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ABSTRACT 

This paper represents an attempt to formulate a cohesive and consistent 
approach to the analysis of claim liabilities. Probabilistic tools from risk and 
queueing theory have been incorporated into a stochastic model that quan- 
tifies the variability inherent in such liabilities and at the same time repro- 
duces intuitive results that may be arrived at from a deterministic standpoint. 
The model can be used to estimate various quantities of interest while pro- 
viding a yardstick for measuring the accuracy of the estimates. Numerical 
examples illustrate the methodology. 

Section 1 describes the problem and reviews some results from probability 
and risk theory. The liability of unreported claims is the subject of Section 
2, where the first two parts outline an intuitive model that is well suited for 
practical implementation, as is illustrated by numerical examples. More gen- 
eral approaches that take into account seasonality of claims incurral, infla- 
tion, business growth, variations in risk levels, and other factors are considered 
in the final part. 

The analysis of the liability of reported claims is considered in Section 3. 
This liability is shown to be statistically independent of the liability of un- 
reported claims. A queueing theoretic approach to the modeling of the claim 
settlement process is proposed. In addition, models of various degrees of 
complexity are analyzed, and some numerical examples are provided. A 
recurring theme of this section is the approximate right tail behavior of the 
distribution of the liability of reported claims. Thus the amount needed to 
cover such liabilities can be estimated with a specified probability. 

In Section 4 analysis of the delay in claims processing is discussed. An 
example illustrates how this information can be used to help analyze the 
efficiency of the claims administration system. Again, an approximation 
technique is developed for the distribution of the delay. Section 5 discusses 
areas for future research. 
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1. INTRODUCTION 

1. I The Claims Payment Process 

The claims payment process is of considerable interest to insurers for 
various reasons. The process normally involves a time lag following incurral 
of the accident, death or other claim-causing event until final payment is 
made and the claim is settled. A consequence of the delay in payment of 
claims is the need to estimate outstanding claim liabilities as of a particular 
accounting date. This allows for the measurement of profit and loss within 
a particular accounting period to be made on a revenue basis. Estimation of 
these outstanding claim liabilities is a required component of any insurance 
company financial statement, whether it be annual statements required by 
regulatory authorities, in which case reporting is usually done on a statutory 
(conservative) basis, or an internal profit-and-loss statement on a more re- 
alistic basis. The import attached to the accuracy of such estimates is dem- 
onstrated in health insurance, for example, by the requirement that a 
retrospective test be performed to determine the accuracy of such liabilities 
in Schedule H of the NAIC statement in the U.S. Fundamental concepts 
involved in the analysis of these liabilities can be found in Bragg [3] or in 
Bowers et al. [2, chapters 5 and 9]. More advanced discussion of the phi- 
losophy of these liabilities and their intended purposes can be found in 
Koppel et al. [18]; see also Barnhart [1]. 

The time required to pay claims also reflects the efficiency of the insurers' 
claims processing system. Thus, a less efficient system will take longer, on 
average, to process a claim than a more efficient one. This may be a par- 
ticularly important criterion in the selection of a carrier in group life and 
health insurance. The speed with which an insurer can efficiently process 
claims and remit payment may help determine whether new business can be 
obtained. Obviously, the need to monitor the whole claims payment process 
(as well as its constituent components) is crucial for insurers. 

A mathematical model of the claims payment process can be quite useful. 
The model can normally provide numerical estimates of quantities of interest 
such as the liability at a point in time (needed for financial statements) or 
the time required to process a given type of claim. If a component of the 
system is unacceptable relative to expectation, the mathematical model can 
help predict the effect of a change. For example, if the time to approve a 
claim is unduly long due to too high a volume of claims, the effect of hiring 
additional staff can be assessed. Thus, a mathematical model that captures 
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the salient physical features of the process can act as a "'window" to the 
world that is being modeled. Considerable insight into the process can be 
obtained, a point that Bragg discusses in [3, p. 26], suggesting that such a 
model is of particular use for new blocks of business or where information 
is difficult or even impossible to obtain. 

Holsten proposed one such mathematical model [13]. A major drawback 
of this model is its deterministic nature. Clearly, the problem is stochastic 
because the exact amount of outstanding claims cannot be ascertained. As 
a result, any deterministic formulation cannot capture the random variability 
inherent in the claims incurral process (the subject matter of risk theory, for 
example, Bowers et al. [2]) or the effect of an increased volume of claims 
in course of settlement, resulting in an increase in the total time to pay 
claims. Furthermore, the accuracy of the amount held for claim liabilities 
in various financial statements (the subject of the test discussed earlier) 
should more properly be assessed in light of its inherent variability before 
deciding whether the process used to set such amounts needs modification. 
This is particularly important because this variability can be quite large for 
some types of coverages, and such assessment cannot be made by using a 
deterministic model. Bragg [3, p. 36] suggests that the use of confidence 
intervals is appropriate in this connection; specifically, the amount held 
should have a "three-to-one likelihood of sufficiency." Such a requirement 
necessitates the use of a stochastic rather than a deterministic model. 

A wide variety of stochastic models have been proposed in connection with 
"loss reserving," and many of these are described by Taylor [29] and Van 
Eeghen [32]. These models consider the "incurred but not reported," or IBNR, 
issue and, as Ruohonen notes [27], do not refer to the use of queueing theoretic 
techniques, nor do they attempt to integrate the methodology with standard risk 
theoretic models (for example, Bowers et al. [2]). 

In this paper, the use of queueing techniques is shown to retain the ad- 
vantages of other stochastic models by quantifying the inherent variability, 
while also allowing for modeling other important features such as the effect 
of congestion (due to large numbers of claims) on the claims payment process. 
Consequently, in addition to providing a stochastic model for the total time 
from incurral of a claim to payment (as well as the constituent parts), models 
for the number of outstanding claims at each stage of the payment process 
can be obtained (amounts held to cover the associated liabilities may need 
to be subdivided similarly for statement purposes; see O'Grady [21, p. 105]). 
In some situations, a model for the number of claims reported but unpaid 
may be unnecessary because the required claim counts can be obtained 
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exactly. In many instances, however, such data may not be available in the 
required format (particularly if collected for another purpose), or they may 
be costly to obtain. Furthermore, one is often interested in forecasting profit- 
and-loss statements for several accounting periods into the future, and in 
these situations predictions of reported claims may need to be made. 

Risk theoretic tools (for example, Bowers et al. [2]) can be employed to 
combine information on individual losses with the number of claims reported 
but unpaid, resulting in a stochastic model for the outstanding liability, and 
hence allowing variability to be quantified. Thus, the accuracy of an amount 
set aside to cover such liabilities may be assessed in light of the associated 
variability (which can be quite substantial). 

An additional feature of the queueing theoretic approach is that, unlike 
many other models (compare Ruohonen [27]), the results are both consistent 
with and enhanced by the use of risk theory models. Consequently, the data 
required to use the models are the same as those needed for standard risk 
theoretic calculations. Thus, for weekly indemnity-type coverages, for ex- 
ample, a continuance table (for example, Bowers et al. [2, p. 377]) would 
be needed, whereas for life insurance the face amount and mortality rates 
are required (for example, Bowers et al. [2, section 13.3]). For other health- 
and casualty-type coverages, the data on individual losses are the same as 
those required for rate-setting purposes. A thorough discussion of modeling 
claim size distributions based on observed losses can be found in Hogg and 
Klugman [12]. 

The aim of this paper is to indicate various ways in which queueing 
theoretic tools can provide valuable insight into the claims payment process. 
Although some characteristics of practical situations are considered, it is not 
intended that the models or methods be used in any given situation. Con- 
sequently, only standard queueing methodology is used, but a knowledge of 
risk theory at the level of Bowers et al. [2] is sufficient background, as all 
other ideas are presented as needed. Furthermore, whereas the techniques 
may be applied to blocks of business in various lines of insurance (for 
example, group or individual, life or health), there can be specific coverages 
that are of a sufficiently long-term nature (for example, long-term disability) 
that the methods are not recommended. 

1.2 Outline of the Paper 

The remainder of the paper is devoted to the analysis of the claims pay- 
ment process. Section 1.3 briefly reviews some of the important probabilistic 
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and risk theoretic concepts, including generating functions, some parametric 
distributions, and compound distributions. Chapter 11 of Bowers et al. [2] 
covers many of these concepts. The claims incurral process is discussed in 
Section 1.4. The number of claims process is assumed to be a Poisson 
process, the usual risk theoretic assumption [2, chapter 12]. 

Section 2 deals with models for the claim liability due to unreported 
claims. The basic model is presented in Section 2.1 along with a numerical 
example involving life insurance, which helps to illustrate the methodology. 
A more general approach that can relate the reporting time to factors such 
as the size of a claim (a claimant may report a large claim more promptly 
than a relatively insignificant one) is proposed in Section 2.2. A numerical 
example is given. Other important subjects, such as inflation (clearly of 
interest in connection with various types of medical coverages), seasonality 
of claims incurral and reporting, growth of the business, and heterogeneity 
of risk levels, are treated in Section 2.3. 

Reported claims are the subject matter of Section 3. Section 3.1 considers 
the reported claims process, and Section 3.2 presents the basic model with a 
numerical example. Section 3.3 utilizes queueing network theory in the simul- 
taneous modeling of claims in various stages of the claims evaluation process. 
Such a breakdown is sometimes needed for statutory purposes (compare O'Grady 
[21, p. 105]). A more complicated model for the claim approval process is 
considered in Section 3.4. Section 3 also shows that relatively simple estimates 
of the claim liability can be obtained by using these models. Thus, for example, 
the amount needed to cover the liability with a specified confidence level can 
easily be estimated in the terminology of Bragg [3, p. 36]. 

Section 4 deals specifically with the analysis of the time that a claim is 
delayed in various processing stages. Thus, a policyholder or certificate 
holder may be interested in the total time from claim incurral until payment 
is actually received, because this determines the delay in receipt of funds. 
The insurer, on the other hand, may be interested in the time from receipt 
of notification of the claim until final approval or even actual disposal of 
the proceeds, because this time reflects the efficiency of the claims admin- 
istration system. 

Section 5 indicates areas for further research. 

1.3 Concepts from Probability and Risk Theory 
This section reviews the concepts useful in the stochastic modeling of the 

claims payment process. 
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Suppose that X is a random variable with probability density function 
(pdf) fr(x) i fX is continuous or probability function (pf)fx(x) i fX is discrete. 
The distribution function (dr) is 

Fx(x) = Pr(X < x) (1.3.1) 

and the moment generating function (mgf) of X is 

Mr(s) = E(e 'x) = J e = dFx(x). (1.3.2) 

If X is a discrete random variable defined on the nonnegative integers, it is 
often convenient to use the probability generating function (PgO 

Px(s) = E(s x) = ~, f x ( x ~  (1.3.3) 
x=O 

rather than (1.3.2). Evidently, Mr(s)=Pr(e'). The moments of X can be 
obtained from (1.3.2) or (1.3.3). Thus, 

E(X) = M~0) = P,(.(1), (1.3.4) 

whereas, for the variance, 

Var(X) = M"x(0) - {Mj(0)} 2 = F ~ I )  + Pj(1) - {Pj(1)} 2. (1.3.5) 

If no ambiguity results, the subscript X can be dropped from (1.3.1), (1.3.2), 
or (1.3.3). 

Various probability distributions will be used for modeling. A flexible 
family of distributions is the gamma family, with pdf 

13-,, x*-l e-x/a 
f(x) = , x > 0 (1.3.6) 

and mgf 

M(s) = (1 - I~) -'~, s < 13-1, (1.3.7) 

where a and 13 are positive parameters. The exponential distribution is the 
special case a =  1, and in this case the df is given by 

F(x) = 1 - e -'/~, x > 0. (1.3.8) 

A second family of distributions that has slightly thicker tails than the 
gamma is the inverse Gaussian, with pdf 
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13) in (2~-~a? 
f(x) = -~ ~-5 e x > 0 (1.3.9) 

and mgf 

M(s) = e -~ttl-~)~-lI, s -< 13-1 (1.3.10) 

where ~ and 13 are positive parameters. This latter family is discussed in 
detail by Chhikara and Folks [7]. Various other continuous pdf's are of use 
in various insurance contexts, and Hogg and Klugman [12] consider many 
of these in detail in connection with individual losses. 

Of fundamental importance in connection with claim counts is the Poisson 
distribution with pf 

XxeX 
f(x) = x! ; x = 0 , 1 , 2  . . . .  (1.3.11) 

and pgf 

P(s) = e ~c~-1), s < ®. (1.3.12) 

Many important distributions in insurance may be obtained by mixing 
(compare Hogg and Klugman [12, section 2.7]). For example, if f~(x) is a 
pdf or pf for each ie(1, 2 . . . . .  k), then so is 

k 

f(x)= ~, q,~ (x) (1.3.13) 
i -1  

where {qi; i = 1, 2 . . . .  , k} is a probability distribution. Mixtures of expo- 
nentials, for example, have been used in Bowers et al. [2, chapter 12] in 
connection with ruin theory. An important class of discrete distributions is 
obtained by letting the Poisson parameter be random, thus 

ta 

f(x) = I 
(Xy) ~ e-~,y 

x[ u(y)dy, x = 0, 1, 2 . . . .  (1.3.14) 
0 

where ufy) is itself the pdf of a positive random variable. The pgf associated 
with (1.3.14) is 

P(s) = J e ~y~s-1) u(y)dy = MI{X(s - 1)}, (1.3.15) 
0 
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where 
aD 

M,(s) = ] e w u(y)dy 
o 

is the mgf associated with the pdf u(y). Mixed Poisson distributions are 
important in insurance modeling, as well as in a queueing context. The 
negative binomial distribution is the special case in which u(v) is a gamma 
pdf, and in this case (1.3.14) becomes (with k = 1) 

+ - 13 * 

x = 0, 1, 2 . . . . .  (1.3.16) 

and (1.3.15) is, using (1.3.7), 

P(s) = {1 - 13(s - 1)}-% s < 1 + 1 3 - 1 .  (1.3.17) 

The geometric distribution is the special case ~ = 1. 
Except in special cases (such as the above), the integral in (1.3.14) is 

difficult to evaluate. An approximation can be given for large x,  however. 
Using the notation a(x)-b(x) ,  x - - ~  to mean lira a(x)/b(x)= 1, it can be 
shown (compare Willmot [36]) that if x~® 

u(x) - C ~  e - %  x ~ ® (1.3.18) 

where C>0,  -00 <~b< ~, and t~->0, then (1.3.14) satisfies 

f(x) (k + t~) *+' , x ~ .  (1.3.19) 

Compound distributions play an important role in what follows. If N is a 
discrete random variable taking values on the nonnegative integers, and if 
{X~, X2, ...} is a sequence of independent and identically distributed random 
variables (also independent of N) with common mgf Mx(s), then the random 
variable Y=X1 +X2 + ... +AN (where Y= 0 if N =  0) has a compound dis- 
tribution with mgf My(s)=P~Mx(s)}. See Bowers et al. [2, chapter 11], for 
example. The distribution of Y is complicated, but Panjer [23] gives a re- 
cursive numerical algorithm for the evaluation of fy(x) for various choices 
of f~(x). Also, suppose that 

fu(x) - Cx* 0 ~, x --* ®, (1.3.20) 
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where C > 0 , - ~ < d ~ < ~ ,  and 0<0<1 ,  and assume that there exists K>0 
satisfying Mr(K) = 0-1. Then it can be shown (compare [8] and [35]) that 

(1.3.21) 1 - F y ( x ) - C ~ x * e  - ~ ,  x - - ) ®  

where 

C1 = C/{(e ~ - 1)(0M~K)) °÷1} 

if X is itself discrete on the nonnegative integers and 

C1 = C/{K[OM'xO¢)] '~+ '} 

if X is continuous. Clearly, (1.3.19) is itself of the form (1.3.20), and so 
tail estimates for the distribution of Y hold if N is negative binomial, for 
example. 

1.4 The Claims Incurral Process 

One of the main building blocks in the construction of a model for the 
claims payment process is a model for the claims incurral process. We 
assume that the number of incurred claims {K,; t->0} is an ordinary Poisson 
process (that is, K, is the number of claims incurred in [0, t]). This is the 
usual model in risk theory (compare Bowers et al. [2, chapter 12]). Thus, 
{K,; t_>0} has the following properties: 

(i) Ko=0 
(ii) {K,; t_>0} has stationary and independent increments 

(iii) Pr{K,+h-I~=k}=(kt)*e-~ ' /k! ;  k = 0 ,  1, 2, . . . .  
The parameter h is called the rate of the process. A more detailed discussion 
of the assumptions leading to a Poisson process can be found in Bowers et 
al. [2, pp. 346-350]. 

A few other properties of the Poisson process are used subsequently, and 
they are recorded here for completeness. If a claim is classified upon incurral 
as being of type 1 with probability p and as type 2 with probability 1 - p ,  
independently of other events, then the number of type 1 and the number of 
type 2 claims incurral processes are independent Poisson processes with rates 
hp and ~.(1-p), respectively. See Ross [26, pp. 203-206] for a proof of 
this statement. Thus, a Poisson process can be decomposed into independent 
Poisson processes, and the extension to more than two types of claims fol- 
lows easily by induction. Similarly, if two independent Poisson processes 
with rates hi and ),2 are superimposed (that is, only the total process is 
observed), then the sum of the two processes is a Poisson process with rate 
hi + h2. The same property holds for more than two processes by induction. 
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Furthermore, the times of the k claims in (0, t), given that k claims were 
incurred in (0, t), are independent and identically distributed, each with the 
uniform densityf,(x)=t -1, 0<x<t.  See Ross [26, pp. 209-211]. 

The total claims incurred process {Y,; t->0} is then a compound Poisson 
process. Suppose that {X1, 2"2 . . . .  } is a sequence of independent and iden- 
tically distributed random variables representing claim sizes (that is, X~ is 
the size of the i-th claim),  also independent  of {K,; t>0}.  Then 
Y,=Xx+X2+ ... +Xx, (with 1I,=0 if K,=0).  This process is the study of 
much of risk theory (for example, Bowers et al. [2, chapters 11-13]). Similar 
decomposition and superposition properties hold for {II,; t_>0} as they do for 
the Poisson process (compare Karlin and Taylor [15, pp. 430--436]). In 
particular, the total of all claims of a certain size (that is, claims whose size 
is contained in a specified subset of the real line) is a compound Poisson 
process, independently of claims of other sizes. 

In the remainder of the paper this model is assumed for the claims incurral 
process, and results quoted here are used freely in studying properties of the 
claims payment process. 

2. UNREPORTED CLAIMS 

Z 1 The Basic Model 
A main component of the claim liability is the portion attributable to the 

unreported claims. A wide variety of methods have been proposed (see Van 
Eeghen [32] and Taylor [29]), but, as noted in Ross [26], they do not use 
queueing theoretic techniques. 

In this paper, the compound Poisson model for incurred claims (consistent 
with risk theory) is assumed, as discussed in Section 1.4. Suppose that the 
number of incurred claims {K,; t->0} follows a Poisson process with rate k. 
Let B be the random variable denoting the time from incurral of a claim to 
the time of reporting with distribution function FB(x). Furthermore, assume 
that reporting times are independent of each other. Then the distribution of 
N,, the number of incurred but unreported claims at time t, can be deter- 
mined. As shown by Ross [26, p. 212], in connection with the infinite server 
(M/G/®) queue, the distribution of N, is itself Poisson with mean 

t 

X, = X I {1 - Fa(x)} dr. (2.1.1) 
0 
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Under the risk theoretic model, the total unreported claims (U,) is com- 
pound Poisson, that is, Ut =XI +X2 + ... +Xlvt. As shown in Panjer [22], 
for example, if the single claim sizes (denoted generically by X) are discrete 
on the positive integers, then the distribution of U, can be calculated recur- 
sively by using the formula 

~'t x 
f~,,(x) = x ~'- yfAY) fu,(x - y), x > 0 (2.1.2) 

beginning with ft,,(0)=e -At. A similar formula holds if X has a continuous 
distribution (compare Panjer [23]). Using (2.1.2), numerical values of the 
percentiles of the distribution of U, can easily be obtained. The first two 
moments are 

E(u,) = xgr(x) (2.1.3) 

and 

Var(U,) = h,E(X2). (2.1.4) 

When statistical equilibrium has been reached, considerable simplification 
follows, and numerous intuitively appealing results can be obtained. From 
(2.1.1), 

h® = lim h, = hE(B), (2.1.5) 

and so evaluation of X® requires only knowledge of the mean reporting lag 
E(B) rather than the distribution function FB(x), as is the case for h, when 
t < ~. In particular, no distributional assumption need be made about B. Also, 
from (2.1.3) with t ~ ® ,  

E(U®) = hE(B)E(X) = E(Y~)E(B), (2.1.6) 

that is, 

expected liability = expected annual claims × expected reporting lag. 

This result is very intuitive and might well be used in the absence of any 
formalized model. The model considered here may consequently be viewed 
as an aid to intuition, and not a replacement. Because k,_<X®, E(U,)<_E(Y1)E(B) 
and so (2.1.6) provides a conservative bound on the mean claim liability. 

These types of models have also been considered by Karlsson [16], Ran- 
tala [24], and Ruohonen [27]. A numerical example is now presented. The 
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numerical values chosen are for illustration only and are not meant to be 
representative of a realistic situation. 

Example  2 .1 .1  

Vandebroek and DePril [31] considered a portfolio of lives insured under 
life insurance. Table 1 gives the number of lives nlj in the portfolio for each 
insurance amount i and mortality rate qj. 

T A B L E  1 

NUMBER OF L N E S  n o 

Amount[ 1~,000~ 
i 8~  1,000 1,~2 1,~5 2,064 2,670 3,476 4,544 5,~2 7,~7 10,339 13,~2 18,009 ~,7M 

1 16  1 4  1 4  7 6 4 - - 3 1 1 2 2 
2 1 [ 8 1 3  9 11  6 4 7 5 1 0  2 5 1 
3 - 1 - 2 2 - 6 - 1 - 1 - 2 6 4  
4 3 3 1 1 3 1 - - - 1 1 2 2 1  
5 - 5 5 1 - 1 - - 1 - - - - I 

6 - 1 1 6  1 4  11  1 0  6 2 - 1 - 1 2 2 
7 - 3 7 1 2  1 3  2 6  1 8  9 6 5 4 3 - 2 
8 - - 7 5 6 1 1  1 5  1 9  6 7 8 8 5 2 
9 - 2 1 6 3 4 9 8 4 5 4 7 4 3 

1 0  - - - 6 6 7 6 6 6 3 7 4 2 3 
11 - - 2 - 3 6 9 4 1 0  4 1 6 2 2 
1 2  . . . . .  1 4 2 4 4 2 4 1 2 
1 3  - - - 1 1 1 2 1 1 1 1 - - - 
1 4  - - - 2 - 3 1 2 1 1 - 1 1 - 

15  . . . .  1 - 2 4 - 3 1 - - 1 
1 6  . . . . .  2 - 1 - 3 - 1 1 - 
1 7  . . . .  1 - 1 - - - 3 - - 1 
1 8  . . . . .  3 1 . . . . .  1 - 
19  . . . . . . . . . .  2 - 1 - 

2 0  . . . . .  1 . . . . .  2 - - 

21  . . . . .  1 3 - - - 1 - - 
2 2  . . . . . . .  1 1 1 - - 2 - 
2 3  . . . . . .  1 1 - - 1 - - - 

2 4  . . . . . .  1 - - - 1 - - - 
25  . . . . . . . . . . . . . .  
2 6  . . . . . . . . .  1 - - - 1 
2 7  . . . . . .  1 - - 1 1 - - - 
2 8  . . . . . . . . . . . .  1 - 

The compound Poisson model in Bowers et al. [2, pp. 381-382] can be 
used. Define 

h(i) = - ~_, nij log(1 - qj) (2.1.7) 
J 
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and 

h = E h(i). (2.1.8) 
i 

According to the model, the total incurred claims process for the portfolio 
is a compound Poisson process with Poisson rate h =4.27137 and single 
claim amount distribution given by 

fx(X) = h(x)/k. (2.1.9) 

Suppose that previous studies indicate that the average reporting time for 
a claim is one month. Then, from (2.1.5), k,,=M12=0.355947, and the 
total claim liability U, is compound Poisson with parameter k,, and single 
claim size distributionfx(X). In particular, the mean is 3.10424 from (2.1.3), 
and the variance is 36.7392 from (2.1.4). The distribution of U® is easily 
obtained from (2.1.2), and the results are given in Table 2 together with the 
single claim size distribution fx(x) and df Fx(x). 

The mean could be used in choosing a numerical value to cover the 
liability. Alternatively, an amount that is adequate for a specified proportion 
of time could be chosen, as suggested by Bragg [3]. For example, an amount 
of 7 would be expected to cover the liability 80 percent of the time, as is 
evident from Table 2. The model yields simple quantitative estimates of the 
variability inherent in the liability, requiring only the mean reporting times 
as input. In fact, the entire distribution can be easily obtained numerically. 

2. 2 Individual Variations in Reporting Patterns 

Although the model discussed in the previous section is sufficiently gen- 
eral for many applications, characteristics of particular situations may require 
refinements. One possible situation involves differences in reporting patterns 
for various segments of the portfolio. In particular, reporting patterns may 
be related to concomitant factors that are independent of the number of 
incurred claims process. The decomposition properties in Section 1.4 can 
be used to refine the model of Section 2.1. 

Suppose that there are m different classes of individuals in the portfolio 
with respect to reporting times, and the probability that a given incurred 
claim is of type i is q;; i = 1 ,  2, . . . ,  m. Then the incurred claims process 
for class i is compound Poisson with Poisson parameter Xqi and single claim 
size distribution denoted by f,(x). Let Bi denote the reporting time random 
variable for class i. By applying the results of Section 2.1 to each class, the 
total claim liability for class i can be modeled as a compound Poisson random 
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TABLE 2 

x F # I  Iv.a0 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

fdx) 

0.000000 
0.047510 
0.081115 
0.062511 
0.028870 
0.010687 
0.053674 
0.102390 
0.145270 
0.103832 
0.090073 

0.000000 
0.047510 
0.128626 
0.191137 
0.220007 
0.230694 
0.284368 
0.386758 
0.532028 
0.635860 
0.725933 

0.700509 
0.011846 
0.020326 
0.015929 
0.007757 
0.003244 
0.013821 
0.026007 
0.037151 
0.027584 
0.024687 

0.700509 
0.712356 
0.732682 
0.748611 
0.756368 
0.759612 
0.773433 
0.799440 
0.836591 
0.864175 
0.888862 

0.080285 
0.052252 
0.009860 
0.016292 
0.019981 
0.015322 
0.014234 
0.006948 
0.009121 
0.007058 
0.005505 
0.012820 
0.004315 
0.003248 
0.000000 
0.007480 
0.005093 
0.004255 

0.806219 
0.858471 
0.868330 
0.884623 
0.904604 
0.919925 
0.934159 
0.941107 
0.950228 
0.957285 
0.962790 
0.975610 
0.979924 
0.983173 
0.983173 
0.990653 
0.995745 
1.000000 

0.022321 
0.015264 
0.004736 
0.006509 
0.007629 
0.006732 
0.006629 
0.004879 
0.005166 
0.004167 
0.003303 
0.004867 
0.002562 
0.002107 
0.001159 
0.002902 
0.002205 
0.001935 

0.911183 
0.926447 
0.931183 
0.937692 
0.945321 
0.952053 
0.958682 
0.963561 
0.968727 
0.972894 
0.976197 
0.981064 
0.983626 
0.985733 
0.986893 
0.989795 
0.991999 
0.993935 

variable with Poisson parameter hq,E(Bi) and single claim size distribution 
f~(x), independently of other classes. Thus, by the additivity property of 
independent compound Poisson random variables (compare Bowers et al. 
[2, p. 327]), the total claim liability U® is compound Poisson with Poisson 
parameter 

h. = h ~ q, E(B,) (2.2.1) 
i = 1  

and "single claim amount" distribution 

q, E(B,) f~(x) 
f.(x) = ,-1 (2.2.2) 

qi E(B;) 
i - I  
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Hence, the moments and probability distribution of U® can be easily obtained 
by using the results of Section 2.1, but with k® and fx(X) replaced by k, and 
f.(x), respectively. 

Using the more complicated model of this section requires knowing q~ and 
~(x) for each class. In at least one important situation this is not difficult. 
Suppose that the time to report a claim depends on the size of the claim (for 
example, large claims may have a shorter mean reporting time than small 
claims). Then the total incurred claims process can be modeled as a com- 
pound Poisson process with parameter k and claim size pdf or pffx(x) and 
df Fx(x) (as in Section 2.1). Partition the positive real line [0, ~) into the 
intervals [c,._ 1, ci) for i = 1, 2 . . . .  , m, where Co = 0 and c,,, = ®. Let a claim 
be of type i if the amount of the claim is in the interval [ci-1, c~). Then 

and 

f 
q' = l dFx(x); i = 1, 2, ... , m (2.2.3) 

f,,(x)/q,, c,) 
f,(x) = (2.2.4) 

0, otherwise. 

Hence, q, and ~(x) are easily constructed from fx(X), and only the partition 
has to be determined. This should be done on the basis of observed variations 
in reporting time. 

A numerical example follows. No significance should be attached to the 
numerical values, because they are purely for illustration. 

Example Z Z I 

Consider the life portfolio of Example 2.1.1. Suppose that the average 
reporting time of claims in excess of 10 has been determined from previous 
studies to be one-half of a month, whereas claims of amount 10 or less are 
reported in one and a quarter months on average. This suggests the choice 
m = 2 and the partition (0, 10.5) and (10.5, a). Using the distribution fx(x) 
as given in Example 2.1.1, q1=0.725933 and q2=0.274067. Because 
E(BI)=5/48 and E(B2)= 1/24, (2.2.1) implies h. =0.371769. The distribu- 
tion ft(x) and f2(x) can be obtained from (2.2.4), and from (2.2.2) 

f .(x) = 0.868799fl(x) + 0.131201f2(x). (2.2.5) 

Values offl(x), fear), and f.(r) and the associated df F.(x) are given in Table 3. 
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TABLE 3 

x Ao0 l~)  f.0r) 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

0.000000 
0.065447 
0.111740 
0.086111 
0.039770 
0.014722 
0.073938 
0.141046 
0.200115 
0.143033 
0.124079 
0.0001300 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.292941 
0.190654 
0.035976 
0.059447 
0.072905 
0.055905 
0.051936 
0.025350 
0.033280 
0.025751 
0.020085 
0.046776 
0.015743 
0.011852 
0.000000 
0.027292 
0.018582 
0.015524 

0.000000 
0.056860 
0.097079 
0.074813 
0.034552 
0.012790 
0.064237 
0.122541 
0.173860 
0.124267 
0.107799 
0.038434 
0.025014 
0.004720 
0.007800 
0.009565 
0.007335 
0.006814 
0.003326 
0.004366 
0.003379 
0.002635 
0.006137 
0.002065 
0.001555 
0.000000 
0.003581 
0.002438 
0.002037 

F.4x/ 
0.000000 
0.056860 
0.153939 
0.228753 
0.263305 
0.276095 
0.340332 
0.462872 
0.636732 
0.760999 
0.868799 
0.907233 
0.932247 
0.936967 
0.944767 
0.954332 
0.961667 
0.968481 
0.971807 
0.976173 
0.979552 
0.982187 
0.988324 
0.990389 
0.991944 
0.991944 
0.995525 
0.997963 
1.000000 

By using k. and f.(x) in place of X. and fz(x) in the results of Section 
2.1, the mean claim liability is 2.78077 from (2.1.3). The variance is 27.8008 
from (2.1.4). By using (2.1.2), the distribution of U, is found, and this is 
given in Table 4. The third column can be used to select an adequate amount 
for covering the liability a specified proportion of the time. 

2. 3 Other Generalizations 

In the previous two sections we proposed relatively simple models for the 
claim liability. In this section, we show how various realistic phenomena 
such as the effect of seasonality with respect to the incurral of claims, growth 
in the business, and heterogeneity of risks in the portfolio can be incorporated 
into the model by assuming a more general model of claims incurral than 
the Poisson. Other factors that can be modeled include inflation and season- 
ality of claims reporting. 
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TABLE 4 

463 

X 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

fudxJ Fu.(xJ 

0.689513 0.689513 
0.014576 0.704089 
0.025039 0.729128 
0.019705 0.748833 
0.009717 0.758550 
0.004172 0.762722 
0.017144 0.779866 
0.032151 0.812017 
0.046001 0.858018 
0.034467 0.892485 
0.031073 0.923558 
0.013414 0.936972 
0.009567 0.946539 
0.004007 0.950546 
0.004990 0.955536 

X 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

/'trdx} Fu.(xl 

0.005955 0.961491 
0.005948 0.967439 
0.005819 0.973257 
0.004525 0.977783 
0.003903 0.981686 
0.002906 0.984592 
0.002066 0.986658 
0.002683 0.989341 
0.001490 0.990830 
0.001310 0.992140 
0.000829 0.992969 
0.001628 0.994597 
0.001240 0.995837 
0.001068 0.996905 

2.3.1 The Number of Claims Incurred 

The assumption that the number of incurred claims {K,; t_>0} is a Poisson 
process may be too restrictive in some situations. Because the rate of the 
process is a constant h that does not change with time, the number of claims 
incurred in any period has the same distribution as the number incurred in 
any other period of the same length. It may be of interest to relax this 
assumption in various situations. 

In this section {K,; t>_.0} is assumed to be an order statistic process. This 
more general process has the property that, given K, = k>_-1, the times of the 
k claims are independent and identically distributed over (0,t) with df 

E(K:,). 
H,(x) = E(K,)' 0 < x < t. (2.3.1) 

This more general process can be used to accommodate the following 
factors. 

(a) lncurred Claim Seasonality and Business Growth 
There may be a seasonal pattern to claims incurral, such as a higher 

incidence of health-related claims during the winter months than in the sum- 
mer. This can have a significant impact on the unreported claim liability at 
a given time. Another factor that can affect incurred claims is a change in 
the size of the portfolio over time. Growth in the business would result in 
an increase in the rate of claims incurral. These phenomena cannot be re- 
flected by the ordinary Poisson process of claims incurral. 
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The nonhomogeneous Poisson process (for example, Ross [25, pp. 46- 
49, 53]) can be used in these situations. This process does not require that 
E(K,,) be proportional to x as the ordinary Poisson process does. Thus the 
rate of the process 

X(x) = ~E(K~) 

is not restricted to a constant, but need only be nonnegative. Consequently, 
it can vary with time in such a manner as to describe these phenomena. 
Seasonality in claims incurral can be obtained by choosing h(x) to be a 
function both of the integer part of x in order to represent the year as well 
as the fractional part of x to represent the season. Similarly, growth in the 
business can be modeled by letting k(x) reflect the corresponding rate of 
change. For example, if the growth rate can be assumed to be exponential, 
this may be reflected by the choice E(Kx) = ae ~, and thus the rate of the 
process is h(x)= abe ~. One could choose h(x) to reflect both seasonality of 
claims incurral and growth of the business. 

(b) Heterogeneity of Risk Levels in the Portfolio 
All risk classification schemes attempt to discriminate between different 

types of risk, with the intended result that all risks within a particular "cel l"  
may be considered to be homogeneous with respect to the risk level. Un- 
fortunately, this is not completely accomplished by even the most discrim- 
inating risk classification scheme, and some heterogeneity of risk levels (that 
is, some good and bad risks relative to the average) remains. 

This characteristic may be reflected through the use of another fairly 
general type of process with the order statistic property, namely, the mixed 
Poisson process (for example, Willmot [34]). In this case 

Pr{K,+h -- Kh = k} = 
(xt)  k e-Xt 

k----~, dU(h) (2.3.2) 
0 

where U(k) is the df of a nonnegative random variable (if U(h) is a gamma 
df, then the process is referred to as a Polya process). This model is common 
in automobile insurance; and in Buhlmann [4], Equation (2.3.2) is inter- 
preted as the probability that one risk taken at random from the portfolio 
gives rise to k claims in (h, h + t). The "structure function" U(k) represents 
the distribution of the levels of risk in the portfolio (as measured by the 
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expected number of claims incurred), and thus provides a mechanism for 
dealing with the nonhomogeneity. 

2.3.2 A General Model 
Let W(x,t) denote a random variable representing the liability at time t 

attributable to a claim that is incurred at time x. Then the total liability U, 
at time t is the sum of the liabilities from all claims incurred before time t. 
The distribution of U, is most easily characterized in terms of its mgf. By 
conditioning on both the number and times of the claims incurred, 

® 

Mu,(s) = Pr{K, = 0} + ~ er{K, = k} 
k = l  

0 0 0 

Because the k-fold integral factors into the same integral repeated k times, 
the mgf of Ut is 

Mu,(s) = Pr,, {Mw,(s)} (2.3.3) 

where PK,(S) is the pgf of Kt and 
t 

Mw,(s) = f E{e ~w~')} dx H,(x) (2.3.4) 
o 

is the mgf of a random variable obtained by mixing the distribution of W(x, t) 
over the interval (0,t) by the mixing distribution Ht(x). 

It is evident from the discussion in the paragraph following (1.3.21) that 
the representation (2.3.3) implies that U, has a compound distribution. Thus, 
if K, = 0, then Ut =0,  and if K,> O, then U, is the sum of K~ independent 
random variables, each with mgf (2.3.4). 

2.3.3 Inflation and Seasonality of Reporting 
The relationship between the liability W(x, t) at time t for the claim incurred 

at time x and both the amount of the claim and the reporting time can be 
quite complex when the effects of inflation and seasonality are considered 
in the reporting time of the claim. 
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(a) Inflation 
To allow for inflation, assume that X is a random variable representing 

the amount of a single claim at some time point in the past (that is, before 
t), such as at time 0 or at timex. Then, as in Hogg and Klugrnan [12, section 
5.2], the effects of inflation are such that the value of the claim at time t is 
a scalar multiple of X, namely, a(x, t)X. Suppose, for example, that X rep- 
resents the amount payable on a claim incurred at time 0. If claims inflation 
is characterized by a force of inflation 510'), the amount payable on a claim 
incurred at time x is 

X e! ~'e~ 

If the time value of money involves a force of interest 52(Y), the value at 
time t of a claim incurred at time x is 

x I 

if interest is payable on claim amounts. This suggests that one could choose 
x t 

a(x,t) = e! 8,~+ ! ~e~. (2.3.5) 

Because a(x,t) can be an arbitrary function, however, other inflationary or 
trending patterns could be used. 

(b) Seasonality in Claims Reporting 
Seasonality in reporting can also be modeled by assuming that the re- 

porting time Bx of a claim incurred at time x depends on the time of incurral 
x, perhaps through the integral and fractional part ofx. With these assumptions, 

j" 0, B  t-x 
W(x, t) (2.3.6) / 

( a ( x , t ) X ,  Bx > t - x 

because there is no liability if the claim is reported by time t (that is, B~_< 
t - x ) .  Thus, from (2.3.6), the mgf of W(x, t) is 

E{e ~ ' ) }  = Fax (t - x) + {1 - FBx(t - x)} Mx {sa(x,t)} (2.3.7) 

where Mx(s) is the mgf of X. The expression (2.3.7) can be substituted into 
(2.3.4). 

Note that (2.3.4) holds regardless of the manner in which W(x,t) is de- 
pendent on the amount of the claim at time x and the ensuing reporting time. 
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Hence, although (2.3.6) seems reasonable, there may be other formulations 
that could be used. 

2.3.4 Further Remarks 

The model of Section 2.1 is a special case of the current model. Because 
E(K,) = X¢, (2.3.1) yields the uniform distribution on (0, t). With a(x,t)= 1 
and Fs~(Y)=F~fy), (2.3.7) implies that (2.3.4) becomes 

I 

Mw, (s) -- ~ { F . ( t  - x )  + [1 - VB(t - x ) N ~ ( s ) }  dx 
0 

I 

1 IfF.(x ) + [1 F.(x)N~(s)}  dr.. 
t 

o 

Hence, 
t 

Xt{Mw,(s) - 1} = X I{e.(x) + [1 -F.Oc)l  M,,(s)} dx - at 
0 

t 

= k f{F.(x) + [1 - FB(x)]Mx(s) - 1} dx 
o 

t 

= k f{1 - Fn(x)} {Mx(s) - 1} dx 
0 

= x, {M~(s)  - 1} 

by using (2.1.1). Because Pxt(s)=exp{Xt(s - 1)}, (2.3.3) is the mgf of the 
compound Poisson random variable U, of Section 2.1. 

This model is quite general, and the main difficulty in employing it lies 
in the evaluation of the distribution with mgf (2.3.4) (if it may be obtained, 
the recursive techniques in Panjer [23] often allow for the numerical eval- 
uation of the distribution of U,). In general, (2.3.4) and (2.3.7) yield 

Mw,(s) = i {Fs~(t - x) + [1 - Fn.(t - x)]Mx[sa(x, t)]} d~tt,(x). 
0 
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By using this result and the properties of conditional expectation, the asso- 
ciated df Fw,(y) satisfies 

/ 

Fw,0') = 1 - i {1 - FBx(t - x)} {1 - FxD,/a(x, t)]} dj-I,(x). (2.3.9) 
o 

I fX is a pdffx('), then (2.3.9) can be differentiated to give the pdf 
I 

fx{y/a(x, t)} {1 - Fnx(t - x)} d~H,(x). (2.3.10) 
o 

Numerical integration could be used to evaluate (2.3.9) or (2.3.10). Panjer 
[23] describes how the pdf of the compound distribution of U, with mgf 
(2.3.3) can be evaluated numerically if {Kt; t>-0} is a (nonhomogeneous) 
Poisson or Polya process. 

This approach has other uses as well. It shows how the model is modified 
if more complicated assumptions of phenomena such as inflation are incor- 
porated. It also provides insight into the behavior of the liability. In partic- 
ular, the compound Poisson form of the distribution of U, holds quite generally 
as long as {K,; t>_0} is a (nonhomogeneous) Poisson process. Similarly, if 
{K,; t>__0} is assumed to be a Polya process, then K, has a negative binomial 
distribution and the distribution of U, remains of compound negative binom- 
ial form (compare Bowers et al. [2, pp. 323-325]), as is evident from 
(2.3.3). 

3. REPORTED CLAIMS 

3.1 The Reported Claims Process 
A second major category of the claim liability is that portion attributable 

to claims for which notification has reached the insurer but for which no 
payment has been made. As discussed in Section 1.1, one may be able to 
obtain the required claim amounts exactly, and hence they need not be 
estimated by using a model. If the data are not readily available, however, 
or if estimates of future reported claims are needed for forecasting profit- 
and-loss statements, the use of a model may be worthwhile. Furthermore, 
this portion of the claim liability can be influenced by the insurer through 
modifications to the claims settlement process. A model can often be used 
to predict the effect of these changes without actually implementing them. 
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The number of reported claims is of central importance in the analysis of 
the reported claim liability. Recalling from Section 1 that claims are incurred 
according to a Poisson process with rate h (see Section 1.4) and that each 
of these is reported to the insurer at random time B with df FB(x) later, 
independently of all other claims, then from Ross [25, p. 39] the number of 
reported claims in (0, t] is both Poisson distributed with mean 

X i Fn(x)dx 
o 

and independent of the number of unreported claims N, in (0, t]. The in- 
dependence of the number of reported and unreported claims at a point in 
time is a useful feature of the model, because it implies that the unreported 
claim liability Ut and the reported claim liability R, are independent. This 
follows from the fact that U, is assumed to be the sum of N, independent 
individual claim amounts, whereas R, is the sum of A, independent individual 
claim amounts, whereA, is the number of claims reported but unpaid at time 
t. Because At depends on the number of reported claims (which is indepen- 
dent of N,) and the claim settlement process (which is independent of un- 
reported claims), the independence of U, and R, follows. As a result, the 
unreported and reported claim liabilities can be analyzed separately and 
without regard for each other, clearly a simplifying feature of the model. 

A second important property of this approach is that the number of re- 
ported claims is a nonhomogeneous Poisson process with rate hFn(t), as 
shown in Ross [25, p. 48], where it is pointed out that as t---~, the process 
becomes an ordinary Poisson process. This implies that the input process to 
the claims payment discipline can be assumed to be a Poisson process in 
equilibrium (that is, for large values of t). This result is heavily relied upon 
in the remainder of the paper. 

3. 2 The Basic Model 
The analysis of the reported claim liability is fundamentally different than 

the unreported liability due to the interaction of claims. One can normally 
assume that the time it takes to report a claim does not depend on other 
claims in a similar incurred but unreported state. The same cannot be said 
for the reported claims in general, however, because the presence of too 
many claims waiting for approval at one time can cause a backlog and hence 
a delay in the time until payment is made. 
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This congestion can be incorporated into a stochastic framework through 
a queueing formulation of the problem. One imagines that claims are re- 
ported to the insurer and that they "queue up" in the claims area waiting 
to be processed. Once approved, payment is made. The process of approving 
claims for payment can then be visualized in terms of a particular queueing 
discipline. The number of reported claims process is the input process to 
this "queue," and this is a Poisson process once equilibrium has been reached 
(see Section 3.1), an assumption that will henceforth be made. Let A rep- 
resent the number of claims that are reported but unpaid, that is, the number 
in the queueing system. In keeping with risk theoretic methodology, the total 
liability for reported but unpaid claims R is given by R =X1 +X2 + ... +XA 
(with R = 0 ifA = 0). As before {?(1, X2 . . . .  } is an independent and identically 
distributed sequence of claim amounts, and in this case X~ represents the 
amount of the i-th claim in the system. 

Assume, in the simplest case, that claims are approved in the order that 
they are reported by a single claims evaluator (examiner) and that, once 
approved, they are paid immediately. Suppose that the time to approve a 
claim T is exponentially distributed with mean E(T)= p/X where X is the 
Poisson claim rate and pc(0,1) is a parameter. Then (for example, Kleinrock 
[17, p. 96]) 

P r  (A = n) = (1 - 9)9", n = 0, 1, 2 . . . . .  (3.2.1) 

that is, A is geometrically distributed. Then R has a compound geometric 
distribution (for example, Bowers et al. [2, p. 319]) with mgf 

1 - 9  
MR(s)  = 1 - pMx(s)" (3.2.2) 

From (1.3.4), the mean reported liability is 

P E(X), (3.2.3) E ( R )  = 1 - p 

and by using (1.3.5) the variance is 

o E ( X  2) + (X) . (3.2.4) Var(R) = 1 -- 
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The distribution of R can be computed recursively (compare Panjer [23]). 
For example, if the single claim size distribution is discrete orr the positive 
integers, then 

fR(x) = p ~ fx(Y)fR(x - Y), (3.2.5) 
y ~ l  

which can be used to compute the distribution of R recursively, beginning 
with fR(0) = 1 -- p. In addition, (3.2.1) is of the form (1.3.20), implying that 
if there exists x > 0 satisfying Mx(K)=p -1, then (1.3.21) yields 

1 --  F R ( X  ) --  Ce -~', x -~® (3.2.6) 

where C =  (1-p)/{p(e ~-  1)M'x(K)} if X is discrete on the positive integers 
and C=  ( 1 -  p)/{p~JVI'x(K)} if X is continuous. Thus, under fairly general 
conditions, the distribution of R is asymptotically exponential. Numerical 
evaluation of K and further discussion of this type of asymptotic result can 
be found in Willmot [35]. Numerical investigations indicate that the right 
side of (3.2.6) is an extremely good approximation to 1-FR(x) in a wide 
variety of situations. This suggests that a simple approximation of the amount 
needed to be adequate to cover the liability R a proportion et of the time can 
be obtained. Simply set FR(x) =o~ in (3.2.6) and solve forx,  yielding 

1 
- log {C/(1 - et)} (3.2.7) 
K 

as an approximation to the required value. The formula (3.2.7) can be used 
as a simple approximation to the exact procedure based on the recursive 
formula (3.2.5). An example is now presented, in which the numbers chosen 
are for illustration only. 

Example 3. 2.1 

Consider the life portfolio of Example 2.1.1 where ~ =4.27137 and the 
single claim amount distribution is given by the first column in Table 2. 
Suppose studies indicate that the time from which notification of the claim 
reaches the insurer until payment is made (denoted by S) has an average of 
1.5 months. It is known (for example, Kleinrock [17, p. 202]) that for this 
queueing system S is exponentially distributed with mean E(S) = p/{h(1 - p)}. 
Hence p = kE(S)/{1 + kE(S)}. In this case E(S)= 1/8 and so p = 0.348076. 
From (3.2.3) and (3.2.4), the mean and variance of R are 4.65636 and 
76.7905, respectively. Table 5 lists the exact distribution and corresponding 
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df [obtained by using (3.2.5)], as well as the approximate df [denoted by 
/¢R(x)] from (3.2.6). In this case x is easily found from Mx(K)=p -~ tO be 
0.101337. 

TABLE 5 

x fRCx) r,,00 I 8R~ 
0 0.651924 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

0.010781 
0.018585 
0.014797 
0.007555 
0.003480 
0.012999 
0.024131 
0.034669 
0.026646 
0.024525 
0.022514 
0.016107 
0.006612 
0.008413 
0.009666 
0.009170 
0.009339 
0.007924 
0.008072 
0.006829 
0.005687 
0.006920 
0.004696 
0.004163 
0.003226 
0.004735 
0.004008 
0.003679 
0.002581 
0.002407 
0.002112 
0.001893 
0.001759 
0.001692 
0.001528 

0.651924 
0.662705 
0.681290 
0.696087 
0.703642 
0.707122 
0.720122 
0.744253 
0.778922 
0.805568 
0.830093 
0.852606 
0.868714 
0.875326 
0.883739 
0.893404 
0.902574 
0.911913 
0.919837 
0.927909 
0.934737 
0.940424 
0.947344 
0.952040 
0.956203 
0.959429 
0.964163 
0.968171 
0.971850 
0.974431 
0.976838 
0.978950 
0.980843 
0.982602 
0.984295 
0.985823 

X 

0.000000 36 0.001410 
0.557139 37 0.001277 
0.599818 38 0.001152 
0.638384 39 0.000997 
0.673234 40 0.000870 
0.704725 41 0.000787 
0.733181 42 0.000724 
0.758894 43 0.000665 
0.782130 44 0.000608 
0.803126 45 0.000553 
0.822099 46 0.000499 
0.839244 47 0.000445 
0.854736 48 0.000408 
0.868735 49 0.000366 
0.881386 50 0.000331 
0.892817 51 0.000292 
0.903146 52 0.000268 
0.912480 53 0.000244 
0.920914 54 0.000223 
0.928536 55 0.000200 
0.935423 56 0.000180 
0.941646 57 0.000162 
0.947270 58 0.000146 
0.952352 59 0.000132 
0.956944 60 0.000119 
0.961093 61 0.000108 
0.964843 62 0.000098 
0.968231 63 0.000088 
0.971292 64 0.000080 
0.974059 65 0.000072 
0.976559 66 0.000065 
0.978818 67 0.000059 
0.980859 68 0.000053 
0.982704 69 0.000048 
0.984371 70 0.000043 
0.985877 

fRtx) F~fx) t:,~) 
0.987232 
0.988509 
0.989661 
0.990658 
0.991528 
0.992315 
0.993039 
0.993705 
0.994313 
0.994866 
0.995364 
0.995809 
0.996218 
0.996584 
0.996914 
0.997206 
0.997474 
0.997717 
0.997940 
0.998140 
0.998320 
0.998482 
0.998628 
0.998759 
0.998879 
0.998987 
0.999084 
0.999173 
0.999253 
0.999325 
0.999390 
0.999449 
0.999502 
0.999550 
0.999593 

0.987238 
0.988468 
0.989579 
0.990584 
0.991491 
0.992311 
0.993052 
0.993722 
0.994327 
0.994873 
0.995367 
0.995814 
0.996217 
0.996582 
0.996911 
0.997209 
0.997478 
0.997721 
0.997941 
0.998139 
0.998318 
0.998480 
0.998627 
0.998759 
0.998879 
0.998987 
0.999085 
0.999173 
0.999252 
0.999324 
0.999390 
0.999448 
0.999502 
0.999550 
0.999593 

It is apparent from Table 5 that/~R(x) is an extremely good approximation 
to Fl~(X) even for small values of x, and (3.2.7) should provide a good 
approximation to the exact amount required to cover the liability a proportion 
tx of the time, even for a as low as 0.75. 



QUEUEING THEORETIC APPROACH TO CLAIMS PAYMENT 473 

3. 3 Several Claims Evaluators and Network Liability Models 

In this section a more general model for the reported claim liability is 
proposed, whereby a more complex claims evaluation process is considered. 
In practice the assumption that there is a single claims evaluator who ap- 
proves claims for payment may be inappropriate. For example, several in- 
dividuals may be involved at various stages in the process. Also, it may be 
of interest to subdivide the reported claim liability for purposes of monitoring 
the process or even for financial reporting purposes. Exhibit 11 of the U.S. 
Annual Statement requires reported health claim liabilities to be subdivided 
into "Due and Unpaid" and "In Course of Settlement"; see O'Grady [21, 
p. 105] for further details. 

To begin, the assumption in Section 3.2 that there is one claims evaluator 
is relaxed. Hence claims, which are reported according to a Poisson process 
with rate h, are immediately evaluated by any one of c evaluators (if not 
busy) in the order in which they are reported. The time T required for one 
evaluator to process a claim is assumed to be exponentially distributed with 
mean E(T)=PCDt, with pc(0,1) a parameter. The claim is then paid 
immediately. 

Note that this model can be used to help monitor the efficiency of the 
claims evaluation process. A parameter p, which represents the expected 
proportion of evaluators who are busy at one time, is of interest in this 
connection (compare Kleinrock [17, p. 18]). If this number is too large or 
too small, the amount of time available to perform other tasks may not be 
appropriate relative to the needs of the claims department. Assuming that 
the mean processing time E(T) = pc/k is constant, p varies inversely with c. 
The effect of a change in p of the number of evaluators c can therefore be 
ascertained. A second quantity of interest is the total time S from reporting 
until payment (that is, the total system time). Because S is the sum of the 
time spent waiting to begin evaluation plus the actual evaluation time, it 
follows from Tijms [30, p. 333] and the fact that pc = hE(T) that 

E(T) {hE(73} o 
E(S) = E(T) + 

(c - 1)!{c - h E ( T ) y  

x (c - 1)!{c - hE(T)} k-o - -  . (3.3.1) 

Thus, if X and E(T) are assumed to be fixed, (3.3.1) can be viewed as a 
function of c, and the effect of a change in the number of evaluators c on 
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the average processing time can be studied. A more detailed study of the 
quantity S is in Section 4. 

To analyze the claim liability R, note that (for example, Tijms [30, p. 
332]) 

f c - 1  [ ~ )  - I  

fA(O) = Pr(A = O) = ~ (--pc)Z + ~, tPCJ'~ (3.3.2) 
t c ! ( 1 - p )  ,-o ~! J 

and 

I~(.) = P~ (A = n) = l -~Ix(°); 
t-~f~(o); 

Thus the reported claim liability R has mgf 

M,(s)  = ~,  f~(n){Mx(s)p 
ricO 

= f~(O) t .=o --~.{Mx(s)}~ 

n = O, 1 , . . . , c  - 1 

n = c , c +  l ,  . . . .  

(3.3.3) 

(PC)C M.(s)} (3.3.4) 
+ c!(1  - p) 

where 

- p  
M.(s) = {1-1 pM-x(S)} {Mx(s)}c" (3.3.5) 

Moments of R can be found from (3.3.4). For example, the mean is, using 
(1.3.4), 

E(R) = E(X)fA(0)[n= 1 (n S ])! + c!(1 - 0) c + (3.3.6) 

where the summation is 0 if c = 1. 
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To obtain the distribution of R, assume that Pr(X= 0)= 0 and soA(0 ) =.f,~(0). 
Supposing that {Mx(s)}" and M.(s) are the moment generating functions of 
the distributions Px"(X) and f.(x), respectively, from (3.3.4), for x> 0, 

fR(x) = fa(O) t,*,--n-~-, lgtx)  + c!(1 - p)f.(x) . (3.3.7) 

Clearly, fx"(X) is the n-fold convolution of fx(x) with itself and can be ob- 
tained by using techniques described in Panjer [23, section 2.3], for example. 
The distribution f.(x) can be found recursively. In the case when fx(X) is 
discrete on the positive integers (a similar formula holds in the continuous 
case), for x = 1, 2, 3 . . . . .  

f.(x) = (1 - p)J'xC(X) + p ~ fx(y)f.(x - y ) ,  (3.3.8) 
y=l 

beginning with f.(0) = 0. To see (3.3.8), note that (3.3.5) implies that 

M . ( s )  = (1 - + oM s)M.(s). 

One may equate coefficients of e ~ on both sides of this equation to give 
(3.3.8). 

Consequently, it is straightforward to obtain [a(x) numerically. The con- 
volutions f~"(x) for n = 1, 2, ..., c can be obtained successively. Then f.(x) 
can be obtained by using (3.3.8) and fR(x) from (3.3.7). 

In addition, a simple asymptotic formula holds. From (3.3.3), 

fa(n) - c~fa(0)lY', n ---* ®, (3.3.9) 

which is of the form (1.3.20). Thus, from (1.3.21), if there exists K>0 
satisfying Mx(K)= p -I, then (3.2.6)holds with 

C = ~fa(O)/{ctp(e" - 1)M~(K)} 

if X is discrete on the positive integers and 

C = c~f,4(O)/(c!pKM'x(K)} 

if X is continuous. Thus, the asymptotic exponentiality of R holds for this 
more general model. This implies that the simple approximation (3.2.7) to 
the quantity that is adequate to cover R a proportion a of the time still holds, 
but with the above definition of C. A numerical example is presented to 
illustrate these techniques. 
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Example 3. 2. 2 
The life portfolio of Example 2.1.1 is used, where k=4.27137 and the 

single claim amount distribution is given by the first column in Table 2. 
Suppose that there are three evaluators (c = 3) and the average processing 
time is 11/4 months (that is, E(S)=5/48). Note that (3.3.1) can be rewritten 
as 

/ cc_l  (Pc)c - h E ( s )  = 0.  

With hE(S) known, this is an implicit function of p, which is easily solved 
numerically by using a Newton-Raphson procedure (for example, Burden 
and Faires [5, section 2.3]). In this case, one finds easily that p = 0.147681. 
The mean and variance of R are 3.88030 and 46.3413, respectively. The 
distribution fn(x) obtained from (3.3.7) is given in Table 6, together with 
the df Fs(x). With K= 0.162247, the approximate df FR(x) obtained from 
(3.2.6) is also given with C as above. 

The models of this and the previous section can be used in the more 
general setting of the claims evaluation process. This process may involve 
several functions such as verification of coverage, claim validation, and 
actual payment (compare O'Grady [21, chapter 7]). These functions can be 
done separately or in conjunction with one another. If done separately, models 
of this sort can often be used independently at each stage of the process. 

Suppose, for example, that there are two basic components of the claims 
evaluation process. Claims are reported to the insurer as before and queue up 
for evaluation and approval for payment by any one of cl available evaluators. 
Once approved, the claims are then routed to a second queue to await payment, 
and any one of c2 individuals processes the claim for payment. The two stages 
are referred to as claims "In Course of Settlement" and "Due and Unpaid" 
and can be represented diagramatically as shown in Figure 1. 

If it is assumed that the reported claims follow a Poisson process as before 
and processing time is'exponential at each stage, then both the claim liability 
at each stage and the total time spent at each stage are independent of the 
corresponding quantity at the other stage (compare Kleinrock [17, section 
4.8] and Burke [6]). That is, the model described earlier in this section for 
the reported claim liability can be applied to each stage independently. This 
provides a natural mechanism for the analysis of separate liabilities at each 
stage, because these are required to be reported separately for health claims 



TABLE 6 

1 

0 I 0.641769 
1 i 0.013509 
2 0.023206 
3 0 .018260  
4 0 .009002  
5 0.003863 
6 0.015887 
7 0.029794 
8 0.042628 
9 0.031934 

10 0.028785 
11 0.026115 
12 0.018057 
13 0.006068 
14 0.008141 
15 0.009480 
16 0.008539 
17 0.008480 
18 0.006515 
19 0.006782 
20 0.005515 
21 0.004402 
22 0.006116 
23 0.003440 
24 0.002872 
25 0.001756 
26 0.003711 
27 0.002886 
28 0.002558 
29 0.001275 
30 0.001172 
31 0.000973 
32 0.000833 
33 0.000759 
34 0.000735 
35 0.000630 

0.641769 
0.655278 
0.678484 
0.696744 
0.705746 
0.709609 
0.725496 
0.755290 
0.797918 
0.829852 
0.858637 
0.884752 
0.902809 
0.908877 
0.917017 
0.926497 
0.935036 
0.943516 
0.950031 
0.956814 
0.962329 
0.966731 
0.972847 
0.976286 
0.979158 
0.980914 
0.984625 
0.987511 
0.990070 
0.991344 
0.992516 
0.993489 
0.994322 
0.995081 
0.995816 
0.996446 

x f~)  
0.000000 36 0.000560 
0.116881 37 0.000479 
0.249145 38 0.000409 
0.361600 39 0.000317 
0.457212 40 0.000246 
0.538505 41 0.000209 
0.607623 42 0.000188 
0.666388 43 0.000167 
0.716353 44 0.000145 
0.758835 45 0.000124 
0.794954 46 0.000105 
0.825663 47 0.000087 
0.851773 48 0.000081 
0.873973 49 0.000067 
0.892848 50 0.000058 
0.908896 51 0.000044 
0.922541 52 0.000039 
0.934142 53 0.000035 
0.944005 54 0.000031 
0.952391 55 0.000025 
0.959522 56 0.000021 
0.965584 57 0.000017 
0.970739 58 0.000015 
0.975121 59 0.000012 
0.978847 60 0.000011 
0.987-015 61 0.000009 
0.984709 62 0.000008 
0.986999 63 0.000007 
0.988946 64 0.000006 
0.990602 65 0.000005 
0.992009 66 0.000004 
0.993206 67 0.000003 
0.994223 68 0.000003 
0.995089 69 0.000002 
0.995824 70 0.000002 
0.996450 71 0.000002 

0.997006 
0.997485 
0.997894 
0.998211 
0.998457 
0.998666 
0.998853 
0.999021 
0.999166 
0.999299 
0.999395 
0.999483 
0.999563 
0.999631 
0.999689 
0.999732 
0.999772 
0.999806 
0.999838 
0.999863 
0.999884 
0.999901 
0.999915 
0.999928 
0.999939 
0.999948 
0.999956 
0.999962 
0.999968 
0.999973 
0.999977 
0.999980 
0.999983 
0.999986 
0.999988 
0.999990 

0.996981 
0.997433 
0.997818 
0.998145 
0.998423 
0.998659 
0.998860 
0.999030 
0.999176 
0.999299 
0.999404 
0.999493 
0.999569 
0.999634 
0.999689 
0.999735 
0.999775 
0.999809 
0.999837 
0.999862 
0.999882 
0.999000 
0.999915 
0.999928 
0.999939 
0.999948 
0.999956 
0.999962 
0.999968 
0.999973 
0.999977 
0.999980 
0.999983 
0.999986 
0.999988 
0.999990 

FIGURE 1 

In course of settlement due and unpaid 

reported claims NNN~~~~~, [~] • [~] claims paid 
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in Exhibit 11 of the U.S. Annual Statement. Note that if there is no conges- 
tion at either stage, this may be accommodated by setting either c~ or c2 
equal to infinity, and the corresponding liability model for that stage becomes 
the same model as that given in Section 2.1. The independence of the two 
stages still holds. For example, the payment stage may involve little or no 
congestion. 

More general models can be employed for the reported claims process in 
which claims may be routed back and forth between various stages (as may 
occur if claims are resisted). If there is one evaluator at each stage, the 
liability attributable to each stage may be modeled by using the approach of 
Section 3.2, and the liabilities at each stage are independent of those at other 
stages. These network models are described, for example, in Kleinrock [17, 
section 4.8]. Note, however, that this independence does not hold in general 
for the total time spent in each stage, except in a few special cases such as 
that given in Figure I. See Burke [6] for more details. 

3. 4 Arbitrary Processing Time 

The assumption of an exponential distribution of processing time may not 
be reasonable in some situations. The processing time may not be exponen- 
tial, or the mode of the processing time distribution may be greater than 
zero. Various tools are available even when this distribution is not exponential. 

As in previous sections, the number of reported claims is assumed to be 
a Poisson process with rate h, and claims are immediately processed by any 
one of c claims evaluators (if free), but the processing time has an arbitrary 
distribution. As before, let A denote the number of claims reported but 
unpaid (the number in the system) and S the total time from reporting until 
payment (the total processing time). Then the means of A and S are related 
by Little's formula (for example, Tijms [30, p. 262]), namely, E(A) = hE(S). 
Thus, because the mean reported but unpaid claims liabilities E(R) =E(A)E(X) 
where E(X) is the mean claim size, E(R) = hE(S)E(X). Because the expected 
annual incurred claims is E(YI) = hE(X), 

E(R) = E(YOE(S ) (3.4.1) 

In words, 

expected reported liabilitY = 
expected annual claims x expected processing time. 
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This intuitive result is analogous to that for the unreported claims in Section 
2.1 and does not depend on the distribution of processing time. Evidently, 
the queueing theoretic approach provides an aid to intuition by generating a 
distribution about the mean. 

Suppose now that the processing time for one claim is denoted by T with 
df Fr(x) and mean E(T). Define the df 

FI(x) = i {  1 -Fr ( t ) )  o --~(~ ~dt. (3.4.2) 

See Bowers et al. [2, Section 12.5] for a discussion of (3.4.2). Define the 
df's 

Fk(x) = 1 - {1 - Fx(x)} k (3.4.3) 

for k = 1, c, and associated mixed Poisson pgf's 
® 

I Qk(S) = ~ q,,(k)s ~ = eX~-"(s-1)dF,(t). (3.4.4) 
m ~ O  

0 

Then an approximation to the distribution of A is given in terms of its pgf 
as  

PA(s) = E fA(n)s" 
n~O 

= 2 fA(n)s" + (3.4.5) 
° - o  - 1 - 7 7(s) 

In (3.4.5), p = KE(T)/c and f,4(n) is given by (3.3.3) for n = 0, 1, 2, . . . ,  
c - 1. This approximation for the equilibrium distribution of A is exact when 
T is exponential and when c = 1 or c = ®. It is derived in Section 4.4.3 of 
Tijms [30]. Also, various reasons for the high degree of accuracy are given 
in Miyazawa [20] in connection with equivalent mathematical problems. 

The reported claim liability has mgf MR(s) =PA{Mx(s)), and so from (3.4.5) 

pL(c - !)M.(s) MR(s) = ~ fA(n) {Mx(S))" + (3.4.6) 
.=o 1 - p 
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where 

and 

}' {Mx(s)} ~ M.~(s) (3.4.7) 
1 ) 

M . ( s )  = a - 
P 

J 

M.k(S) = Qk {Mx(s)} (3.4.8) 

for k = 1, c. The analysis of the moments and distribution of R proceeds in 
the same manner as for the model in Section 3.3, because Equation (3.3.4) 
is similar in structure to (3.4.6). A complicating factor is the presence of 
the compound mgfM.k(s) and the associated distributionf.k(s), both of which 
are often awkward to deal with. An important exception to this observation 
is given in the following example. 

Example 3. 4.1 
Suppose that c = 1 and the processing time T has a distribution that is a 

mixture of gammas (Section 1.3) with integral index parameters, that is, has 
pdf 

d f f l - ,X  ~-, e-,,/t3"~ 
Fr(x) = z ,  q, (3.4.9) 

Z-- ,-1 I, J 

where {qx, q2, ... , qk} is itself a probability distribution. The density (3.4.9) 
is referred to as a generalized Erlangian distribution and is frequently used 
in queueing applications because of its flexibility of shape and convenient 
mathematical properties (Tijms [30, pp. 271-272, 397--400]). The mean is 

k 

E(T) = ~ ~ iq,. 
i - 1  

Also, by using formula 1.22 of Tijms [30, p. 18], the df is 

Fr(x) = 1 -  ~ q, ~ (x/13y-1 e-"/° 
, . ,  , . ,  " 

Interchanging the order of summation, the density corresponding to (3.4.2) 
is 

d 1 - Fr(x) = ~ q; (3.4.10) 
~_x F'(x) = E(T) J"  [ q -  1)! J 
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where 

q] = {i~ j qi} / { i~ 1 i q i } ; j  = l,  2, . . . , k .  (3.4.11) 

Because ~ 1  q~= 1, (3.4.10) is of the same form as (3.4.9), but with dif- 
ferent weights, that is, also a mixture of gamma distributions. Then, by 
using (3.4.4) with k= 1 and c = 1, (1.3.15), and (1.3.7), 

k 

Q,(s) = ~, q; {1 - hl3(s - 1)}-J, (3.4.12) 
j=l 

a mixture of negative binomial pgf's. Thus, from (3.4.8), 
k 

M.l(s) = ~ q~ {1 - kf3[Mx(s) - 1]}-J, (3.4.13) 
j = l  

a mixture of compound negative binomials. Evaluation of the moments is 
straightforward by using (3.4.13), and the distributionf.l(x) can be evaluated 
recursively by using the techniques in Panjer [23]. Analysis of the distri- 
bution and moments of R follows easily by using (3.4.6), (3.4.7), and (3.4.8) 
with c = 1. 

Although the computational difficulties associated with the evaluation of 
the distribution of R may be overwhelming for arbitrary c and processing 
time distribution Fr(x), some asymptotic help is available. From Tijms [30, 
p. 351], if there exists "r>l satisfying Q~(.r)=p -t, then 

fA(n) - ~-I fA (c - 1) Oc('r) "r-", n --* ®. (3.4.14) 
Q~(.r) 

This is clearly of the form (1.3.20), and so if there exists K>0 satisfying 
Mx(K) =% then one obtains from (1.3.21) an asymptotic approximation of 
the form 

1 - FR(x) - Ce -~', x ---> ®. (3.4.15) 

Thus the tail of the distribution of the reported claim liability is asymptoti- 
cally exponential even for this fairly general model. As mentioned previ- 
ously, this yields a simple approximation for the amount needed to be adequate 
for a proportion ct of the time, namely, 

i< -~ log{C/(1 - ct)}. (3.4.16) 
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In (3.4.15) and (3.4.16), the constant C is given by 

~fA(c- 1)Qc(r)/{(e K-  1)O'l('OM'x(k)} 
if X is discrete and 

~fA(C - 1)Q~('r)/{h42'~('r)M'x(K)} 
if X is continuous. The assumption that there exists 'r> 1 satisfying Ql('r)= p- 
is essentially the assumption that there exists an adjustment coefficient using 
a ruin theoretic interpretation. This issue is discussed in some detail in 
Bowers et al. [2, section 12.3], who point out that there usually does exist 
such a quantity. To see this interpretation, note that from (3.4.4) and (3.4.2), 

Ql(s) = f e~o 1*(s-l){1-_E(_~FT(t)~j dt, 

and (1.3.15) together with formula (12.5.4) of Bowers et al. [2, p. 360] 
implies that 

Mr{Xc-'(s- 1 ) } -  1 
Ql(S) = (3.4.17) p(s-  1) 

where Mr(s) is the mgf of the processing time T. Thus, Q1('r)= p-1 is equiv- 
alent to Mr{hc-~('r - 1)}=-r. In other words, one needs to find d~>0 satisfying 

mr(~b) = 1 + p-~E(T),, (3.4.18) 

and then 'r = 1 + cd~/h. Examination of (3.4.18) and section (12.3) of Bowers 
et al. [2] reveals that d~ is simply the adjustment coefficient in a ruin theoretic 
context with "single claim size" random variable T and relative security 
loading (1 - p)/p. 

Thus, in most instances there will exist r>  1 satisfying Ql(,r)=p-1, and 
so (3.4.14), (3.4.15), and (3.4.16) will be applicable in general. In partic- 
ular, 'r will always exist if r has a gamma distribution, or more generally, 
the pdf (3.4.9). Occasionally, however, this will not be the case. Consider, 
for example, the inverse Gaussian distribution. If MT(S) is given by (1.3.10), 
then Mr(s)<_e ~, and because E(T)= ~13/2 in this case, it is evident from 
(3.4.23) that no such r will exist if e ~" < 1 + V,/(2p), that is, if p < vJ {2(e ~ -  1)}. 
In this case and in some other situations, an alternative asymptotic formula 
to (3.4.14) and (3.4.15) is available. This is stated as a theorem. 
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Theorem 3. 4.1 

Suppose that the processing time df satisfies 

1 -  Fr(x) - K x " e  -t~, x - - *  ®, 

whereas if c > 1, 

KpC"fA (C -- 1) Q~h/  
+ X IBe) 

fA(n) - n ~ 

x + , n ---~ ~. 

(3.4.19) 

Then if c = 1, 

, n --* ®, 

(3.4.20) 

(3.4.21) 

Proof'. The case (3.4.20) with c = 1 is proved in Willmot [35]. Hence assume 
c > 1 and it is of interest to prove (3.4.21). Note that the density correspond- 
ing to (3.4.3) is 

d 

L'Hospital's rule yields 

X a e - ~  
lira 
x- ,  1 - F,(x)  

k 
{1 - Fr(x)} {1 - F,(x)}  k- ' .  (3.4.22) 

Ef t )  

- lim 

= E(T) ~®lim { 

_ ~ E ( ~  

K 

ooc, , - ,  e - a ~  _ / ~  e - ~  

- {1 - F~(x)}  / E f t )  

1 - F r ( x ) J  
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In other words 

and so 

K 
1 - F,(x) ~ E ( T ) x " e - ~ x - - ~ ,  

d Fk(x) - k~  x ~ e -k~', x ~ ®. 
dx 

Thus, (3.4.4) and (1.3.19) yield 

~c ~ ~,co,~ ~ ( 
q.(k) h + 13c (P~J~ ~ ~ l~lc)~J nk~ 'k + 

Define 

Then, because 

® 

J ( s )  = E J .  s -  = (1 - o)/{1 - o Q , ( s ) } .  
n = O  

lemma 2 in Willmot [35] yields 
- 2  

q.(1),  n --'. ®. 

In other words, 

Kc"  h(1 - p) 

X )~ + , n --+ ~ .  

t l  a 

Now define 

H(s) = ~ h,s" = J(s)Qc(s). 
n=O 

(3.4.23) 

(3.4.24) 



QUEUEING THEORETIC APPROACH TO CLAIMS PAYMENT 485 

Because c > l  and a < - 1 ,  it is clear from (3.4.23) and (3.4.24) that lira 
q,(c) / j ,  =0. Corollary 6.1 of Meir and Moon [19] then yields that "-'" 

Thus, using (3.4.24), 

K c a k ( 1  - p)Qc (x  + tic) 

h .  - n a , n - - ~ ® .  

But from (3.4.5), 

fA(n) = p(l - p)-' fA(c - l)hn_c for n > c 

and so (3.4.21) results.I'-] 
Note that Theorem 3.4.1 yields an asymptotic expression of the form 

(1.3.22), namely, f.~(n)-K1n a [k/(k + 13c)]", n---*®, where/(i varies depend- 
ing on whether c is greater than or equal to 1. As a simple corollary to the 
theorem, from (1.3.21) is obtained the asymptotic expression for the reported 
liability df 

1 - FR(x) - C 2 x " e - ' , x  ~ ®. (3.4.25) 

In this expression C: varies both as the claim size distribution is discrete or 
continuous and as c is greater than or equal to 1. In any event, C2 is easily 
obtained from the theorem and the discussion immediately following (1.3.21). 
Also, x in (3.4.25) satisfies Mx(x) = (k + 13c)/h. 

Consider the class of distributions satisfying (3.4.19). Now, M r ( s ) <  ® for 
s<13, and Mr(13)< ®. Thus from (3.4.17), Ql(s)<® for s<(X+13c)/X and 
Q1 [(x + ~)/x] < ®. There will exist r> 1 satisfying Q~('r) = p-i if Q~ [(h + 13c)/ 
k]>p -1 (that is, if Mr(13)>l+p -~ E(T)I3). But Theorem 3.4.1 holds if 
Q~[(k+13c)/X]<p -t ,  and so one of the two asymptotic results will hold, 
namely, (3.4.14) or one of (3.4.20) or (3.4.21). 

The inverse Gaussian pdf (1.3.9) satisfies 

f(x) - x -3~ e -x/°, x ---* ®, 
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and L'Hospital's rule yields 

1 - F ( x )  - x - a n  e - ' / ~ ,  x ---, o~. (3.4.26) 

The relation (3.4.26) is clearly of the form (3.4.19) with ct= - 3 / 2 ,  I~ re- 
placed by 13 -1, and K =  {3p.e"(J3/rr)'n/2. Thus, if T has the inverse Gaussian 
pdf, (3.4.14) will hold if e~-_-i + ~/(2p), but if e"< 1 + ~/(2p), Theorem 
3.4.1 applies. 

Although the model of this section is more complex, it nevertheless pro- 
vides some insight into the distributional behavior of R in a more general 
situation. 

4. THE ANALYSIS OF DELAYS 

4 . 1  I n t r o d u c t i o n  

A quantity of interest to both the insured and the insurer is the length of 
time for processing and approving a claim for payment. We will ignore 
partial payments made prior to final settlement. The insured normally is 
interested in the total delay between the time of incurral of the claim and 
the time of receipt of payment, whereas the insurer is concerned with the 
time from receipt of notification of the claim until approval or payment. 
Because the time from incurral to receipt of notification is outside the in- 
surer's control, this quantity is not of interest for analysis of the system's 
efficiency. In group insurance, this efficiency is one of the more important 
parameters involved in the decision of policyholders to place their business 
with a particular insurer. Hence, the time to process a claim is clearly a 
quantity of interest to the insurer. 

Although the average processing time is certainly important, it is not 
sufficient for proper evaluation of the system's efficiency, because it does 
not allow for variability. For example, it does not account for variations in 
the time for processing a particular claim or in the delay due to an increased 
volume of incurred claims. A queueing approach can incorporate these quan- 
tities into the model. It is important to be able to assess whether a long delay 
in payment of a claim is reasonable in light of this variability. Clearly, 
improvement of the system's efficiency might be deemed appropriate if 
delays are too long. 
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4. 2 Exponential Processing Models 

Consider first the time S between receipt of notification of the claim and 
final approval of the claim for payment. For the single claims evaluator 
model of Section 3.2, Example 3.2.1 pointed out that S has an exponential 
distribution with mean p/{X(1-19)}. Hence, because 9 = hE(T) where T is 
the time required to approve one claim, the distribution of S is given ex- 
plicitly by 

{' } .~_ E-~ - h x  Fs(x) 1 - e-  , x > 0. (4.2.1) 

It follows at once that 

E(_T)_ .~2 (4.2.2) 
Var(S) = {E(S)} z = 1 - XE(T)J"  

Thus, (4.2.1) and (4.2.2) give two simple measures of the variability in S. 
As pointed out in Section 3.3, the model with c claims evaluators may 

be of more interest to the insured because the distribution of S and its 
moments can be modified by a change in c, a parameter that is under the 
control of the insurer. In this case (in the notation of Section 3.3) the dis- 
tribution of S is given by (compare Gross and Harris [11], p. 91) 

- -kX 
Fs(x) = 1 - (1 - 0)e e~-n - 0 e - ~  , x > 0, (4.2.3) 

c -1  

1 -  Y. A(~) 
. -o (4.2.4) 

0 =  1 - e  + hE(T) 

and for n = 1, 2 . . . .  , c - 1, 

{kE(T)}" ( {RE(Tit C c-, {hE(T)ik/- '  (4.2.5) 
rA(n) = n~ (c - ~ / :  ~e( r ; }  + k_-Zo k~ / " 

From (4.2.3), 

E ( S ) = ( 1 - O ) E ( T ) +  0 { c  -E(T)hE(T) } (4.2.6) 

where 
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and 

E(S 2) = 2(1 - 0){E(T)} 2 + 20 f{ E ( T )  "11, 2 (4.2.7) 
c - x e ( r ) J  ' t 

with Var(S) = E(S z) - {E(S)}L 
For analysis, it is convenient to express (4.2.3) through (4.2.7) in terms 

of h, E(T), and c. This is because the claims incurral rate h and the mean 
processing time E(T) would normally be beyond the control of the insurer, 
but the number of evaluators c is under the control of the insurer. Thus, as 
discussed in Section 3.3, the effect on the distribution of S of a change in 
the value of c may be ascertained. The following example illustrates this 
point. 

Example 4. 2.1 
Consider the situation of Example 3.2.2 with c = 3 claims evaluators, 

h = 4.27137, and p = 0.147681. Then the mean processing time of one claim 
is E(T)= co/k = 0.103724. It is a simple matter to evaluate fA(n) for n = 1, 
2 . . . . .  c -  1 by using (4.2.5). Then, from (4.2.4), 0 = -0.00700951. The 
mean and variance of S are 0.104167 (=  5/48, see Example 3.3.2) and 
0.0109797, respectively, obtained by using (4.2.6) and (4.2.7). The dfFs(x) 
from (4.2.3) is 

Fs(x) = 1 - 1.00701e -9"6'~°97x + 0.00701e -24"6516~. 

Thus, for example Fs(0.145)=0.75, implying that about 75 percent of the 
claims could be expected to take no more than 0.145 of a year to be approved 
(and 25 percent would take more than this length of time). 

The effect on S of hiring or releasing claims evaluators can be evaluated by 
varying c but keeping X and E(T) constant. In this situation, for example, the 
effect of releasing one evaluator can be determined by reworking the calculation 
with c=2 .  Then 0=-0.144258,  E(S)=0.109077, and Var(S)=0.014050. 
The fact that E(S) increases only slightly for the case when c = 3 reflects the 
fact that p is quite small, and so there is little congestion. Note that the vari- 
ability has increased, probably reflecting the fact that increased congestion has 
a greater effect with fewer evaluators. Finally, in this case 

Fs(x) = 1 - 1.14426 -9-64°97x + 0.14426e -15"°1°~. 

One finds that Fs (0.155)=0.75, that is, an increase from 0.145 to 0.155 of 
the 75th percentile from the case c = 3, again agreeing with intuition. 
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Note that the processing times in each stage of the two-stage network 
model described in Section 3.3 are independent of each other, and each is 
distributed as described above. The total processing time has a distribution 
that is the convolution of two distributions, each with df of the form (4.2.3). 
This independence does not hold for the more general network models (com- 
pare Burke [6]). Similarly, the total delay from the claimant's standpoint is 
simply the convolution of the distribution of S described above with that of 
B, the time from incurral to reporting, as described in Section 2. In these 
and other models, the distribution of interest involves convolutions of ex- 
ponentials with different means. Rather than enumerate all possibilities, it 
suffices to point out that the sum of k independent exponentials with different 
means has mgf of the form 

M(s) = II  (4.2.8) 
i - I  

and pdf 
k 

f(x) = E qi/zi e - ~  (4.2.9) 
i - 1  

where, for i = 1, 2 . . . . .  k, 
k 

q, = I I  { ~ J ( ~ j -  ~,)}. (4.2.10) 

j ÷ i  

The ~i's are all assumed to be distinct in this formula. See Everitt and Hand 
[9, p. 79], for further references. In this situation as well as others, this 
result allows for a simple derivation of the distribution of interest and as- 
sociated moments. 

4. 3 More General Delay Models 

For situations not involving exponential processing models, the total delay 
distributions are more complex. However, a common underlying mathe- 
matical structure can be exploited to provide a unified treatment of the 
various delay distributions of interest to the insurer and the policyholder. 

To begin, consider the model of Section 3.4 with c claims evaluators 
processing claims, with the time required to process one claim given by a 
generic variable T and with distribution Fr(x). The notation of Section 3.4 
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will be used. Recall (Bowers et al. [2, p. 360]) that the random variable 
with pdf F'~(x)= {1-Fr(x)}/E(T) has mgf 

Mr(s) - 1 
m~(s) = (4.3.1) 

se(T3 

Because 

MT(s) = ~ E(Tt) 
k~=o kt s~' 

the moments of the distribution with df Ft(x) are given by 

Mt k) (0) = E(Tk+t)/{(k + 1)E(T)}. (4.3.2) 

If we denote the delay random variable of interest to be IV, the distribution 
of W is most easily characterized by its mgf, which is of the mixture form 

Mw(s) = OMw~(s) + (1 - O)Mw2(S) (4.3.3) 
C - 1  

where 0 = 1 -  ~ fA(n), 
n=o 

1 - - p  
Mv,,~(s) = 1 - oM~(s/c) Mw~(S), (4.3.4) 

and the mgf's Mw2(s) and Mw,(s) are selected so that Wrepresents the desired 
quantity. 

To identify W~ and WE, suppose first that 14I is the time S between receipt 
of notification of the claim and approval for payment. Van Hoorn [33, p.37] 
shows that the time from receipt of notification until actual processing of 
the claim begins has mgf of the form 1 -  0 + OMw~(s), where Mw,(s) is the 
mgf Me(s) of the random variable with df Fc(x) given by (3.4.3). Thus S is 
obtained by convolving this distribution with that of T, the processing time. 
In other words, S has mgf of the form (4.3.3) with Mw2(s)=Mr(s) and 
Mw~(S) = Mc(s)Mr(s). From the policyholder's standpoint, W= S + B where 
B is the time from incurral to reporting. Hence in this case W is still of the 
form (4.3.3) with M,,2(s ) =Mr(s)Ms(s) and Mw,(s)=Mc(s)Mr(s)MB(s). 

The representation (4.3.3) allows for evaluation of the moments of W by 
differentiation. In general, the moments M~k)(O) may be difficult to evaluate, 
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but if c = 1, then (4.3.2) may be used so there is no difficulty, as long as 
the moments of T (and perhaps B) can be obtained. 

Evaluation of the distribution of W is also complicated in general, pri- 
marily because of the presence of the distribution of W~ with mgf (4.3.4). 
The tail of the distribution may be asymptotically exponential, however. 
Notice that (4.3.4) can be expressed as 

Mwl(s) = pM~(s/c)Mwl(s) + (1 - p)Mw3(s). 

Assuming that W3 is continuous, p = XE(T)/c implies 

fw, (x) = k i {1 - Fr(cy)}fw,(x - y)dy + (1 - p)fw3(x). (4.3.5) 
0 

This relation is useful because it may sometimes be solved numerically for 
fw~(x), being a Volterra integral equation (compare Str0ter [28]). Also, it is 
a defective renewal equation (for example, Gerber [10, chapter 8]). To see 
this, note that the mgf Ma(s/c) is associated with the pdf 

C 
~(x) = ~ {1 - Fr(cx)}, (4.3.6) 

e(73 

and (4.3.5) can be expressed as 
x 

fw~(x) = O ~ ~(Y)fve,(x - y ) d y  + (1 - o)fw3(x). (4.3.7) 
0 

Thus, if there exists x> 0 satisfying 

M~(r,/c) = p-a, (4.3.8) 

then (4.3.7) satisfies 

e ~ fw~ (x) = J {oe'y ~(v)} {e"~-y)hi (x - -  y)} dy + (1 - p)e ~ fw3 (x). 
0 

By (4.3.8), this is an ordinary renewal equation, and by the renewal theorem 
(compare Karlin and Taylor [14, p. 191]), 
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In other words, 

lira e '~ fw , (x )  = 

(1 - p) e"* fw3 (x )dx  

m 

o 

c ( 1  - 
f w , ( x ) -  e - '~ ,  x - - > ® ,  

~ ; (  ~/c) 

and because asymptotic expressions can be integrated, 

1 - Fw,(X) - c(1 - p)Mw~(K) e_~,  ' x ---> =. 
,#c ) 

Finally, if Mw2(K)< •, then e "= {1-Fw2(x)}-'>0 as x---*®, and so (4.3.3) 
yields 

1 - F w ( x )  - K e  ~', x ---> ~ ,  (4.3.9) 

where the constant K is given by 

K = c0(1 - p)Mw3(K) (4.3.10) 
p, vt;(,ec) 

Evidently, (4.3.9) demonstrates that the distribution of W is asymptotically 
exponential under these conditions, which provides qualitative insight into 
its behavior. Note that (4.3.1) and (4.3.8) combine to yield an alternative 
definition of the decay parameter K in (4.3.9), namely, 

MT(r,/C) = 1 + p-I { - ~ - }  K. (4.3.11) 

Equation (4.3.11) reveals, upon examination of Section 12.3 of Bowers et 
al. [2], that K is the adjustment coefficient in a ruin theoretic context with 
"single claim size" m g f M r ( s / c )  and relative security loading (1 -p)/p. This 
is analogous to the condition for the asymptotic exponentiality of the reported 
claim liability distribution of Section 3.4, as is discussed following (3.4.18). 
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5. CONCLUSIONS AND AREAS FOR FURTHER RESEARCH 

This paper presents a cohesive and comprehensive modeling approach to 
the analysis of the claims payment process, relying heavily on risk and 
queueing theoretic techniques to account for the effects of statistical variation 
in both claims incurral and processing. A unique feature of the approach is 
the attempt to incorporate the effects of increased congestion of claims on 
the reported claims process. 

Section 1 describes both the nature of the problem and the relevant risk 
theoretic background. In particular, the number of incurred claims is as- 
sumed to be a Poisson process, and some of its properties are described. 

The unreported claim liability is the topic of Section 2. First, a compound 
Poisson model is proposed that requires knowledge only of the average 
reporting delay as well as the usual incurred claims information. The mean 
unreported liability is consistent with intuition, higher moments such as the 
variance are easily obtained, and the entire distribution can be calculated 
recursively with a computer. This allows one to choose the amount adequate 
to cover the liabilities with a specified probability, an approach suggested 
by Bragg [3]. Second, a generalization is presented that reflects differences 
in reporting patterns, while retaining the advantages of the compound Pois- 
son form. Finally, a much more general model is discussed, which allows 
for a great deal of flexibility with respect to realistic phenomena, such as 
seasonality of incurred claims, business growth, heterogeneity of risk levels 
in the portfolio, inflation, and variability of reporting patterns. The added 
expense of the generalizations is more complicated mathematics, but the 
compound form of the unreported liability distribution is retained. Many of 
the various desirable ramifications are discussed. 

The reported claim liability is considered in Section 3. First, it is shown 
quite generally that the reported and unreported claim liabilities are statis- 
tically independent of each other, implying that they can be analyzed sep- 
arately. Also, the number of reported claims is shown to be approximately 
a Poisson process, which facilitates the use of queueing techniques. A com- 
pound geometric model for the unreported liability is proposed in Section 
3.2 under the assumption that one claims evaluator processes claims in the 
order in which they are reported and that the processing times required for 
each claim are independent and exponentially distribute d . The reported claim 
liability distribution can be evaluated recursively on a computer, and a simple 
exponential approximation for the right tail allows for a simple estimate of 
the amount needed to cover the liability for a fLxed proportion of the time. 
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A somewhat more complex model involving several claims evaluators is 
described in Section 3.3. Although the computational details are slightly 
more onerous, there is little difficulty calculating the moments and the dis- 
tribution (the latter recursively), and an exponential tail approximation for 
the right tail of the reported claim liability distribution is still available. 
These models can be combined to describe more complex evaluation systems 
through the use of networks, and a two-stage model representing claims "In 
Course of Settlement" and "Due and Unpaid" is outlined. Finally, an ar- 
bitrary processing time distribution and several evaluators are assumed. This 
general model reproduces an intuitively appealing mean reported claim lia- 
bility. Although this model is more mathematically complex, the right tail 
of the reported claim liability distribution is still approximately exponential 
under fairly general conditions. In fact, these conditions are shown to be 
essentially those for the existence of the adjustment coefficient in ruin theory. 
An alternative asymptotic formula is given for some situations in which the 
exponential form does not hold. 

The analysis of the delays in processing claims for payment is the subject 
of Section 4, in which it is argued that this is an important tool in the analysis 
of the efficiency of the claims evaluation system. The situation involving 
exponential processing times yields relatively simple moments and distri- 
butions of the delays, as shown in Section 4.2. In the more general for- 
mulation of Section 4.3, an expression is given for the moment generating 
function of the delay distribution, and it is shown that this formulation may 
represent different time periods of interest to the policyholder and the insurer. 
An exponential tail approximation for the delay is then derived, again under 
essentially the same conditions as those underlying the existence of the 
adjustment coefficient of ruin theory. 

The paper describes a general approach to modeling the claims payment 
process and provides a basic set of quantitative tools for a variety of situa- 
tions. Although the use of network models discussed in Section 3 provides 
an important framework within which quite complicated claims processing 
systems can be modeled, certain situations require more complicated models. 

One such situation involves the possibility of resisted claims, which can 
often be dealt with through a redefinition of the single claim size distribution. 
Suppose, for example, that a proportion p of claims are assumed to be 
ultimately not paid. Then the single claim amount distribution fx(x) could 
be replaced by one of the form p + (1 -p)  fx(X), where fx(x) is now inter- 
preted as the distribution of the amount payable given that something is 
payable. Even in the more complicated situation with partial payments, past 
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experience data could possibly be used to construct a distribution of the 
amount actually paid (if the data available do not already reflect this). A 
more difficult problem involves situations in which the size of the claim 
cannot be ascertained at the time of incurral and is not independent of the 
processing time, and the approach of this paper may be unsatisfactory. Note 
that these may be the same situations in which the standard model of risk 
theory is also unsuitable, however. 

One other possible feature involves the queueing mechanism assumed in 
the liability of reported claims. Rather than working on one particular claim 
until it is approved for payment, an evaluator may work on other claims (or 
even other types of insurance) while other work is done on the original claim 
or other information is obtained. Thus several claims may be processed 
simultaneously by a single evaluator. The use of network models may be 
appropriate here because the claims could be routed to another queue and 
then returned after additional information is obtained. A second possibility 
is to formulate a model in which the time of the evaluator is "shared" by 
several claims in the course of being approved. A simple method for incor- 
porating this feature would be to assume that the evaluator acts like several 
evaluators, one for each claim. 

There may be other features that one may wish to incorporate into the 
model for the liability of reported claims, and a queueing approach provides 
a systematic and unified methodology that can be utilized in a wide variety 
of situations. 

As with other models such as Holsten's [13], the model for reported claims 
assumes equilibrium has been reached, and removal of this assumption may 
be both desirable and difficult. Nevertheless, we hope that this approach 
provides valuable insight into the claims payment process and, in particular, 
to claim liabilities and the delays involved. 
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