On the Importance of Dispersion Modeling for Claims Reserving: Application of the Double GLM Theory

> Danaïl Davidov under the supervision of Jean-Philippe Boucher

Département de mathématiques Université du Québec à Montréal

August 2009

D. Davidov (UQAM)

Loss Reserves Variance Modeling

August 2009 1 / 37

Table of Contents

Introduction

Tweedie GLM

- Model Definition
- Log-likelihood
- Overdispersion
- 3 Variance Modeling
 - Variance in regressions
 - Dispersion Models
 - Double GLMs

Swiss Motor Industry Example Analysis of results

5 Conclusion

Introduction

Definition

• A loss reserve is a provision for an insurer's liability for claims

Notes

Introduction

Definition

- A loss reserve is a provision for an insurer's liability for claims
- A stochastic model uses random variables in a regression framework

Notes

Introduction

Definition

- A loss reserve is a provision for an insurer's liability for claims
- A stochastic model uses random variables in a regression framework

Notes

 Claims reserves models presented here use GLM theory as introduced in *England*, *Verrall 2002*

Notations

• C_{i,j} Incremental payments

- C_{i,j} Incremental payments
- *w_{i,j}* Exposure

- *C_{i,j}* Incremental payments
- *w_{i,j}* Exposure
- *r_{i,j}* Incremental number of payments

- *C_{i,j}* Incremental payments
- w_{i,j} Exposure
- *r_{i,j}* Incremental number of payments
- Y_{i,j} Normalized incremental payments

- *C_{i,j}* Incremental payments
- w_{i,j} Exposure
- *r_{i,j}* Incremental number of payments
- Y_{i,j} Normalized incremental payments

•
$$Y_{i,j} = \frac{C_{i,j}}{w_{i,j}}$$

Hypotheses

• C_{i,j} is a compound Poisson-Gamma distribution

Hypotheses

- *C_{i,j}* is a compound Poisson-Gamma distribution
- Frequency ~ Poisson with mean $\vartheta_{i,j} w_{i,j}$ and variance $\vartheta_{i,j} w_{i,j}$

Hypotheses

- *C_{i,j}* is a compound Poisson-Gamma distribution
- Frequency \sim Poisson with mean $\vartheta_{ij}w_{ij}$ and variance $\vartheta_{ij}w_{ij}$
- Severity ~ Gamma with mean $au_{i,j}$ and variance $u au_{i,j}^2$

Hypotheses

- *C_{i,j}* is a compound Poisson-Gamma distribution
- Frequency ~ Poisson with mean $\vartheta_{ij}w_{ij}$ and variance $\vartheta_{ij}w_{ij}$
- Severity ~ Gamma with mean $au_{i,j}$ and variance $u au_{i,j}^2$
- Using the following parametrisation

$$p = \frac{\nu + 2}{\nu + 1} , p \in (1, 2)$$

$$\mu = \vartheta \tau$$

$$\phi = \frac{\vartheta^{1 - \rho_{\tau} 2 - \rho}}{(2 - \rho)}$$

Tweedie Model • $Y_{i,j} \sim Tweedie(\mu_{i,j}, p, \phi, w_{i,j})$

Tweedie Model • $Y_{i,j} \sim \text{Tweedie}(\mu_{i,j}, p, \phi, w_{i,j})$ • $\mu_{i,j} = e^{X\beta}$

Tweedie Model

- $Y_{i,j} \sim Tweedie(\mu_{i,j}, p, \phi, w_{i,j})$ • $\mu_{i,i} = e^{X\beta}$
- $E[Y_{i,j}] = \mu_{i,j}$, $Var[Y_{i,j}] = \frac{\phi}{w_{i,j}} \mu_{i,j}^p$

Log-likelihood function

Tweedie Model

$$I = \sum_{i,j} r_{i,j} \log \left(\frac{(w_{i,j}/\phi)^{\nu+1} y_{i,j}^{\nu}}{(p-1)^{\nu} (2-p)} \right) \\ - \log \left(r_{i,j}! \Gamma \left(r_{i,j} \nu \right) y_{i,j} \right) + \frac{w_{i,j}}{\phi} \left(y_{i,j} \frac{\mu_{i,j}^{1-p}}{1-p} - \frac{\mu_{i,j}^{2-p}}{2-p} \right)$$

D. Davidov (UQAM)

Loss Reserves Variance Modeling

August 2009 7 / 37

Parameters

FIGURE: Parameter main influence

D. Davidov (UQAM)

Loss Reserves Variance Modeling

August 2009 8 / 37

Parameter *p*

Tweedie Model

Can be estimated only when the number of payments is known

Parameter *p*

Tweedie Model

- Can be estimated only when the number of payments is known
- Otherwise, it's supposed fixed and known

Parameter *p*

Tweedie Model

- Can be estimated only when the number of payments is known
- Otherwise, it's supposed fixed and known
- p and ϕ need both to be estimated at the same time

Optimizing ϕ using the likelihood principle

$$\widehat{\phi_{p}} = \frac{-\sum_{i,j} w_{i,j} \left(y_{i,j} \frac{\mu_{i,j}^{1-p}}{1-p} - \frac{\mu_{i,j}^{2-p}}{2-p} \right)}{(1+\nu) \sum_{i,j} r_{i,j}}$$

D. Davidov (UQAM)

Loss Reserves Variance Modeling

August 2009 10 / 37

Parameter ϕ

FIGURE: Optimizing p using the likelihood principle for ϕ

D. Davidov (UQAM)

Loss Reserves Variance Modeling

August 2009 11 / 37

Parameter ϕ

Optimizing ϕ using the deviance principle

$$\widehat{\phi_{p}} = \sum_{i,j} \frac{2}{N-Q} \left(y_{i,j} \frac{y_{i,j}^{1-p} - \mu_{i,j}^{1-p}}{1-p} - \frac{y_{i,j}^{2-p} - \mu_{i,j}^{2-p}}{2-p} \right)$$

Loss Reserves Variance Modeling

August 2009 12 / 37

Parameter ϕ

FIGURE: Optimizing p using the deviance principle for ϕ

D. Davidov (UQAM)

Loss Reserves Variance Modeling

August 2009 13 / 37

Note

The exposure has been incorporated in the begining, within the initial hypothesis

Loss Reserves Variance Modeling

August 2009 14 / 37

Note

- The exposure has been incorporated in the begining, within the initial hypothesis
- Different ways of incorporating the exposure within the initial hypothesis would lead to different models

Compound Poisson Model

$$Y = \sum_{k=1}^{N} X_{i}$$

	Case 1	Case 2	Case 3
E[N]	10	20	10
Var[N]	10	20	10
E[X]	10	10	20
Var[X]	100	100	400
E[Y]	100	200	200
Var[Y]	2000	4000	8000

TABLE: Mean and variance of total costs for various situations

D. Davidov (UQAM)

Loss Reserves Variance Modeling

August 2009 15 / 37

Typical situation in a long-tail business

Decreasing average frequency

Typical situation in a long-tail business

- Decreasing average frequency
- Increasing average severity

Typical situation in a long-tail business

- Decreasing average frequency
- Increasing average severity
- Increasing variance in the severity

Impact of the Distribution

FIGURE: Fitted curve for Normal, Poisson and Gamma models

D. Davidov (UQAM)

Loss Reserves Variance Modeling

August 2009 17 / 37

Dispersion Models

Model Definition • $Y_{i,j} \sim Tweedie(\mu_{i,j}, p, \phi_{i,j}, w_{i,j})$

Dispersion Models

Model Definition

• $Y_{i,j} \sim Tweedie(\mu_{i,j}, p, \phi_{i,j}, w_{i,j})$ • $\mu_{i,j} = e^{X\beta}$

D. Davidov (UQAM)

Loss Reserves Variance Modeling

August 2009 18 / 37

Dispersion Models

Model Definition

- $Y_{i,j} \sim Tweedie(\mu_{i,j}, p, \phi_{i,j}, w_{i,j})$
- $\mu_{i,j} = e^{X\beta}$

•
$$E[Y_{i,j}] = \mu_{i,j}$$
, $Var[Y_{i,j}] = \phi_{i,j}\mu_{i,j}^{p}$
Model Definition

- $Y_{i,j} \sim \overline{\text{Tweedie}}(\mu_{i,j}, p, \overline{\phi_{i,j}, w_{i,j}})$
- $\mu_{i,j} = e^{X\beta}$

•
$$E[Y_{i,j}] = \mu_{i,j}$$
, $Var[Y_{i,j}] = \phi_{i,j}\mu_{i,j}^{p}$

•
$$\phi_{i,j} = e^{V\gamma}$$

Log-likelihood

$$I = \sum_{i,j} r_{i,j} \log \left(\frac{(w_{i,j}/\phi_{i,j})^{\nu+1} y_{i,j}^{\nu}}{(p-1)^{\nu} (2-p)} \right) - \log (r_{i,j}! \Gamma (r_{i,j}\nu) y_{i,j}) + \frac{w_{i,j}}{\phi_{i,j}} \left(y_{i,j} \frac{\mu_{i,j}^{1-p}}{1-p} - \frac{\mu_{i,j}^{2-p}}{2-p} \right)$$

D. Davidov (UQAM)

Loss Reserves Variance Modeling

August 2009 19 / 37

Notes

• The *p* parameter is optimized at the same time as all other parameters using implicitly the **likelihood** principle

- The p parameter is optimized at the same time as all other parameters using implicitly the likelihood principle
- Accident years do not have a significant impact on the dispersion parameter

- The p parameter is optimized at the same time as all other parameters using implicitly the likelihood principle
- Accident years do not have a significant impact on the dispersion parameter
- Due to lack of data in the last column, the model was build so that the last two columns have the same dispersion parameter

- The *p* parameter is optimized at the same time as all other parameters using implicitly the likelihood principle
- Accident years do not have a significant impact on the dispersion parameter
- Due to lack of data in the last column, the model was build so that the last two columns have the same dispersion parameter
- Possibility to incorporate trends in the dispersion parameter by using the Hoerl's curve parametrisation

Algorithm

Start with the initial exposure and find the normalized incremental payments

Loss Reserves Variance Modeling

August 2009 21 / 37

- Start with the initial exposure and find the normalized incremental payments
- 2 Find the deviance between fitted and observed values

- Start with the initial exposure and find the normalized incremental payments
- 2 Find the deviance between fitted and observed values
- Model the deviance

- Start with the initial exposure and find the normalized incremental payments
- 2 Find the deviance between fitted and observed values
- Model the deviance
- 4 Establish the new exposure and start over

Component	Mean modeling	Variance modeling
Target variable	Y	d
Mean	μ	φ
Variance	$\phi V(\mu)$	$2\phi^2$
Link	$\eta = g(\mu)$	$\eta_d = g_d(\phi)$
Linear predictor	$\eta = \mathbf{X} \beta$	$\mathbf{V} \qquad \eta_d = \mathbf{V} \gamma$
Deviance	$2 \int_{\lambda}^{y} \frac{y-\mu}{V(\mu)} d\mu$	$2(-\log(d/\phi) + (d-\phi)/\phi)$
Exposure	w/\$	_ 1

FIGURE: Inter-relationship between the two sub-models

D. Davidov (UQAM)

Loss Reserves Variance Modeling

August 2009 22 / 37

Iterative Weighted Least Squares

Algorithm additional specifications

Analogous to Fisher's weighted scoring method for optimization

Iterative Weighted Least Squares

Algorithm additional specifications

- Analogous to Fisher's weighted scoring method for optimization
- IWLS implicitly uses the deviance principle for estimating ϕ

Restricted Maximum Likelihood

Notes

 Maximum likelihood estimators are biased downwards when the number of estimators is large compared to the number of observations

Restricted Maximum Likelihood

- Maximum likelihood estimators are biased downwards when the number of estimators is large compared to the number of observations
- REML produces estimators which are approximately and sometimes exactly unbiased

Restricted Maximum Likelihood

- Maximum likelihood estimators are biased downwards when the number of estimators is large compared to the number of observations
- REML produces estimators which are approximately and sometimes exactly unbiased
- Approximately maximizes the penalized log-likelihood

$$I *_{p} (y; \gamma; p) = I(y; \beta_{\gamma}; \gamma; p) + \frac{1}{2} \log \left| X^{T} W X \right|$$

Algorithm

Suppose p fixed and known

Loss Reserves Variance Modeling

August 2009 25 / 37

- Suppose p fixed and known
- 2 Evaluate all the other parameters using the DGLM

- Suppose p fixed and known
- 2 Evaluate all the other parameters using the DGLM
- Second Second

- Suppose p fixed and known
- 2 Evaluate all the other parameters using the DGLM
- Evaluate the penalized log-likelihood
- Start over with different values for *p* and compare the penalized log-likelihood

Reserve Variability

Mean Square Error of Prediction

 Dispersion Models : overdispersion included implicitly in the parameter covariance matrix

Reserve Variability

Mean Square Error of Prediction

- Dispersion Models : overdispersion included implicitly in the parameter covariance matrix
- GLMs : overdispersion is included manually in the parameter covariance matrix

Data Analyzed

			I	ncreme	ntal Pay	ments					
AY	1	2	3	4	5	6	7	8	9	10	11
1	17 841 110	7 442 433	895 413	407 744	207 130	61 569	15 978	24 924	1 236	15 643	321
2	$19\ 519\ 117$	6 656 520	$941 \ 458$	155 395	$69 \ 458$	37 769	53 832	$111 \ 391$	42 263	25 833	
3	19 991 172	$6\ 327\ 483$	$1\ 100\ 177$	279 649	162 654	70 000	56 878	$9\ 881$	19656		
4	$19 \ 305 \ 646$	$5\ 889\ 791$	793 020	309 042	$145 \ 921$	$97 \ 465$	27 523	$61 \ 920$			
5	$18 \ 291 \ 478$	$5\ 793\ 282$	$689\ 444$	288 626	345 524	110 585	115 843				
6	$18 \ 832 \ 520$	$5\ 741\ 214$	581 798	248 563	106 875	$94 \ 212$					
7	$17\ 152\ 710$	5 908 286	524 806	$230 \ 456$	346 904						
8	$16 \ 615 \ 059$	$5\ 111\ 177$	553 277	252 877							
9	16 835 453	$5\ 001\ 897$	489 356								

Swiss Motor Industry (Wütrich 2003)

Loss Reserves Variance Modeling

August 2009 27 / 37

Data Analyzed

w_i		
112 953		
110 364		
105 400		
102 067		
$99\ 124$		
$101 \ 460$		
94 753		
92 326		
89 545		

D. Davidov (UQAM)

Loss Reserves Variance Modeling

August 2009

28/37

Data Analyzed

AY	1	2	3	4	5	6	7	8	9	10	11
1	6 229	3 500	425	134	51	24	13	12	6	4	1
2	6 395	3 342	402	108	31	14	12	5	6	5	
3	6 406	2 940	401	98	42	18	5	3	3		
4	$6\ 148$	2898	301	92	41	23	12	10			
5	5 952	2 699	304	94	49	22	7				
6	5924	2692	300	91	32	23					
7	5 545	2754	292	77	35						
8	5 520	$2 \ 459$	267	81							
9	5 390	2 224	223								

D. Davidov (UQAM)

Loss Reserves Variance Modeling

August 2009 29 / 37

FIGURE: Restricted log-likelihood for various p in a DGLM

D. Davidov (UQAM)

Loss Reserves Variance Modeling

August 2009 30 / 37

		GLM 1 param	teter $p = 1.1741$	Dispersion 9 par	ameters $p = 1.8111$	DGLM 9 paran	neters $p = 1.6625$
AY	$w_{i,j}$	R_i	$MSEP^{1/2}$	R_i	$MSEP^{1/2}$	R_i	$MSEP^{1/2}$
1	112 953	121	121	-27	12	-2	2
2	$110 \ 364$	326	2 638	324	736	291	2 809
3	$105 \ 400$	21 565	26 804	21 352	27 769	19586	32 040
4	$102 \ 067$	40 716	35 556	40 185	34 658	37 191	41 717
5	$99\ 124$	89 298	53 297	87 224	$54\ 103$	83 592	68 788
6	$101 \ 460$	138 335	$66\ 052$	138 203	62 649	131 053	80 811
7	94 753	$204 \ 262$	80 906	$202 \ 469$	69 443	206 128	91 283
8	92 326	360 484	111 999	359 148	82 510	343 778	137 516
9	89 545	597 056	150 003	596 119	$93 \ 407$	560 207	151 951
Total	-	$1 \ 452 \ 042$	271 886	$1 \ 445 \ 024$	234 818	1 381 827	334 269

Loss Reserves Variance Modeling

August 2009 31 / 37

	GI	GLM $p = 1.1741$ Dispersion 9 parameters $p = 1.8111$						DGLM 9 parameters $p = 1.6625$				
AY	Estimation	Process	$EQMP^{1/2}$	Estimation	Process	$EQMP^{1/2}$	Estimation	Process	$EQMP^{1/2}$			
1	1.5		<i>a</i> .	10 ⁻⁷⁰		170		5				
2	1 869	1 861	2 638	546	493	736	2 728	668	2 809			
3	15 601	21 795	26 804	16 984	$21 \ 970$	27 769	23 141	22 161	32 040			
4	19 144	$29 \ 962$	35 556	20 001	$28 \ 304$	34 658	$28 \ 436$	30 524	41 717			
5	25 976	46 538	53 297	28 127	$46 \ 217$	$54\ 103$	39 518	56 304	68 788			
6	30 564	58 556	66 052	32 881	53 327	62 649	$44 \ 424$	67 505	80 811			
7	35 230	72 833	80 906	34 783	60 103	69 443	$48 \ 145$	77 554	91 283			
8	45 664	$102 \ 268$	111 999	40 846	71 690	82 510	56 744	$125 \ 263$	137 516			
9	61 307	136 903	150 003	47 079	80 675	93 407	61 431	138 980	151 951			
Total	180 126	203 658	271 886	183 345	146 711	234 818	248 122	223 989	334 269			

Loss Reserves Variance Modeling

August 2009 32 / 37

# Obs.	Principle	1	2	3	4	5	6	7	8	9	10	11
0	Deviance	$3 \ 921$	3 921	3 921	3 921	3 921	3 921	3 921	3 921	3 921	3 921	3 921
0	1 parameter	199	199	199	199	199	199	199	199	199	199	199
0	9 parameters	202	169	259	384	716	648	1 003	1 269	901	904	904
7	Deviance	1 857	1 857	1 857	1 857	1 857	1 857	1 857	1 857	1 857	1 857	1 85
7	1 parameter	198	198	198	198	198	198	198	198	198	198	19
7	9 parameters	202	166	250	384	637	648	800	964	898	903	90
14	Deviance	1 117	1 117	1 117	1 117	1 117	1 117	1 117	1 117	1 117	1 117	1 11
14	1 parameter	198	198	198	198	198	198	198	198	198	198	19
14	9 parameters	204	166	250	385	637	648	922	969	880	904	90

FIGURE: Adjusting the most deviant observations has a bigger influence on the deviance principle

С	ell	Principle	
i	$_{j}$	Maximum likelihood	Deviance
1	1	14,19	149,56
2	1	15,28	0,77
3	1	15,58	0,02
4	1	15,14	8,32
5	1	14,49	3,31
6	1	14,84	30,41
7	1	13,73	4,93
8	1	13,38	11,30
9	1	13,52	31,57
1	2	6,90	267,52
2	2	6,28	11,70
3	2	6,03	10,56
ŝ	ł		3
 Total		199.28	3 921,00

FIGURE: Contribution of each cell to the dispersion. p = 1.1741, $w_{i,j} \equiv 1$

D. Davidov (UQAM)

Loss Reserves Variance Modeling

August 2009 34 / 37

Further Discussion

 Lack of observations and abundance of parameters is a hostile environment for DGLMs

- Lack of observations and abundance of parameters is a hostile environment for DGLMs
- The deviance cannot be estimated in the last column for a DGLM and is hence ignored when estimating ϕ

- Lack of observations and abundance of parameters is a hostile environment for DGLMs
- The deviance cannot be estimated in the last column for a DGLM and is hence ignored when estimating ϕ
- The algorithm does not converge for *p* fixed when there are more than 7 parameters

- Lack of observations and abundance of parameters is a hostile environment for DGLMs
- The deviance cannot be estimated in the last column for a DGLM and is hence ignored when estimating ϕ
- The algorithm does not converge for p fixed when there are more than 7 parameters
- The algorithm does converge for *p* fixed for one parameter, but *p* cannot be optimized

- Lack of observations and abundance of parameters is a hostile environment for DGLMs
- The deviance cannot be estimated in the last column for a DGLM and is hence ignored when estimating ϕ
- The algorithm does not converge for *p* fixed when there are more than 7 parameters
- The algorithm does converge for *p* fixed for one parameter, but *p* cannot be optimized
- The "bounds" of convergence need to be explored further

References

÷.

England, PD and Verrall, RJ (2002). Stochastic Claims Reserving in General Insurance. Institute of Actuaries and Faculty of Actuaries

Smyth, G. and Jorgensen, B. (2002). Fitting Tweedie's Compound Poisson Model to Insurance Claims Data : Dispersion Modelling. ASTIN Bulletin, 1, 143–157

Wüthrich, MV (2003). Claims Reserving Using Tweedie's Compound Poisson Model. ASTIN Bulletin, 331–346
The end

D. Davidov (UQAM)

Loss Reserves Variance Modeling

August 2009 37 / 37