, it explains the 
lack of a constant variance. When the real distribution has infinite vari- 
ance, the sample variance still exists, but it becomes meaningless. Thirdly, 
it explains the conclusion of the lack of independence. The autocorre- 
lation coefficients, on which this conclusion was based, also become 
meaningless if the underlying distribution has infinite variance. 
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FIGURE 2 
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This informal test of goodness of fit will be formalized with a X 2 test 
for both the normal and the stable Paretian distributions after stable Pare- 
tian parameters have been estimated, a process much more complicated 
and less efficient than in the normal case. 

1. P a r a m e t e r  E s t i m a t e s  f o r  the  S tab le  P a r e t i a n  D i s t r i b u t i o n  

The process of parameter estimation is covered in some detail for the 
monthly changes in 30-year Treasury yields from 1977 to 1990 shown 
in Table 3, and results are also presented for the average interest rate on 
long-term Treasury bonds from January 1953 to December 1976, shown 
in Table 4 [15]. The realized values of j, for this series of data, ordered 
from smallest to largest, are shown in Table 5. For both series of data, 
it was assumed that the distributions were symmetric, that is, that 13=0. 
This was done largely because the procedure of parameter estimation and 
simulation has not yet been worked out for skewed distributions. An 
examination of the data indicates that they might be slightly skewed to 
the left. Further research needs to be done to determine the effects of 
assuming a symmetric distribution if, in fact, the distribution is skewed. 

a. E s t i m a t i o n  o f  c, the  Sca le  P a r a m e t e r  

Fama and Roll describe procedures for estimating c [14], a [14], and 
[13] for a symmetric stable Paretian distribution. Table 1 shows that 

the cumulative distribution function of a standardized symmetric stable 
Paretian distribution at u=0.827, that is, F,, (0.827), is approximately 
equal to 0.72 regardless of the value of et. For a nonstandardized dis- 
tribution, F~(8+0.827c) is approximately 0.72. As a result of symmetry, 
F~(~-0.827c) is approximately equal to 1-0.72=0.28.  Thus, c can be 
estimated as 

1 
- [OS0.72~,+ 1) - 0So.28~,+ l~], (9) 

2 (0.827) 

where 6 is the estimator of c, n is the sample size from which c is being 
estimated, and the OS~ means the x-th order statistic. For nonintegral 
values of x, OS~ is determined by linear interpolation. 

For the 30-year Treasury bond rates in question, shown in Table 2, 
there were 168 months of interest rates. There are 167 values of J,, so 
6 is calculated as follows: 
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= 
1 

" [0So.72(167~1) 
2 (0.827) 

1 
- - -  [OSi20.% - 0S47o4] 

1.654 

1 

1.654 

= 0.021714 

- -  O 5 0 2 8 ( 1 6 7 +  1)] 

- -  [0.017856 - ( - 0 . 0 1 8 0 5 9 ) ]  

( lo)  

[0.064531 - ( - 0 .073585) ]  

(12) 

Since the 96th percentile of  a standardized symmetr ic  stable Paretian 
distribution with c~= 1.580 is 3.1803, that is, F~ 5so(3. 1803)=0.96,  &, the 
estimator of  ~, is equal to 1.580. 

1 

0.043428 

1 

0.043428 

= 3.1803 

[ 0 5 1 6 1 . 2 8  - U S 6  72] 

b. E s t i m a t i o n  o f  a, t he  C h a r a c t e r i s t i c  E x p o n e n t  

As can be seen in Table 1 and Figure 1, the effect of  decreasing a is 
that the tails become thicker; that is, for large values of  u, F~(u) de- 
creases as et decreases from 2 to 1. Fama and Roll [14] found that a 
robust procedure for estimating a is to define 

1 
Z0.96 -'~ - -  [080.96(n+ 1) - OSo.041n+ I ) ] ,  ( 1 1  ) 

26 

where ~096 is an est imator of  the 96th percentile (and the negative of  the 
4th percentile) of  a standardized symmetr ic  stable Paretian distribution. 
The estimator,  &, is the value of a for which the 96th percentile of  the 
distribution is equal to 2096. In symbols ,  the equation F6(20.96)---0.96 is 
solved for &. 

For the data being considered, 2o96 was estimated as follows: 

1 
-- [OSo 965167 ~ I) 

2 (0.021714) 
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TABLE 4 

AVERAGE YIELD TO MATURITY ON LONG-TERM TREASURY BONDS, 1953--1976 

Year and Month Yteld Year and Month Yield Year and Month I Yield I Year and Munth 

1953 1956 1959 1962 
Jan. 2.80 Jan. 2, 88 Jan. 3.90 Jan, 
Feb. 2.83 Feb. 2.85 Feb. 3.92 Feb. 
Mar. 2.89 Mar. 2.93 Mar. 3,92 Mar. 
Apr. 2.97 Apr. 3.07 Apr. 4,01 Apr. 
May 3.12 May 2.97 May 4.08 May 
June 3.13 June 2.93 June 4.09 June 
July 3.04 July 3.00 July 4, I 1 July 
Aug. 3.05 Aug. 3.17 Aug. 4. I 0 Aug. 
Sep. 3.01 Sep. 3.21 Sep. 4.26 Sep. 
Oct. 2.87 Oct. 3.20 Oct. 4.11 Oct. 
Nov. 2.86 Nov. 3.30 Nov, 4.12 Nov. 
Dec. 2,79 Dec. 3.40 Dec. 4.27 Dec. 

1954 1957 1960 1963 
Jan. 2.69 Jan. 3.34 Jan, 4.37 Jan. 
Feb. 2.62 Feb. 3,22 Feb. 4.22 Feb. 
Mar. 2.53 Mar. 3.26 Mar. 4.08 Mar, 
Apr. 2.48 Apr. 3,32 Apr. 4.17 Apr, 
May 2.54 May 3.40 May 4.16 May 
June 2.55 June 3.58 June 3.99 June 
July 2.47 July 3.60 July 3.86 July 
Aug. 2.48 Aug. 3.63 Aug. 3.79 Aug, 
Sep. 2.52 Sep. 3.66 Sep. 3,82 Sep. 
Oct. 2.54 Oct. 3.73 Oct. 3.91 Oct, 
Nov. 2,57 Nov. 3.57 Nov. 3.93 Nov. 
Dec. 2.59 Dec. 3.30 Dec. 3,88 Dec. 

1955 1958 1961 1964 
Jan. 2.68 Jan. 3.24 Jan. 3.89 Jan. 
Feb. 2.77 Feb. 3.26 Feb. 3.81 Feb. 
Mar. 2.78 Mar. 3.25 Mar. 3.78 Mar. 
Apr. 2.82 Apr. 3, l 2 Apr, 3.80 Apr. 
May 2.81 May 3.14 May 3.73 May 
June 2.82 June 3.19 June 3.88 June 
July 2.91 July 3,36 July 3.90 July 
Aug. 2.95 Aug. 3.60 Aug. 4.00 Aug, 
Sep, 2.92 Sep. 3.75 Sep. 4.02 Sep. 
Oct. 2.87 Oct. 3.76 Oct. 3.98 Oct, 
Nov. 2.89 Nov. 3,70 Nov. 3.98 Nov, 
Dec. 2.91 Dec. 3.80 Dec. 4.06 Dec. 

Yield 

4.08 
4.09 
4.01 
3.89 
3.88 
3.90 
4.02 
3.97 
3.94 
3.89 
3.87 
3.87 

3.88 
3.92 
3.93 
3.97 
3.97 
4.00 
4.01 
3.99 
4.04 
4.07 
4.10 
4.14 

4 . [5  
4.14 
4 . [8  

• 4.20 
4,16 
4.13 
4.13 
4.14 
4.16 
4.16 
4.12 
4.14 
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TABLE 4--Continued 

Year and Month Yield Year and Month Yield • Year and Month Yield 

1965 1968 1971 
Jan. 4.14 Jan. 5.18 Jan. 5.91 
Feb. 4.16 Feb. 5.16 Feb. 5.84 
Mar. 4.15 Mar. 5.39 Mar. 5.71 
Apr. 4.15 Apr. 5.28 Apr. 5.75 
May 4.14 May 5.40 May 5.96 
June 4.14 June 5.23 June 5.94 
July 4.15 July 5.09 July 5.91 
Aug. 4.19 Aug. 5.04 Aug. 5.78 
Sep, 4.25 Sep. 5,09 Sep. 5.56 
Oct. 4.27 Oct. 5.24 Oct. 5.46 
Nov. 4.34 Nov. 5.36 Nov. 5.44 
Dec. 4.43 Dec. 5.65 Dec, 5.62 

1966 1969 1972 
Jan. 4.43 Jan. 5.74 Jan. 5.62 
Feb. 4.61 Feb. 5,86 Feb, 5,67 
Mar. 4.63 Mar. 6.05 Mar. 5.66 
Apr. 4.55 Apr. 5.84 Apr. 5.74 
May 4.57 May 5.85 May 5.64 
June 4.63 June 6.06 June 5.59 
July 4.74 July 6.0' July 5.57 
Aug. 4.80 Aug. 6.02 Aug. 5.54 
Sep. 4.79 Sep. 6.32 Sep. 5.70 
Oct. 4.70 Oct. 6.27 Oct. 5.69 
Nov. 4.74 Nov. 6.51 Nov. 5.50 
Dec. 4.65 Dec. 6.81 Dec. 5,63 

1967 1970 1973 
Jan. 4.40 Jan. 6.86 Jan. 5.94 
Feb. 4.47 Feb. 6.,t4 Feb. 6.14 
Mar. 4.45 Mar. 6.39 Mar. 6.20 
Apr. 4.51 Apr. 6.53 Apr. 6.1 I 
May 4.76 May 6.94 May 6.22 
June 4.86 June 6.99 June 6.32 
July 4.86 Jury 6.57 July 6.53 
Aug. 4.95 Aug. 6.75 Aug. 6.81 
Sep. 4.99 Sep. 6.63 Sep. 6.42 
Oct. 5.18 Oct. 6.59 Oct. 6.26 
Nov. 5,44 Nov, i 6,24 Nov. 6.31 
Dec. 5.36 Dec. ,I 5.97 Dec, 6.35 

Year and Month Yield 

1974 
Jan. 6.56 
Feb. 6.54 
Mar. 6.81 
Apr. 7.04 
May 7.07 
June 7.03 
July 7.18 
Aug. 7.33 
Sep. 7.30 
Oct. 7.22 
Nov. 6.93 
Dec. 6.78 

1975 
Jan. 6.68 
Feb, 6,61 
Mar. 6.73 
Apr. 7.03 
May 6.99 
June 6.86 
July 6.89 
Aug. 7.06 
Sep. 7.29 
Oct. 7.29 
Nov. 7.21 
Dec. 7,17 

1976 
Jan. 6.94 
Feb. 6.92 
Mar. 6.87 
Apr. 6.73 
May 6.99 
June 6,92 
July 6.85 
Aug. 6.79 
Sep. 6.70 
Oct. 6.65 
Nov. 6.62 
Dec. 6.39 



TABLE 5 

ORDER STATISTICS OF THE NATURAL LOGARITHMS 
OF THE RATIOS OF CONSECUTIVE INTEREST RATES 

ON LONG-TERM TREASURY BONDS SHOWN IN TABLE 4 

5 
6 
7 
8 
9 

10 

I1 
12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

~ OSt  

1 I -0.079312 
2 -0.064212 
3 -0.062999 
4 -0.059933 

-0.055881 
-0.055434 
-0.047975 
-0.044898 
-0.044239 
-0.042145 

-0.041708 
-0.041144 
-0.039348 
-0.036887 
-0.036749 
-0.036217 
-0.035927 
-0.035845 
-0.035299 
-0.035179 

-0.034603 
-0 .03443 I 
-0.034085 
-0.033446 
-0.033364 
-0.033169 
-0.032407 
-0.032074 
-0.030679 
-0.029399 

1 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

OS~ t OS~ ,1 t OSt 

--0.027479 61 --0.013301 91 --0,005772 
--0.026541 62 --0.012928 92 --0.005662 
--0.025632 63 --0.012895 93 --0.005475 
--0.024954 64 --0.012640 94 -0.005204 
--0.022832 65 --0.012088 95 --0.005137 
--0.022562 66 --0.011231 96 - - 0 , 0 0 5 0 5 0  
--0.022251 67 --0,011216 97 - - 0 . 0 0 4 5 9 5  
-0.020978 68 -0.010706 98 -0.004534 
-0.020933 69 -0.010546 99 -0.004175 
-0.020891 70 -0.010437 100 -0.003918 

-0.020085 71 -0.010339 lOl -0.003719 
-0.019952 72 -0.010296 102 -0.003634 
-0.019392 73 -0.010249 103 -0.003577 
-0.019190 74 -0.010237 104 -0.003515 
-0.019093 75 -0.010099 105 -0.003411 
-0.018766 76 -0.009995 106 -0.003145 
-0.018498 77 -0.009761 107 -0.003103 
-0.018475 78 -0.009668 108 -0.003097 
-0.018396 79 -0.009028 109 -0.002935 
-0.018233 80 -0.008945 1 I0 -0.002599 

-0.017953 81 -0.008394 111 -0.002461 
-0.017822 82 -0.008066 112 -0.002437 
-0.017627 83 -0.007979 113 -0.002437 
-0.017396 84 -0.007917 114 -0.002431 
-0.016235 85 -0.007660 115 -0.002426 
-0.015105 86 -0.007614 116 -0.002110 
-0.015012 87 -0.007375 117 -0.001790 
-0.014844 88 -0.007312 118 -0.001781 
-0.013659 89 -0.006150 119 0.000()00 
-0.013565 90 -0.005804 120 0.000000 

OSt 

121 0.000000 
122 0.000000 
123 0.000000 
124 0.000000 
125 0.000000 
126 O. 000000 
127 0.000000 
128 0.000000 
129 0.000000 
130 0.00000() 

131 0.000000 
132 0.001673 
133 0.001736 
134 0.002437 
135 0.002437 
136 0.002443 
137 0.0(12455 
138 0.002473 
139 0.002473 
140 0.002522 

141 0.002573 
142 0.002599 
143 0.002605 
144 0.002688 
145 0.003225 
146 0.003309 
147 0.003577 
148 0.003628 
149 0.003954 
150 0.004065 



TABLE 5 - - C o n t i n u e d  

! 

151 
152 
153 
154 
155 
156 
157 
158 
159 
160 

161 
162 
163 
164 
165 
166 
167 
168 
169 
170 

171 
172 
173 
1 7 4  
175 
176 
177 
178 
179 
180 

OS~ 

0.004326 
0.004378 
0.004435 
0.004437 
0.004744 
0.004823 
0.004869 
0.004869 
0.004892 
0.004928 

0.004964 
0.005037 
0.005152 
0,005165 
0.005191 
0.005191 
0.005327 
0.005621 
0.006203 
0.O06418 

0.006439 
0.006946 
0.006994 
0.007079 
0.007302 
0.007418 
0.007438 
0.007473 
0.007603 
0.007802 

t o s ,  r 
I I  

181 0,007955 211 
182 0,007959 212 
183 0.008079 213 
184 0,008147 214 
185 0.008305 215 
186 0.008373 216 
187 0,008573 217 
188 0,008981 218 
189 0,009691 219 
190 0.009714 220 

191 0,009808 221 
192 0,009872 222 
193 0,009995 223 
194 0.010226 224 
195 0.010356 225 
196 0,O 10732 226 
197 0,011816 227 
198 0,012445 228 
199 0,012577 229 
200 0,012639 230 

201 0,012727 231 
202 0,013192 232 
203 0,013541 233 
204 0.013751 234 
205 0.014233 235 
206 0,014367 236 
207 0.014385 237 
208 0.015922 238 
209 0.015957 239 
210 0.016026 240 

os~ 

0.016100 
0.016195 
0.016434 
0.017479 
0,018114 
0.018287 
0.018386 
0.018571 
0.019118 
0,020099 

0.020748 
0.020986 
0.021038 
0.021044 
0.021129 
0.021481 
0.022017 
0.022042 
0.022769 
0.022922 

0.022939 
0.023397 
0.023510 
0.023682 
0.023752 
0.023784 
0.024009 
0.024055 
0.024792 
0.025565 

241 
242 
243 
244 
245 
246 
247 
248 
249 
250 

251 
252 
253 
254 
255 
256 
257 
258 
259 
260 

261 
262 
263 
264 
265 
266 
267 
268 
269 
270 

os, 

0.026223 
0.026916 
0.027471 
0.027504 
0,027882 
0.028866 
0.029414 
0.030101 
0.030602 
0,031020 

0.031640 
0.032377 
0.032623 
0.032996 
0.033052 
0.033204 
0.033254 
0.033608 
0.033781 
0.034382 

0.035785 
0.036132 
0.036388 
0,037838 
0.038154 
0.038544 
0.038678 
0.039798 
0.040273 
0.041119 

I OS~ 

271 0.041194 
272 0.042674 
273 0.044176 
274 0.044349 
275 0,045790 
276 0.047023 
277 0.049371 
278 0.049615 
279 0.049643 
280 0,052033 

281 0.052342 
282 0.053407 
283 0.054364 
284 0.054568 
285 0.055541 
286 0.061903 
287 0.069588 
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The estimation of oL serves not only as a parameter estimate, but also 
as a test of the lognormal hypothesis, since a value far from 2 would 
not be expected from data generated from a normal distribution. If the 
lognormal hypothesis were true, the statistic £0.96 would be approximately 
normally distributed with mean of about 2.5 and standard deviation of 
about 0.28. Since the actual value was 3.1803, the lognormal hypothesis 
can be rejected at the 1% significance level. Put another way, the critical 
region of this test in terms of & is {&:&< 1.59}. Since 6~= 1.580, the log- 
normal hypothesis is rejected at the 1% significance level. 

c. E s t i m a t i o n  o f  ~, t h e  L o c a t i o n  P a r a m e t e r  

Fama and Roll [13] found that the 50% truncated mean, that is, the 
arithmetic average of the middle 50% of the order statistics, of the sam- 
ple is a more robust estimator of ~ than the sample mean. This is because 
the sample mean is more influenced by the "outlying" values in the "fat 
tails." The 50% truncated mean can be thought of as a compromise be- 
tween the mean, which is too influenced by the outliers, and the median, 
which fails to incorporate the magnitude of the values around it. For the 
data in question, the 50% truncated mean is 0.0024613. In the cash-flow 
analysis that follows, a value of 0 was used for ~. In the past the mean 
of the lognormal distribution for interest rate changes has generally been 
assumed to be 0, with the justification that the expected value at any 
time in the future was equal to the starting value. This lack of bias in 
either direction can be a desirable property and will be preserved by the 
assumption that ~=0. Note that the assumption of a mean equal to 0 was 
not rejected by Becker's statistical tests [4, p. 29]. 

2. P a r a m e t e r  Estimates f o r  Long-Term Interest  Rates 1953- 
1976 

The data shown in Tables 4 and 5 yielded the following estimates for 
the three stable Paretian parameters: 

c = 0.014227 
ot = 1.592 

= 0.0027875 

It is noteworthy that both samples yielded quite similar values of a. The 
fact that these values are significantly different from 2 is strong evidence 
that the lognormal hypothesis should be rejected in the case of interest 
rate changes on long-term Treasury bonds. The large discrepancy in c's 
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between the two sets of  data can be described as an increase in volatility. 
This increase in volatility manifests itself to users of  the lognormal hy- 
pothesis as an increase in the sample standard deviation between the two 
sets of data. It is important to realize that c, not a ,  is a measure of 
volatility. The absence of  a finite variance requires the use of  this mea- 
sure of volatility. Parameter cx is a measure of  "fat-tailedness." From 
this analysis, a appears to be more stable over  time than c. 

3. X 2 Goodness-of-Fit Test f o r  Lognormal a n d  Stable 
Paret ian Hypotheses 

Hsu, Miller, and Wichern [18] propose two statistical tests, in addition 
to one suggested by Fama and Roll [14], which a series of  data should 
be able to pass if it is generated by a stable Paretian stochastic process. 
The first of  these is a ×2 test, which tests goodness of  fit and also pro- 
vides a means for refining the parameter estimates. Note that one test 
with which Becker rejects the lognormal hypothesis is a ×2 test [4]. The 
purpose of the test described here is not to duplicate his work, but to 
compare the fit of  the stable Paretian distribution with that of  the normal. 

The test consists of dividing the data from Table 3 into^ 13 categories 
with the ^following^borders: ( - ~ ,  ^ - 5 . 5 6 + ~ ] ,  ( - 5 . 5 7 + 8 ,  - 4 . 5 ~ + 8 ] ,  
( - 4 . 5 6 +  8, -3 .5t~+8] . . . .  (+4.5~+ ~, +5.5~+ 8], (+5 .57+ 8, +~) .  Then, 
the following statistic is defined 

, ~  ( n l -  n~) 2 
X 2 = 2~ , (13) 

i=1 n~ 

where ni and n~ are the actual and expected number of  observations, 
respectively, in each interval. If the data are from a stable Paretian dis- 
tribution, then for large n, X 2 is distributed approximately as a ×2 random 
variable with l0 degrees of  freedom. Hsu, Miller, and Wichern rec- 
ommend the use of  12 degrees of  freedom for conservatism, since the 
boundaries are themselves dependent on parameter estimates. 

The results of this test for the lognormal hupothesis and for the stable 
Paretian parameters estimated from the 1977-1990 data are as follows: 

c' X 2 

Lognormal 0.02619 22.08 
Stable Paretian 0.02171 11.08 
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The stable Paretian hypothesis passes this test at the 5% significance 
level. In fact, the value of  X 2 is lower than the expected value of  the 
statistic if the data fit the distribution. The lognormal hypothesis is re- 
jected at the 5% significance level. This is consistent with the results of  
Becker 's  X 2 tests. 

Hsu, Miller, and Wichern discuss the inefficiency of  Fama and Roll 's  
method of  parameter estimation and propose a minimum X 2 refinement. 
They  suggest that the X z statistic be calculated for a number of values 
of c and ~ around ( and ~. Then the values that produce the minimum 
value of  X 2 are taken as refined estimates of c and or. This procedure 
was attempted, but since only slightly smaller values of  X 2 were attained 
and since the resulting values of  ct and c were quite close to the original 
estimates, the original estimates were retained for the cash-flow analysis 
of  Section III. 

4. Tests I a n d  II 

Fama and Roll [14] suggest a test for stability which Hsu, Miller, and 
Wichern [18] dub Test I. In this test, nonoverlapping groups of  k ob- 
servations are summed, and et is estimated for the resulting sums. In 
other words, a new series K~ is defined by 

s~ 

K~= E Ji, s =  1 ,2  . . . . .  m (14) 
i=k(s-  I)+ ! 

where m is the greatest integer in n /k .  Parameter a is then estimated for 
increasing values of  k by the procedure described above. If the under- 
lying data are from a stable Paretian distribution, then the estimates of  
a should be about the same as k increases. However ,  the converse is not 
true; that is, nonstable Paretian data can pass Test I. 

A series of  data generated partly from one normal distribution and 
partly from another normal distribution, with unequal variances, can pass 
Test I. It is sometimes asserted that the variance of  interest rate changes 
shifted in the late 1970s because o f  a shift in Federal Reserve policy. If  
this were true and the underlying processes were normal, then the re- 
sulting series would have 6 significantly lower than 2 and might pass 
Test I. Test  II, proposed by Hsu, Miller, and Wichern, is identical to 
Test I, except that the data are randomized before they are summed. The 
randomization decreases the likelihood that data from a normal process 
with parameters shifting over  time will pass the test. 
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These tests were performed on the 1977-1990 30-year Treasury data 
shown in Table 3, with k=4. The preliminary estimate of ct in Test I 
was 1.647. Fama and Roll point out that the procedure described above 
for estimating ct is biased for small sample sizes [14]. Since the sample 
size for Tests I and II is 41, the preliminary estimate of ct must be in- 
creased by 0.09 to eliminate this bias. The revised estimate of a for Test 
I is 1.737. For Test II, the preliminary estimate was 1.829 and the re- 
vised estimate was 1.919. The original estimate of c~, that is, when k= 1, 
was 1.580. Since the estimates increased fairly substantially, these tests 
suggest that the data may not be generated by a stationary stable Paretian 
stochastic process. Note, however, that these estimates are based on a 
sample size of only 41. Neither of the papers referenced quantifies the 
critical region for either of these tests. 

The results of Test II suggest that the data may not be generated by 
a stationary stochastic process. In other words, the distribution of interest 
rate changes may change over time. Hsu, Miller, and Wichern propose 
an alternative to the stable Paretian hypothesis that states that there are 
"subperiods of homogeneous behavior" during which the normal distri- 
bution or a mixture of normals should be adequate. Shifts in the under- 
lying reality occur periodically and result in shifts in the model param- 
eters. Although these authors prefer a normal distribution or a mixture 
of normals, any stable Paretian distribution could be used. These authors 
prefer the notion that the shifts in parameters are discrete. As an alter- 
native, interest rates could be modeled by a distribution with continu- 
ously shifting parameters. 

In either case, several problems are raised that have not been ade- 
quately solved. First, there is no procedure for estimating how frequently 
the parameters of the distribution shift. If they shift continuously, then 
it is easy to have a perfect fit with the data by simply using a mixture 
of degenerate distributions (that is, normal distributions with zero vari- 
ance), although the results are not very meaningful. Secondly, it is not 
clear what probability distribution should be used to model the parameter 
shift. Thirdly, it is not clear how to estimate the parameters of the dis- 
tribution that is chosen to model the shifts. This problem is tied in with 
the first problem of parameter estimation. Fourthly and most impor- 
tantly, the use of a combination of normal distributions or a combination 
of stable Paretian distributions eliminates the property of stability, or 
invariance under addition. For instance, if daily changes in interest rates 
can be modeled by a combination of normals, that gives no easy way to 
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model monthly or annual changes [17]. This last consideration was very 
important to Mandelbrot. 

More research needs to be done on the nature of changes in interest 
rates. While the stable Paretian distribution fits the data much better 
than the lognormal, it appears that an even better model may be a stable 
Paretian with parameters changing discretely or continuously with 
the possibility of stochastic dependence. Because of the difficulties men- 
tioned above, the remainder of this paper conforms with the currently 
common actuarial practice of assuming stationarity of parameters and 
independence. 

E. Reasons  Why the Stable Pare t ian  Hypothesis Has Been 
Slow to Gain Acceptance 

Although the stable Paretian hypothesis was proposed nearly 30 years 
ago, it has not gained widespread acceptance. This section examines some 
of the reasons for this and comments on their validity. 

The most obvious reasons for the lack of acceptance of the stable Pare- 
tian hypothesis when Mandelhrot's paper [24] was ftrst published in 1963 
are those mentioned by Fama [11]. He notes "It]he absence of explicit 
expressions for the density functions . . ." and states that "[t]he statis- 
tical intractability of these distributions is, at this point, probably the 
most important shortcoming of the Stable Paretian Hypothesis." In Fama 
and Miller's 1972 finance textbook [I 2], the evidence for the stable Pare- 
tian hypothesis is presented, but most of the book is developed using the 
lognormal hypothesis, apparently for the reason stated above. Berg- 
strom's numeric expansions for the pdf and the cdf of the stable Paretian 
distributions had been published in 1952, but computers capable of using 
them were not widely available. 

A related reason is the relative inefficiency of the procedure of param- 
eter estimation. While computers speed up the process, the parameters 
are not estimable with the precision that normal parameters are. Never- 
theless, this is no reason to use the normal distribution if the data do not 
fit it. 

A third reason why the stable Paretian distributions are infrequently 
used is that they have infinite variance. Many people are averse to the 
idea of using a distribution with an infinite variance. They assume that 
there are some upper and lower bounds on the underlying variable and 
that therefore the variance exists. However, Fama and Roll [14] dem- 
onstrate that variables with a very large but finite variance behave much 
like ones with infinite variance. 
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Peters [27] states another reason why lognormality has been used in 
spite of the evidence: "[D]uring the 1970s, and particularly during the 
1980s, the EMH [Efficient Market Hypothesis, which assumes lognor- 
really distributed returns] was generally taught as fact. Because of the 
large number of MBAs earned during the 1980s, a perception that the 
EMH is a proven truth has resulted," In other words, many of the the- 
oretical results in the field of finance were taught as facts with insuffi- 
cient emphasis on the underlying assumptions. At the same time, evi- 
dence mounted that these assumptions were not true. 

In summary, while the stable Paretian hypothesis has not gained wide 
acceptance, the evidence supporting it is stronger than the evidence sup- 
porting the lognormal hypothesis. To justify the continued use of the 
lognormal hypothesis, it would be necessary to assert that, while interest 
rate changes are not exactly independent and identically, lognormally 
distributed, the lognormal distribution is "close enough" for modeling 
purposes. The remainder of this paper tests this assertion by presenting 
a comparison of the results of a cash-flow analysis under both the log- 
normal hypothesis and the stable Paretian hypothesis, in other words, a 
test of the sensitivity of cash-flow analysis to changes in the character- 
istic exponent. 

III. A CASH-FLOW ANALYSIS COMPARING THE STABLE 
PARETIAN HYPOTHESIS WITH THE LOGNORMAL HYPOTHESIS 

A. Procedure  f o r  Monte Carlo Simulat ion 

In general, Monte Carlo simulation begins with the generation of a 
sequence of random numbers Y, from the uniform distribution on (0,1). 
These numbers are then mapped onto the domain of the cdf of the given 
distribution using the inverse of the cdf. That is, the sequence of random 
numbers, U,, from the given distribution is generated as U,=F-~(Y,). 

In general, simple formulas are not known for the cdf of the stable 
Paretian distribution. However, Bergstrom derived series expansions for 
the pdf, which Fama and Roll [13] integrated to arrive at the cdf. The 
following formulas can be used to numerically approximate the cdf of a 
standardized, symmetric stable Paretian distribution. 

= = - + - -  ( -  (15) 
F~(u) F~ 2 zr(x k~t (2k - 1)! 
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= 1 + ( - 1 ) k ~ s i n  - -  - R(u)du, (16) 
~r k= ~ k ! u ~'k 

where, for some positive constant M, 

I( f ( < i  .,. R(.)d. < M + (IV) 

Formula (15) converges for small absolute values of u, while Formula 
(16) is asymptotic for large values of u. Fama and Roll recommend using 
Formula (15) for values of u where lu l -<-4+5a  and Formula (16) for 
values of u where [u [ > - 4+5~ .  Since these formulas are for standardized 
variables, the inverse of the transformation in Formula (7) must be made. 
Thus, we have 

X, = 8 + cU, = ~ + cF-~(Y,). (18) 

This is analogous to the procedure for generating nonstandardized normal 
random variables. 

The Appendix provides a very accurate and easily programmed routine 
for generating values of the F (gamma) function. 

To calculate values of F-~(y),  a table of values of F(u) was created. 
For a given value of y, this table was searched until two consecutive 
values of F(u) were found that surround y. Then, the interval between 
the two F(u)'s was searched using the bisection algorithm until F-~(y) 
was found to the desired degree of  accuracy. If a value of y was greater 
(less) than the largest (smallest) value of F(u) in the table, then the larg- 
est (smallest) value of u was used as F-~(y). 

B. Assumptions for  the Cash-Flow Analysis 
A model company was created for the cash-flow analysis comparison. 

As of December 31, 1990, this company has one product, a single-pre- 
mium deferred annuity with the following traits: 
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Number of Policies 1,000 
Fund Value of Each Policy $10,000 
Total Reserve $10,000,000 
Surrender Charge None 
Interest Guarantee 4% 
Reserve Method Equal to Account Balance 

The asset portfolio backing this product contains the following invest- 
ments: 

30-Year 9.5% GNMAs [ $ 8,000,000 
1-Year Treasuries [ 2,000,000 
Total Assets 10,000,0~ 

While an extremely poor match between assets and liabilities was delib- 
erately chosen,  it is certainly not unusual for companies to back annuities 
with long-term assets. 

The fol lowing yields to maturity are assumed to be in effect on De- 
cember 31, 1990, at the beginning of  the projection: 

l-Year Treasuries 7.00% 
5-Year Treasuries 7.50 
20- to 30-Year Treasuries 8.25 
Current Coupon GNMAs 9.50 

The Treasury yields are stated on a bond-equivalent basis. The G N M A  
yields are nominal rates, compounded monthly. The fol lowing interest 
rates are assumed on 5-year Treasuries at the end of the indicated years. 

December 31, 1989 7.75% 
December 31, 1988 9.09 
December 31, 1987 8.45 
December 31, 1986 6.67 

It is assumed that J,=log~(L+ ~/1,). where/ ,  is the annualized yield to 
maturity of 30-year Treasuries at time t (in years), is governed by a 
symmetric stable Paretian stochastic process with the following param- 
eters, based on the data for 30-year Treasuries for 1977-1990 discussed 
above. 
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Case I Case 2 
ll.ognomnall (Stable Paretian) 

a 2 . 0 0 0  1 .580  
c 0 . 0 9 0 7 4  0 . 1 0 4 6  
8 0 0 

The normal distribution is, of  course, a subset of the stable Paretian 
class, and the stable Paretian case could more appropriately be referred 
to as logstable Paretian. However,  for convenience and clarity, case 1 
is referred to as lognormal and case 2 as stable Paretian. 

The value of  c for the lognormal case was derived as follows. The 
sample variance for monthly changes in J, is 

s 2 = 0.0013725. (19) 

As stated in Section II-A, if e~=2, then the distribution is normal with 
o'2=2~/. So " /=0.5o "2. In this case, using s 2 in place of  ~r 2, 

~/= 0.5(0.0013725) = 0.0006862. (20) 

The annual change in the logarithm of  1, is the sum of  the 12 monthly 
changes. As a result of  the stability property discussed in Section II-B, 
the annual change will have the same form of  distribution with a the 
same, "y equal to the sum of  the 12 ~/'s, and ~ equal to the sum of  the 
12 8's. So the distribution of  the annual change has 

9 
~/= 12(0.0006862) = 0.008234 = c-. (2 l )  

Therefore,  

c = V'0.008234 = 0.09074. (22) 

In other words, a distribution of  annual changes that is symmetric stable 
Paretian with a = 2 ,  c=0 .09074 ,  ~=0  is the same as a distribution of 
independent, identically distributed monthly changes that is normal with 
Ix=0 and 0"2=0,0013725. 

The value of  c for the stable Paretian case was derived as follows. 
The distribution of monthly changes in the J, was estimated to have 
c=0.021714.  This implies that 

",/= c ~ = (0.021714) 1-58° = 0.002355. (23) 

The annual change in the logarithm of  1, is the sum of  the 12 monthly 
changes. Again, the property of  stability results in an annual change that 
has the same form of  distribution as the monthly change, with the same 
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or, -¢ equal to the sum of  the 12 ~/'s, and ~ equal to the sum of  the 12 
~'s. So the distribution of  the annual change has 

~/= 12(0.002355) = 0.02826. (24) 

Therefore,  for the distribution of  annual changes in J t ,  

c = .yz/~ = 0.028261/15~o = 0. 1046. (25) 

It is further assumed that the yield to maturity on 30-year Treasuries 
never goes below 1.25%. This assumption is necessary for both cases 
to prevent the yield to maturity on l -year  Treasuries from being negative. 
It is also assumed that this same yield never goes above 50%. This is 
done in part to avoid interest rates that may be considered extreme and 
in part to avoid the criticism that the extreme results obtained in the 
stable Paretian case are due to impossibly high interest rates. Note that 
capping the range of  possible interest rates also results in a finite variance 
for the distribution of  J,. 

Other assumptions are as shown in the following table. 

Lapse Rate (q~,") 

Credited Interest (i~,d) 

Competition Interest Rate 
( i~o.~) 

Expenses and Taxes 

Mortality 

Annuitization 

Mortgage Prepayment Rate 
(rate,)  

0.05+0.05[  lO0(i,o,,p--i,,r~a)l 2 if i~omp--i,r,d>O 
0.05 if i,,,.e--ic,ea<--O 

In all cases, q~," is limited to 0.50. This is a commonly used 
functional form, not based on empirical data. 

Currently anticipated portfolio yield rate for the coming year 
on a book basis less 150 basis points (1.5%). The 
min imum guaranteed interest rate is 4%, and the company 
will always credit a min imum of i~o, .e-2%. 

The greater of (a) and (b) less 50 basis points, where 
(a) = 1-year Treasury nominal yield to maturity; and 
(b) = 5-year average of 5-year Treasury nominal yields to 

maturity. 

None 

Included in lapses 

None 

The rate of  prepayment is calculated separately for each 
year 's  purchases of  GNMAs as follows: 

0.05 + 0.03{100(i,,. e, i,.,)] + 0.02[lO0(i,,,.p, - i,,,)]" 
if i~,,~p, - i .... > 0 

0.05 if ic,,~p, - i,.r, <- 0 

In all cases, rate,  is limited to a max imum of  0.40. 
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Coupon Rate at Purchase 
(i.,., ,) 

Current Coupon Rate (i,.rr) 

Interest Rates on 1-Year 
and 5-Year Treasuries 

Reinvestment Strategy 

Loans 

Book Value of GNMA 

Market Value of GNMA 

Market Value of Annuities 

Timing of Cash Flows 

The coupon on newly issued 30-year GNMAs issued in 
year t 

The coupon rate on currently issued 30-year GNMAs. These 
are assumed to shift in parallel with 30-year Treasury 
rates, thai is, the change in yield to maturity on 30-year 
Treasuries is added to the coupon rate to get the new 
coupon rate. 

Assumed to shift in parallel with 30-year Treasury rates; that 
is. the change in yield to maturity on 30-year Treasuries is 
added to the yield to maturity on each instrument to get 
the new yield to maturity. 

If the net cash flow in a given year is positive, any loans are 
paid off first, then l-year Treasuries are purchased with 
any additional funds until their book value is equal to 20 
percent of the total book value of the assets, and finally. 
newly issued, current coupon GNMAs are purchased with 
any remaining cash flows. 

If the net cash flow in a given near is negative, money is 
borrowed internally at the same terms as those on the I- 
year Treasuries. 

Equal to the present value of the future principal and interest 
payments, discounted at the coupon interest rate at which 
they were purchased, assuming no prepayments. 

Equal to the present value of the future principal and interest 
payments, discounted at the current coupon interest rate, 
and using the prepayment schedule based on the same 
rate, assuming that the current coupon rate lbr all future 
periods is level. 

Equal to account value. 

It is assumed that all cash flows occur at the end of the 
year. 

For each of the two cases, 100 scenarios were run. The projection 
period was 10 years. At the end of  10 years,  the assets and liabilities 
were valued on a market-value basis. Tables 6 and 7 show the tenth- 
year surplus on a market-value basis ordered from smallest to largest for 
the lognormal case and the stable Paretian case, respectively. Figures 3, 
4, and 5 present the same information graphically. Figure 3 shows the 
data from Table 6. Figures 4 and 5 are both based on the data in Table 
7, the only difference being one of  scale. The magnitude of  the most 
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TABLE 6 

100 SCENARIOS OF IOTH-YEAR SURPLUS FOR THE LOGNORMAL CASE 

t OSr 

1 (3,935,523) 
2 (1,669,056) 
3 (1,573,561) 
4 (820,183) 
5 (353,858) 
6 (221,643) 
7 (169,424) 
8 (133,671) 
9 (33,429) 

10 19,452 

11 73,653 
12 81,165 
13 90,034 
14 107,789 
15 273,784 
16 440,493 
17 523,963 
18 544,884 
19 563,234 
20 676,511 

21 823,056 
22 833,762 
23 911,935 
24 956,295 
25 957,929 
26 1,070,222 
27 1,140,108 
28 1,259,043 
29 1,287,237 
30 1,338,988 

31 1,346,303 
32 1,395,566 
33 1,442,120 
34 1,478,390 
35 1,486,547 
36 1,488,913 
37 1,496,903 
38 1,602,665 
39 1,607,273 
40 1,634,789 

Sample Mean: 
Sample Standard Deviation: 

-] 
t OSt , ~ t 

41 1,653,456 71 
42 1,655,185 72 
43 1,664,288 73 
44 1,762,839 74 
45 1,765,942 75 
46 1,807,418 76 
47 1,813,668 77 
48 1,838,789 78 
49 1,850,946 79 
50 1,886,076 80 

51 1,914,971 81 
52 1,917,268 82 
53 1,928,550 83 
54 1,983,319 84 
55 2,005,929 85 
56 2,014,959 86 
57 2,048,876 87 
58 2,073,869 88 
59 2,103,727 89 
60 2,152,675 90 

61 2,175.269 91 
62 2,190,039 92 
63 2,201 ,O91 93 
64 2,203,264 94 
65 2,224,343 95 
66 2,241,418 96 
67 2,242,624 97 
68 2,253,579 98 
69 2,263,852 I 99 
70 2,288,596 ! 100 

0SI 

2,355,672 
2,379.694 
2,390,921 
2,394,020 
2,443,931 
2,480.899 
2,484.730 
2,492,091 
2,502,697 
2,522,07 I 

2,548,917 
2,561,432 
2,576,288 
2,609,795 
2,631,067 
2,632,096 
2,685,044 
2,700,908 
2,726,955 
2,750,020 

2,828,278 
2,835,635 
2,850,040 
2,900,917 
2,941,225 
3,085,13 I 
3,197,324 
3,215,420 
3,249,634 
3,457,466 

1,616,004 
I, 194,937 
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TABLE 7 

100 SCENARIOS OF I~H-YEAR SURPLUS FOR THE STABLE PA~TIAN CASE 

r os, 
1 (121,993,000) 
2 (53,000,540) 
3 (38,609,200) 
4 (10,555,610) 
5 (6,178,578) 
6 (5,981,680) 
7 (4,820,628) 
8 (4,546,422) 
9 (3,875,923) 

10 (3,552,448) 

11 (3,313,565) 
12 (2,298,297) 
13 (2,183,848) 
14 (1,553,025) 
15 (1,420,309) 
16 (1,415,358) 
17 (1,347,743) 
18 (1,121,014) 
19 (l,028,966) 
20 (916,352) 

21 (561,895) 
22 (480,189) 
23 (436,869) 
24 (344,403) 
25 (273,309) 
26 (105,880) 
27 (15,508) 
28 151,809 
29 196,355 
30 428,123 

31 552,660 
32 559,877 
33 562,296 
34 563,053 
35 648,420 
36 700,347 
37 815,332 
38 871,732 
39 904,513 
40 958,118 

Sample Mean: 
Sample Standard Deviation: 

! 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

OSt 0SI 

993,838 71 2,031,191 
1,019,117 72 2,080,799 
1,089,538 73 2,119,110 
1,113,836 74 2,119,991 
1,231,521 75 2,122,132 
1,256,956 76 2,136,687 
1,321,327 77 2,186,615 
1,349,667 78 2,282,669 
1,359,857 79 2,308,413 
1,376,576 80 2,313,259 

1,457,943 81 2,339,239 
1,470,926 82 2,340,308 
1,496,642 83 2,384,956 
1,499,971 84 2,388,649 
1,516,970 85 2,447,761 
1,583,856 86 2,471,754 
1,589,302 87 2,500,889 
1,635,374 88 2,518,084 
1,638,909 89 2,523,765 
1,642,424 90 2,558,197 

,681,499 91 2,606 791 
,755,726 92 2,618 745 
,815,831 93 2,641 468 
,885,251 94 2,665 568 
,888,703 95 2,812 686 
,948,011 96 2,918 104 
,954,664 97 3,091 850 
,974,142 98 3,232 074 

1,977,154 99 3,254004 
2,024,769 1130 3,383 891 

(1,420,680) 
14,O50,517 
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FIGURE 3 

100 SCENARIOS OF IOTH-YEAR SURPLUS FOR THE LOGNORMAL CASE 
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FIGURE 4 

lO0 SCENARIOS OF |OTH-YEAR SURPLUS FOR THE STABLE PARETIAN CASE 
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FIGURE 5 

100 SCENARIOS OF 10TH-Y'EAR SURPLUS FOR TIlE STABLE PARETIAN CASE 

4 

3 

!,i 
extreme result dwarfs the others, so that the scale necessary to include 
all the final surpluses is very large. This is shown in Figure 4. Figure 5 
has the same scale as Figure 3. 

Currently accepted actuarial methodology advocates calculating the 
sample mean and standard deviation based on the simulated sample and 
using the normal approximation to make probability statements concern- 
ing the distribution of  all possible ending surpluses (see [8], [19] and 
[25]). Doll [19, p. 99] points out that this is generally not valid since 
the distribution of final surpluses is often skewed to the left. The next 
section discusses the flaw in this line of reasoning and quantifies the 
error that results from the use of this faulty assumption by comparing 
an estimator based on it to an unbiased estimator. 

C. Probability Distribution of  Final Surplus 
An analysis of the final surpluses in the stable Paretian case, shown 

in Table 7 and Figure 4, shows that the distribution of the final surpluses 
is skewed to the left. The highest value is 0.3419 standard deviations 
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above the mean. The four smallest values deviate from the sample mean 
by more than 0.3419 sample standard deviations. Most of the sample 
mean and standard deviation are due to a few extreme values. For in- 
stance, the smallest value is more than 8.5 standard deviations below 
the sample mean. Thus, the distribution of the surpluses from the stable 
Paretian case is obviously highly skewed and it is therefore not the nor- 
mal distribution. 

The same sort of informal analysis can be applied to the final surpluses 
from the lognormal case, shown in Table 6. The largest value is 1.541 
sample standard deviations above the sample mean, while the smallest 
value is 4.646 sample standard deviations below the sample mean. From 
these results, the distribution of final surpluses is obviously skewed to 
the left in this case, too. Thus, it is not the normal distribution. 

It is often asserted that the normal approximation is "close enough" 
to the actual distribution of the final surplus. This is similar to the claim 
that the lognormal hypothesis is close enough. Like that claim, it should 
be empirically tested and abandoned if it is found to be untrue. 

This claim is based partly on a misapplication of the central limit theo- 
rem and partly on the desire to simplify as much as possible. The central 
limit theorem can be used to make probability statements about the mean 
of an unknown distribution based on a random sample. It says nothing 
about a particular percentile of the distribution, however. If one wants 
to know the first percentile of a non-normal distribution, the normal ap- 
proximation will not give an accurate answer no matter how large a sam- 
ple is used. 

To illustrate this, the above simulations were repeated with sample 
sizes of 6,000 for each case. Tables 8 and 9 show the results of these 
simulations. To quantify the error of assuming that the resulting sur- 
pluses are normally distributed, two estimators of the first percentile of 
the distribution of final surpluses are compared. An estimator of the first 
percentile of the distribution of final surpluses is often used in making 
the statement that there is a 99% probability that the tenth-year surplus 
will exceed this value. The 60tb-order statistic from the lognormal case 
with a sample size of 6,000 was used as the first estimator of the first 
percentile of the underlying distribution of surpluses. An alternative es- 
timator, which is frequently used though based on the faulty assumption 
of normality, is x-2 .3s .  In the stable Paretian case, the sample mean 
and sample standard deviation were very heavily influenced by the very 
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TABLE 8 

6000 SCENARIOS OF 10TH-YEAR SURPLUS FOR THE LOGNORMAL CASE 

t os~ 

1 (7,799,011) 
2 (6,666,244) 
3 (5,970,016) 
4 (5,946,807) 
5 (5,854,456) 
6 (5,549,356) 
7 (4,840,982) 
8 (4,833,958) 
9 (4,826,955) 

10 (4,710,439) 

11 (4,593,918) 
12 (4,563,361) 
13 (4,465,991 ) 
14 (4,370,141 ) 
15 (4,165,350) 
16 (4,054,478) 
17 (3,971,333) 
18 (3,935,523) 
19 (3,859,245) 
20 (3,839,542) 

21 (3,836,310) 
22 (3,653,188) 
23 (3,563,914) 
24 (3,496,210) 
25 (3,459,134) 
26 (3,251,604) 
27 (3,249,248) 
28 (3,177,316) 
29 (3,159,414) 
30 (3,141,848) 

31 (3,011,483) 
32 (2,974,589) 
33 (2,941,473) 
34 (2,938,696) 
35 (2,921,827) 
36 (2,783,883) 
37 (2,741,466) 
38 (2,698,107) 
39 (2,697,097) 
40 (2,691,754) 

Sample Mean: 
Sample Standard Deviation: 

t ost  t 

41 (2,658,344) 5961 
42 (2,654,256) 5962 
43 (2,653,839) 5963 
44 (2,566,318) 5964 
45 (2,561,330) 5965 
46 (2,508,854) 5966 
47 (2,480,143) 5967 
48 (2,467,913) 5968 
49 (2,452,505) 5969 
50 (2,445,718) 5970 

51 (2,442,453) 5971 
52 (2,418,294) 5972 
53 (2,410,762) 5973 
54 (2,401,123) 5974 
55 (2,398,479) 5975 
56 (2,391,440) 5976 
57 (2,350,858) 5977 
58 (2,350,034) 5978 
59 (2,346,127) 5979 
60 (2,321,051) 5980 

5981 
5982 
5983 

2994 2,064,335 5984 
2995 2,064,386 5985 
2996 2,064,453 5986 
2997 2,064,513 5987 
2998 2,064,647 5988 
2999 2,064,659 5989 
3000 2,064,772 5990 

3001 2,065,048 5991 
3002 2,065,050 5992 
3003 2,065,470 5993 
3004 2,065,734 5994 
3005 2,065,762 5995 
3006 2,065,953 5996 
3007 2,066,282 5997 

5998 
5999 
6000 

osr 

3,607,196 
3,607,487 
3,611,086 
3,619,469 
3,633,630 
3,635,851 
3,637,566 
3,638,792 
3,640,200 
3,651,101 

3,651,117 
3,658,623 
3,661,447 
3,665,963 
3,673,348 
3,694,082 
3,700,228 
3,714,761 
3,721,975 
3,723,872 

3,729,356 
3,736,607 
3,746,882 
3,781,358 
3,796,661 
3,798,898 
3,799,267 
3,810,334 
3,831,823 
3,834,731 

3,853,009 
3,873,613 
3,875,597 
3,942,996 
3,981,141 
3,983,800 
4,011,578 
4,052,147 
4,159,897 
4,319,538 

1,787,899 
1,195,950 
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TABLE 9 

6000 SCENARIOS OF IOTH-YEAR SURPLUS FOR THE STABLE PARETIAN CASE 

t Ogr 

1 (1.9986 X 10 9) 
2 (285,710,100) 
3 (239,549,200) 
4 (239,549,200) 
5 (239,549,200) 
6 (239,549,200) 
7 (239,549,200) 
8 (239,549,200) 
9 (239,549,200) 

10 (238,434,200) 

11 (228,153,700) 
12 (207,329,200) 
13 (186,122,600) 
14 (184,304,100) 
15 (183,237,100) 
16 (176,149,100) 
17 (172,694,900) 
18 (169,926,900) 
19 (167,961,100) 
20 (167,597,600) 

21 (167,460,000) 
22 (167,414,200) 
23 (167,169,000) 
24 (165,987,700) 
25 (160,818,100) 
26 (150,455,900) 
27 (147,504,500) 
28 (139,393,100) 
29 (134,818,300) 
30 ( 130,241,500) 

(124,420,400) 
(122,010,700) 
(121,993,000) 
(119,776,300) 
(! 19,387,300) 
(119,285,800) 
(118,078,700) 
(117,470,700) 
(117,327,400) 
(117,106,900) 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

Sample 
Sample 

Mcan: 
Standard Deviation: 

t OS~ i t 
iI 

41 (116,525,900) i 5961 
42 (116,504,300) I 5962 
43 (116,311,700) I 5963 
44 (114,565,200) 5964 
45 ( 113,200,100) 5965 
46 (112,777,500) 5966 
47 (111,917,100) 5967 
48 (111,908,100) 5968 
49 (104,938,300) 5969 
50 (95,691,720) 5970 

51 (95,178,400) 5971 
52 (94,649,190) 5972 
53 (91,936,580) 5973 
54 (91,921,510) 5974 
55 (90,043,470) 5975 
56 (83,074,330) 5976 
57 (81,231,930) 5977 
58 (80,910,190) 5978 
59 (80,283,180) 5979 
60 (80,102,800) 5980 

5981 
5982 
5983 

2 9 9 4  1,637,419 5984 
2 9 9 5  1,638,862 5985 
2 9 9 6  1,638,909 5986 
2 9 9 7  1,639,606 5987 
2 9 9 8  1,639,940 5988 
2 9 9 9  1,639,955 5989 
3 0 0 0  1,641,659 5990 

3001 1,642,396 5991 
3002 1,642,424 5992 
3 0 0 3  1,642,550 5993 
3 0 0 4  1,642,650 5994 
3005 1,643,752 5995 
3 0 0 6  1,644,652 5996 
3007 1,645,3o9 5997 

5998 
] 5999 

6000 

OSr 

4,226,545 
4,244,382 
4,247,622 
4,256,108 
4,268,834 
4,272,829 
4,313,339 
4,340,391 
4,404,904 
4,427,105 

4,433,411 
4,449,286 
4,484,608 
4,485,332 
4,497,738 
4,519,914 
4,553,557 
4,563,169 
4,593,807 
4,633,062 

4,669,44.4 
4,829,623 
4,866,440 
4,874,628 
4,957,546 
4,981,374 
5,029,171 
5,286,632 
5,296,121 
5,692,282 

5,773,226 
5,830,193 
5,838,900 
5,888,690 
5,998,347 
6,045,817 
6,451,161 
7,229,951 
7,473,759 
9,020,304 

(1,541,756) 
30,743,645 
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low values of the first few order statistics. Therefore, only the lognormal 
case is used in comparing the two estimators of the first percentile. 

The first estimator, the 60th-order statistic from the lognormal case, 
is equal to -2,321,051.  The second estimator, x-2.3s, is equal to 
1,787,889- 2.3( 1,195,950)= -962,796.  Thus, in this case, the improper 
use of the normal approximation results in an overstatement of 1,358,255 
in the value that has a 99% chance of being exceeded by the tenth-year 
surplus. This is approximately 13.6% of the initial assets. Since the dis- 
tribution of final surpluses in the stable Paretian case is even farther from 
normality, the normal assumption in both cases is statistically invalid 
and not close enough to the actual distribution to provide meaningful 
probability statements about values in the tails of the distribution. This 
result should not be surprising, because the distribution of the final sur- 
plus is highly skewed to the left. 

If a skewed distribution could be found that was a close fit to the 
distribution of final surplus, its parameters could be estimated from a 
moderate number of scenarios, and it could be used to make probability 
statements. Otherwise, it is necessary to run a large number of scenarios. 
The "order statistics method" can then be used to make probability state- 
ments without biasing the results. Statistical methods can be used to de- 
termine how large a sample must be used to estimate a given percentile 
of the distribution to a desired degree of accuracy. 

D. Application to the Valuation Actuary Concept 

A comparison of the results from the lognormal and stable Paretian 
cases produces the following, rather startling results: 

Estimntor of 1st Percentile 
Case of 10If't-Year Surplus 

1. Lognormal -2,321,051 
2. Stable Paretian -80,102,800 

It is clear that the results of the lognormal hypothesis are not "close 
enough" to those from the more justifiable stable Paretian hypothesis. 

Current valuation actuary methodology requires the selection of an ac- 
ceptable probability of negative surplus at the end of the projection pe- 
riod. A figure that has been used is 1%. Without digressing into a dis- 
cussion about what an acceptable level for this figure is, this figure is 
used in the following analysis. 
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First, a simulation was run using the lognormal hypothesis to find the 
amount of assets that must be set aside initially to have only a 1% chance 
of the tenth-year surplus being negative. Using the "order statistics method ~ 
described above with a sample size of 6,000, a value of $10,850,000 
was arrived at. That is, an initial asset $850,000 greater than the initial 
liability of $ I0,000,000 is necessary to provide a positive surplus in 99% 
of scenarios under the lognormal hypothesis. 

Next, to test the sensitivity of this result to the value of et used, 6,000 
scenarios were generated using the same initial asset, $10,850,000, but 
using the stable Paretian assumptions of or= 1.580 and c=0.1046. Of the 
6,000 trials, 719 yielded a negative tenth-year surplus. Thus, the prob- 
ability of a negative surplus is approximately 719/6,000,  or 12%. This 
is significantly higher than the 1% probability obtained by using the log- 
normal hypothesis. This difference is due entirely to the different sto- 
chastic process for interest rate generation. 

Looked at another way, using the stable Paretian assumptions, it was 
found that an initial asset of approximately $15,850,000 is necessary to 
arrive at only a 1% probability of a negative tenth-year surplus. This is 
58.5% of the initial liability, as compared with 8.5% under the lognor- 
mal hypothesis. Again, the results clearly demonstrate the extreme sen- 
sitivity of cash-flow analysis to the choice of ~. 

The following table summarizes these results: 

Probability of Negative 10th-Yea.r Surplus 

Initial Asset Lognormal Case Stable Paretian Case 

$10,000,000 0.078 0.234 
$10,850,000 0.010 0. 120 
$15,850,000 0.000 0.010 

Figure 6 shows the probability of negative tenth-year surplus as a func- 
tion of the initial asset under both the lognormal case and the stable 
Paretian case. 

IV. CONCLUSION 

In any attempt at mathematically modeling reality, simplification is a 
necessity. But when the simplification causes the model to yield dras- 
tically different results, the value of the model is compromised. The 
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assumptions and simplifications must provide results that are close to 
those of the underlying reality. 

Levy and Salvadori [22] describe the disastrous consequences of  using 
models that diverge greatly from reality. One of their examples described 
the collapse of the roof of  the Hartford Civic Center. The architects and 
structural engineers had used a model that assumed that the supporting 
structure of the roof was made of a homogeneous material. In reality, it 
was made of a grid of steel tubing, a material nowhere near homoge- 
neous. The choice of a relatively simple model, one of whose underlying 
premises was blatantly false, over a more complicated model that had 
more connection with the real structure led to the collapse of the roof. 
Prior to the collapse, it might have been argued that the model was close 
enough to reality. The model was not necessarily wrong because it had 
a false premise. It was wrong because its conclusions were not closely 
related to reality. 
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The reality of interest rate changes is that they are not lognormally 
distributed. The simplifying assumption of lognormality may not result 
in a large departure from reality in certain applications, particularly those 
concerned with the expected values or statements of probability where 
the tails are unimportant. On the other hand, the lognormal assumption 
is inappropriate for making probabilitity statements about extreme events 
when the tails of the true distribution are significantly fatter than those 
of the lognormal. Claire [8] illustrates the difference between a cash- 
flow analysis based on the lognormal hypothesis and one based on real- 
ity. She performed a cash-flow analysis using 99 stochastically generated 
scenarios. Then she ran a final scenario based on actual interest rates 
from the 1980s. The final scenario was as bad as the worst of the 99 
stochastic ones. This is evidence enough that the lognormal model is too 
far from reality to be useful. 

The point is not that independent, identically distributed stable Pare- 
tian random variables should be substituted for independent, identically 
distributed normal random variables currently used. A different fat-tailed 
distribution such as a combination of normals might be used, although 
this creates problems, which were discussed at the end of Section II-D. 
A stable Paretian model with c changing over time also might be used, 
although this creates other problems, which were also discussed at the 
end of Section II-D. The assumption of independence may need to be 
abandoned. The point is that the nature of changes in interest rates is far 
more complex than the lognormal model. It is not possible to use the 
lognormal model to make credible probability statements about the tails 
of distributions that are functions of those changes. 

Currently accepted actuarial methodology of cash-flow analysis is an 
attempt to apply a technique that has proved useful in the past, the nor- 
mal distribution, to an area in which actuaries have only recently become 
involved, modeling of the capital markets. 

If actuaries are seriously understating the probability of insolvency, 
then the gravity of the problem is further masked by the assumption that 
failures of insurance companies are stochastically independent. If 100 
companies are all selling annuities backed with long-term bonds or mort- 
gages, their future levels of surplus are highly correlated. In other words, 
even if each of the 100 companies has a 1 percent chance of failure in 
the next 10 years, the scenarios in which they fail will be essentially the 
same, so that dozens of them could fail in one year. 
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V. AREAS FOR FURTHER RESEARCH 

A few areas related to these topics need further research. First, the 
distribution of changes in interest rates may not be a member of the 
family of symmetric stable Paretian distributions. If it is a limiting dis- 
tribution, it must be a member of the stable Paretian family, but it does 
not necessarily have to be symmetric. This paper demonstrates that the 
best choice out of the symmetric members of the family is a non-normal 
distribution, but there might be better choices for the distribution. 

Secondly, the assumption that interest rate changes are independent of 
each other also is questioned by Becker [4]. His tests may not be ac- 
curate, since they assume that the variance of the distribution exists, but 
Peters [28] makes a similar claim using a technique called rescaled range 
analysis, which, unlike autocorrelation, does not assume that the vari- 
ance exists. Peters' claim is that changes in stock and bond prices are 
"persistent," that is, that the changes tend to be in the same direction as 
previous changes. 

Thirdly, as mentioned above, the possibility should be investigated 
that interest rate changes can be modeled by a nonstationary stochastic 
process. This could mean either an occasional shift in parameters or pa- 
rameters that shift continuously. 

Fourthly, the simplifying assumption of parallel shifts in interest rates 
should be replaced by an understanding of the interrelations of the yields 
on various instruments. The analysis in this paper had no possibility of 
yield curve inversions. The concept of covariance of yields will prove 
problematic if the variances are infinite. 
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APPENDIX 

The  F ( g a m m a )  func t ion  is de f ined  as 

F(x)  = e-i t  ~- ldt. (26) 
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The Handbook of Mathematical Functions [ 1 ] contains a formula for 
accurately evaluating this function, which is necessary for evaluating 
Formulas (15) and (16). If 0<-x<l ,  then 

8 

F(x + 1) = 1 + ~ b S  + e(x), (27) 
i=| 

where the following table gives the coefficients, bi: 

i b, 

i --0.577191652 
2 +0.988205891 
3 --0.897056937 
4 +0.918206857 
5 --0.756704078 
6 +0.482199394 
7 --0.193527818 
8 +0.035868343 

The error term is bounded by ]e(x)l<3× 10 -7.  

For x < 0  or x -  > 1, the following recursive formula should be used: 

F(x + 1) = xF(x). (28) 



DISCUSSION OF PRECEDING PAPER 

WILLIAM A. BAILEY: 

Mr. Klein has demonstrated that the data can be fit better by means 
of a stable Paretian distribution than by a lognormal distribution. There 
remain the questions of whether the assumption of symmetry is reason- 
able and also whether the stable Paretian distribution does the job. 

I applied Kolmogorov-Smirnov's two-sample test to determine whether 
the assumption of symmetry is reasonable, and Komogorov's goodness- 
of-fit test to determine whether the stable Paretian distribution derived 
by Mr. Klein can be considered to be a reasonable choice of the pop- 
ulation distribution underlying the Table 3 data. 

For the two-sample test, I used Table 3 as the first sample, say xi's 
for i= 1, 2 , . , . ,  167. For the second sample, I used x ' = $ - ( x i - $ ) ,  where 
the x/s  and $ are from the first sample. The null hypothesis is that the 
population distribution underlying the data in Table 3 is symmetric about 
the population mean. The Kolmogorov-Smirnov two-sample test statistic 
is 

D.,.. 2 = max over all x of I F . ~ ( x )  - F .2 (x ) l  

and the value of D.~.. 2 large enough to call for rejection is 

n I + n 2 
k~ × 

X n 2 

where et is the confidence level, ko.05 = 1.48 and k0.0z5 = 1.36, and nj and 
nz are the sizes of the first and second samples, respectively. In our case 
n~ =n2 = 167, and D167,167 turned out to be 0.1557. It follows that the null 
hypothesis (symmetry) is rejected at a p value of about 3.7 percent. The 
Kolmogorov-Smirnov two-sample test is not limited to testing for sym- 
metry; for further information about this test, see, for example, Lehmann 
[2]. 

In the goodness-of-fit test, the null hypothesis is that Mr. Klein's fitted 
stable Paretian distribution is the population distribution underlying the 
data in Table 3. The Kolmogorov goodness-of-fit test statistic is 

D, = max over all x of [F,~(x) - F0(x)] 

125 
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where Fn is the empirical distribution implied by the data in Mr. Klein's 
Table 3, F0 is Mr. Klein's fitted stable Paretian distribution, and the 
value of Dn large enough to call for rejection is 

0.11 
V~n + 0.12 + ~ 

where ~t is the degree of confidence, n is the size of the sample, and 

(for n > 80) kom = 1.628 and k005 = 1.358. 

Dz67 turned out to be 0.0605 and 0.0928, where the stable Paretian 
distribution's parameters are 

(or, 13, c, 8) -- (1.58, 0, 0.021714, 0.0024613) 

and 

(tx, ~, c, 8) -- (1.58, 0, 0.021714, 0), 

respectively. It follows that the null hypothesis is not rejected (p value 
is 56.1 percent) where 8=0.0024613, but is rejected at a p value of 7.2 
percent where 8=0. Although the fitting process produced ~=0.0024613, 
the cash-flow projections used 8=0; so this latter assumption may be 
questionable. For further information about the Kolmogorov goodness- 
of-fit test, see, for example, Bickel and Doksum [l]. 

Mr. Klein fits a stable Paretian distribution to the data and uses a X 2 
test to include this distribution but exclude the lognormal distribution. 
Lehmann states [2, p. 480] that "reduction of the data through grouping 
results [a verb!] in tests [for example, the x2-test] that tend to be less 
efficient than those based on the Kolmogorov . . . statistic . . . .  " The 
stable Paretian distribution involves the selection of four parameters, 
whereas the lognormal involves the selection of only two parameters. (A 
model involving 162 parameters could fit the data exactly.) We have no 
evidence that the tail of the resulting stable Paretian distribution (that is, 
beyond the largest value in the data) is, or is not, representative of what 
can be expected there. 

It would be interesting to see some Monte Carlo results corresponding 
to Mr. Klein's Tables 6, 7, 8, and 9, but where the empirical distribution 
formed from Table 3 is used in place of the stable Paretian distribution. 
Such runs would reflect the lack of symmetry and would not involve the 
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appending of any tail. I happen to believe that the appending of tails is 
often unnecessary and perhaps even misleading. 

Further results, of theoretical interest, would be where the assets are 
assumed to be invested in stocks rather than in bonds and mortgages. 
Presumably, this would require taking account of any correlation be- 
tween the stock market indexes and the Treasury bond rates. 

Mr. Klein is to be commended for leading actuaries toward a fuller 
understanding of the stable Paretian family of distributions and its pos- 
sible use as a desirable replacement for the lognormal family, which is 
commonly used in asset/liability testing. My own preference is to use 
empirical distributions formed from the data, but for some purposes it 
is desirable to add tails to those distributions. 
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TIMOTHY C. CARDINAL: 

It is always a difficult task to question the validity of beliefs that have 
achieved widespread use. Mr. Klein is commended on considering an 
alternative to the traditional lognormal model. The lognormal model has 
been used due to its theoretical properties, not empirical substantiation. 
I have produced results [1] that corroborate a logstable model. This dis- 
cussion focuses on the development of the logstable model. My goal is 
to clarify and strengthen several statements and results in the paper. For 
example, parameter estimates are improved and symmetry is not as- 
sumed; standard errors are calculated; and the first and fourth areas for 
further research are resolved. 

1. Def ini t ions a n d  Propert ies  

The stability-under-addition property is a misnomer. Stable distribu- 
tions are defined as the class of distributions that are invariant under 
convolution. F is stable, if for every at, a2>0  and real bt, b2 there exists 
an a > 0  and real b such that 

x ~ = F  

\ al / \ a2 / 
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Section II.B indicates that the term "Paretian" is used since stable and 
Pareto distributions are both "fat-tailed." Use of this term is much stronger; 
otherwise terms such as "studentian" may be applicable. When et#2 and 
I ~ l # l ,  both tails are asymptotically Pareto, specifically, for x>0,  
1-F(x)--*cl/x ~ and F(-x)---~c2/x a. However, the Pareto distribution is 
not a member of the stable laws. Being asymptotically Pareto is a prop- 
erty that led Mandelbrot to use stable distributions as an alternative. He 
defines the strong Pareto law as the Pareto distribution and the weak 
Pareto law as a law that is asymptotically Pareto. Stable laws are weak 
Pareto. He uses the adjective Paretian in conjunction with strong and 
weak Pareto laws; thus he uses the term stable Paretian synonymously 
with stable. 

Different representations of the characteristic function shown in Klein's 
paper as Equation (4) have been used. The "accepted" representation 
reverses the sign of 13 in Equation (4) for a #  1. For this representation, 
the distribution is skewed left (right) for 13<0 (13>0), and cl and c2 are 
related by 13=(c~-c2)/(c1+c2). For the representation used in Equation 
(4), the distribution is skewed left (right) for 13>0 (13<0) for a # l  and 
vice versa for a =  1. Thus, 13 does not have a consistent interpretation 
for the direction of skewness or for the relationship between 13 and the 
area in the tails. This fact has not always been recognized in the literature. 

Another representation for a #  1 used in analytical expressions (for ex- 
ample, Bergstr6m, Klein's ref. [5]) is 

In q~(t) = i~t - ~*ltl '~ exp[-i13*sgn(t)]. 

By equating, squaring, and adding real and imaginary parts, one can 
show that 

t/2 

tan(13") = 13 tan ~ and Ic'l ° = Icl" 1 + tan 2 - -  

A slightly different expression used by Chambers et al. [2] has 
I~c=2~*/'rr min(a, 2 -00 .  

2. E m p i r i c a l  T e c h n i q u e s  

Klein states " . . .  it was assumed that the distributions were sym- 
metric . . . .  This was done largely because the procedure of parameter 
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estimation and simulation has not yet been worked out for skewed dis- 
tributions." Fortunately this is not true. The most recent articles on em- 
pirical techniques referenced in the paper were published in 1972 and 
1974. A substantial amount of research has been carried out since then. 

Simulation 

The expansions for standard stable pdf's derived by Bergstr6m (Klein's 
ref. [5]) are for the general asymmetric case. For [3"=0, these reduce to 
the pdf's implied by the cdf's given in Equations (15) and (16). For (x>l, 
the following converges rapidly for small x>0,  

f ( x )  =-,rr = k! ot cos k + + . 

For a >  1, the following converges rapidly for large x>0, 

f ( x )  = -~r k~l k! xlxl ~ sin k + - eL arg x + R ( x ) ,  

where the remainder is of order x -~(n÷l)-l. 
Thus simulation can be done in the asymmetric case using the inverse 

cdf technique. However, this technique is inefficient. A faster, exact 
method was developed by Chambers et al. [2]. By using transformations, 
two random uniform numbers are used to generate a standard stable de- 
viate. Let W be standard exponential, • be uniform on ( -~r /2 ,  7 /2) ,  
and ~o = -13*/et=-'tr[3 ¢ rain(or, 2-a) /2ot .  The standard stable cdf (et~ 1) 
can be represented as 

sin a ( ~  - ~0) (cos (~  - ot(~ - ~0))) ('-~)/~ 

For or=2, this method is equivalent to the Box-Muller method. 

Estimation Techniques 

Fama and Roll estimators work reasonably well when the distribution 
is known to be symmetric. However, their observations of fractile tables 
do not hold for asymmetric distributions, Sampling error and possible 
asymmetry result in inferior estimates with large standard errors. Bias in 



130 TRANSACTIONS, VOLUME XLV 

is compounded in 6. The process of adjusting for bias is often arbitrary 
and unsatisfactory. 

McCulloch [6] uses fractile methods to simultaneously provide asymp- 
totically unbiased estimators of all four parameters. Allowing for asym- 
metry and unbiased estimators is a substantial improvement. Further- 
more, the interval of estimation for c~ is increased to [0.6, 2]. 

Since the characteristic function is the only simple expression for sta- 
ble laws, it is logical to use it for empirical fitting. Given n independent 
observations xz .... xn of a random variable X, the sample characteristic 

function is 

1 n 

~(t) = - ~ exp(itxk), 
n "~1= 

where ~b(t) is a stochastic process, [~(t)l<_l, all moments of ~b(t) are fi- 
nite, and d~(t) is a consistent estimator of qb(t). Using d~ also allows es- 
timates of all the parameters. 

Paulson and Leitch [7] suggest estimation of the parameters by min- 
imizing the function 

I(c~, 13, c, 8) = f 16(t) - +(t)l 2 exp( - f l )d t .  

DuMouchel [3] uses maximum likelihood estimators requiring a fast- 
Fourier transform. Press [8] suggests the method of moments. Koutrou- 
velis [5] generalizes Press by using regression rather than equality. These 
estimators are consistent, asymptotically unbiased, and more efficient 
than most other estimators. 

S t a t i s t i c a l  I n f e r e n c e  

The standard errors of estimates for parameters of a normal distribution 
can be given in terms of the estimates and number of data points. Un- 
fortunately, this is not the case for stable parameters. A simulation method 
known as bootstrapping provides the distribution for the estimated pa- 
rameters. Suppose that, given a data set So of size n, one wishes to obtain 
an estimate 0 for a parameter 0. For l<-i<-m - 1, form a sample data set 
St by randomly selecting with replacement, n points from S0. Estimate 
0 for each St, labeling the estimate 0~. The set of 0r provides a sample 
distribution for 0. That is, 
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and 

m - I  

 =l£0 i -  
m i = 0  

m - I  
I 

- ( 0 , -  6)  2 
m - I  i=o 

An estimate of the bias is 0-0o. Note that cx and 13 are bounded; hence 
estimates are asymptotically normal. See Effron [4] for a detailed de- 
scription of bootstrapping. 

Bootstrapping does not improve or demonstrate that an estimation 
technique is faulty, inferior, or biased. Bootstrapping provides an esti- 
mate of the bias due to sampling error, not bias inherent in the estimation 
technique: each (}i has on average the same inherent bias. It is necessary 
to verify that the estimation technique will accurately estimate parame- 
ters from known distributions. 

3. Stat is t ical  Results 

The results of Tests I and II are not conclusive since: 
1. Comparisons were made by visual inspection 
2. Biases for the original ¢x estimates were not corrected 
3. Only one sum size was examined 
4. A small data set was used. 
As indicated in the paper, visual inspection was necessary since the ref- 
erenced papers did not quantify the critical regions. Much of the existing 
literature, including Hsu et al. (Klein's ref. [18]), does not adequately 
resolve the stability-under-addition test for the same reasons. Similarly, 
the statements "[t]he large discrepancy in c's between the two sets of 
d a t a . . . "  and " . . .  et appears to be more stable over time than c" are 
opinions, not statistical demonstrations. 

Parameters for the data given in Tables 2 and 4 in Klein's paper were 
estimated by using both the Fama and Roll and the regression techniques. 
Since stability-under-addition holds only for independent identically dis- 
tributed variables, any effects of serial correlation and dependency should 
be removed in the randomized data (Test II). The stability-under-addition 
test can be formalized as: 

Hypothesis l: % = 6~ or Hypothesis 2: ak = oq. 
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Tables 1 and 2 contain a estimates for both time periods, both chro- 
nological and randomized data, and for various sum sizes, and Table 3 
contains estimates of c and 8. The analysis is still limited due to the 
effects of a small data set. For ct, regression estimates are higher than 
Fama and Roll estimates with smaller standard errors. Errors for esti- 
mates greater than 1.9 are small since estimates are right truncated at 2. 

For the 1977-1990 data, normality is rejected; hypothesis 1 is not 
rejected using either Fama and Roll or regression estimates; hypothesis 
2 is rejected using a two-sided t test; and the hypotheses that 8=0 and 
13 = 0 cannot be rejected (1~ = - 0.16). For the 1953-1976 data, normality 
cannot be rejected; hypothesis 1 is not rejected using either Fama and 
Roll or regression estimates; hypothesis 2 is rejected using a two-sided 
t-test; and the hypotheses that 8=0 and 13=0 cannot be rejected (13=0.13). 
Estimates of c~ and c for the two data sets are within one and three stan- 
dard errors, respectively, of each other. 

4. Conclusion 

The data sets are too small to make definitive conclusions. I have ex- 
amined [1] daily, weekly, and quarterly changes for 0.25, 0.5, l, 2, 3, 
5, 7, 10, and 30 year U.S. Treasuries using a larger data set. A logstable 
model is demonstrated to be appropriate, while a lognormal model is 
not. 

Several reasons why stable distributions have not gained widespread 
acceptance are given in Section II.E. I would add two additional mis- 
conceptions that appear in the literature: 
1. Statistical inference statements are not possible. 
2. Logstable models are economically intractable. 
Bootstrapping refutes the first concern. The second arises from the fact 
that the only stochastic process with a continuous path of price changes 
is normal. Continuity is often incorrectly thought to be a condition nec- 
essary to a tractable arbitrage pricing theory (that is, form hedge port- 
folios and derive stochastic differential equations). In a logstable model, 
hedge portfolios can be formed and Monte Carlo methods circumvent 
the need to solve for prices, that is, expected present values, by first 
deriving differential equations. 

Finally, the fourth area for further research suggests, "The concept of 
covariance of yields will prove problematic if the variances are infinite." 



TABLE 1 

o~ ESTIMATES: 1977-1990 DATA 

Fama and Roll Estimates 

Regression Estimates 

Chronological Data Randomiz,.e,;I Data 

Sum I Sum 2 Sum 3 Sum 4 Sum I Sum 4 

1.590 
(0.138) 

1.780 
(0.107) 

1.437 1.538 
(0.170) (0.234) 
1.699 1.721 

(0.136) (0.181) 
*Indicates 6~k is more than two standard errors from ~t I. 

1.686 
(0.215) 
1.907 

(0.141) 

1.585 
(0.134) 
1.775 

(0.099) 

Sum 2 Sum 3 

i.798 1.700 
(0.159) (0.231) 
1.944 1.861 

(0.103) (0.163) 

1.953* 
(0.090) 

1.964* 
(0.084) 

TABLE 2 

¢1 ESTIMATES: 1953--1976 DATA 

Chronological Data Randomized Data 

Sum I Sum 2 Sum 3 Sum 4 Sum 5 Sum ! Sum 2 Sum 3 Sum 4 Sum 5 

Fama and Roll Estimates i.649 i.784 1.586 1.429 1,631 1.657 1.810 1.808 1.828 1.803 
(0.107) (0.104) (0.205) (0.262) (0,199) (0,127) (0.122) (0, ! 62) (0.155) (0.159) 

Regression Estimates 1.879 i .948 !.797 1.676 1,833 1.882 1.904 1,906 1.953 1.923 
(0.066) (0.049) (0.152) (0.268) (0.164) (0.068) (0.066) (0,088) (0. I i 5) (0.089) 
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T A B L E 3  

Fama and Roll Estimates 

Regression Estimates 

1953-1976 Dam 

j0 z ~ 102 ~, 

1.445 0.312 
(0.14) (0.12) 

1.573 0.319 
(0.11) (0.12) 

1977-- 1990 Data 

10" ~ z0 ~- 
2.082 0.190 

(0.22) (0.29) 
2.172 0.200 

(0.20) (0.29) 

Prior empirical use of  stable distributions has been limited to one di- 
mension. However ,  just as standard deviation may be generalized to the 
scale parameter, the covariance matrix may be generalized to a codis- 
persion matrix. The characteristic function for a symmetric multivariate 
stable distribution is 

In 4~(t) = iS ' t  - - (t'f~jt) ~/2, 
2j=l  

where each llj, is a positive semidefinite matrix of  order p and rank rj, 
1 <-rj<-p. 

For a normal distribution, a = 2 ,  8=ix ,  and 
m 

j= l  

I have developed [1] an estimation technique for multivariate param- 
eters, and estimates are given for a nine-dimensional interest rate vector 
for daily, weekly, and quarterly changes. 
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BEDA CHAN: 

I have  two brief comments on Section II of Mr. Klein's excellent paper 
on the deep and important topic of interest rate models and its cash-flow 
consequences. 

First, Becker (Klein's ref. [4]) refers to three characteristics of the 
changes in rates [4, p. 71]: non-zero autocorrelations, positive kurtosis, 
and nonconstant standard deviation. The middle one is directly addressed 
by the stable Paretian model in this paper; the other two become unde- 
fined under the infinite variance implied by the stable Paretian model. 
As suggested in the second paragraph in Section V, there are tests for 
dependence of J,. One such test is the runs test. The Minitab outputs 
(Outputs I and 2) indicate that the J,'s are not independent. Also included 
are the histograms and normal scores plots for J, that indicate too high 
kurtoses to be normal, as Figure 2 of this paper also indicates. 

Second, the estimates for e, a ,  and ~ by Fama and Roll (Klein's refs. 
[14], [13]) are computationally simple. For maximum likelihood esti- 
mates, see the papers by DuMouchel [1], [2], where likelihood contours 
are used to distinguish ct=2 and or<2. 

Outputs 1 and 2 were produced using the Student Edition of Minitab, 
Release 8, a $50 software. Output 3 was produced using S-plus, a graph- 
ical statistics environment evolving since 1984 and thus two decades 
younger than Minitab. 
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OUTPUT 1 

3 0 - Y E A R  TREASURY B O N D S ,  1 9 7 7 - - 1 9 9 0  

MTB > runs 'J sub t' 

J sub t 

K = 0.0005 

THE OBSERVED NO. OF RUNS = 64 
THE EXPECTED NO. OF RUNS ~ 82.9162 
95 OBSERVATIONS ABOVE K 72 BELOW 

THE TEST IS SIGNIFICANT AT 0.0028 

MTB > ghistogram 'J sub t' 

J_sub_ t  N = 167  
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MTB  > nsco res  0 j  sub  t j v~  sco res l  

MTB > gplot 'J sub t' 'n scores' 

i ! I 

35 ,0  ~ .0  4~*13 

O .1B  

JJub_ t  

O . N  ~ M 

# t I ! I 

2 a J. • go  J . .Q 2 • 
_.s • 



DISCUSSION 137 

OUTPUT 2 

LONG-TERM TREASURY BONDS, 1953--1976 

MTB > runs 'J sub t' 

J sub t 

K = 0.0029 

THE OBSERVED NO, OF RUNS = 118 
THE EXPECTED NO. OF RUNS = 144.4983 

143 OBSERVATIONS ABOVE K 144 BELOW 
THE TEST IS SIGNIFICANT AT 0.0018 

MTB > ghistogram 'J sub t' 

J ~ u b t  S = 2 B ?  

• O b s e ~ A t i o n s  a r e  a b o ~ e  t ~  l a s t  = l a s s  

S i d p .  i . t  C o u n t  
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O. 0 1  45 
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O .  0 3  2 1  

r e , e 4  1 4  

0 . ~  1 0  

e , o 6  2 

L 

o.e 9 . ~  2 7 . O  

MTB > nscores 'J sub t' 'n scores' 
MTB > gplot 'J sub t' 'n scores' 
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OUTPUT 3 

Series : J.tor3ong.term.treasu ry.bonds. 1953.to. 1976 

I I '~J~ 1'1 ' "  I] I I , ' ~  I 

L~  

Series : J.for.30.year.treasury.bonds. 1977.to. 1 g90 
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STEVE CRAIGHEAD: 

Mr. Klein's article was very enjoyable and fascinating in his use of 
the stable Paretian distribution in modeling long-term interest rate changes. 
However, I would like to raise the following questions. 

All data analysis below uses daily 30-year interest rate data from April 
l, 1981, to May 29, 1992, excluding July 31, 1991, September 16, 1991, 
and October 31, 199l due to missing data; see [11] and [12]. There are 
a total of 2741 log ratios from these data. 

Using Klein's Formula (9), n=2741, I calculated 

c = 1/(2 * 0.827) * [OSi974.24 - 0 5 7 6 7 . 7 6 ]  = 0.0043702. 

Using Formula (1 I) 

20.96---~ 1/(2c)[0S2632.32- OSi09.6s] = 3 .195489  

Determining et such that F~ (3.1955)=0.96, a=1.575.  That ~= 
-0.00022535 was determined by 50 percent truncated mean estimation. 
The parameter ~/ was determined to be 0.0001922. Mr. Klein's ~/ was 
determined, for the 1977-1990 data, to be 0.002355. 

The average number of days of  security quotation for each month in 
the 11 years and 2 months was 20.5 days. 

My observations with these additional interest values is that ot appears 
to be fairly consistent in the daily and monthly analysis. Also, ~ is very 
close to 0. This is due to z0.96 being very close to Mr. Klein's. However, 
Mr. Klein noted that the sum of n stable Paretian random variables whose 
distributions have the same a and 13 has a distribution with ~/equal to 
the sum of the ~/'s of the component distributions. If this was the case, 
Mr. Klein's 7 divided by the daily ~/ above should be approximately 
equal to the average days of issue in a month. However, this result is 
12.25, not 20.5. This raises the following questions: 
1. Are Formulas (9) and (11) accurate estimators? Since the value of 

a is consistent with the two different monthly data sets and the daily 
data set, could the formula for c be faulty? 
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2. Could c drift where c~ does not? Mr, Klein discusses a possible drift 
in oL, which is in his Tests I and II section. Could the daily 3, versus 
the monthly 3' not be statistically significant? How could one study 
this? 

3. Should we not model interest rates from a stochastic method at all? 
Why not use a persistent fractal noise generation process based on 
rescaled range analysis? See Ill through [10]. These techniques, which 
also assume an infinite variance, may produce results as dramatic 
as those in Mr. Klein's ruin analysis. The fractal noise techniques 
do not require the analysis needed to handle drifting parameters. In 
fact, these techniques could very well be used in modeling nearly 
efficient markets; see [1]. 

I have two other concerns: 
1. Mr. Klein was not consistent in the use of the J,. Formula (8) differs 

from the formula in the last paragraph of page 28. Did Mr. Klein 
use Formula (8) in his generation of the Paretian stochastic process 
or the one he quotes? If he changed formulas in the ruin theory 
analysis, I am concerned that the results could be tainted. 

2. In the use of the Paretian distribution, 0<oL=2. In fact, when et=2, 
the Paretian distribution is a normal distribution. Since or=2 is an 
endpoint, I am concerned that the estimate of c~ would naturally be 
away from 2. Of course Mr. Klein addressed this with his signifi- 
cance tests, but I wish, for elegance sake, that there was a distri- 
bution, similar to the Paretian, that had the normal distribution 
embedded in the continuum, not at an endpoint, 

In all, I thought that Mr. Klein's paper was well written and very well 
researched. I was very pleased with the demonstrations that he carried 
out. I am looking forward to meeting him and having a long discussion 
on the behavior of interest rates. 
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MARTIN DEN H E ~ R :  

The author deserves our congratulations for writing an excellent paper. 
Over the next several years, I suspect it will become a reference of in- 
creasing importance, as actuaries attempt to incorporate the discontinu- 
ities observed in real world events into their risk models. 

In my view, the major achievements of this paper are as follows: 
1. Evidence is provided that the stable Paretian distributions produce 

significantly different results than the normal distribution for typical 
actuarial problems. This is surprising because the shapes of the re- 
spective probability density and cumulative distribution functions are 
quite similar. The rationale that a normal approximation is "close 
enough" now seems very tenuous indeed. In this sense, this paper 
substitutes a convincing demonstration for a seemingly plausible but 
misinformed impression! 

2. One of the barriers that prevented actuaries from applying the Pare- 
tian distributions was the difficulty and inaccessibility of the under- 
lying mathematics. The descriptions, examples, and algorithms dis- 
seminated in this paper help remove the barrier. 
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3. The author has critically evaluated some important limitations of his 
analysis. These are: 
(a) The two sets of sample interest rate data (1953-76 and 1977- 

90) produced different values of c, the "width ~ parameter, which 
indicates nonstationarity. The stable Paretian hypothesis re- 
quires stationary parameters. 

(b) The Hsu, Miller, and Wichern tests (Klein's ref. [18]) for sta- 
bility (Test I and Test II) were not satisfied. 

Both limitations weaken the case for assuming stable Paretian dis- 
tributions or, in my opinion, indicate the hypothesis needs modifi- 
cation. 

4. The last achievement consists of the author's review of possible ex- 
planations for the limitations. These are as follows: 
(a) Interest rate changes may be dependent over time. 
(b) The behavior is nonstationary due to shifts in the "underlying 

reality." 
(c) The stable Paretian distribution may be asymmetric. 

Of these three possible explanations, I believe the dependence issue 
to be pivotal, for the following reasons. 
1. In addition to Becker's (Klein's ref. [4]) conclusions on dependence, 

the rescaled range analysis for 30-year Treasury bonds by Peters 
(Klein's ref. [27]) indicates long-term dependence as measured by 
the Hurst statistic (H). The results are highly credible because the 
Hurst statistic is robust to the underlying distribution. In particular, 
the Hurst statistic does not require the underlying distribution to have 
a finite variance or mean. 

2. Both limitations (a) and (b) are symptomatic of dependence over 
time increments. For example, dependent ARIMA models exhibit 
divergent "width" parameter estimates from different data subsets, 
similar to limitation (a). If dependence exists, Tests I and II would 
tend to fail because the ~ parameterization is based on the gener- 
alized central limit theorem, with independence as a necessary con- 
dition. It is interesting that Test II was performed on scrambled data 
and produced et~ 1.9. Any dependence would likely have been elim- 
inated by scrambling; therefore, ct~1.9 might be a better estimate 
than ot~ 1.6. 

A practical method for estimating ct from a dependent time series and 
a test for confirming the result is outlined later in this discussion. The 
theoretical aspects are considered first. 
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Theory  

Consider the stable Paretian hypothesis for interest changes 

A log/,  = -%, 

where l<tx<2,  0 < t < ~ ,  and ~'%, is a stable Paretian increment with ap- 
propriate width parameter c. Since time is infinitely divisible, we can 
utilize the integral expression for 

log I, = u + dP(y) ,  

where u is a constant of integration equal to the sample mean of the log 
It, and P(t)  is a stochastic process with increments ~%t. 

If ~=2  (and u=0), this describes the traditional Brownian motion, 
tracing a continuous,  but nondifferentiable path in time. The increments, 
~=2~,, are independent and determined by the normal distribution. 

If 0 < ~ < 2 ,  the integral traces a discontinuous path in time, with in- 
dependent Paretian increments, "e~ t .  Clearly, a determines the conti- 
nuity properties of the stochastic process. As a decreases, the quantum 
and frequency of "tail events" increases, and discontinuity increases. 

The Brownian motion path of a particle suspended in a liquid must be 
continuous to avoid contravening a physical law. The requirement for 
continuity and independent increments and the central limit theorem en- 
sure this mathematical solution is unique. 

The paths traced by prices and interest rates are discontinuous, as con- 
firmed by observation and supported by general reasoning; so ~ # 2  and 
the variance of the increments is infinite. The implications for ~ # 2  are 
severe. Traditional time series analysis techniques, such as ARIMA, do 
not apply because they are based on the normal distribution, implying a 
continuous path process, and the autocorrelation function, which requires 
a finite variance. Therefore, the autocorrelation function is not a viable 
mechanism for introducing dependence into a process with a~2 .  

The Hurst statistic (H) is robust, so it is a good candidate to introduce 
dependence into the integral referred to earlier. The method of fractional 
integration proposed by Mandelbrot and Van Ness [ 1 ] based on an earlier 
theorem attributed to Liouville and Reimann [2] produces: 
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and 
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Example I I Example 2 Example 3 Example 4 
Brownian I Fractional Paretian Fractional 

i Motion i Brownian Motion Motion Paretian Motion 

(In)dependence H = 0 . 5  H ~ 0 . 5 ,  0 < H - I  H = 0 . 5  H ~ 0 . 5 ,  O<H-<I  
(Dis)continuity ct=2 a = 2  O<et<2 O<ct<2  
Scaling S=0 .5  S=H S =  l / a  S = H - 0 . 5 +  1/ct 

I 

Description of  I Continuous Continuous Discontinuous Discont inuous 
stochastic I random ordered random ordered 
process I process with random process with random 

! independent process independent process  
I 
i increments L increments : 

The stable Paretian hypothesis is a special case of example 3 with 
l<c t<2  instead of O<a<2 .  The modified stable Paretian hypothesis 
is based on the introduction of dependence (or ordering) as in exam- 
ple 4, with the same restriction, l<e t<2 .  The consequence of this re- 
striction is that the increments have a finite mean. The rationale is ex- 
plained in the comments about the impact of discontinuity on pooling 
and diversification. 

P a r a m e t e r i z a t i o n  

Based on the modified hypothesis, c, ot and H can be estimated from 
the combined data series (1953-1990) using the techniques described in 
Klein's paper and Peters (Klein's ref. [27]) as follows: 
1, Perform a rescaled range analysis to determine H. Presumably H is 

about 0.68, as estimated by Peters (Klein's ref. [27]) for the period 
1950-1989. 

2. Scramble the monthly data and confirm independence by performing 
another rescaled range analysis. This time, H should be about 0.50. 

3. Convert the scrambled monthly data to four-month (non-overlap- 
ping) increments and determine CaM and ot4M as outlined in Klein's 
paper. 

Convert the four-month data to 16 months (non-overlapping) and 
determine C16M and ct16M. Hopefully, the following hold: Otl6M~-'O~4M, 
and C~6M~4t/aC4M. 

4. Now estimate C4M and CM from the original data (before scram- 
bling). In accordance with the scaling property, confirmation of the 
fractional Paretian motion model would require that 

C4~t ~ 4H-5+t/~CM, rather than C4~ ~- 4t/~C~t. 
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If the relationships in steps 3 and 4 hold, it would seem to confirm 
that the underlying distribution is symmetric. If not, it would suggest 
the need for further research on asymmetry or testing on a longer data 
series. 

Of course, this approach may be used to analyze other economic time 
series such as stock returns and inflation rates. This may require further 
generalization by allowing H >  1 and replacing u with a polynomial trend 
of higher degree. 

To conclude this discussion, I would like to make some general com- 
ments about the dilemma of non-stationarity, the rationale for depen- 
dence and ordering, and the implications of discontinuity for pooling and 
diversification strategies. 

Nonstationarity 
The conjecture that the behavior of economic variables is nonstation- 

ary seems very plausible. We can examine stock price, interest rate and 
inflation records over some 70 years and reasonably conclude that the 
parameters of the related stochastic variables seem to shift over time. 
The conventional explanation is that the "underlying reality" changes, 
and therefore the stochastic "rules" do too. Economists such as Keith 
Ambachtsheer discern eras, consisting of periods lasting about 10 years 
during which the rules remain stationary, and shifts, during which new 
"rules" emerge. The implications of this observed behavior for long-term 
models based on the normal distribution are unfortunate. 

If the parameters shift every 10 years or so, we do not have sufficient 
data to model the shifts with any credibility. If we do not model the 
shifts, the exercise is incomplete. If we do model the shifts, the exercise 
is bound to be subjective. This appears to be a scientific dead end. 

Mandelbrot's vision, the Paretian hypothesis, attempts to escape this 
dilemma by changing the frame of reference from finite variance non- 
stationary normal models to infinite variance stationary Paretian models. 

Paretian-based models seem plausible, because the dependence (H) 
parameter appears to explain the eras and the discontinuity (et) parameter 
appears to explain the shifts. If we can derive stationary H and et pa- 
rameters from data covering the last 70 years, longer term models would 
have more scientific credibility for quantifying risk. The challenge is to 
provide evidence that H and ot are stationary over multiple-era time pe- 
riods. For both technical and theoretical reasons, it would appear desir- 
able to estimate the parameters from the longest available time series 
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data. Of course, it would be a cruel joke if we had to deal with both 
infinite variance distributions and nonstationery parameters. 

Dependence and Ordering 

I prefer to use the term "ordering" rather than dependence because it 
is more accurate and descriptive. Consider the "underlying reality" (that 
is, history) as having a sequential order in time. 

Under this conjecture, the present is determined not only by the quan- 
tum of past (stochastic) events but also by their sequential order. Like- 
wise, the future "n" years from now will be determined by both the 
quantum and order of events during the intervening period. Since time 
is infinitely divisible, the ordering necessarily spans across all sizes of 
discrete time increments--from seconds to centuries, as it were. If eco- 
nomic variables are manifestations of the "underlying reality," it would 
appear plausible that they are sequentially ordered as well. This calls 
into question the (unmodified) stable Paretian hypothesis, the efficient 
market hypothesis and all other random walk models with independent 
increments. 

The mathematical technique for introducing dependence and ordering 
is integration or its discrete equivalent, summation. Consider the suc- 
cessive summation of a stochastic process 

0Y, = ~t 

tY, = ~ %,-i = %, + %,-i + %,-2 . . . . . . . . . . .  
i=0 

j=O i=O i=0 

~ ,  (i + n)! ~,-i 
t IF  t z~ 

i=0 i!n! 

The oY, process is completely independent of the past. 
The IY, process is dependent on past events but is not ordered. If this 

model described the "underlying reality," the order of World Wars I and 
II could be reversed, without affecting the present. 



148 TRANSACTIONS,  V O L U M E  XLV 

In contrast, 2 Yt is an ordered process. Any change in the order of past 
events affects the present. Both the process 2Yt and its increments are 
dependent on the past, which is the sufficient condition for a process to 
be "ordered." 

The problem is that 2Yt does not fit economic time series data; it has 
"too much" ordering. Clearly, other ordered processes may be obtained 
by interpolating between the various nYt. For example, for 0.5<-H < - 1.5, 
the fractional integration V(t) interpolates between t Yt and z Yt, which 
results in the increments AV(t) being an interpolation between oYt and 
~Yt. 

The rescaled range analysis technique has been tested on simulated 
data series and found to be a credible estimator for H, the "level" of 
integration. 

There are of course an infinite number of interpolation functions that 
might apply. The distinguishing feature of fractional integration is that 
it is the unique interpolation function that preserves the scaling property 
of Brownian and Paretian motion processes. A consequence of preserv- 
ing the scaling property is that the ordering spans all size time increments. 

Discontinuity, Pooling and Diversification 
We have already reviewed how the scaling property determines vol- 

atility over multiple time increments. The additive property of stable 
Paretian distributions also has significant implications within each time 
increment. 

The additive property for stable Paretian distributions ("X3 with width 
parameters Ci is: 

~ ,  c~(~X, .) = c~ (~X) 
i=1 

when the Ci = 1, this reduces to 
n 

°X, = n~/°(~X). 
i=l 

Within any time increment, the implications for pooling and diversi- 
fication strategies are as follows. 
1. Pooling and diversification mitigate volatility risk for 1 <or<-2. The 

strategy produces maximum results at a = 2 ,  becomes ineffective at 



DISCUSSION 149 

o~= 1 and counterproductive for 0 < a <  1. This appears to explain the 
restriction (1 <c~<2) for the stable Paretian hypotheses. 

2. Both distribution width (c) and discontinuity (a) contribute to vol- 
atility. For 1<~<2,  pooling and diversifications strategies reduce 
the width parameter by the scaling exponent 1/c~. However, the dis- 
continuity property of the aggregate distribution remains unchanged. 
Therefore, pooling and diversification do not mitigate the portion of 
the risk relating to discontinuity. This implies hedging and exclusion 
are more effective strategies for mitigating discontinuity risk. Hedg- 
ing is of course widely used for managing investment related risk. 
An example of exclusion is the treatment of deaths caused by acts 
of war under most insurance arrangements. 

Although the above conclusions apply only when the "individual ele- 
ments" share the same a,  it demonstrates that stable Paretian models 
distinguish between different types of volatility while maintaining the 
utility of a central limit theorem and other useful properties. This has 
intriguing implications and seems to provide a valuable tool for diverse 
actuarial problems. 
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JOHN DUTEMPLE: 

As a student who has recently succeeded in passing Examination V-380, 
I found Mr. Klein's paper particularly informative--not only for its con- 
clusions but also for its approach. 

It's easy for students caught in the midst of focused study to accept 
the material presented to them as fact rather than as a hypotheses subject 
to examination and verification or even as simply currently accepted 
practice. The conclusion to be drawn by the student (and indeed by all 
practicing actuaries) from this paper is not that the broader family of 
stable Paretian distributions is a better choice for interest-rate modeling 
than the narrower set of  normal distributions (although, for this particular 
set of data and many others, this is the case). Rather, the point that 
should be emphasized is that the actuary needs to look beyond current 
practice and the SOA syllabus when current techniques do not measure 
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up to the task at hand. This is especially true in the finance arena where 
the study track is so relatively new. 

Because the issue of modeling cash flows has become a major one for 
many insurance companies and promises to continue to grow in impor- 
tance, I must echo the call for further research in this area. Not only 
should further research be done on the modeling process itself, but also 
research or development of statistical techniques (most notably measures 
of the notion of correlation in distributions with infinite variances) that 
would further the modeling research is needed. I hope this paper be- 
comes a starting point for such investigation. 

PAUL P. HUllER*: 

The paper is an important contribution to the literature because it high- 
lights the extreme sensitivity of cash-flow analyses to the model of in- 
terest rate changes. However, the paper fails to assess whether the log- 
normal hypothesis is close enough for modeling purposes. This is because 
the paper ignores the dynamic structure of the interest rate time series 
by assuming that the interest rate changes are independent and identically 
distributed. This discussion presents additional reasons why the stable 
Paretian hypothesis has failed to gain acceptance and analyzes the in- 
terest rate time series in more detail. This analysis questions the validity 
of the paper's results and suggests that the paper presents a biased per- 
spective in favor of the stable Paretian hypothesis. 

Addit ional  Reasons Why the Stable Pare t t an  Hypothesis Has 
Failed To Gain Acceptance 

An additional reason to those given in the paper (see Section II-E) on 
why the stable Paretian hypothesis has failed to gain acceptance is, as 
stated by Sennett [9], due to " . . .  the poor descriptive ability of the 
symmetric stable models." In modeling stock prices, Officer [7], Bamea 
and Downes [1], Upton and Shannon [10], and Fielitz and Rozelle [4] 
have all found results similar to those reported in Section II-D-4, in that 
the characteristic exponent increases for sums of individual observations. 
Officer [8] reports that the standard deviation of returns appears to be a 
well-behaved measure of dispersion. Blattberg and Gonedes [2] find that 
the student (or t) distribution is more appropriate than the symmetric 

*Paul P. Huber, F.1.A., not a member of the Society, is a Research Assistant in the De- 
partment of Actuarial Science and Statistics at the City University in London, England. 
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stable distribution for daily rates of stock returns. Merton [6] concludes 
that " . . .  there is little empirical evidence to support adoption of the 
stable Paretian hypothesis over that of any leptokurtotic distribution." 

In practice, other types of models have been found to be more appro- 
priate than the stable Paretian model. Merton [6] reports that finite-moment 
processes whose distributions are nonstationary provide a promising means 
of modeling prices. In particular, conditionally heteroscedastic models 
have been found to be suitable for modeling investment return data [3]. 
The following section of this discussion shows that the goodness-of-fit 
of the stable Paretian hypothesis deteriorates considerably once the dy- 
namic structure of the interest rate time series is taken into account. 

Another reason for not using the stable Paretian model to describe the 
log of interest rate changes (J,) is that this implies that the expected value 
of interest rate changes (lJl,_~) does not exist [6]. 

A Time S e r i e s  Ana ly s i s  o f  the In teres t  R a t e  D a t a  

As i, (see Section II-D) represents the average daily interest rate on 
30-year Treasury bonds in month t, j,=log,(i,/i,_t), is likely to have a 
spurious first-order moving average correlation structure [12]. This can 
be verified by comparing the correlation structure ofj ,  to the correlation 
structure ofj[=log,(i[/i[_O, where i~ represents the interest rate on 30- 
year Treasury bonds on the last working day of month t. (The values of 
i, [ 11 ] are given in the Appendix to this discussion. The yield on January 
31, 1977 is not available because the Federal Reserve did not publish 
this time series prior to February 1977. As the Federal Reserve Bulletins 
for 1977 do not give values for i, in January 1977 and February 1977, 
it would be interesting to know the reference for the values given in 
Table 2 for these two months.) 

Over the period February 1977 to December 1990, a first-order mov- 
ing average model of the following form appears to provide an appro- 
priate description of j,: 

ji = loge(i,/i,-O = ~, + O~,-l, 

where ~,-i.i.d.N(t,,(r2). The estimate of the parameter 0 is t}=0.5920. 
As (} has a standard error of 0.0627, a significant moving average com- 
ponent is present in the series j,. 

Over the same period, February 1977 to December 1990, Box-Ljung 
Q-statistics for j[ are Q(6)=6.3 and Q(12)= 11.6. These statistics do not 
indicate first-order serial dependence. Therefore, the moving average 
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component in j, appears to be spurious. This is simply as a result of using 
monthly average interest rates. 

A stable Paretian distribution was fitted to j; (over the period February 
1977 to December 1990), using the method given in the paper, and the 
following parameter estimates were obtained: 

= 0.0261, z096 = 2.9286, ~ = 0.0012, and & = 1.68. 

The standardized kurtosis (b2-3) and skewness (x/-b-~t) of the series 
j; are 0.4945 and -0 .2735 ,  respectively, with standard errors of ap- 
proximately 0.3802 and 0.1901, respectively. 

The statistics a (the ratio of mean deviation to standard deviation [8]) 
is 0.7706, which is not significant at the 5 percent level. 

The statistic w / s  (the ratio of range to standard deviation [8]) is 5.4569, 
which is not significant at the 10 percent level. 

Therefore, there is far less evidence to reject the lognorrnal hypothesis 
for i; (over the period February 1977 to December 1990) than there is 
to reject it for it. 

Additional tests reveal that a significant nonlinear effect is present in 
j;. A Box-Ljung Q-statistic for j; (over the period February 1977 to De- 
cember 1990) is Q2(12)=28.9, which suggests the presence of second- 
order serial dependence. Casual observation of j[ indicates a sharp in- 
crease in the variance of j[ after July 1979 and a subsequent decrease in 
the variance of j; after July 1987. (The sample standard deviation of j; 
is 0.0160 between February 1977 and July 1979, 0.0487 between July 
1979 and July 1987, and 0.0332 between July 1987 and December 1993.) 

These changes suggest that j't is not independent and identically dis- 
tributed over the entire time period. Therefore, j; should be modeled 
separately over each subperiod rather than over the entire time period, 
If these changes can be explained in economic terms or in terms of a 
change of policy and are found to be more or less permanent, then it is 
not appropriate to model future interest rates on the basis of the data that 
occurred before the changes. (The sharp increase in variance in July 1979 
is possibly due to the shift in Federal Reserve policy referred to in the 
paper in Section II-D.4.) 

The following three sections test the appropriateness of the lognormal 
hypothesis over each of the three subperiods. 
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February 1977-July 1979 
Box-Ljung Q-statistics forfi  are Q(6)=2.5 and Q2(6)=8.4. These sta- 

tistics do not indicate first- or second-order serial dependence. 
The following parameter estimates were obtained for a stable Paretian 

distribution: 

6 = 0.0157, z0.96 = 1.8042, ~ = 0.0067 and 6~ > 2. 

The standardized kurtosis and skewness of the series j~ are - 1.0116 
and -0 .3130 ,  respectively, with standard errors of approximately 0.9097 
and 0.4549, respectively. 

The statistic a is 0.8816, which is not significant at the 1 percent level. 
The statistic w/s is 3.6846, which is not significant at the 10 percent 

level. 
Therefore, although these statistics may be unreliable for small sam- 

ples, there appears to be little evidence to reject the lognormal hypothesis 
for i[ between February 1977 and July 1979. 

July 1979-July 1987 
Box-Ljung Q-statistics forj~ are Q(12)=9.5 and QZ(12)= 17.8. These 

statistics do not indicate first- or second-order serial dependence. 
The following parameter estimates were obtained for a stable Paretian 

distribution: 

= 0.0351, z0.96 = 2.7049, ~ = 0.0005, and 6L = 1.80. 

The standardized kurtosis and skewness of the series j[ are -0 .0443  
and -0 .2404 ,  respectively, with standard errors of approximately 0.5000 
and 0.2500, respectively. 

The statistic a is 0.7935, which is not significant at the 10 percent 
level. 

The statistic w/s is 4.6845, which is not significant at the 10 percent 
level. 

Therefore, there appears to be no evidence to reject the lognormal 
hypothesis for g between July 1979 and July 1987. 

July 1987-December 1993 
Box-Ljung Q-statistics forj~ are Q(12)= 11.1 and QZ(12)=6.3. These 

statistics do not indicate first- or second-order serial dependence. 
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The following parameter estimates were obtained for a stable Paretian 
distribution: 

6 = 0.0186, z0.96 = 3.4658, ~ = -0 .0041,  and 6t = 1.50. 

The standardized kurtosis and skewness of the series j[ are -0 .1570  
and -0 .0405 ,  respectively, with standard errors of approximately 0.5583 
and 0.2791, respectively. 

The statistic a is 0.7696, which is not significant at the 10 percent 
level. 

The statistic w/s is 4.5061, which is not significant at the 10 percent 
level. 

A ×2 goodness-fit-test, using a similar method to that given in the 
paper, was performed for the lognormal and stable Paretian hypotheses. 
(I was unable to exactly reproduce the results given in Section II-D-3. 
Following Hsu, Miller, and Wichern (Klein's ref. [18]), I first centered 
the data by subtracting g and the following borders were used: (-oo, 
-5 .5~] ,  ( -5 .56 ,  -4.56]  . . . .  (+4.52, +5.5~], (+5.5d, +oo).) The above 
parameter values were used for the stable Paretian hypothesis and the 
following parameter values were used for the lognormal hypothesis: 

6 = 0.0235, ~ = -0 .0041,  ~ = 0 and 6" = 0.0332. 

The results of these tests are X2=5.76 for the lognormal hypothesis 
and X 2= 12.62 for the stable Paretian hypothesis. 

Therefore, although the parameter estimate for cx suggests that the sta- 
ble Paretian hypothesis may be more appropriate (rt is significantly less 
than 2 at approximately the 2.5 percent significance level), on the basis 
of the kurtosis, the skewness, the statistic ct, the statistic w/s and the 
X 2 statistic of jj ,  there is insufficient evidence to reject the lognormal 
hypothesis for j[ between July 1979 and June 1987. 

Conclusion a n d  Areas  f o r  Future Research 

The above results suggest that the too "peaked" and "fat-tailed" fea- 
tures of the original data can be accounted for in terms of a spurious 
first-order moving average correlation structure induced by the use of 
daily average data and in terms of two structural changes in the data. 
Over each of the three subperiods considered, there is insufficient evi- 
dence to reject the lognormal hypothesis in favor of the stable Paretian 
hypothesis. This raises considerable doubt about the validity of the re- 
sults reported in the paper. 
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Progress in interest rate modeling is unlikely to be made if the dynamic 
structure of the time series is ignored. Unless this aspect is taken into 
account, it is dangerous to arrive at any conclusions on the suitability or 
otherwise of the lognormal or any other hypothesis for cash-flow analyses. 

Additional interest rate data to those presented in this discussion should 
be examined within a time series framework. In particular, the changing 
structure of the interest rate time series should be researched in more 
detail in conjunction with other economic information. Other economic 
time series, such as the yield on three-month Treasury bills, may provide 
important additional information for the modeling of long-term interest 
rates. At the same time, these series may also be useful for cash-flow 
analyses. 

The factors that led to the possible structural changes in j] require 
further examination to establish whether they were permanent and to de- 
termine the conditions that are likely to cause a future shift to occur. 
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APPENDIX 

END-oF-MONT~ YIELD TO MATURITY ON 30-YEAR TREAStmY BONDS, 1977-1986 
(Source: Federal Reserve Statistical Release) 

I 
Date Yield i Date Yield Date Yield Date 

I 
1977 11981 1985 1988 

Jan. n.a. I Jan. 12.28 Jan. 11.21 Jan. 
Feb. 7.80 , Feb. 12.97 Feb. 11.90 Feb. 
Mar. 7.79 i Mar. 12.65 Mar. 11.64 Mar. 
Apr. 7.80 Apr. 13.65 txpJA r. 11.48 Apr. 
May 7.74 May 13,06 May 10,58 May 
June 7.58 June 13.30 June 10.47 June 
July 7.72 July 13.96 July 10.70 July 
Aug. 7.60 Aug. 14.78 Aug. 10.48 Aug. 
Sep. 7.68 Sep. 15.19 Sep. 10.57 Sep. 
OCt. 7.83 OCt, 14,36 OCt, 10.28 Oct, 
Nov, 7.83 Nov. 12.91 Nov. 9.86 Nov. 
Dec. 8.03 Dec. 13.65 Dec. 9.27 Dec. 

1978 1982 1986 1989 
Jan. 8.18 Jan. 13.91 Jan, 9.34 Jan, 
Feb. 8.25 Feb. 13.83 Feb, 8.27 Feb, 
Mar, 8.33 Mar. 13.68 Mar. 7.44 Mar. 
Apr, 8.39 Apr. 13.39 Apr. 7.47 Apr. 
May 8.50 May 13.39 May 7.74 May 
June 8.62 June 13.91 June 7.24 June 
July 8.56 July 13.42 July 7.46 July 
Aug. 8.46 Aug. 12.50 Aug. 7.21 Aug. 
Sep. 8,61 Sep. 11.79 Sep. 7.60 Sep. 
OCt. 8.87 OCt. 11.01 Oct. 7.61 Oct. 
Nov. 8.80 Nov. 10.70 Nov. 7.41 Nov. 
Dec. 8.96 Dec. 10.43 Dec, 7,49 Dec, 

1979 1983 1987 1990 
Jan. 8,85 Jan, 10,99 Jan. 7,48 Jan. 
Feb. 9,08 Feb. 10.51 Feb. 7.48 Feb. 
Mar. 9,02 Mar. 10.69 Mar. 7.81 Mar. 
Apr. 9,22 Apr. 10.38 Apr. 8.45 Apr. 
May 9.08 May 10.97 May 8.65 May 
June 8.83 June 11.01 June 8.51 June 
July 8.99 July 11.80 July 8.89 July 
Aug, 9.09 Aug. 11.96 Aug. 9.17 Aug. 
Sep. 9.25 Sep. 11.44 Sep. 9.79 Sep, 
OCt. 10.19 OCt. 11.78 Oct. 9.03 OCt. 
Nov. 10.09 Nov. 11.67 Nov. 9.10 Nov. 
Dec. 10.11 Dec. 11.87 Dec. 8.95 Dec. 

1980 1984 
Jan. 11.09 Jan. 11.78 
Feb. 12.25 Feb. 12.14 
Mar, 12,31 Mar. 12,52 
Apr. 10.89 AplA r. 12.86 
May 10.37 May 13.84 
June 9.99 June 13.64 
July 10.80 July 12.87 
Aug. 11.27 Aug. 12.51 
Sep. 11.70 Sep. 12.28 
OCt. 12.23 OCt. 11.64 
Nov. 12.32 Nov. 11,58 
Dec. 11.98 Dec. 11.54 

Yield Date 

1991 
8.42 Jan. 
8.39 Feb. 
8.82 Mar. 
9.11 Apr. 
9,30 May 
8.87 June 
9.23 July 
9.31 Aug. 
8.98 Sep, 
8.74 Oct. 
9.07 Nov. 
9.00 Dec. 

1992 
8.84 Jan. 
9.14 Feb, 
9.11 Mar. 
8.91 Apr, 
8.60 May 
8.05 June 
7.92 July 
8.21 Aug. 
8.24 Sep. 
7.92 Oct. 
7.90 Nov. 
7.98 Dec, 

1993 
8.46 Jan. 
8.54 Feb. 
8.63 Mar. 
9.00 Apr, 
8.58 May 
8.41 June 
8.42 July 
8.99 Aug. 
8.96 Sep, 
8.78 OCt. 
8.40 Nov. 
8.26 Dec. 

Yield 

8.21 
8.19 
8.24 
8.20 
8,26 
8.42 
8.36 
8.06 
7.82 
7,91 
7.94 
7.41 

7.77 
7,80 
7.96 
8.06 
7.84 
7.79 
7,46 
7.42 
7.38 
7.63 
7.59 
7,40 

7.21 
6.90 
6.93 
6.95 
6.98 
6.68 
6.57 
6.09 
6,04 
5.96 
6.29 
6.35 
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MERLIN JETTON: 

I enjoyed reading Mr. Klein's well-written paper. He discusses the 
lognormal hypothesis versus the stable Paretian hypothesis for building 
a model for interest rates. He compares distributions of changes in in- 
terest rates output by models using such hypotheses and the conse- 
quences for cash-flow analysis. He criticizes the lognormal model be- 
cause its distribution of changes in interest rates is not sufficiently peaked 
nor fat-tailed. Historical changes in interest rates have been found to be 
too peaked and fat-tailed to have been from a normal distribution. He 
demonstrates that a stable Paretian model, with parameters he develops, 
does not show this weakness. 

Mr. Klein takes care to compare his models to reality. I believe he is 
right to claim that the stable Paretian model better represents reality than 
does the lognormal model, when the basis of comparison is how well 
monthly changes in interest rates output by the model represent monthly 
changes in historical interest rates. However, I believe this is an unduly 
limited comparison. Are monthly changes in interest rates the only im- 
portant criteria on which to compare a model to reality when the model's 
purpose is to project rates over several years7 How about changes in 
interest rates on a quarterly or annual basis and even changes over mul- 
tiple years? While the historical data are more scanty for longer intervals, 
to ignore it and these questions seems myopic. Yet Mr. Klein's paper 
does not address these questions. 

Mr. Klein chides lognormal model users with the following: "This 
justification for the use of the normal distribution is based on conve- 
nience, not empirical evidence." "One can argue that the normal distri- 
bution is 'close enough' to the true underlying distribution and that the 
extra work involved in using a non-normal member of the stable Paretian 
family is not justified." But I ask the following: What does the empirical 
evidence say about changes in interest rates over intervals longer than a 
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month? Is it right to believe that a model that fits the monthly data must 
fit the data regarding longer intervals as well? 

I will not claim that the lognormal model inherently fits reality any 
better than the stable Paretian model on the criteria offered by these ques- 
tions. It would depend on the parameters used and what other features, 
such as mean reversion or regression formulas, might be included in the 
model. Incidentally, I believe few model builders use formulas as simple 
as the ones shown by Mr. Klein. For example, virtually all the models 
described by Christiansen [1] contain a mean reversion feature for very 
good reasons. But given the specific models presented by Mr. Klein in 
his paper, I suspect that the lognormal model outperforms the stable 
Paretian model over longer periods, despite its inferior performance con- 
sidering monthly changes only. It would be interesting to see how the 
interest rates put out every third month by Mr. Klein's monthly stable 
Paretian model compare with historical interest rates at three-month in- 
tervals. The same goes for even longer intervals. 

It would be interesting to see the performance of a quarterly stable 
Paretian model developed in the same manner as Mr. Klein's monthly 
stable Paretian model. Such a model would have parameters calibrated 
to best fit historical changes in interest rates over quarterly intervals. 
Similarly, an annual model might be built. I suspect that such models 
would give results quite different from Mr. Klein's monthly model when 
changes in interest rate output by the models are compared over the same 
intervals. (The additive property of the stable Paretian function implies 
that a quarterly or annual model could be derived from the monthly model, 
but I suspect the derived model would be quite different from the cali- 
brated model.) Obviously such models would not produce monthly changes 
in rates for comparison with those from the monthly model, but the models 
could be compared with one another and with historical interest rates 
over three-month, one-year and even longer intervals. So which model 
would be the "right" or best one? The answer would seem to depend on 
what the model is used for. In testing the model against reality, greater 
weight should be given to the one or more aspects of reality deemed 
most relevant. 

I believe either model he presents more widely disperses interest rates 
in the long run than what the historical evidence suggests, and the monthly 
stable Paretian model does so to an even greater degree. If this is the 
case, the cash-flow sensitivity analysis is distorted. Although the mag- 
nitude of the surpluses he shows in Table 9 (and Tables 6-8)  assume 
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questionable investment and crediting rate strategies, imagine a pricing 
actuary proposing an SPDA to a chief financial officer with possible 
outcomes like those in Table 9. I suspect the chief financial officer's 
response to chances of losing $80 million or $240 million or more on 
$10 million of premium, when the best case is only a $9 million profit, 
would be "go back to the drawing board!" 
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G. THOMAS MITCHELL: 

Thanks are due the author for developing the important subject of sta- 
ble distributions in actuarial literature. It is clear that real world financial 
risks may well be greater than those indicated using normal distributions. 

Why might this be so? And what plausible reasons do we have to 
wander from orthodox adherence to our old friend, the central limit 
theorem? 

Dethroning the C e n t r a l  L i m i t  Theorem 

The central limit theorem requires that the limiting distribution be the 
mean of a large number of independent variables, each with finite means 
and finite variances. If the variables are not all identical, then the con- 
tribution of any one of them should still vanish as the "large number" 
increases. 

Fluctuations in economic prices and indices are the result of myriad 
and diverse competing factors. Some are in the form of the sum of a 
large number of plausibly independent individual situations, but others 
are global to the economy or marketplace in question and reflect the 
inevitable interconnections in a market, an economy, a nation, or the 
world. The assumption that none of the factors has a significant influence 
on the whole result is doubtful. 

However, we do expect conventional time scaling (after seasonal ef- 
fects are removed). That is, there is no reasonable expectancy of a pre- 
ferred time scale for operation of this host of factors. Thus, the distri- 
bution for a month is expected to be the convolution of 30 daily 
distributions, a calendar quarter of three monthlies, and so on. 
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This time scaling expectation le~.ds us directly to the stable Paretian 
distribution family as a paradigm for price distributions. The normal dis- 
tribution is a member of  the family, but is at one extreme of the pos- 
sibilities; that is, it is potentially an exception, rather than the norm. 

Another way at this is to postulate many diverse "atomic" economic 
factors acting on the shortest meaningful ("atomic") time frame. Price 
changes on this atomic time scale are the mean (or some functionally 
equivalent interaction) of the outcomes of the factors. Price changes over 
larger time frames are the convolutions of the results for shorter time 
frames. 

The individual factors, I speculate, may tend to be normally inactive, 
but make a significant difference when they are activated, hence the good 
possibility for fat-tailed atomic distributions. From a formal viewpoint, 
the normal distribution will pertain only if the variances and means of  
the atomic distributions are finite. And such fat-tailed distributions can 
easily have theoretically infinite variances. 

A r e  Infinite Variances Pathological? 

But how can there be, even theoretically, an infinite variance? This 
can be modeled by any number of real-life, realizable examples. Suppose 
I put my dollar up against your dollar, and we flip a coin, double or 
nothing. If I win, I flip a coin to determine whether I stop or not. If I 
continue, we flip for double or nothing again, and so on. My expecta- 
tions of ending wealth are 0 with probability 2/3;  2 with probability 1/4; 
4 with probability 1/16; 8 with probability 1/64; and so on. The mean 
is 1. However, each subsequent term adds 1 to the variance, so it grows 
without limit and is formally infinite. 

In real life (and certainly in this example), there are practical outer 
cutoffs on any distribution. A billionaire banker would have to quit after 
about 30 losing rounds. Any outer cutoff removes the infinity. 

With the infinite variance thus cured, convolutions of a fat-tailed dis- 
tribution will converge to a normal distribution. But if the variance is 
very large, the convergence may be very slow. The distributions for short 
and intermediate time frames will resemble stable distributions, but with 
extremely rare events missing. For very long time frames, a normal dis- 
tribution will eventually be obtained. However, the fat-tailed stable dis- 
tribution shape will prevail over mortal time frames. 
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Further Research Ind ica ted  

The paper should be helpful in stimulating further research. The fol- 
lowing questions come to mind: What are the practical effects on real- 
life asset/liability risk management studies? What effect does this dis- 
tribution have on durations, convexity and the target point for a good 
match? Are risk levels increased, even after rebalancing assets and 
liabilities? 

Further study is in order to determine applicability of this approach to 
other time frames, eras, and price series (such as short-term interest rates). 
Presumably patterns and tendencies in the distribution parameters will 
emerge. 

There are techniques to be developed in using these distributions. What 
outer cutoff points make practical sense? Are distributions close to sym- 
metrical or not? What are efficient computational tools for constructing 
scenarios? How does one make an effective choice of paths for mathe- 
matical techniques that use carefully selected sample paths rather than 
random scenarios? 

The paper leaves unanswered our questions about the important and 
interrelated issues of auto correlation, long-term cycles, regression to the 
mean, and constancy over time of the underlying distributions. However, 
using better fitting stable Paretian distributions may speed up research 
progress in this area. 

Spreadsheet Calculations of the Distr ibut ions 

Computing the stable symmetric Paretian distribution on an electronic 
spreadsheet is reasonably straightforward. However, a few comments 
and tips may be helpful. 

As expressed in the paper, the factorial and T function terms may quickly 
overflow machine number limits. Many spreadsheets have built in func- 
tions that are the logarithms of factorials or gamma functions. Reexpressing 
terms using these log-factorial functions or calculating each term 
as a ratio to the preceding term are techniques around the overflow problem. 

The second approximation, pertinent for large values of u, typically 
produces a series of progressively smaller terms, followed eventually by 
increasing terms. Satisfactory results, agreeing with the author's table, 
can be obtained by cutting off the series at the point the magnitude begins 
to increase. In my implementation of the approximation, I obtained slightly 
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better results by using 4.03 instead of 4.0 as the constant in the criteria 
to choose between the first or second functions. 

Frac ta l s  

Finally, the deep connection between the stable Paretian distributions 
and the study of fractal shapes should not go unnoticed. Self-similar 
patterns at various scales are the common theme. 

It is likely, too, that fractals beget fractals. If natural and economic 
forces have fat-tailed stable or fractal distributions, they may impart this 
distribution onto phenomena that are affected by them. 

The ubiquitousness of fractal shapes and phenomena in nature should 
give us pause before rejecting the same phenomena in economics. 

THOMAS C. POWELL: 

Cash-flow testing involves a daunting mix of scientific, regulatory, 
and professional challenges. Perhaps the Society should have an award 
for papers, such as this one, that display an exceptional measure of in- 
testinal fortitude. 

On the surface, Mr. Klein's paper seems to be directed at a technical 
issue, that is, the appropriateness of a particular interest rate generator 
(IRG), as measured by the effect that the choice of an IRG has on the 
results of a cash-flow test. In the course of his analysis, Mr. Klein works 
through the various trade-offs involved, particularly the trade-off be- 
tween convenience and consistency with historical data. 

We have been inundated with articles and papers about IRGs in the 
past few years, especially those based on the lognormal model. But there 
has not been a great deal of explanation on why IRGs should play a role 
in cash-flow testing. Much as I am impressed by Mr. Klein's thorough- 
ness, I wish he had backed up a pace or two before starting his analysis. 

The stated purpose of Mr. Klein's analysis is to arrest the actuarial 
profession's drift toward the effective adoption of the lognormal model 
as the benchmark IRG. This is important because, if a cash-flow test 
should require defending, it will be judged on its adherence to estab- 
lished doctrine. 
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General Acceptance in the Accounting a n d  
Actuarial Professions 

In the opening sentence of the Introduction, Mr. Klein tells us that 
actuaries are "developing a consensus on the proper methodology for 
analyzing the cash flows of an insurance company." 

The reference to consensus-building is the first of several references 
to some kind of general agreement among members of the profession. 
Later we see "virtually universally accepted," "currently common ac- 
tuarial practice," and "currently accepted actuarial methodology." 

In my opinion, the term "generally accepted," as in "generally ac- 
cepted accounting principles" and "generally accepted actuarial stan- 
dards," is a duplicitous phrase intended to impute general acceptance (in 
the vulgar sense) to a professional ukase. It is one thing to admit that a 
principle or practice has little basis other than the support of a number 
of presumably knowledgeable people; it is another thing to imply such 
support when it does not exist. 

The accounting profession spells out the meaning of "general accep- 
tance" in Statement on Auditing Standards 69 (AICPA, June 1992). Ac- 
cording to this document, established accounting principles stem first and 
foremost from statements of the Financial Accounting Standards Board 
(a creature of the AICPA) and last and least from the prevalence of in- 
dustry practice. In other words, general acceptance, as commonly under- 
stood, has practically nothing to do with the AICPA's official definition 
of "generally accepted accounting principles." If generally accepted ac- 
counting principles were always in accord with general practice, then 
Statement 69 must have been promulgated in order to use up paper and 
ink. But the fact is that situations often arise in which the plain meaning 
of a FASB pronouncement is ignored in favor of mob preference. 

In the case of the actuarial profession, we have the Actuarial Standards 
Board. Like the Financial Accounting Standards Board, the Actuarial 
Standards Board's job is to announce, in some cases, that there is a 
consensus whether there is one or not. 

Neither the AICPA nor the ASB is willfully rejecting science in favor 
of popularity; in fact, cause and effect is the ultimate criterion in allo- 
cating revenues and expenses to a particular accounting period. The con- 
cept of general acceptance reflects the professions' recognition that causes 
and effects are not always clear and that there is sometimes a need to 
rely on the judgment of experienced people. This need may arise from 
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a public posing difficult questions or a profession volunteering to answer 
such questions. 

The point is that Mr. Klein appears to be attacking the lognormal model 
on scientific grounds; his argument would be stronger without any ref- 
erence to "consensus." One must admit, however, that current thinking 
about IRGs is an odd mixture of science and fashion. 

My guess is that most actuaries believe that the lognormal model is 
reasonably accurate (based on the a priori reasoning that Mr. Klein sets 
forth in Section II-C) when applied to a "net" interest rate unsullied by 
reactions to inflation and fears of inflation. There is a problem in ap- 
plying this hypothesis to historical data, however, in that the "net" in- 
terest rate is sometimes negative and the logarithm of the ratio successive 
rates does not exist. This does not bother me as much as it seems to 
bother some members of the profession; consistency with historical data 
is a nice thing to have, but if interest rates are continually buffeted by 
factors that are essentially political, we will never see a convincing sto- 
chastic model. If that is the case, then prevalence of practice is a legit- 
imate criterion for selecting a model, assuming that some form of IRG 
is to be used at all. 

The Scientific Basis  o f  ln teres t  Rate  Generators  

I have often wondered what insight originally gave rise to the use of 
IRGs in actuarial applications. I suspect their use is rationalized by a 
line of reasoning such as the following: 
(1) In performing an analysis of life insurance company operations, we 

do not generally use stochastic models for mortality, surrenders, 
expenses, and so forth. Variations in these parameters are com- 
monly modeled by testing a range of values and summarizing the 
results. This approach is used because: (a) we think we have a basic 
understanding of the business decisions that affect these things and 
can therefore "choose" the experience we will have to some extent; 
(b) managers who use the report have a general understanding of 
these things (that is, what influences them) and therefore have a 
right to think they can exercise a measure of control over them; 
and (c) if we were to replace the deterministic model with a sto- 
chastic model, we might make the analysis incomprehensible to the 
user of our report, possibly at a great cost in time and effort. 
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(2) In the case of interest rates, we do not think that we are dealing 
with something we can understand and control. They are part of a 
more general environment, of baffling complexity, that is not ma- 
terially affected by management decisions. This kind of uncertainty 
can be handled in various ways, including the use of Monte Carlo 
techniques. 

(3) The actuarial profession has the requisite tools to model future in- 
terest rates stochastically and produce a credible analysis. 

(4) Hence, the use of Monte Carlo techniques is a suitable response to 
the uncertainty associated with future interest rates. 

In short, the universe of possible interest rate scenarios over the period 
of the test cannot be adequately modeled by a handful of preset scenar- 
ios. Hence, we use an IRG to select a random sample from this universe 
much as we pull colored balls from an urn. 

The most vulnerable component of this argument is premise (3), es- 
pecially if the touchstone of credibility is the fit of our IRG to historical 
data. 

Consistency with Historical Data 

In Section IV, Mr. Klein cites an experiment by Claire in which 99 
scenarios were generated using a lognormal model. An additional test, 
based on actual rates from the 1980s, produced a test as unfavorable as 
any of the original 99. According to Mr. Klein: "This is evidence enough 
that the lognormal model is too far from reality to be useful." 

Is it? Actuarial Standard of Practice 7 appears to attribute its very 
existence to the "large increase in the level and volatility of investment 
rates of return that occurred in the 1970s and 1980s . . . .  " Should we 
be surprised that actual rates from such a period produce an extreme 
result? In any case, Mr. Klein appears to dismiss the lognormal model 
because of its failure to fit the data from a particular historical era. This 
is a logical step from Mr. Klein's perspective, but the users of our reports 
may not agree that historical fit is an especially important criterion. 

Suppose a manager who is paying for a cash-flow test tells us he or 
she is not interested in a Monte Carlo simulation; that he would prefer 
a range of preset scenarios so that he can apply his own judgment based 
on his perception of what the future holds for interest rates. Should the 
actuary responsible for the report take the position that he has profes- 
sional expertise that dictates the use of a stochastic model? 
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The manager is treating the interest rate assumption the same way as 
other assumptions. Expected future expenses, for example, will be con- 
sistent with historical experience but may be modified by the manager's 
own assessment of  the prevailing environment. 

We may object that the manager has more control over the company's 
expenses than over market interest rates, but are we prepared to say that 
actuarial science has better answers? Presumably we want to contribute 
to the customers' understanding of the business and give them some idea 
of the problems they might anticipate under different interest rate sce- 
narios. A stochastic model does not meet this goal. In fact, the implied 
actuarial soundness of such techniques may transform the cash-flow test 
from a projection into a prediction, at least in the customer's mind. 

Finally, premise (3) is a testable hypothesis. Suppose our manager 
hires an actuarial consulting firm to set up a dummy company, perhaps 
something like Mr. Klein's example in Section III-B. Then suppose the 
manager employs several actuaries, working independently, to answer 
the question that Mr. Klein poses; that is, what reserve will reduce the 
probability of ruin in the next 10 years to 1 percent or less? Does the 
manager have a right to expect some uniformity of opinion among the 
actuarial subjects? I think so, if the expertise to address the question 
actually exists. The other predictive professions (psychics, fortune-tellers, 
etc.) submit to this sort of tes t - -why not actuaries? 

Principles o f  Actuarial Science 

If actuaries claim to have expertise, I believe they have a duty to frame 
their argument in terms of established professional principles. Fortu- 
nately the Society of Actuaries has recently taken pains to systematize 
and set forth the fundamental principles that underlie actuarial science 
in "Principles of Actuarial Science" (TSA XLIV, 1992, 565-628). This 
paper cites two statistical principles: 

Principle 1.1 (Statistical Regularity). Phenomena exist such that, 
if a sequence of independent experiments is held under the same spec- 
ified conditions, the proportion of occurrences of a given event sta- 
bilizes as the number of experiments becomes larger. 

and 

Principle 1.2 (Stochastic Modeling). A phenomenon displaying 
statistical regularity can be described by a mathematical model that 
can estimate within any desired degree of uncertainty the proportion 
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of occurrences of a given event in a sufficiently long sequence of 
experiments. 

In the context of a cash-flow test, the phenomenon being modeled is 
the interest rate scenario over some period of years or the change in the 
interest rate from period to period within a scenario. 

Do periodic changes in interest rates display "statistical regularity"? I 
have the impression that Mr. Klein thinks they do, though he certainly 
does not equate regularity with simplicity, and in Section II-D he seems 
to favor the hypothesis that the parameters of a suitable IRG might drift 
over time. 

If we are dealing with a statistically regular phenomenon, then Prin- 
ciple 1.2 seems to imply that we can accurately compute the probability 
of  ruin over the next 10 years. Such a computation has only a priori 
validity, however, since there will be no way to establish, at the end of 
10 years of observation, whether or not actual experience was consistent 
with our assumptions. 

Relevance to the Appointed Actuary's Opinion 
A statutory opinion requires various declarations, including that of 

conformity with the actuarial standards of practice promulgated by the 
American Academy of Actuaries. Perhaps it would help potential users 
of the opinion if members of the Society were to add a personal dec- 
laration on whether they think that the "expertise" on which the opinion 
is based exists. 

The Actuarial Standards Board could assist the profession by identi- 
fying those standards whose principal goal is the protection of our turf 
from other professions. In some cases the presentation of the results of 
a stochastic interest rate model as a product of actuarial expertise may 
be a violation of the Academy's Code of Professional Conduct, that is, 
failure to "act honestly and in a manner to uphold the reputation of the 
actuarial profession and to fulfill the profession's responsibility to the 
public." 

G e n e r a l  

Cash-flow tests are complex and controversial even in their simplest 
forms, and the target of Mr. Klein's analysis, the interest rate scenario, 
is important as well as complex. The heart of his analysis, addressing 
the issue of how close is close enough, requires an actual cash-flow test 
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to measure the "distance" between the lognormal model and the stable 
Paretian model. This is a fairly esoteric metric, but the analysis would 
be incomplete without it. 

In the back of my mind I have long held the suspicion that cash-flow 
testing is largely a waste of time. Unfortunately it is very difficult to 
analyze one's way through the forest of irrebuttable presumptions that 
passes for actuarial science these days. Is there not some point at which 
we admit that a problem is beyond our ken and settle for a dose of 
conservatism? 

In any case, I am grateful for Mr. Klein's willingness to struggle with 
these messy issues. I hope he keeps it up. 

ELIAS S. W. SHIU: 

Mr. Klein is to be thanked for writing this interesting paper, which 
suggests that interest rate movements may be modeled with the stable 
Paretian distribution. There are four top-tier academic journals in fi- 
nance: Journal of Finance, Journal of Financial Economics, Journal of 
Financial and Quantitative Analysis, and Review of Financial Studies. 
I do not think that, in the past 15 years, there is a single paper in any 
of these journals applying a non-normal stable distribution to model stock 
prices or interest rates. I checked the indexes of the recently published 
textbooks for doctoral students in finance ([4], [5], [6], [7], [8], [9]), 
and I could not find any reference to Dr. Benoit Mandelbrot or the stable 
Paretian distribution. Thus this is a most intriguing paper. 

Some of the problems encountered in modeling the logarithm of the 
stock price as a non-normal stable distribution are discussed in the ar- 
ticles reprinted in the book edited by Cootner [3]. (References [3], [11] 
and [24] of the paper can be found in [3].) Although non-normal mem- 
bers of the stable family frequently fit the tails of the empirical distri- 
butions of stock prices better than the normal, there seems to be little 
empirical evidence to support adoption of  the stable Paretian hypothesis 
over that of any leptokurtotic distribution. Indeed, with a # 2 ,  the first 
moment or expected value of the arithmetic price change does not exist; 
see Formula (7) below. A current approach to account for the "fat-tailed" 
phenomenon of the stock prices is to incorporate the feature of stochastic 
volatility in the modeling of the price dynamics. 

To fix ideas, let me present a theoretical framework, as given by Nobel 
laureate Paul Samuelson [10], for suggesting that the logarithm of the 
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stock price may have a stable Paretian distribution. For t->0, let S(t) 
denote the price of a stock a time t. We postulate that the stochastic 
process {S(t); t->0} is Markov. That is, the conditional distribution for 
future values of the stock, conditional on being at time t, depends only 
on its current value, and the inclusion of other information available as 
of time t will not alter this conditional probability. Hence, for O<-t<-T, 
the conditional probability Pr[S(T)<-SIS(t)=s] is a well-defined quantity. 
Let us write 

Pr[S(T) <<- S I S ( t  ) -'- s] = P(t, s, T, S), (1) 

and call it the transition probability. By the Chapman-Kolmogorov equality, 
for t < u < T ,  

ff P(t, s, T, S) = P(u, y, T, S) dyP(t, s, u, y). (2) 
=0 

Let us also assume that the transition probability depends only on the 
difference between t and T. That is, there exists a function P(t, s, S )  of 
three variables such that 

P(t, s, T, S )  = P(T  - t, s, S) .  (3/ 

In other words, we assume stationary transition probabilities. Motivated 
by the theory of compound interest, we further assume that there is a 
function in two variables, P(t, S) ,  such that, for s>0,  

P(t, s, S )  = P(t, S/s). (4) 

In terms of this function, the Chapman-Kolmogorov equality (2) be- 
comes, for t<T,  

P(T, S / s )  = P(T  - t, S / y )  dyP(t, y / s ) ,  (5) 
= 0  

which means that ln[S(t)] has an infinitely divisible distribution [1]. This 
is a motivation for using a stable distribution to model ln[S(t)]. 

Since 

E[S(t)] = E[et"ts<')l], (6) 
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E[S(t)] is the value of the moment-generating function of the random 
variable ln[S(t)] evaluated at 1. If ln[S(t)] has a non-normal Paretian dis- 
tribution, the moment-generating function of ln[S(t)] exists for no non- 
zero value, and hence 

E[S(t)] = ~, (7) 

which is one of the objections to using non-normal stable Paretian dis- 
tributions for modeling stock prices. 

Let us now turn to the problem of modeling interest rates. For a fixed 
positive number n, let l(t) denote the n-year Treasury yield rate at time 
t. Let us see what problems occur, if in the paragraphs above we replace 
S(t) by l(t). It seems that the stochastic process {l(t)} cannot be Markov, 
because the (conditional) distribution of l ( t+T)  should depend not only 
on the value of l(t) but also on the other values of the yield curve at time 
t. However, let us assume the process {l(t)} is Markov and continue. The 
stationary transition probability assumption (3) is not unreasonable, un- 
less we think that there should be features such as stochastic volatility 
in the model. (The paper [2] presents an empirical comparison of eight 
arbitrage-free term structure models and shows that those most successful 
in capturing the dynamics of  the short-term interest rate are the models 
that allow the volatility of  interest rate changes to be sensitive to the 
level of  the riskless rate.) However, I do not see how assumption (4) 
makes sense at all in the context of interest rates. In the context of (stock) 
prices, ln[S(t+ 1)/S(t)] gives the force of return for the period It, t+ I]. 
On the other hand, I do not find the quantity 

J(t) = In[ / ( /+  1)/l(t)] 

meaningful. One can easily argue that one should consider some other 
expressions such as 

ln([l + l(t + 1)]/[1 + l(t)]). 

Finally, I also find Formula (7), 

Ell(t)] = ~, 

disturbing. 
I would suggest that the model be refined so that there is no possibility 

for the interest rate to be very high or very close to zero. I also think 
that, in an interest rate evolution model, mean reversion is a desirable 
feature. 
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My final comment is motivated by the last-but-one paragraph in Sec- 
tion II-E of the paper. It reminded me of a remark by a judge [11]: "It 
seems paradoxical beyond endurance to rule that a manufacturer of  
shampoos may not endanger a student's scalp but a premier educational 
institution is free to stuff his skull with nonsense." 
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STEPHEN J. STONE: 

Mr. Klein is to be commended for his insightful and inciting article. 
He clearly demonstrates the validity of  using the stable Paretian distri- 
bution as a model for interest rate changes. Also, his cash-flow analysis 
establishes the importance of the choice of  a stochastic process for in- 
terest rate generation on cash-flow-testing results. However, I have three 
objections to his paper. 

As an introduction to my first two objections, I briefly review the 
standard paradigm for the statistical modeling of time series. The first 
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part of the paradigm is that there is a series of independent "shocks," 
which are referred to as white noise or an innovation process, typically 
denoted by et. This innovation process is frequently assumed to be nor- 
mally distributed, in which case it is referred to as a Gaussian innovation 
process. The next part of the paradigm is that there is a filter, denoted 
by f( .) ,  which is a real-valued function that can be either linear or non- 
linear. The last part of the paradigm is that the time series itself, which 
is denoted by J, in Mr. Klein's paper, is the result of the filter applied 
to the innovation process. This can be expressed as J,=f(e,_j), where i 
denotes the set of the non-negative integers. Note that when one is choos- 
ing a random number generation algorithm for use in a Monte Carlo 
simulation for cash-flow testing, one is making an assumption about the 
distribution of et, not the distribution of J,. 

My first objection to Mr. Klein's paper is the blurring of the distinction 
between J, and e,. This blurring begins when he states "First, it is often 
asserted that interest rates change because of many small pieces of in- 
formation moving through the markets. If it is assumed that these changes 
have distributions that are mutually independent, then the central limit 
theorem would encourage us to use the normal distribution for the change 
in interest rates, which is the sum of these many small changes." The 
"many small pieces of information moving through the market" men- 
tioned in the first sentence of this quote are what drive the innovation 
process, that is, e,. In the first sentence he does not clearly state the 
relationship between e, and the interest rate changes, J,. However, the 
truth of his assertion in the second sentence, that "the central limit theo- 
rem would encourage us to use the normal distribution for the changes 
in interest rates" is predicated on the choice of a filter to transform e, 
into J,. This lack of clarity is likely to mislead many readers into as- 
suming that the results of his paper have wider applicability than they 
in fact do. 

Mr. Klein's intent was clearly to limit himself to a conceptual frame- 
work in which J,=~,, which is not a problem per se. However, he should 
have clarified that his corollary, which is that interest rate changes must 
have infinite variance, is predicated upon the assumption that J,=e,. This 
is an assumption that many practitioners prefer not to make and for which 
there is, a priori, no reason to make. Furthermore, there are many non- 
linear filters that, when applied to Gaussian innovation processes, result 
in distributions of J, that are leptokurtic; that is, they have excess kurtosis 
but finite variance. Indeed, it was the excess kurtosis of j,, that is, the 
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realization of the time series, that was responsible for the normal hy- 
pothesis being rejected. It is also possible that J, has a conditional normal 
distribution, but jt would fail a distributional test for normality. 

Preferably, when testing the assumption of normality, one should do 
so on the realization of ~,, which can be derived as the residuals of a 
time series model fitted to 3',. Whereas it is true that there might be sit- 
uations in which one would want to reject the normal hypothesis and 
accept the stable Paretian hypothesis for et, this will often not be the 
case. As I discuss below, it indeed may not be the case if one uses any 
of a variety of nonlinear models that are currently in vogue in the fi- 
nancial literature. 

My objection on this point goes beyond Mr. Klein's lack of  clarity on 
this important issue. In his section giving reasons why the stable Paretian 
hypothesis has been slow to gain acceptance, he leaves out a fifth, and 
very important, reason. It is that even some very simple nonlinear time 
series models not only explain the leptokurtic distribution of jr, but also 
account for the positive serial correlation of the first moment of j, and 
the conditional heteroscedasticity of the second moment of j,, thereby 
explaining all the anomalies pointed o u t  by Dr. Becket in his paper [1]. 
These models, in general, allow for insightful economic interpretations 
of these observed phenomena rather than having them become "mean- 
ingless," which is the rather existential implication of a stable Paretian 
assumption. 

Admittedly, in Section II.D.4 of his paper Mr. Klein discusses the 
possibility that interest rates may be modeled as normal distributions with 
shifting parameters. However, the class of nonlinear Gaussian models 
that I have mentioned above may have stationary parameters, including 
constant p~ and tr 2 for e,, and nevertheless exhibit nonstationary behavior 
in the realization of the time series. These models can also result in J, 
having a conditional normal distribution, where the distribution is con- 
ditioned on the previous realization of the innovation process. This is an 
important distinction, since none of the four problems "that have not 
been adequately solved" apply. Furthermore, these models are currently 
an area of very active research. 

My second objection to Mr. Klein's paper is his lack of thoroughness 
in investigating the normal hypothesis. Mr. Klein establishes that the 
cost of rejecting the normal hypothesis, which would be the cost of the 
much higher reserve and surplus requirements, is potentially quite high. 
Therefore, given the large cost of a Type I error, that is, rejecting the 
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null hypothesis when it is true, one should do so only after an exhaustive 
investigation. Given the data set in Mr. Klein 's  Table 2, I do not believe 
that the normal hypothesis should be rejected. If a time series has a sta- 
tionary linear filter, then a Gaussian innovation process will result in a 
Gaussian distribution for J,. As I show below, fitting a simple auto- 
regressive model of order 2 to j, results in residuals that cannot be re- 
jected as normal at confidence levels above 81.9 percent. The acceptance 
of a normal hypothesis for ~, in this case is equivalent to accepting a 
normal hypothesis for J,, even though the j, themselves fail a distribu- 
tional test for normality. Due to the serial correlation present in j,, a test 
of normality on the realization of  e, is a more powerful test than a test 
on Jt and should therefore be preferred. Though this result may be data 
set dependent, it nevertheless highlights the importance of rigor in an 
analysis of  this sort. 

My third objection is to Mr. Klein's statement that "The reality of  
interest rate changes is that they are not lognormally distributed." This 
is a very unscientific statement. The a-level of the statistical hypothesis 
test performed by Mr. Klein was 0.05, which means he was willing to 
accept a 5 percent chance of  rejecting the normal hypothesis if it were 
true. It is incorrect to call this a "reality." Furthermore, the p value of 
0.037 for his ×2 test of the normal hypothesis, which means the normal 
hypothesis would not be rejected at a confidence level of 96.3 percent 
or above, is hardly overwhelming evidence. 

I would like to analyze the data set presented in Table 2 using both a 
linear and a nonlinear filter, as well as a combination of  the two. The 
linear model I examine, as I mentioned above, is an autoregressive model 
of  order 2 fit to jr, that is, an AR(2) model. The nonlinear model I ex- 
amine is an autoregressive conditional heteroscedastic model of order 1 
fit to Jr, that is, an ARCH(l )  model. In addition, I examine the results 
when an ARCH(l )  model is fit to the residuals of the AR(2) model, that 
is, an AR(2)-ARCH(1) model. The class of ARCH models and its gen- 
eralizations are widely used as filters for financial time series (see [3] 
and [4]). 

I have chosen to use the Shapiro-Wilk test for normality since it is a 
more powerful test than the Pearson ×2 test, as is explained in [2]. But 
first, I present the functional form for an AR(2)-ARCH(1) model. When 
Jt and ~, are defined as above, it is given by: 

J ,  = 80 "Jr- (81 X J r - l )  "1" (82 X ~-Jt-2) "l'- (E t X ~ V t t ) ,  ( | )  
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and 

V, = C¢- 0 "+ (13~ l X ~.J2 l) , ( 2 )  

where the o~'s and 13's are constants. When 13o=13t=132=0, an ARCH(I )  
model results. 

The following table presents p values for goodness-of-fit  tests to a 
normal distribution for the residuals that are derived when the listed filter 
is fit to Jr, as derived from Table 2. 

Filter p value 
None 0.014 
AR(2) 0.18 I 
ARCH( 1 ) 0.059 
AR(2)-ARCH( 1 ) 0.469 

It is difficult to draw conclusions of  a general nature from these results 
because of  their limited scope. However ,  it does seem highly likely that 
the use of a normal random number generator for cash-flow testing should 
not be a rejected proposition. Clearly, if one cares to assume that J,=¢,, 
the stable Paretian distribution should be considered as a model for ¢,. 
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SHAUN WANG: 

Mr. Klein has presented an informative discussion that brings our at- 
tention to the significance of  choosing a statistical model for interest rate 
changes in cash-flow analysis. He demonstrates two very different results 
of  cash-flow analysis by choosing (1) the normal distribution and (2) the 
symmetric stable distribution for the log ratio of interest rates over suc- 
cessive periods. 
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Regarding the stable distribution, there has been an extensive literature 
on its use in modeling interest rate and stock price changes. Some au- 
thors are supportive (for example, Fama [2]), and others (for example, 
Officer [4]; Hsu et al. [3]) question the use of the stable distribution. 
My major concern about the use of the stable distribution is that only 
symmetric stable distributions are numerically and statistically tractable; 
on the other hand, many empirical data sets are found to be skewed. 
Becker [1, p. 53] showed that for the three-month maturity data he stud- 
ied, 21 out of 26 data sets did not pass the skewness test (that is, 21 out 
of 26 data sets are skewed). In general, for severely skewed data, any 
symmetric distribution would cause inaccuracy in model fitting, and some 
skewed distribution should be used instead. 

Mr. Klein studied two data sets of average yield to maturity on long- 
term Treasury bonds: (1) between years 1977-1990, and (2) between 
years 1953-1976. I got different numerical order statistics for both sets 
of data from the ones given by Mr. Klein. For the first data set (1977- 
1990), I got an order statistic that ranges from -0.11498740 to 
0.13482772; the 50 percent truncated mean is 0.002146075; the empir- 
ical skewness index is -0.1538567. For the second data set (1953-1976), 
I got an order statistic that ranges from -0.07864313 to 0.06899287; 
the 50 percent truncated mean is 0.002673649; the empirical skewness 
index is -0.1617957.  These numerical discrepancies do not qualitatively 
differ from Mr. Klein's major findings, though. 
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(AUTHOR'S REVIEW OF DISCUSSIONS) 

GORDON E. KLEIN: 

I thank all the discussants for taking the time to contribute their com- 
ments. I think the discussions are a very valuable part of any Transac- 
tions paper, so I am delighted by the number and quality of  discussions 
that this paper generated. It has been 14 years since a paper generated 
so many comments,* so obviously many actuaries have a lot of concerns 
in this area. 

I address the discussions in alphabetical order. 

Bil l  Ba i l ey  

Mr. Bailey uses a Kolmogorov-Smirnov (K-S) test to test the hypoth- 
esis that the data come from a symmetric distribution. He compares the 
data from Table 3 with a second sample based on the same data, but 
with each element replaced by one the same distance, but the opposite 
direction, from the sample mean, x. This procedure only makes sense 
if x is a good estimator of the mean of the distribution. For instance, a 
sample from a Cauchy distribution, for which the mean is infinite, would 
most likely fail this test, although the distribution is symmetric. 

As discussed in Section II-D. 1 .c of  the paper, x is not a good estimator 
of the mean of a stable Paretian distribution. A better estimator is the 
50 percent truncated mean. I reran the K-S test using this estimator of 
the mean. The statistic D~67,t67 turned out to be 0.0958. It follows that 
the null hypothesis of symmetry is not rejected by this test. 

Next Mr. Bailey uses another form of  the K-S test to test the goodness- 
of-fit of the fitted stable Paretian distribution. His results do not reject 
the null hypothesis that the data come from the distribution with the 
parameters as estimated. He then warns that the assumption of ~=0 may 
be questionable, since the goodness-of-fit test with ~=0 and the other 
parameters unchanged is failed. My reason for using this assumption was 
that to do otherwise introduces a ~drift" into the process over time. The 
estimator of the mean change in interest rates is largely a function of 
where interest rates are now relative to where they have been. If one 
does not wish to assume that they will continue in that same direction, 
then the assumption that ~=0 is appropriate. 

*See LECKm, ROmN B. "Some Actuarial Considerations for Mutual Companies. ~ TSA XXXI 
(1979): 187-259. 
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Mr. Bailey states, "We have no evidence that the tail of the resulting 
stable Paretian distribution (that is, beyond the largest value in the ob- 
served data) is, or is not, representative of what can be expected there." 
I agree with this much of the statement. But he goes on to state, "I 
happen to believe that the appending of tails is unnecessary and perhaps 
even misleading." I do not agree with this. His position is equivalent to 
the belief that the probability of an event more extreme than has been 
observed is 0. This is clearly an understatement of the actual probability. 
I have shown that what is in those tails is very important. To chop them 
off at the point of the most extreme observation to date is certainly to 
understate the probability of ruin. In order to demonstrate this, I ran 
6,000 scenarios using the empirical interest-rate generator suggested by 
Mr. Bailey. The empirical interest-rate generator assigns equal proba- 
bilities (1/167) to each of the 167 outcomes shown in Table 3. The 
annual change is based on 12 draws from this distribution. 

Figure 1 is an expansion of Figure 6 from the paper. It includes the 
graph of the probability of negative terminal surplus as a function of 
initial assets for the two interest-rate generators from the paper. Unlike 
Figure 6, the left scale is logarithmic. In addition, it includes the same 
function for the empirical interest-rate generator. It can be seen that the 
empirical distribution, by eliminating any positive density in the tails, 
understates the probability of failure relative to the other interest-rate 
generators. This shows again that the crucial question is what is in the 
tails. 

One additional comment is in order. The K-S statistic is one measure 
of the distance between two distribution functions. It is, however, not 
the relevant measure for determining how different two interest-rate gen- 
erators are for cash-flow testing. The relevant measure is the absolute 
value of the difference between the expected value of the utility of the 
final surplus under one and the expected value of the utility of the final 
surplus under the other. This measure can vary greatly due to a change 
in the interest-rate generator that causes only a small change in the K-S 
measure. For instance, the K-S distance between the empirical distri- 
bution advocated by Bailey and the stable Paretian distribution is small, 
but the expected-value-of-the-utility-of-the-fmal-surplus distance is large. 
It does not make sense to say that these two interest-rate generators are 
close to each other, yet this is exactly what the K-S measure says. Like- 
wise, if two interest-rate generators produced a K-S statistic that showed 
they were significantly different, but they produced final surpluses that 
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were quite close together, then we would not quibble over which one 
was appropriate for cash-flow testing. 

As an illustration of this point, I devised another interest-rate gener- 
ator. It is just like the empirical one at 165 of the 167 points. However, 
the largest and smallest values from Table 3 were replaced by 2.0 and 
0.5, respectively. The results of the cash-flow test using this distribution 
are shown in Figure 1. The K-S measure between this modified empirical 
distribution and the original distribution is 0.006, so the K-S test does 
not distinguish between the two. Using the correct measure, however, 
they are as different as the normal and the stable Paretian. This is true 
despite the fact that neither has positive density in the tails and both have 
finite moments of all orders. 

The point that must be recognized is this: Two distributions may be 
close together by one measure and far apart by another. In more math- 
ematical terms, we have two metric spaces that are not homeomorphic 
(that is, there is not a bicontinuous bijective function between them). 
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Tim Card ina l  

Mr. Cardinal refines many of the results of this paper and reinforces 
its conclusions. 

He first questions the particular definition of the stable Paretian dis- 
tributions used in the paper. Zolotarev [3] states that, "There are many 
different criteria for a distribution function to belong to the family [of 
stable laws], and, if desired, any one of them can be taken as the original 
definition of stable laws." I have tried to present just enough of the the- 
ory of stable laws that my main argument can be followed. 1 think my 
definition is much easier to grasp than the alternative. The reader whose 
interest goes beyond the arguments presented here can turn to a source 
such as Zolotarev for a much more complete coverage of the theory. 

I thank Mr. Cardinal for bringing additional references to my attention, 
such as the papers by Koutrouvelis (his ref. [5]), by McCulloch (his ref. 
[6]), and by Paulson, Holcomb, and Leitch (his ref. [7]). These papers 
present improved methods for estimating the parameters of the stable 
Paretian distribution. I reran the cash-flow test using the following pa- 
rameters for the distribution of monthly changes: ~=1.780,  13=0, 
c=0.002172, 8=0.  The results are plotted along with the results from 
Table 6 from the paper in Figure 1. As one might expect, the results fall 
between those of the normal case and those of the et= 1.580 case. Using 
Mr. Cardinal's parameters, it takes $13,750,000 of initial assets (versus 
$10,850,000 in the normal case and $15,850,000 in the a =  1.580 case) 
to reduce the probability of failure to 1 percent. 

In my review of Mr. Bailey's discussion, I discussed the need to look 
at the correct measure of the difference between two distributions. A 
similar problem arises in Mr. Cardinal's discussion. The regression tech- 
nique of Koutrouvelis is based on the premise that the important mea- 
sures are the differences between the actual parameters and their esti- 
mates. The procedure of Miller, Wichem, and Hsu is based on the premise 
that the X 2 statistic is the important measure. In both cases, it is possible 
that the results of the cash-flow test are less accurate due to procedures 
that focus on the wrong measure. 

Mr. Cardinal provides statistical bases for several observations made 
in the paper, including that the data are close to symmetric, that the mean 
is close to 0, that ct is consistent between the two sets of data, whereas 
c is not, and that the results of Test 1 and Test 2 cast doubt on the 
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assumption of independence. In each case his analysis reinforces the 
statements in this paper. 

Beda Chan 

Dr. Chan's discussion provides additional references and points out 
that the data fail the runs test for independence. The question of depen- 
dence needs to be addressed. It is my hope that research in this area will 
not exclude the stable Paretian distribution. 

Steve Craighead 

Mr. Craighead points out that an estimate of the parameters for daily 
data is not consistent with the estimates for monthly data. If the data 
were realizations of independent, identically distributed stable Paretian 
random variables, then the monthly "y should be the sum of the daily 
3"s. The effect that Mr. Craighead observes is consistent with other re- 
sults that have questioned the assumption of independence. 

Martin Den Heyer 

Mr. Den Heycr tackles the issue of dependence head-on. I think he 
has outlined a direction for future research that should prove fruitful. 
There is little else that I could add to this discussion, which I think adds 
a great deal to the paper. 

John Dutemple 

Mr. Dutemple makes an important point. We actuaries need to become 
better at realizing the limitations in our models. We need to be able to 
quantify the effects of the simplifications in our models. 

I think this paper is too technical to add to the syllabus, but a paper 
such as I presented at the 1991 Valuation Actuary Symposium [1] would 
be a good supplement to the current material on cash-flow testing. 

Paul  Huber 

Mr. Huber "questions the validity of the paper's results and suggests 
that the paper presents a biased perspective in favour of the stable Pare- 
tian hypothesis." I fail to see which results he questions, and I think he 
goes farther out of his way to support the lognormal hypothesis than I 
went to support the stable Paretian hypothesis. 
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The main result of my paper is that the results of cash-flow testing are 
extremely sensitive to the model chosen for future interest-rate changes. 
It does not advocate the assumption that interest-ra~e changes are inde- 
pendent and identically distributed, whether lognormal or stable Pare- 
tian. It starts with this assumption and finds it questionable. Since many 
actuaries are using this questionable assumption, it is not unreasonable 
to demonstrate that the results based on this and the assumption of log- 
normality vary greatly from those in the stable Paretian case, especially 
since the arguments typically given for the lognormal assumption also 
support the stable Paretian assumption. 

Mr. Huber cites a number of studies on stock price changes. These 
studies reinforce my point that independent, identically distributed stable 
Paretian random variables are not a good model. He suggests other lepto- 
kurtotic distributions. This reinforces my point that the extremes of the 
distribution are what matter. 

Mr. Huber and Dr. Shiu both question the stable Paretian hypothesis 
on the grounds that it leads to infinite expected values. McCulloch [2, 
p. 618] discusses this and concludes that "[t]here is therefore no theo- 
retical reason to reject log-stable price movements on the grounds that 
they give infinite expected future prices and expected rates of return." 
The solution to the problem is provided by utility theory. "[A] risky asset 
can have an infinite expected value and still have a finite market price." 
The distribution used in the paper was truncated, so that its mean, vari- 
ance, and all moments exist. 

Mr. Huber attempts to fit the lognormal distribution to three subper- 
iods of the data, He performs a number of statistical tests, always with 
lognormality as the null hypothesis. He uses whatever significance level 
is necessary in order for each statistic to be not significant. In one sub- 
period, he has only 18 data points. In the final subperiod, his estimate 
of ot is 1.50, but he cannot bring himself to question normality even 
here. 

Of course it is always possible to divide the data into periods where 
statistical tests for normality will not fail. The questions then become 
(1) how to model the shifts from one period to another and (2) how to 
draw the borders between the past subperiods. Mr. Huber states that, 

[i]f these changes can be explained in economic terms or in terms of a 
change of policy and are found to be more or less permanent, then it is 
not appropriate to model future interest rates on the basis of the data that 
occurred before the changes." How does one decide whether a change 
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in policy is permanent? One cannot simply ignore the possibility that 
changes of policy wil~ happen in the future. Mr. Huber admits as much 
in his final paragraph. The logical conclusion to be drawn from his po- 
sition is that we must estimate parameters using only data since the time 
of the last policy change and that we can use these parameters to model 
interest rates only until the next policy change. If the last change in 
policy was fairly recent, this leaves us in a position of being unable to 
model interest-rate changes at all. And if we model a change of policy 
in the near future, then we can only model interest rates for a short time. 

I agree with Mr. Huber that independent, identically distributed ran- 
dom variables are not adequate to model interest-rate changes. However, 
I think that the assumption of independence should be abandoned first. 
I agree with Mr. Den Heyer that the stable Paretian distribution should 
be explored in the absence of the assumption of independence. I see no 
reason to dismiss this distribution from further study. 

Mer l in  Jet ton 

Mr. Jetton raises the important point that a model should be chosen 
based on the aspects of reality that one wants to capture. In particular, 
if the probability of failure is the aspect of reality that is deemed relevant, 
then the tails of the distribution of interest-rate changes are very important. 

He is correct that the data do not show the scaling properties that they 
would if they were realizations of independent, identically distributed 
stable Paretian random variables. However, they also do not scale as if 
they were lognormal. Again, I think the assumption of independence 
must be abandoned. 

Tom Mitchell  

Mr. Mitchell makes a number of useful observations. He points out 
that, while the sum of n random variables whose values are limited to 
a bounded set converges to the normal distribution as n increases, the 
convergence may be very slow. 

I comment on only one of the areas Mr. Mitchell proposes for further 
research. He questions the effect on duration and convexity of assuming 
the stable Paretian distribution. The answer is that there is no effect what- 
soever. Duration and convexity merely measure sensitivity of price to 
changes in interest rates. The likelihood of these changes has no effect 
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on either measure. This is a major limitation of duration and convexity 
as measures of risk. 

Tom Powel l  

I appreciate Mr. Powell's comments about the notion of ~general ac- 
ceptance." I certainly did not mean to imply that all actuaries agree with 
what I see as a consensus on how to do cash-flow testing. I think that 
there are many aspects of cash-flow testing that have appeared in the 
actuarial literature a number of times without being seriously questioned 
in the literature. My purpose is to question one such aspect. 

Mr. Powell questions my statement that Ms. Claire's cash-flow test 
with actual historical interest rates showed that the lognormal distribution 
was too far from reality. Her cash-flow test was performed in 1991. The 
first 100 scenarios were based on a lognormal model. The parameters 
were presumably based on historical experience. The volatile interest 
rates of the 1980s should have been part of that experience. Neverthe- 
less, the scenario based on actual interest rates was as bad as any of the 
ones generated by the lognormal distribution. It seems to me that this 
shows that the model was not reflecting the reality on which it was based. 

! would be as interested as Mr. Powell to see the results of several 
actuaries setting reserves for the same company using cash-flow testing. 
I suspect that there would not be a great deal of uniformity in the results. 

Mr. Powell states that, if interest rates exhibit statistical regularity, 
then an actuary should be able to give the probability of ruin to any 
degree of accuracy (based on the Principles of Actuarial Science). I find 
interesting the degree to which actuaries are stumped by the question: 
"What percentage of the scenarios can be failed in a cash-flow test." 
This question was raised at the Postmortem on Cash-Flow Testing sem- 
inar sponsored by the Society in the spring of 1992. The lack of uni- 
formity in answers to this question must be as great as the lack of uni- 
formity in the actual percentage that would be failed if several actuaries 
tested the same company. While there is certainly no consensus on this 
question, there appears to be more agreement that cash-flow testing should 
not be thought of as any sort of statistical test. There seems to be rec- 
ognition that the outcomes cannot simply be assigned equal probabilities. 
It is not clear to me what the value of cash-flow testing is if it is not a 
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statistical procedure. What meaning can be assigned to failure of 10 sce- 
narios out of 1,000 if not that the probability of the reserves being ad- 
equate is 99 percent? 

I appreciate Mr. Powell 's willingness to admit that he thinks cash-flow 
testing is a waste of time. Several actuaries have expressed this opinion 
to me over the last few years. I also appreciate his insight into the use 
of cash-flow testing as a metric. This served as the inspiration for part 
of my reviews of Mr. Bailey's and Mr. Cardinal's papers. 

Elias Shiu 

Some of Dr. Shiu's comments are similar to those of Mr. Huber. My 
replies to Dr. Shiu are the same. 

In the first draft of my paper, I considered the random variable 

loge(1 + It+l) 
loge(1 + / , )  

The reviewers questioned this formulation on the grounds that the 
precedent in the actuarial literature is to consider 

log~(1,+ 1) 

log~(l,) 

The advantage of the latter formulation is that the interest rate cannot 
be negative. I followed the precedent in the revision of the paper. The 
results differed very little between the two formulations. This is not to 
imply that this would always be the case. 

Steve  S tone  

Mr. Stone expands on the idea of going beyond independent, identi- 
cally distributed random variables. It would be interesting to see a com- 
parison of a cash-flow test based on the AR(2)-ARCH(1) model he de- 
scribes with the ones in the paper. Unfortunately, I was unable to make 
such a comparison. 

I find it interesting that Mr. Stone considers only the cost of rejecting 
the lognormal distribution if it is in fact appropriate. By this line of think- 
ing, Executive Life would simply have been wasting money if it had set 
up reserves for the possibility of default on its junk bonds. There is also 
a cost to accepting the lognormal hypothesis if it turns out to be wrong. 
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Mr. Stone accuses me of being "very unscientific" for stating that "the 
reality of interest rate changes is that they are not lognormally distrib- 
uted." I stand by my statement. While the evidence for one particular 
time series was the "hardly overwhelming" p value of 3.7 percent, one 
could produce many other time series of interest rates for various coun- 
tries, time periods, and points on the yield curve. The product of the p 
values for the tests of each of these time series is the probability that 
interest rates are produced by a stationary lognormal stochastic process. 
At what value would Mr. Stone find the evidence overwhelming? Does 
he find the rejection of astrology unscientific on the same grounds? 

Shaun Wang 

Mr. Wang raises the issue of asymmetry. Mr. Cardinal addressed this 
in his discussion. 

I have clarified the calculation of the order statistics in the final version 
of the paper. 

Conclusion 

Again, I thank each of the discussants for his contribution to this paper. 
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