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MULTIDIMENSIONAL WHITTAKER-HENDERSON 
GRADUATION WITH CONSTRAINTS 

AND MIXED DIFFERENCES 

WALTER B. LOWRIE 

ABSTRACT 

We present methods that allow the systematic graduation of multi- 
dimensional data subject to linear constraints. With these constraints the 
practitioner can impose limitations on the graduation that agree with prior 
knowledge. Polynomial or polynomial plus exponential models are im- 
plemented. We give an example of a small select and ultimate mortality 
graduation and an algorithm for generating constraints for such an ex- 
ample. The determination of variances is discussed. 

1. INTRODUCTION 

The Whittaker-Henderson graduation methods are pragmatic in the sense 
that an assumed loss function is minimized. The solution of this mini- 
mization gives the graduated value. Historically, the results have been 
good and the method has been easy to set up. With advances in computer 
hardware technology and in software packages in recent years, algo- 
rithms have been developed to perform minimizations under rather gen- 
eral conditions, including the recognition of constraints. It is now pos- 
sible to solve rather large and complicated optimizations at a reasonable 
c o s t .  

In light of these developments, this paper shows how to extend multi- 
dimensional Whittaker-Henderson graduation to use constraints in a 
practical and relatively easy way. The use of constraints was motivated 
by the graduation of select and ultimate mortality tables in which mor- 
tality rates, for ages greater than 10-12, increase by issue age, duration, 
and attained age, except for the dip in the 25-29 age range. Of  course, 
constraints can be used in other applications. At present, the practitioner 
must graduate select and ultimate mortality tables using cut-and-try tech- 
niques to implement well-known inequality relationships in a consistent 
way [38]. 

The conversion of  multidimensional data into a "linear" order is dis- 
cussed in the section on vectorization. A practical optimization algorithm 
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to perform the constrained minimization is outlined next. The necessary 
details to implement the algorithm are given in Appendix C. Under the 
heading of "loss functions," fit and smoothness are presented. As a part 
of smoothness, separate and mixed differences are defined. In this paper, 
mixed differencing is done simultaneously along all coordinates rather 
than along each coordinate separately. (Kellison [24] calls this "functions 
of more than one variable.") A presentation on constraints follows. 

A simple select and ultimate mortality example is given next to show 
the practitioner how to set up the method. Computer programs are avail- 
able, in APL, which will then perform the graduation [31]. The author 
will provide copies of these programs on request. Also, there is a dis- 
cussion of the calculation of the variances of various types of graduated 
values. Some comments on the determination of the smoothing constants 
are also given. This determination is still not entirely resolved and seems 
to remain largely a retrospective process that is driven by the uses of the 
graduated values (for example, annually renewable term premiums). We 
show that under reasonable conditions, there exists a unique set of grad- 
uated values and that our method of calculating these values is compu- 
tationally stable. 

Although the example and much of the discussion concern annual mor- 
tality rates, the method smooths any type of regularly spaced data. Data 
that are not regularly spaced can be smoothed with this method by spec- 
ifying a zero weight at any point at which the method is to supply a 
value [32]. 

TIlE blETItOD 

Multidimensional Whittaker-Henderson graduation minimizes the loss 
function 

L ( k ) =  F + kS, k >-O 

for a fixed but arbitrary value of k, where F has been called a measure 
of "fit" and S a measure of "smoothness." Actually F measures rec- 
ognition of the data in the sense that F gets larger as we depart from the 
data. Also, S gets larger as the graduation gets rougher. Later in the 
paper we propose the idea that S measures the recognition of a model 
because S gets larger as the graduation departs from that model. Model 
functions are used as a criterion of smoothness. 



MULTIDIMENSIONAL WHITTAKER-HENDERSON GRADUATION 217 

In most practical applications, variations in the data occur because of 
random fluctuations. By imposing constraints, we remove variations in 
the data that are considered unreasonable (not feasible) such as negative 
mortality rates. By using constraints, convexity can be preserved. It has 
been said that "graduation is a process of substituting impressions for 
facts. "* 

OPTIMIZATION ALGORITHM 

The constrained optimization algorithm we present is based on the di- 
rect solution of the Lagrange first-order necessary conditions for opti- 
mality [33, p. 425]. These conditions are linear in the case of quadratic 
programming and are readily solved. 

First, the loss function is transformed into an equivalent form 

1 
f (v)  = - v r A v  + c r v  (1) 

2 

where v is the vector of graduated values and the matrix A and the vector 
c are defined later in the paper. This form is minimized subject to linear 
constraints that can be expressed as Ev-<b, where E is a matrix of con- 
straint coefficients and b is a vector of constraint bounds. 

The constrained minimization is done in two phases. The two-phase 
approach is used because the factorization of the matrix A, which is done 
in phase 1, can be used in phase 2. Also, no constraints may be violated 
in phase 1, making phase 2 unnecessary. 

Summary of Algorithm 
The first phase solves the quadratic problem: 

minimize 

1 
f (v)  = - v r A v  + cry 

2 

with no constraints. Then the solution, v*, is tested to determine whether 
it satisfies the constraints. If it does, we are done. If not, v* is modified 
to satisfy the constraints (an algorithm to generate constraints and achieve 
feasibility is given in the example), Call this new estimate v0. Also, note 

*BoESEN, M. Private communication to author, 1991. 
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that all that is required to begin phase 2 is a feasible solution (an example 
might be the standard mortality table); the procedure recommended for 
phase 1 is just one way to obtain a feasible solution. 

In phase 2, we solve the constrained quadratic problem: 

minimize 

subject to 

1 
fCv) = -vrAv +crv 

2 

E v _ < b  

iteratively using an "active set" method. Active set methods keep track 
of a "working set" of equality constraints and any inequality constraints 
that are binding at that stage. The details can be found in Appendix C. 

Luenberger [33] states that active set methods are almost always used 
for quadratic programs with inequality constraints and that factorization 
methods are commonly used for solving large linear systems. 

The matrices for practical problems could be so large the efficiencies 
of the factorization method are necessary. The matrix divide operation 
built into APL can be used for small problems. 

VECTORITATION 

Suppose the data from a study (for example, select and ultimate mor- 
tality) occur in a rectangular array (matrix), say: 

f U l l  U12 U13 7 

. =  lU+, u+: ""I = 
[_U31 U32 U33._1 

where x is the index, for example, x=(2,  3), of an element in the matrix. 
The insight proposed by McKay [34] was to rearrange the array into a 
vector as follows: 

V 1 ~ Ull 

I, 2 ~ U12 

V 3 : Ul3 
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V4 = /'/21 

V 5 = U22 
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V 9 ~ U33 

so that the vector contains the same data as before but in a linear ar- 
rangement. Note that the last coordinate is incremented first, then the 
next to last, and so on. This process is called vectorization [13], or ravel, 
in the APL programming language. The purpose of the vectorization is 
to be able to use the results that apply to the single-dimension case. In 
general, if a collection of data has D dimensions and the number of 
entries in each dimension is denoted n~, nz ,  . . . ,  n o ,  the original i n d i c e s  

of the elements are x=(x, ,  x2 . . . . .  x o ) ,  where l<--x ,<-n, ,  l~xz~n2 . . . . .  
l < - x o ~ n D .  Define P = n , n 2  . . .  no .  In the previous example, n~=3, n2=3, 
e = 9  [30]. 

There is a function ~(x) that converts the original indices x into the 
new indices i. We say i=~b(x), or equivalently vi=v,~x~. To define the 
function 6, specify the vector 

m = (n2n3 . . .  n o ,  n3 . . .  no  . . . .  , n o - ~ n o ,  n o ,  1); 

then + ( x ) = ( x - 1 ) r m +  I. The function + has a unique inverse function 
+-~(i), which is analyzed in Appendix E. 

Define the symbols: 
vi a graduated value 
u~ an ungraduated value 
si a standard value 
wi a weight associated with the ungraduated value, ui 
w" a weight associated with the standard value, si. 
Note that the weights are non-negative. If any weights wi are  zero, 

then the corresponding graduated values are calculated. If any weights 
w[ are zero, then the corresponding standard values are ignored. 

Further define: 

v = ( v , v 2  . . .  vp) 

u = (u~u2 . . . u p )  
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s = ( s l s2 . . .  sp) 

w = diag(wi)  

w '  = diag(w[) .  

LOSS FUNCTION 

F i t  

The measure of  fit is the weighted sum of the squared deviations of  
the graduated values from the data. Optionally, the distance from a stan- 
dard table may be recognized. This measure leads to nice mathematics 
and has proven to give reasonable results. A flaw of  this measure is a 
tendency to overemphasize outliers. This is usually overcome with small 
weights where the data are sparse. 

Define 

F = (1 - ct)Fl + aF2;  

where 

and 

0 ~ a ~ l  

Fi 

~71 r12 ~D 

= Z Z Z 2 
x l = l  x2=l  . I o= l  

P 

= ~ w i ( u i -  v~) 2 
i=1 

(2) 

nl n2 nD 

P 

= Z w ; ( s i -  v~)2 (3) 
i= |  

where x=(x j ,  x2 . . . . .  xo) ,  and i=~b(x). Note that in each of  Equations 
(2) and (3), the second summation is just a rearrangement of  the first 
summation. The weights are non-negative. 

To be able to use results from linear algebra, we change the form of  
FI and F2. The first measure of fit becomes: 
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F1 = (V-- U) rw(v-  U) 

by changing the order of  summation in Equation (2) and using vectori- 
zation. Similarly, 

F2 = (v - s) r w ' (v  - s). 

By increasing et, we can force the graduation closer to a "standard" table 
in magnitude and shape. A standard table should be made feasible and 
transformed as s~=as~+b, so that the total number of  deaths and the av- 
erage age at death would match the data. In this way the shape and 
feasibility of the standard table are preserved [35] if a > 0 .  

S m o o t h n e s s  

We give two measures of  "smoothness ."  The first uses separate dif- 
ferences along each dimension, and the second uses mixed differences. 
The final measure of  smoothness is a combination of  the first two mea- 
sures. To discuss smoothness, we define a mode l  function as one that 
remains invariant under the graduation procedure and represents the 
graduator 's idea of  smoothness. This concept is discussed later. 

Shiu [43] points out that mixed differences are necessary to minimize 
"cross-product" terms in the model function. Shiu's example is: 

A2 xlx2 = 0 
I 

A 2 xlx2 = 0 
2 

but 

A A x I x 2  = 1. 
i 2 

So, to ensure the model is of  the form 

axl + bx2 + c,  

we must incorporate the mixed difference term in the measure of  
smoothness. 

To examine the case in which the smoothness model includes an ex- 
ponential term (for example,  r~>0 for i= 1, 2), define: 

g(x t ,  xz) = (1 + r0X~(l + r2) ~2 
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and 

f ( x l ,  x2) = a + bxl + cx2 + d(1 + r~) -~' + e(1 + r2) ~'. 

Then, for example: 

A3 g ( x l x 2 )  - rlAZ g(xl ,  X 2 )  = 0 

1 1 

A3 g(xl ,  x2) - r2AZ g(xl ,  x2) = 0 
2 2 

AAg(x l ,  x:)  = Grzg(xl ,  x2) ~ 0 
12 

A3f(x t ,  xz) - r lAZf(x t ,  x2) = 0 
1 1 

2i3f (xl, xz) - reA2f (x,, xz) = 0 
2 2 

AAf(xl, x2) = O. 
I 2 

The differences along dimensions one and two do not "detect" the cross- 
product terms, (1 +r0~l(1 +r2) x~, but the mixed difference does. The func- 
t ionf(xl ,  x2), above, represents an excellent criterion of smoothness for 
a two-dimensional problem. 

S e p a r a t e  D i f f e r e n c e s  

Here, the differences are applied separately along each dimension. The 
degrees of differencing (z~, z2 . . . . .  zo) may be different for each dimen- 
sion (d= 1, 2 . . . . .  D). 

The measure of "smoothness" is defined as: 

= .~.3 = i X I = I  2 

. = 1  x 3 = l  x 2 = l  2 

I'11 rt 2 n D - - Z  D 

+ oZZ'"2 
.~r I = I .,2 = I x o =  I 

(4) 
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where x=(x l ,  x2 . . . . .  xo), and 

A l ' l x  ~ U x l , x 2 , . . . . x k +  l . . . . .  XD) - -  UXl ,X2 , . . . .Xk , . . . ,XD"  
k 

The complicated notation in Equation (4) is necessary because we must 
keep track of  which elements are subject to the given degree of  differ- 
encing. The differencing must not "spill over" from one row (column, 
etc.) to the next in the original multidimensional array. 

By reversing the order of  the summations and doing considerable ma- 
nipulation, it can be shown that: 

Sl = klvrKlrKlv + k2vrK2rK2v + . . • + kovrKroKov 

= vrJv 

where 
D 

j - -  kjKTKj. 
j = l  

In the following discussion j =  1, 2 . . . . .  D and s and t denote the rows 
and columns of  K (respectively); that is, K={kst}. 

The individual difference matrices Kj are defined as: 

Ky = K° - r/K) 

K ~ v  --- 

where 

j ~ j 

i 

A ~' v2 ] A z~- ~ v2 
J J 

and K]v = 

a vpl a -'vp 
J I J 
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The differences are defined by: 

f 
m :1 V s -= 

[ J 

\ y i /  ' 
; x j < - n j - z j  

0;  a3 > nj  - zj 

where i=+(xl,  x2 . . . . .  x j + y j  . . . .  xD).  To define K),  w e  note that it must 
have the same all-zero rows  as K °.  Then the differences: 

v,;  x j  <- n,  - z j  
AZj - 1 ~2~ = "~ yi=O YJ 

J [ O; x j  > nj  - z j ,  

where i and s are the same as in the previous definition. A detailed 
analysis is presented in Appendix A. 

Example of  Separate Differences 

Suppose the data have three rows and four columns so that h i = 3 ,  n2=4.  
A ssume  the differences are zl = 2  and z2=2.  Then P=n~n2 = 12 and D = 2 .  
The fo l lowing table shows  how to determine the all-zero rows in the 
K-matrices.  

1 
2 1, 
3 1, 
4 
5 
6 
7 
8 
9 

10 
11 3, 
12 3, 

a~ (~1, x2) 

1, 

1 ,4  
2, 1 *Yes 
2, 2 Yes 
2, 3 Yes 
2, 4 Yes 
3, I Yes 
3, 2 Yes 

3 Yes 
4 Yes 

* x t > n t - z ~  = 3 - 2  = 1, 
* * x 2 > n z - z z = 4 - 2 = 2 .  

All Zeros 
a~ 

**Yes 
Yes 

Yes 
Yes 

Yes 
Yes 
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Values of t (column index) for non-zero entries in the first row are: 

Matrix Values of t 

K °, ~ 5 9  
K', 1 5 
K ° 1 2 3  
K~ ~ 2 

All K-matrices are 12× 12 in the example shown on the following page. 
According to the previous definitions 

K I = K  ° - r ~ K l  and K 2 = K  ° - r 2 K ~ .  

M i x e d  D i f f e r e n c e s  

Historically, the term "mixed differences" [45] refers to applying sev- 
eral degrees of differences along one dimension. This can be accom- 
plished by adding additional difference matrices, as defined in the fol- 
lowing paragraphs. 

A measure of smoothness that uses mixed differences is: 
nl~Z 1 ~12~Z 2 ~D--ZD / 

s2=k  {az'a z2...az°vx 
Xl=l  x2=l  x o = l  \ I 2 D 

2 \ 

_ rA~t-lAZ2-1... AZO -Ivx ] (3) 
1 2 D / 

where x=(xi,  x2 . . . . .  xn). In most applications, r will be zero. The only 
time a non-zero r would be useful is if the graduator wished to introduce 
the term rlr2(l+r~y'( l+r2) x~ into the model. Then r=r l rv  

The term in the summation is defined as zero unless x~<--n~-z~, x2<n2--Zl, 
. . . .  and xo<-nn-zo.  In Appendix E we show that 

$2 = kvrMrMv 
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..... v l 
o , ) 

Mv = 

Example of Mtxed Differences 
Suppose the data are given on a 5 x 6 array of points so u =  {u.~,x2}; x l = l, 

2 . . . . .  5 and x2=l ,  2 . . . . .  6. Then n t = 5  and n2=6. Also, assume that 
the degrees of differencing are z~=3, z2=2. The M-matrices have 12 
rows and 30 columns, but the all-zero rows are not shown. 

0 - 1  2 -1  0 0 0 3 - 6  3 0 0 0 - 3  6 - 3  0 0 0 1 - 2  1 0 0 0 0 0 0 0 0 

0 0 - I  2 - I  0 0 0 3 - 6  3 0 0 0 - 3  6 - 3  0 0 0 I - 2  I 0 0 0 0 0 0 

MO = 0 0 0 - I  2 - I  0 0 0 3 6 3 0 0 0 - 3  6 3 0 0 0 I - 2  I 0 0 0 0 0 
0 0 0 0 0 0 - I  2 - I  0 0 0 3 - 6  3 0 0 0 3 6 - 3  0 0 0 I - 2  I 0 0 

0 0 0 0 0 0 0 ~ l  2 - I  0 0 0 3 - 6  3 0 0 0 - 3  6 - 3  0 0 0 I - 2  I 0 
0 0 0 0 0 0 0 0 - 1  2 - I  0 0 0 3 -.6 3 0 0 O - 3  6 - 3  0 0 0 1 2 1 

0 0 0 0 0 0 0 0 0 - I  2 - I  0 0 0 3 - 6  3 0 0 0 - 3  6 - 3  0 0 0 I - 2  [.,, o oo   ooooo_,,  o ooooooooooo l o 
0 - I  1 0 0 0 0 2 - 2  0 0 0 0 0 - I  I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 -1  I 0 0 0 0 2 - 2  0 0 0 0 0 - I  1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 -1  1 0 0 0 0 2 - 2  0 0 0 0 0 -1  I 0 0 0 0 0 0 0 0 0 0 0 

M L= 0 0 0 0 - 1  I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 - 1  1 0 0 0 2 2 0 0 0 0 0 - I  I 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 - 1  | 0 0 0 2 - 2  0 0 0 0 0 --1 1 0 0 0 0 0 0 0 O |  

0 0 0 0 0 0 0 0 0 --1 1 0 0 0 2 - 2  0 0 0 0 0 - 1  1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 O O - I  i 0 0 0 2 - 2  0 0 0 0 0 - I  1 0 0 0 O 0 

For notational convenience, kS=k~Sl +k2S 2. Additional detail is given in 
Appendix D. 

In the following, we refer to the function F + k S  as f (v ) .  Then the 
function to be minimized is 

1 
6 f ( v )  = (1 - c0Fl + ¢xF2 + kS = - v r A v  + c r v  

2 

where f(v) is a quadratic function of v, and 

A = 2[(1 - ~)W + ~ W '  + kL] 

c --- - 2 [ (1  - oOWu + ¢xW's]. 
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We define k L = k ~ J + k 2 M  for notational convenience,  if a combination of  
separate and mixed differences is used. 

The proof of  the last two equations for the multidimensional case is 
the same as the proof for the one-dimensional case because of  the vec- 
torization [32]. 

In the absence of  constraints or if none of  the constraints is active, the 
value of  v that produces the minimum value o f f ( v )  is v=A-~c .  In this 
case, v is called an interior point. 

CONSTRAINTS 

Linear constraints take the following form: 

e ~ v ~  + e~2v2 + • • • + e~eVp < bt  

e2~v~ + e22v2 + • • • + e2evp  <- b2 

ezv~VE + eN2v2 + " • • + e,veVe <-- b~v 

o r  

Ev__-b 

One aspect of  using constraints that causes problems is the large num- 
ber of  constraints that are needed. Care in setting up the graduation can 
reduce the number of  constraints. Experience with the method should 
give criteria for discarding many of  the constraints that will never be- 
come binding because they are satisfied by a large amount. Redundant 
constraints must be excluded. An anonymous referee made the excellent 
suggestion that the dual problem may be more readily solved. Then there 
would be more variables and fewer constraints since the variables and 
Lagrange multipliers swap roles. 

When select and ultimate tables are graduated, the following types of  
linear constraints can be used to force the graduated values to follow 
desired patterns. 

Duration: alql~l+,<-qt~l+,+ ~ + bl  or a~q tx l+ t -q t~ l+ ,+  ~ <-b~ 

Issue age: a2qp:l + t<-q ix -  i I +t + b2 or azql~l +t-  qlx- J l + ,<-b2 
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Attained age: a3q[x+tl+s-<qtx+t_ll+s+l+b3 or 

a3qtx+tl+s-qtx+t- ll+s+ 1 --<33 

Usually for these types of inequalities: 

a ~ = a z = a 3 =  1 and b, = b z = b 3 = 0 .  

The duration constraints are redundant if issue age and attained age con- 
straints are imposed and values of the ai>0 are all equal. The constants, 
a,-, could be slightly greater than one to impose an exponential-type pat- 
tern up the backward diagonals. 

AN EXAMPLE OF SELECT AND ULTIMATE 
MORTALITY GRADUATION 

This application shows how to graduate a select and ultimate mortality 
table imposing constraints based on the inequalities that were mentioned 
previously. A small example makes the illustration of the method easier 
to follow. 

Data  

The data used were female standard issue ordinary mortality rates of 
nonmedical issues of 1963-77 from the TSA 1979 Reports [10]. Issue 
age groups 10-14, 15-19, 20-24, and 25-29 were used with durations 
(policy year) of 1, 6, 11, and 16+. The death rates (1000q~) were: 

Issue Actual Standard 

Age t 6 |1 16+ | fi | |  16+ 

10--14 0.171 0.220 0,231 0.530 0.274 0,489 0.560 0.574 
15--19 0.330 0.472 0,516 0.750 0.456 0,559 0.585 0.732 
20--24 0.253 0.368 0.508 0.935 0.500 0,580 0.715 1.183 
25--29 0.267 0.342 0.899 1.664 0.548 0,713 1.190 1.937 

The data for policy year 16+ represent ultimate mortality with differ- 
ent issue years and observation periods than the select mortality, so they 
are not quite comparable. For instance, the standard rates for issue ages 
20-24, duration 16+ (1.183) should be equal to or greater than the rate 
for issue ages 25-29, duration 11 (1.190). Standard mortality is the 1965- 
70 Female Select and Ultimate Table. The standard table should be made 
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feasible and normalized by using a linear transformation so that the sum 
of  deaths agrees with the data. 

The degrees of  differencing are assumed to be z~=z2=2,  and the di- 
mensions are n l=n2=4 ,  (D=2) .  The exponential constants are r l = r 2 = 0 ,  
and the smoothness coefficients are k t=k2=0.1 .  The weights are w~= 
1/16 for all 16 weights, and et=0. Mixed differences were not used in 
the example.  

Cons t ra in t s  

To perform the constrained minimization, we must write the con- 
straints in the form: Ev_<b, where v is a vector of  graduated values, E 
is a matrix of  coefficients of  the constraints and b is a column vector of  
constraint bounds. To find E and b for the example,  let the matrix of 
(graduated) values be denoted: 

iv v2 vl3 v41 qt215 q20 q l251 
21 V22 V23 V24 = / qllTl q117]+5 qlt71+ 10 q1171+ 15 . 

31 V32 V33 V34 | q[221 q122]+5 q1221÷ 10 q[221+ 15 

V41 V42 V43 V44 3 [._qt271 qt271+5 qt271+lo q[271+15 

After the matrix of  graduated values is vectorized, 

vl = qIi21, .-., v2 = q1121+5, va = qt~21+~5, v5 = qll7], . . . ,  v 1 6  = qi271+15. 

The above expressions use notation that is not consistent with the no- 
tation in the rest of  the paper. This inconsistency is necessary to intro- 
duce standard actuarial notation. Also, in other mortality studies age in- 
tervals may not be five. 

The constraints are generated in the order shown in the table on the 
following page. The value 0.0001 appearing in the first line of  the table 
was chosen arbitrarily. This is the only method available to require 
qt121>0. In general, it is easier to deal with 1000q~, so the bounds are 
multiplied by 1000. 

We present an algorithm l~or generating constraints for select and ul- 
timate mortality tables that omits redundant (duration) constraints and 
provides a useful order. For instance, if u21>-ul~ and u12>-u21, then uj2>--ul~ 
is redundant. An expression for the minimum number of  constraints is 

2 + (nt - 1)(2n2 - 1) 
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Actuarial Notation 

0 . 0 0 0 1  <-- qll~l 

ql i,~l ~ qllTI 
qltTI < qll/l+~t 
qllTI <: ql22t 
ql221 ~ qllTl+s 

q l i z l+5  5 q1171+5 

ql i71+5 5 ql i21+ io 

q12~l < ql/71 

ql,~71 5 ql,?.ll + 5 

ql7'21+ 10 ~< q l l T l + l o  

ql271+ io <- ql221+ 15 

q1171+15 --< q1221+i$ 

ql221+i2 -::z q1271*is 

ql l71+ 15 5 | 

Vector Form 

0 . 0 0 0 1  ~ v~ 

V I --.< V 5 

i s - -  < v2 
vs ~ v9 
vg < v6 

v2 <- v 6 

v6 <- v3 

V9 ~7 Vl 3 
I)13 ~ VIO 

VII ~<; I)15 
VI5 ~-~ $Sl2 
VI t .t~ Vl 2 

VI2 ----- VI6 
V16 <-- 1 

Constraints 

Standard Form 

--V~ <--- - 0 . 0 0 0 1  

v l  - -  vs ~ 0 

vs - -  v2 ~< 0 
Vs - -  V9 --< 0 
vg -- ve <-- O 

v 2 -  v6 <-- O 

v ~ -  v3 <- O 

v 9 -  vi3 ~ 0 
lSl3 -- 121o ~ 0 

VI I -- VI 5 <7 0 
'1215 -- V12 ~ 0 

I/8 --  V12 ~ 0 

Vt2 -- v16 "< 0 
vtb ~ I 

- 1  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
I 0 0 0 - 1  0 0 0 0 0 0 0 0 0 0 0 
0 - 1  0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 - 1  0 0 0 0 0 0 0 
0 0 0 0 0 - 1  0 0 I 0 0 0 0 0 0 0 
0 I 0 0 0 - I  0 0 0 0 0 0 0 0 0 0 
0 0 - !  0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 - 1  0 0 0 
0 0 0 0 0 0 0 0 0 - 1  0 0 I 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 - 1  0 
0 0 0 0 0 0 0 0 0 0 0 - 1  0 0 I 0 
0 0 0 0 0 0 0 I 0 0 0 - 1  0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 - 1  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
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where n~ is the number of rows and n2 is the number of columns. This 
expression counts the two constraints that require mortality rates to be 
greater than zero and less than one. 

Further, if the solution of phase 1, v*, violates any constraints, then 
v* may be made feasible by raising the appropriate element to just satisfy 
each violated constraint. This is done in the order that the algorithm 
generates constraints and starts at the first violated constraint. For in- 
stance, if u2~<-uz~, then set u2j=u~. At any step if an element is larger 
than one, it is set equal to one. 

The Constraint Algorithm 

The constraints generated by the algorithm are in terms of the original 
indices x to illustrate the pattern followed by the algorithm. Of course 
the indices would then be vectorized. 

The algorithm moves up successive backward diagonals starting with 
the first. The element at each position on the diagonal has to be larger 
than the element (if any) immediately above i t - -and larger than the suc- 
ceeding element (if any) up the backward diagonal. 

The algorithm is as follows: 

Step-Init. Input Rowmax(n0, Colmax(n2) 
Set Diag:=2 
Set Col:= I 

Step-Up. If Col>Colmax stop else continue 
Set Prvrow: =Diag-Col  
If Prvrow=0 go to Step-Newdiag else generate the 

constraint: 
u[Prvrow; Col]-<u[Prvrow+ 1; Col] 

Step-Back. If Colmax<Col + 1 go to Step-Newdiag else generate 
the constraint: 
u[Prvrow+l; Col]-<u[Prvrow; Col+ 1] 

Set Col:=Col+ 1 
If Colmax->Col go to Step-Up else stop 

Step-Newdiag. Set Diag:=Diag+l  
Set Col: = max(( I + Diag-  Rowmax), I ) 
go to Step-Up 

In phase 1 of our method, the graduation is performed ignoring the 
constraints. Then a test is made to determine whether any constraints are 
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violated. If not, the process is over. If any constraints are violated, we 
go to phase 2, where the previous solution is adjusted to be feasible. 
Then an iterative process is used in phase 2 to find the optimal feasible 
solution. 

The following is the result of the optimization: 

Phase }. Unadjusted Phase 2a. Adjusted for Feasibility Phase 2b Constraint Optimization 

Issue , Policy Year Policy Year Policy Year 

Age I 1 6 II 16+ I 6 I| 16+ I 6 11 16+ 

10--14 .209  .260  .323  0 . 4 1 8  .209  .260  .366* 0 . 5 2 2 *  .169  .244 .348*  0 . 5 1 2 "  
15--19 .223  .366  ,522  0 . 7 0 7  .223  .366  .522  0 . 7 1 3 "  .196  .348 .512  0 . 7 3 4  
20--24  .200  .439  ,713 1 .034  .223*  .439 .713  1 ,034  . 1 9 6 ' '  .431 .701 1 .025  
25--29 .161 .507  ,937  , 1 .435  .223*  .507  .937  1 .435  . 1 9 6 " ]  .515 .925  1 , 4 0 6  

Note:  T h e  as te r i sks  ind ica te  the va lues  that  were  i nc r ea sed  to sa t is fy  a cons t ra in t .  

The smoothing coefficients were chosen relatively small (0.1) com- 
pared to the sum of the weights (1) to ensure that the result of the first 
graduation (phase 1) would not be feasible for the sake of example. This 
was done to illustrate the method. Convergence in phase 2 was very fast 
(2 iterations). The result after phase 2 is not smooth enough but satisfies 
the constraints. The three equal values in the first column of the final 
result would not be acceptable in practice. Raising the smoothing coef- 
ficients and/or using the standard table (oL>0) would make the final 
graduation smoother. The example ran quickly on an AT&T 6300 with 
640K RAM. 

EXISTENCE AND UNIQUENESS OF SOLUTIONS 

In this section we examine conditions under which the solution is unique. 
It turns out these conditions are easily attained in practice. A by-product 
of these conditions is that our algorithm will be unconditionally stable 
numerically because it uses the Choleski factorization [46, p. 153]. 

For the one-dimensional case with no constraints, it has been shown 
that a unique solution exists if all the weights are positive, if standard 
data are used (that is, et>0) or if there are at least z pivotal points (pos- 
itive weights) in the interpolation case when the model is: 
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vi = Pz-2( i )  + k(1 + r) i 

o r  

v i = P z - i ( i ) ,  and r = 0  

where P_,-2 is a polynomial of degree z - 2 .  The proofs of the above are 
given in Lowrie [32]. 

In the following development we show that if the one-dimensional 
result holds for any one row (column, etc.), then a unique solution exists. 

To develop the necessary theory, we introduce the concepts of convex 
sets, strictly convex functions, and positive definite matrices. 

A set C is convex if the point ctvl+(1 -ct)vz is in C for every ct, 0_<ct_<l 
and every v~ and v2 in C. Note that the set C={v:Ev-<b} is convex. 

A functionf:Rn---~R~ is strictly convex  on a set C, if for any two points 
vt and v2 in C(v~#vz) and for any or, O<--a<-l, 

f[otvl + (1 - a)v2] < otf(vl)  + (1 - ¢t)f(v2) 

If  a function f has a Hessian matrix (matrix of all partial second de- 
rivatives) that is positive definite on all v on C, then the function is 
strictly convex on C. The Hessian of the quadratic function 

I 
f ( v )  = - v r A v  + cTv 

2 

is A, which does not depend on v. So if A is positive definite, then f is 
strictly convex on Rn. 

Define the constraint set C={v:Ev-<b}. We will need the following 
lemmas: 

L e m m a  1. Let  

1 
f ( v )  = - v ~ A v  + cry 

2 

where A and c are defined previously. Then the matrix A is positive 
definite if one of the following is satisfied: 
(1) The weights wx are positive 
(2) Standard values are used (ct>0) 
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(3) There is a row (column, etc.) for which at least zp weights are pos- 
itive, where z, is the degree of differencing corresponding to that 
row (column, etc.). 

Proof." See Appendix B. 

Lemma 2. Let C be a convex set defined by C={v:Ev-<b}. Let f:R,---~R~ 
be a continuous, strictly convex function on C. For the problem: mini- 
mize f(v) subject to vEC, there exists a unique global minimum of f 
on C. 

Proof." See Bazaraa and Shetty [I ]. 
Although not necessary mathematically, C={v:Ev-<b} will be bounded 

in most practical applications. For instance, if qx < - 1 for the last age, then 
all parameter values will be bounded. 

Theorem 1. Given the problem: 

minimize 

subject to 

1 
f(v) = - v r A v  + c% 

2 

v E C .  

If any of the conditions of Lemma 1 are satisfied, then there exists a 
unique global minimum of f(v) on C. 

Proof." Since f(v)=l/zvrAv+cTv is a quadratic function, the Hessian 
(second derivative) o f f ( v )  is A and f (v )  is continuous. If the Hessian 
of a function f (v)  is positive definite on a set C, then f (v)  is strictly 
convex on C. So the conditions of Lemma 2 are satisfied and f (v)  has 
a unique global minimum on C. 

An anonymous referee has pointed out the following result: A function 
f defined on a non-empty convex set X is said to be pseudo-convex at: 

x o ~ X  if ( x - x o )  V f ( x o ) > - O ~ f ( x ) > f ( x o )  for all x ~ X .  
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(A differentiable convex function is pseudo-convex.) In particular, every 
stationary point of a pseudo-convex function is a global minimum on X, 
and there are no inflection points [1, p. 510]. If the function is strictly 
convex on X, then a stationary point is the u n i q u e  global minimum 
on S. 

VARIANCES OF GRADUATED VALUES 

Since the variances are not supplied automatically in Whittaker-Hen- 
derson graduation formulas as they are in the Bayes' formulas, variances 
appropriate to the data must be calculated. If the data are mortality rates 
q~, then the variances are given by 

q~,(1 - q,) 
Var(q~)  - 

n~ 

if the number nx is known [30, pp. 10, l l ,  14, 25], [25]. If exposures 
were used to calculate the {q~}~ . . . .  + t ....... then approximate variances can 
be calculated by estimating nx for each age using an average amount of 
insurance for each age to obtain estimates of the variances. This process 
may only yield rough approximations to the true variances. 

If the force of mortality can be estimated from grouped data, then one 
technique that has proven successful, for this author, is to graduate 
the natural logarithms of the forces of mortality. Then the variances are 
approximately: 

( I  - Pi)  

N i P i ( l l l P i )  2 

where N~ is the number of survivors at the beginning of the (i+ 1)" in- 
terval and 

N i - D i 
P i  - - -  

Ni 

Then the weight for each group is the reciprocal of the corresponding 
variance. If the reciprocals of the variances are used as weights for each 
cell in a parametric method, then we have best linear unbiased estimators 
of the parameters if k is large and there are no constraints [37]. 

If values of/~i are being smoothed, variances are given in London [30] 
and Elandt-Johnson and Johnson [14, pp. 140, 158]. Also, Klugman [26] 
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shows how to obtain the standard deviation of the present value of  a life 
annuity as estimated from a graduated mortality table. 

An anonymous referee has pointed out that the determination of  vari- 
ances becomes complicated if any of  the constraints are active. 

For unconstrained Whittaker-Henderson graduations the graduated values 
are linear functions of the crude rates, so variances are easy to obtain 
from the variances of the crude rates. When constraints are introduced 
(and active), there is no longer a simple functional relationship be- 
tween the graduated values and the crude values so variances are likely 
to be impossible to obtain directly. 

A bootstrapping method could be employed to determine variances but 
would be very time-consuming. If the active constraints caused only small 
adjustments in the graduated rates, the variances (calculated ignoring ac- 
tive constraints) could be taken as rough approximations. The author has 
performed similar simulations to estimate the variance of complicated 
functions of  weighted least squares parameters [37]. 

FURTHER CONSIDERATIONS 

S m o o t h n e s s  

It is difficult to give a satisfying a priori definition of  smoothness for 
Whittaker-Henderson methods except by specifying a penalty function 
that gets larger as the graduated values get rougher, in some sense. For 
further study of  moduli  (measures) of  smoothness, see Ditzian and Totik 
[ 12]. The measure o f  smoothness used in this paper is a variation of  the 
type used in that reference. If  there is an error in one value of a sequence 
of  observations of  an experiment,  then large values of  differences appear 
quickly [24]. Thus, minimizing the sum of  squares of  third differences 
will tend to "drive out" a single error. 

Smoothness is defined in the theory of  splines by minimizing an in- 
tegral of  the square of  the second derivative of  a function and specifying 
that the function has continuous second-order derivatives. Whittaker- 
Henderson and moving-weighted-average methods minimize a sum of 
squares of  differences of  the graduated values. The common theme is 
that the smoothness penalty function is zero for some function and in- 
creases as the graduated values depart from that function. 

Bayesian graduation has an advantage in this area because it is based 
on a prior distribution that reflects the graduator 's  knowledge. Some 
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notion of smoothness may be implicit in the prior distribution, however. 
As previously stated, the Whittaker-Henderson methods will leave a model 
function such as a low-degree polynomial (plus an exponential function) 
invariant. This kind of model function has yielded good results in the 
past. Also, a relatively large value of k will force the graduated values 
closer to a least-squares fit of a model function to the data. Thus smooth- 
ness is defined by saying the model function is smooth. Note that a high- 
degree polynomial is usually unsuitable for a model because it may vary 
too much. 

Giesecke [16] proposes polynomial regression as a means of measur- 
ing smoothness. Again, a low-degree polynomial is implicitly regarded 
as the example of smoothness. His methods allow Whittaker-Henderson 
graduation of irregularly spaced data. 

A good model function for a three-dimensional problem is: 

f (xl,  x2, x3) = a + bxt + cx2 + dx3 

+ e(l + rO x~ + k(1 + r2) x: + m(l + r3) x3. 

Determination o f  k a n d  r 

Giesecke also proposes a method of using the chi-squared test to choose 
the smoothing constant k iteratively [16, p. 121]. Also, given a value of 
k, different values of r could be tried until the loss function is minimum 
consistent with the corresponding chi-squared value. However, Shiu [43] 
points out that using a chi-square test is not appropriate for a linear com- 
pound graduation formula. If the chi-squared test is not used, then var- 
ious values of r would be used to estimate the minimum of the loss 
function, given a fixed value of k. Gill et al. [15] point out that smaller 
values of a (squared) loss function indicate better estimates of the 
parameters. 

Blending 
If a large amount of data is to be graduated, the graduation can be 

done in pieces and the pieces "blended" together. If the blending is done 
as follows, feasibility is maintained. Suppose, for example, that a grad- 
uation is to be performed for issue ages 20-49 with a select period of 
five years. One way this could be done is to divide the data in five 
overlapping groups using issue ages 20-29, 25-34, 30-39, 35-44, and 
40-49 and perform the five graduations separately. 
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Then, for example, blended values q* are obtained as weighted av- 
erages of qm (issue ages 20-29) and qt2~ (issue ages 25-34) as follows: 

, 1 ~(1) _.1 ~(2) 
q125]+t = "~ ~11251+t + 2 t/[251+t 

, 1 ~(r) 1 ~2) 
q[261+t = ~ t/[261+t + ~ q1261+t 

l (l) 1 ~(2) 
qt*29j+, = ~ q[291+t + ~ qct291+t f o r t = 0 ,  1 . . . . .  5. 

The other groups are blended in a similar fashion. Feasibility is main- 
tained by using this process. Trying to perform the graduation in one 
large group can take far longer than five times that for one smaller group, 
or it may not work at all because of the size limitations of the computer. 

The conditions under which blending would be useful depend on the 
computer hardware and software available. Blending may be quite useful 
if an small 8086 machine is used but unnecessary if a software package 
like MINOS [36] is used on a big mainframe. Other than this general 
guide, the author has not determined the conditions under which blend- 
ing is useful. The applications of blending are a subject for future 
research. 

C o m l n o n t $  

There are promising Bayesian methods using constraints; see, for ex- 
ample, Carlin [5] and Carlin and Klugman [6]. Also, there are Bayesian 
methods that will give an interior point solution that may be smoother 
than a solution that has binding constraints. If binding constraints prove 
to give "comers" with the method given in this paper, then an increase 
in the smoothing constant and/or  an increase in (~ (emphasis on a stan- 
dard table) would "pull" the graduated values away from the binding 
constraints. 

Brockett uses information theoretic methods to deal with multivariate 
graduation [2], [3]. 
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Difference matrices could be constructed to minimize X(A~--rAZ-l) 2 
along diagonals. This may be a matter for further research. 

The matrices A and E are invariably sparse. There is considerable 
technology devoted to large sparse optimization [9]. 

The computer optimization packages MINOS [36], GINOS [29] and 
GRG2 [28] will handle very large problems. If these packages are avail- 
able, blending will probably not be necessary. Also, these packages could 
be used with the method of Chan, Chart, and Yu [8] with constraints 
added to the ep problem [2-<p-<:~]. A linear programming package such 
as MPSX (IBM) would solve their ll and l~ problems with linear con- 
straints added [39]. 

CONCLUSIONS 

The method presented in the paper converges rapidly. It can make 
rough data smoother, make the data conform to known relationships, and 
interpolate by setting appropriate weights equal to zero. The mathemat- 
ical conditions to ensure unique solutions are easily attained in practice. 
The method is suitable for a microcomputer or a mainframe computer. 
Larger problems can be done on a microcomputer (or mainframe) by 
breaking the problem up into segments and blending the result. If similar 
size problems are done repeatedly, the difference matrix L and the con- 
straint matrices E and the constraint bound vector b can all be stored 
and used for each problem without recalculation. In the past, the grad- 
uation of select and ultimate tables required much judgment and skill 
[35, p. 50] [30]. The method in this paper is systematic and should re- 
duce or eliminate the necessity for cut-and-try techniques. The method 
can be applied to a wide variety of one-dimensional or multidimensional 
problems. 
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APPENDIX A 

Additional details on the construction of  difference matrices are as 
follows: 
(1) Determine the rows that are all-zero in K ° and K) for j =  l, 2 . . . . .  

D. This is done by calculating 

(x~, x2 . . . . .  xo)  = + - ~ ( s )  

for all indices s = l ,  2 . . . .  , P (P=n~n2. . .nn) .  For a fixed but arbi- 
trary value of  j ,  the zero rows are those for which x j > n j - z j .  

(2) Determine the values o f  the column index t in the f i r s t  row  of  K ° 
that contain non-zero entries. These columns are determined using 
the equation t=  1 +yjrnj; y F 0 ,  1 . . . . .  zj. (There is one less value of  
t for the matrix K) than for K °.) 

(3) Determine the appropriate entries for the first row of  the matrix: 
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where 

k,°, = yj 

O, 

using the values of t from step 2 

otherwise. 

(4) Determine the remaining rows of K~j. Each subsequent row is de- 
termined by shifting the previous row one position to the right. 

To calculate the entries in K), repeat steps (2) through (4), with zj 
replaced by z j -1 ,  using the same all-zero rows. 

APPENDIX B 

Lemma 1. Let f (v )= lh  vAv+cTv where A and v are defined previously. 
Then the matrix A is positive definite if one of the following is satisfied: 
(1) All of the weights wx,x~. ~z,>0 
(2) Given p = l ,  2 . . . . .  D; there are at least zp positive weights on a 

"p-row." (For a matrix, a "l-row" is a column since the first co- 
ordinate is indexed.) 

Proof" To show that A is positive definite, we must show that arAa>0 
for all a~Rp,  a#0 .  

Case 1. This is shown in Chan, Chart and Yu [8]. 
Case 2. Finally examine the case in which some of the weights are 0. 

To do this, determine 

arAa = (1 - a )arWa + aaXW'a + aTJa 
P P D 

= (1 - a) X w,a~ + a ~ w,a~ + ~ kja~KrK)aj 
i=1 i~ l  j = l  

P P 

= (l - a )  X wia~+ e t ~  w/a z 
i =  ! i =  I 
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+,+~(~++, ,o,,+ o,)~ 
i =  l 

L e t  bx,x~ ...... D=a. where i = ~ ( x l ,  x 2 ,  . . . ,  x o ) ,  then 
n I 1+2 nD 

arAa = ( 1 -  a ) 2  2 "'" 2 wxt:2 ...... o b',~'2 ...... o 
x l = l  X 2 = I  .¥D=] 

n I /t 2 t/D 

t 2 
+ ot 2 2 --- ~"~ wx,.,-: ...... o b:,,~_, ...... D 

X I = I  X2=I  XD=I  

n I n 2 rl D 

+k,Z 2 . . . 2  
X I = I  X2=I  X D =I  

n I n2 nO 

X l = l  X2~I  X D = |  

j ,  X2 ,  . . . ,  XD r2 mzl-I bXl.X2,...,~. O 
2 

(B- 1 -a) 

(8-1-b) 

(B- l-c) 

(B-l-d) 

n I n2 nD 

+koE E-.. E 
X I ~ I  x 2 = l  x o = l  

(++°++ +-r~,,+'° ' .2 ...... °)~ (B- l-w) 
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For example, choose p =D,  the sum (B- l-w) will be exactly zero if each 
of the rows of U={b~,~.,, ..~ o} is determined by the functions 

b(xo) = P~o-2(xo) + k(1 + ro) ~D or b(xo) = P,.D-I and ro = O. 

These functions can have, at most, z o -  1 zeros (see Lowrie [32, p. 346]. 
Consequently, if there are Zp (or more) positive weights in a "p-row," 
then the sum (B-l-a) is positive, and A is positive definite. This argu- 
ment also applies to all other dimensions. 

A P P E N D I X  C 

We give additional details to help implement the proposed constrained 
optimization method. We follow Luenberger [33, p. 423]. The method 
involves solving the Lagrange first-order necessary conditions. This method 
is particularly recommended for quadratic programs in the positive def- 
inite case. 

The constraints that were violated in phase 1 may give rise to the 
working set Wo of active constraint indices for the second phase if v0 is 
calculated by modifying v* to be feasible. The "active set" method uses 
only the currently binding (active) constraints at each iteration. 

Phase  1 
It is known that the minimum of the quadratic function: 

1 
f ( v )  = - v r A v  + c r v  

2 

with no constraints is the unique solution v* of A v = - e  if A is positive 
definite. For small problems, v * = - A - I ¢ .  For larger problems, it is more 
efficient [33] to solve for v* by factoring A into A = L D L  r where L is 
lower triangular and D is a diagonal matrix with positive elements on 
the diagonal. Then v* is found by a double process of forward substi- 
tution and back substitution as follows: LDLrv = - c .  Let y=DLrv;  then 
L y = - c  is solved for y* by forward substitution. Finally, we find v* 
from L r v = D - l y  by back substitution. 

Feasibility of  Vo 
The algorithm given to generate constraints can be used to define the 

order in which to adjust the values of v* for feasibility in a select and 
ultimate graduation. This process is accomplished by searching through 
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all constraints, beginning at the first constraint that is violated, in the 
order defined by the algorithm. At each succeeding step, increase the 
value of the variable with the negative coefficient so that the constraint 
is just satisfied or decrease the value to one, whichever is appropriate. 
Other types of graduations could use a similar algorithm to adjust for 
feasibility. Any feasible value can be used to begin phase 2, however. 

Phase 2 
In phase 2, we use v0 as the initial estimate of the solution of the 

problem: minimize f (v )  subject to Ev-<b. As mentioned above, we use 
a method of solving the Lagrange necessary conditions, combined with 
an active set method [33]. The Lagrange method is indicated if A is 
positive definite. 

Consider the equality constrained problem: 

minimize 

subject to 

1 
f (v )  = - vrAv + cTv 

2 

F x  = b ( C - l )  

where F is the matrix whose rows represent the currently active 
constraints. 

The Phase  2 Algori thm 

Start with a feasible point Vo and a working set, w0, of active constraint 
indices. Set j=O. 
Step 1. Solve the equality constrained program (C-4). If dj=O, perform 

step 3; otherwise perform step 2. 
Step 2. Set vj+ I=vj+ogd j, where atj is defined by (C-5). If c~< 1, adjoin 

the minimizing index in (C-5) to Wj to form Wj+I. S e t j = j +  I 
and return to step 1. 

Step 3. Compute Lagrange multipliers X, then let hq=min hi. The min- 
imum is taken over all indexes in the working set Wj. If hq~0,  
stop; vj is optimal. Otherwise, drop q from Wj to define Wj+ t- 
Set j = j +  1 and return to step 1. 

The Lagrange necessary conditions for the existence of a solution to 
this problem are 
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where the matrix 

Av + Frh + c = 0 

Fv - b = O  (C-2) 

is nonsingular if A is positive definite and h is the vector of Lagrange 
multipliers. 

The equality constrained problem can be solved by solving the linear 
system: 

At iteration j ,  a point vj is given that is feasible for all constraints and 
satisfies all the equality constraints of the current working set of indices 
Wj (that is, FvFb) .  The quadratic program (C-4) corresponding to the 
working set Wj is then defined by translating formula (C-l) to the point 
vj. This is done by letting v=vj+dj  in formula (C-l), which results in 
the program: 

minimize 

subject to 

where 

I d f A d  j + grd  j 
2 

gj = c + Av~. (C-4) 

Then the move in the improving direction is vj+~=vj+%dj, where 

= minimum {1, bi - e~vj/ aj 

e~d i > 0. (C-5) 
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This minimum is taken over  all inactive constraints ei (outside the work- 
ing set). 

Solution of the Lagrange Equations 
The solution of  problem (C-4) can be put in terms of solving: 

[A [:] 
= ; gj = c + Avj (C-6) 

for d and ~. The factorization of  A was found in phase 1. It can be 
shown that A = L D L  r, when A positive definite. Using this fact: 

where 

and 

F r =  LDX r 

L I ( - D 1 ) L  lr = XrDX. 

The product L D  is lower triangular, so X can be found by forward 
substitution since L and D have already been computed in phase 1. It 
can be shown that X is o f  full rank if F is o f  full rank. If X is of  full 
rank, then XrDX is positive definite [13, p. 71]. Then L ~ and - D  t are 
found by factorization. 

According to Luenberger,  X and L t can be updated as a constraint is 
added or removed from the working set. This feature was not used in 
the author's APL programs, but can yield efficiency for larger problems. 
Numerical accuracy deteriorates periodically and the process must then 
be restarted. 

APPENDIX D 

ADDITIONAL DETAILS ON THE MIXED DIFFERENCE MATRICES 

The mixed difference operator M of  degree z~, z2 . . . . .  zo applied to 
vx,~z,..,~o can be expressed as: 
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A~A~2...A~°vx,~2 ~o = - 1 - 1 - 1 
I 2 D " " " 12xjx2...xD 

where E is the translation operator [24, p. 77] and is defined by: 
d 

E VXIX2...Afd,,,A~D ~ VXIX2...Xd+ |,..3; D 
d 

(1 is the identity operator).  Applying the binomial theorem and multi- 
plying series, the mixed difference operator becomes:  

Z ~ "'" ~ (--I)(Y~ZJ--:~3')' ZI  Z2  " ' "  U x | + y l , x 2 + y 2 , . . . , X o + y  O 
Yl=O y2=O yD=O \Yl ]  \Y2] 

: E E E z, z2 zo 
y,=0y2=o yo=0 \ Y U  Y2 "" \ y o / v i  

where 

i = ~ ( X  1 + Y l ,  X2 + Y2 . . . . .  Xo  + Y o ) .  (D1) 

The upper  limits on the sums are increased f rom za to ha, for d = 1, 2, 
. . . .  D (respectively),  so that all terms are generated. This can be done 
because the additional terms introduced are zero due to the definition of  
the binomial coefficient. The mixed difference is posit ive when Xd = 1, 

2 . . . . .  no--Zo for all  d =  1, 2 . . . . .  and is zero otherwise.  Also, the mixed 
difference is zero if y d < 0  or yd>Zd for any d = l ,  2 . . . . .  D. 

These mixed differences can be calculated by multiplying the vector  
v on the left by the matrix: 

M t) = {mOt} ; n  = n l n 2 . . . n o .  
s~ ],2,...,n 
t= 1,2....,n 

0 
The quantity m~, depends on the values of  both x= (x l ,  x2 . . . . .  xo) and 
Y=(Yl, Y2 . . . . .  Yo) in Equation (4). The value of  x is determined by: 

x = (x~, x2 . . . .  , x~) = ~ - t ( s ) ,  

where s is the 1-row coordinate of  m °, .The value of  y is determined by: 

Y = (Y3,Y2 . . . . .  YD) = ~ - l ( t  - s + 1) - 1, 
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0 where t is the coordinate of  ms,, which is defined as: 

o {(-l)(~"P-~'~'(z'  ~ ( z : ]  ... (yOo);ifxa<na_za for all d = l , 2  . . . . .  D 
ms, = \Y 1,/\Y,~ / 

0 ; i fxa>na-za for any d. 

Note  that ms ° if  ya>za or ya<O (for any d) since 

( zd )  = 0 y a  

mst=O for t<s. The matrix M 1 is defined as by definition. As a result o 
M 1 = {m~,}, where 

\ Y~ / \  Yz 

m~t  ~- 

; if xd<--n~-za 

for all d = 1, 2 . . . . .  D 

0 ; i fxa>na-za 

for any d. 

by definition. 
Then $2 becomes 

~/1--21 tl2--Z 2 rlD--~7 D 

s =kZ 2 ..Z 
X I = |  x2= l  JCD=I 

= [(M ° - rMl)v]r(M ° - rM~)v 

= vrMrMv 

where 

M = M ° - rM I . 

za - 1) = 0 
Yd 

[~ ' a z2 . . .  ix z" - r a  ~' '-I a : ' - I  . . .  ix z ' - I  v i i  
2 D 1 2 D 

and the all-zero rows are the same as those of  M °. Also, m~,=0 if ya>za- 1 
or ya>O (for any d) ,  since 
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A P P E N D I X  E 

ADDITIONAL DETAILS ON VECTORIZATION 

A mult idimensional  object is "vectorized" as fo l lows  [30]: 

Vl ~ /~/I,1 . . . . .  I~1 

V 2  "~- L/I,I . . . . .  1,2 

-~- U l ,  nD I . . . . .  I .D  

nD+|  U [ , [  . . . . .  2,1 

V n D _ I n D  ~ U l ,  1 .. . . .  n D - l , n  D 

V p  -~  U n l , n 2 , . . . , n D .  

Note  that the last index is increased first. 
Then m can be written as 

m = (m l, m2 . . . . .  mn-1,  mD) 

where 
D D 

j = i + l  D + I  

There is a unique inverse function denoted by: ~b-I(i)=(xl ,  x 2 . . . . .  XD). 
The function ~b-~(i) is calculated by dividing i - 1  by no. The remainder 
is x o - 1 .  The resulting quotient is divided by nn- l .  This remainder is 
x o -  ~ - 1, and so on. 



DISCUSSION OF PRECEDING PAPER 

ELIAS S.W. SHIU: 

Professor Lowrie is to be thanked for this comprehensive paper on 
multidimensional graduation. I would like to raise the issue whether it 
is still appropriate to have Henderson's  name attached to the method. 
Perhaps some might even argue that Henderson 's  contribution had ac- 
tually mystified the Whittaker graduation and retarded its development.  
Here is the first paragraph of  Chapter 5 of  Miller 's  monograph [3]. 

5.0 Professor E. T. Whittaker of the University of Edinburgh first 
enunciated the principles of the difference-equation method in a paper 
published in 1919. Subsequently, Robert Henderson developed a prac- 
tical process for employing the method to make a numerical gradua- 
tion. For these reasons, difference-equation formulas are also referred 
to as Whittaker-Henderson formulas. 

Three pages later, Miller [3] explains Henderson 's  contribution. 

5.3 The pract ical  method o f  solving the difference equation. 
Formula A is used to graduate a great many other series than rates 

of mortality. For this reason, (5.21) is usually written in terms of u~'s 
rather than q~'s. The plain u,'s refer to the graduated series, the u~'s 
to the ungraduated series. In terms of these u,'s equation (5.21) becomes 

u" = ux + hb'ux. (5.31) 

The Henderson process for solving (5.31) is based on the fact that 
the equation may be factored in terms of its finite-difference operators 
and, by the introduction of the intermediate series, u', be replaced by 
two simpler difference equations: 

u" = l/2(a + l)(a + 2)u" - a(a + 2)u'_~ + ~/za(a + 1)u'-2, 
(5.32a) 

u'~ = l/2(a + 1)(a + 2)u~ - a(a + 2)u.~+, + l/2a(a + 1)ux.2; 
(5.32b) 

provided h and a are connected by the relationship 

h = z/aa(a + l)~(a + 2). (5.33) 

The actual factorization of (5.31) is demonstrated in (10.7). 

253 
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That the two equations (5.32a) and (5.32b) are equivalent to (5.31) 
may be verified by substituting the u"s obtained from (5.32b) in (5.32a). 

These two second-order difference equations are used in the form 

2a a 2 
r t t f t  

u, = ~ u , _ , -  + 2 U ' - 2 +  u,, (5.34a) 
a +  1 a ( a +  1 ) ( a + 2 )  • 

2a a 2 
u~ = ~ u~+l - ~ u,+2 + u'. (5.34b) 

a +  1 a +  2 ( a +  1)(a+ 2) 

If  two u"s at the zero end are supposed to be known, all the subse- 
quent u"s  may be found, in order, by (5.34a). If two u"s  at the other 
end can be found, the rest of the graduated series may be derived, in 
reverse order, by (5.34b). The only further problem that must be solved 
is the determination of these four "starting values." 

It may be shown (see (10.8)) that the two u , ' s  at the ~o-end can 
always be found accurately as soon as the intermediate u" series has 
been calculated. They are 

u~_ z = u ' _  ~ + a z ~ u ' _  ~, 
(5.35) 

u,, = u "  + a a u ' _ , .  

At the zero end of the series, the two needed values of u', cannot 
be determined accurately at the outset except by involved methods. If 
such methods are not to be resorted to, the first two graduated values 
must be estimated from the general run of the ungraduated values at 
the zero end. The graduation is completed using these estimated val- 
ues and then corrected, if necessary. 

I think one reason for the high esteem of  the Whit taker  graduation in 
North America  has been the complexi ty  of  Henderson ' s  solution. The 
above  is merely a description of  the solution for the Type  A graduation, 
without the technical details given in the Appendix  [3, Sections 10.7, 
10.8 and 10.9]. Miller [3, p. 40, p. 56] wrote: "Formula  B is rarely used 
except for making graduations of  considerable importance . . . .  The Type 
B formulas,  however ,  require a greater degree of  technical knowledge 
and substantially more difficult arithmetical work,  which tend to restrict 
their use to the construction of  important tables."  

Although Miller [3, p. 40] stated that "It]he method of  solution [for 
the Whittaker graduation] involves the solution of  to+ 1 [linear] equations 
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in to+ 1 unknowns," he did not seem to have searched for a more ef- 
fective solution from the numerical linear algebra literature. In 1955 Cra- 
goe [ 1] did point out that the Choleski factorization algorithm could be 
used instead of the Henderson algorithm, but this important observation 
seemed not to have been understood by most actuaries until the appear- 
ance of Greville's Study Note in 1973. 

I would like to repeat McKay's [2] statement that "any discussion of 
advances in Whittaker-Henderson graduation techniques should give credit 
to Dr. T.N.E. Greville, whose lucid Part 5 Study Note was a great help 
to a decade of actuarial students." I would further add that Greville's 
Study Note was also a great help to actuarial researchers, as evidenced 
by comparing the number of papers on graduation theory that appeared 
before and after the publication of the Study Note. 

Let me end this discussion with a philosophical question. The Whit- 
taker graduation is a global method of graduation. By "global" I mean 
that the method uses all observed values simultaneously for obtaining 
the graduated values. Changing one observed value will change all grad- 
uated values, whether they are of ages close by or far away. Is this 
reasonable? 
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(AUTHOR'S REVIEW OF DISCUSSION) 

WALTER B. LOWRIE: 

I thank Dr. Shiu for his comments. I agree that Henderson's name 
should be omitted from this method of graduation. I used it from habit. 
The comment about the effects of a change in one datum on the entire 
graduation is appropriate. This should be a matter of future research. 




