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ABSTRACT 

This paper sets out, in algorithm form, a one-factor term structure 
model of interest rates and illustrates the application of such a model to 
the valuation of loans with prepayment provisions. It is mainly directed 
to actuaries who are not familiar with these models. The algorithms are 
presented in a form that can readily be implemented and adapted to other 
interest-sensitive assets and liabilities. A simple example illustrates the 
steps in the application of the term structure model. The paper outlines 
the features of standard prepayment models and the issues that arise when 
prepayments are incorporated in the implementation of a term structure 
model. A brief discussion of some problems in hedging a portfolio 9 f 
loans with prepayment provisions completes the paper. 

1. INTRODUCTION 

Many financial products contain prepayment provisions. Loan con- 
tracts are often structured to provide the borrower with the option to 
prepay the loan at any time or on specific dates prior to the maturity 
date of the loan. Prepayment options are important aspects of these fi- 
nancial products. The most common investment product with this feature 
is the mortgage-backed security. Investment contracts issued by life in- 
surance companies contain similar options in which the policyholder is 
allowed to surrender the policy with no surrender charge. 

This paper considers the valuation of loan contracts with prepayment 
options. The loan contracts are fixed-interest-rate loans with no restric- 
tions on the pattern of repayments. They can take the form of level- 
repayment contracts, interest-only and bullet-principal repayment con- 
tracts, or any other contractual repayment structure. In this paper the 
method used to price these contracts is a general algorithm-based ap- 
proach that is not dependent on the structure of the loan cash flows. The 
algorithm allows for stochastic interest rates and incorporates a one-factor 
term structure of interest rates model. The algorithm is "arbitrage-free"; 
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that is, the parameters of the one-factor term structure model are chosen 
to ensure that prices of traded zero-coupon bonds derived by using the 
algorithm are equal to the market prices of such bonds on the valuation 
date. 

This paper does not develop new theoretical results. The approach used 
is the same as that of Jacob, Lord and Tilley [12]. A more detailed and 
comprehensive coverage of interest rate models is given in Tilley [29]. 
The paper aims to illustrate the practical implementation of some tech- 
niques of modern financial mathematics and economics as developed for 
the analysis of interest rate options. Prepared for actuaries who are un- 
familiar with these ideas, the, paper aims to assist in providing a basic 
understanding of these techniques. A glossary of terms at the end of the 
paper will assist those readers unfamiliar with the terminology. 

The literature on modeling of interest rates and the application of these 
models to options has expanded over recent years. Examples include 
Black, Derman and Toy [4], Black and Karasinski [5], Bookstaber, Ja- 
cob and Langsam [6], Heath, Jarrow and Morton [9], Ho and Lee [10], 
Jamshidian [13], Miller ([17], [11], [19]), O'Brien [20], Pedersen and 
Shiu [21], Pedersen, Shiu and Thorlacius [22], and Ritchken and San- 
karasubramanian [24]. A number of actuaries have actively contributed 
to the development of these techniques. Even so, the usefulness and ap- 
plication of these techniques are not well understood by actuaries not 
actively involved in investment issues; this paper aims to assist those 
actuaries. 

Section 2 describes the prepayment option in these loan contracts. Sec- 
tion 3 sets out the algorithms that are the basis of the implementation of 
a one-factor arbitrage-free term structure model and shows how such a 
model can be used to value the prepayment option in such loan contracts. 
Section 4 outlines the main features of commonly used prepayment models. 
Section 5 defines the conventional risk statistics, . including the delta, 
gamma, vega, duration, and convexity, that are used in the management 
of a portfolio of loan contracts with prepayment options. Section 6 briefly 
discusses the management of a portfolio of such loan contracts, including 
how the prepayment and interest rate risk of these loans might be hedged 
in financial markets. 
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2. PREPAYMENT RISK 

This paper considers prepayment risk from the point of view of an 
issuer of loans with early repayment options. Prepayment risk arises in 
such a loan contract when the borrower is given the option to prepay a 
fixed-interest-rate loan prior to the maturity date of the loan without pen- 
alty. In this paper the loan contract analyzed is a fixed-interest-rate, fixed- 
term loan. It is assumed that under the terms of the loan agreement the 
borrower can repay the loan for the balance outstanding, regardless of 
current market interest rates, at any time during the term of the loan. 

The value of early prepayment reflects the difference between the value 
of the outstanding loan repayments at the interest rate at the time of 
prepayment for the remaining term of the loan less the amount of the 
loan then outstanding (which is the value of the outstanding loan repay- 
ments at the contract interest rate). If interest rates have fallen, then the 
payoff from early prepayment would be positive. In options terminology 
the prepayment option would be "in the money." Similarly, if rates have 
risen, then the prepayment option would be "out of the money," because 
the payoff from prepayment would be negative. 

This prepayment option is most commonly found in mortgage-backed 
securities. The prepayment option in these securities has been the subject 
of a number of papers, including Dunn and McConnell [7], Green and 
Shoven [8], Kang and Zenios [15], Kau, Keenan, Muller and Epperson 
[16], and Schwartz and Torous ([25], [26]). Bartlett [2] provides a com- 
prehensive discussion of these securities. 

3. VALUATION OF LOAN CONTRACTS 
WITH PREPAYMENT OPTIONS 

The loan contract is the equivalent of a fixed-rate loan with an option 
to repay early. The prepayment option is a call option held by the cus- 
tomer on the loan contract with an exercise price equal to the loan's 
outstanding balance. The customer can call the loan contract by repaying 
the loan. Because the loan can be prepaid at any time, the option is 
equivalent to an American-style option to exchange the fixed-rate loan 
for a floating-rate loan for a term equal to the remaining term of the 
original loan. For interest-only loans, it is equivalent to an American- 
style option on an interest-paying bond with an original maturity equal 
to the original term of the loan. 
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American options, which allow for early exercise, are usually valued 
by assuming an optimal exercise policy. The optimal strategy for the 
customer would be to exercise the call option on the loan contract only 
when the difference between the value of the loan at the prevailing in- 
terest rates on any future date and the loan amount outstanding at that 
time exceeds the value of the prepayment option on that date, assuming 
an optimal exercise policy for the remaining term of the loan. Otherwise, 
the prepayment option should not be exercised because it is worth more 
"alive" than exercised. 

In practice, there are many reasons why loan customers do not follow 
this optimal prepayment strategy. Some borrowers prepay when it does 
not appear to be optimal to do so, and not all borrowers prepay even 
when it would be optimal to do so. Such departures from this optimal 
exercise strategy arise for a host of reasons, including market frictions 
such as transaction costs and events such as divorce, death, change of 
job, and default. From the borrower's perspective, this suboptimal pre- 
payment strategy is not necessarily suboptimal. A major difficulty in 
valuing loans with prepayment features is the allowance for this apparent 
suboptimal behavior. 

The important point with this contract is that this apparent suboptimal 
exercise of the option provides positive value to the lender in all cir- 
cumstances. This is also the case when the borrower does not prepay 
when it would be optimal to do so. If the loan can be issued for the cost 
of the prepayment option assuming an optimal exercise policy, then the 
lender need not consider an allowance for the suboptimal early prepay- 
ments in the pricing and could then allow profits from such prepayments 
to be recognized as they occur. The lender would also need to recognize 
profits from nonexercise of the prepayment option when it would be 
optimal to do so. Otherwise, an allowance for an expected pattern of 
prepayments must be included in the pricing. 

A. Valuation of  Prepayment Option--Optimal Exercise Policy 

The algorithm used in this paper for the valuation and analysis of the 
prepayment option is based on a technique given by Jamshidian [13]. 
The algorithm is fast and efficient and allows the valuation of a range 
of interest-rate-related options. The basic approach is set out in this sec- 
tion, and a simple 12-month loan example is used to illustrate the im- 
plementation of the algorithms. 
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Interest rates in the model are stochastic and take discrete values based 
on a lattice. The simplest case is the binomial lattice, and because this 
has accepted usage, this is the basis adopted. Hull [11, Section 15.9] 
provides an introductory discussion of the binomial lattice for interest 
rates, and more details are found in Rendleman and Bartter [23] in an 
early application of the binomial lattice to interest rates. 

Alternative lattice structures do have potential computational advan- 
tages, but this is unlikely to be an issue of concern with the algorithm 
recommended for the computations in this paper. Amin [1] and Kamrad 
and Ritchken [14] examine some of these alternatives and report their 
computational efficiency. 

This lattice is constructed for the maximum time to be used in the 
valuation. For example, using a monthly time interval requires 60 time 
intervals for a five-year loan. A monthly interval should be accurate enough 
for many applications. In general, the number of intervals is an input 
variable. Hence, if M is the maximum time (in years) for construc- 
tion of the interest-rate lattice and n is the ntmaber of time intervals into 
which this period is to be divided, then each time interval is of length 
h = M / n  years. For M=5 years and n=60 time intervals, the length of 
each is 5 /60=1/12  of a year, or one month. 

Table 1 shows values of s(i,t), the cumulative effect of up and down 
jumps in a binomial lattice, with an up jump counting for + 1 and a down 
jump counting for - 1 ,  for a 12-month period, where t indicates time in 
months. The values for i are given by the row number, and the values 
for t are given by the column number. Nodes in the lattice are denoted 
by the pair (i,t). The probabilities of an up or down change in the lattice: 
are taken to be 1/2. This probability is used for fast computation of values. 
Under this assumption, the expected value of s(i,t) at time t is 0 and the 
variance of s(i,t) at time t is t. 

The one-period interest rates that apply for an investment from time t 
to t+ 1, denoted by r(i,t), will be semiannual compounding per annum 
rates. This convention is used because market-based Treasury interest 
rates are quoted on this basis, and these rates provide the basis for pricing 
interest rate options. The r(i,t) are functions of the one-period standard 
deviation, or volatility, of spot interest rates and the median future one- 
period interest rate. A diagram of a binomial lattice of the interest rates, 
r(i,t), is illustrated in Figure 1. 
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FIGURE 1 

BINOMIAL LATrlCE OF ONE-PERIOD INTEREST RATES 

~ 1 , ~  

~ 3 , 3 ~ , ~ . ~  

The choice of the function for r(i,t) determines the limiting distribution 
of future one-period interest rates. Two common alternatives are the nor- 
mal distribution generated by using Formula (1) and the lognormal dis- 
tribution generated by using Formula (2). 

The normal distribution specification, an additive model, is: 

r(i,t)=f(t)+(ffl~o)S(i,t)V/-h, (1) 

and the lognormal specification, a multiplicative model, is: 

IcrL(t)100 s(i,t)Vh] r(i,t) = f(t) exPL (2) 

where f(t) is the median future one-period interest rate at time t; cru(t) 
is the one-period interest rate volatility in absolute terms for time period 
t to t+ 1; crL(t) is the one-period interest rate volatility in percentage terms; 
and h is the length of the time interval used. There are advantages and 
disadvantages to either model. There are also other models that can in- 
corporate mean reversion and other distributions. For the illustrative ex- 
ample, the lognormal model is used. 
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Jamshidian [13] gives the following reasons for using the lognormal 
model: 
• It does not allow negative interest rates, as is possible under the nor- 

mal model. 
• It allows the yield curve to move in a nonparallel fashion, unlike the 

normal model, which implies parallel moves, providing a more ac- 
curate basis for pricing interest rate options whose values depend on 
relative movements in yields for different maturities on the yield curve. 

• The implied volatility curve for zero-coupon bonds derived from the 
resulting spot interest rates has higher volatilities for short-term bonds 
than for long-term bonds, unlike the normal model, which has ap- 
proximately constant volatility for different term zero coupons. Higher 
volatility in short-term interest rates is an observed empirical fact for 
interest rates. 

• The volatility parameter for the lognormal model is percentage yield 
volatility of the one-period forward interest rate and can be estimated 
from prices for options on forward interest rates. 

Note also that yield volatility is used in Formulas (1) and (2), not price 
volatility. If options data give price volatility, then this must be con- 
verted into percentage yield volatility for the lognormal model. If the 
normal model is used, then price volatility must be converted into ab- 
solute dollar yield volatility. The Appendix details how to convert from 
one volatility to another. Volatility can be interpolated from a for- 
ward rate volatility curve or assumed constant for all periods for ease of 
computation. 

When the formula for r(i,t) is selected, it is then used to derive a lattice 
of present value factors to value cash flows. If r(i,t) is a percent per 
annum semiannual compounding rate, then the discount factor for the 
lattice at node (i,t) is: 

I . . .  7 (-2h) 
r~t,t)| 

p(i,t) = 1 + - ~ j  , (3) 

where h is the time interval. Formula (3) is readily adapted for other 
compounding frequencies for r(i,t). 

These present value factors are one-period discount factors that apply 
to the average value of the cash flows at the up and down jumps orig- 
inating from the node (i,t). The average value is calculated with the prob- 
abilities of the up and down jumps, which are taken as '/2 in the example. 
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Present values are determined by using backward recursion down the 
lattice starting at the last date of a cash flow. 

The discount factors for each node of the lattice are determined by 
using forward recursion. This forward recursion produces "arbitrage-free" 
discount factors; this also implies that the r(i,t) lattice is "arbitrage-free." 
This involves ensuring that the value (yield) of zero-coupon bonds ma- 
turing at the end of each time interval, determined using the interest rate 
lattice and the p(i,t) discount factors, is equal to the current market price 
(yield) of those bonds. 

To do this as efficiently as possible, it is necessary to determine cur- 
rent prices of single-dollar cash flows payable at the node (i,t) of the 
lattice with zero payable at every other point of the lattice. These prices 
are referred to as "state-contingent" prices. G(i,t) is used to denote the 
price of a security that has a cash flow of $1 at node (i,t) and 0 every- 
where else. A zero-coupon bond maturing at time t=T will have cash 
flows of $1 for each node (i,T), i=0  to T, at time t=T and 0 at every 
other point on the lattice. Therefore, the price of a zero-coupon bond 
maturing at time t=T will be given by Formula (4): 

i=T 

P(T) = Z G(i,T). (4) 
i=0 

The zero-coupon yield curve, y(t), for zero-coupon bonds maturing at 
the end of each of the time intervals in the lattice is used as input. This 
is for monthly time intervals for one year in the example in this paper. 
The price of a zero-coupon bond with face value of $1 maturing at time 
t=T with a per annum semiannual compounding yield of y(T)% is given 
by Formula (5): 

[ y ( T ) ]  t-2rh, 
P ( T ) =  1 + - ~ j  . (5) 

The valuation lattice is constructed by using forward recursion starting 
at node (0,0) in the lattice. The input is as follows: 
• The s(i,t) lattice (Table 1) 
• The zero-coupon yield curve, y(t), which is used to determine the 

price of zero-coupon bonds, P(t) (see Table 2 for a numerical ex- 
ample) 
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• The annualized one-period spot rate percentage volatilities, (r(t), for 
each period in the lattice (see Table 2 for a numerical example). 

Table 3 gives the zero-coupon bond prices for each maturity by using 
Formula (5) for P(t) and the zero-coupon bond yields in Table 2. 

The output is as follows: 
• The median forward interest rates, f(t),  for each value of t 
• The "arbitrage-free" implied one-period spot interest rates at each 

node in the lattice corresponding to the p(i,t) factors 
• The one-period discount factors, p(i,t), at each node in the lattice 
• The current state-contingent prices, G(i,t), for each node in the 

lattice. 
The algorithm for determining these is based on a forward recursion 

algorithm for "state-contingent" prices, as given in Jamshidian [13]. State- 
contingent prices for single-node cash flows at the end of each time pe- 
riod are expressed in terms of the previously determined state-contingent 
prices for single-node cash flows at the start of each time period and a 
median forward interest rate. The median forward interest rate is deter- 
mined so that the sum of the state-contingent prices for each node at the 
end of each time period equals the market price of the zero-coupon bond 
maturing at the end of the time interval. 

The numerical values derived by applying the algorithm for a 12-month 
loan example are set out in Tables 4, 5, 6, and 7. The steps in the al- 
gorithm are given in Algorithm 1. 

Algorithm 1. Forward Recursion: Commence by initializing the time 
0 values: 

G(O,O)=I 
p(O,O)=P(1) 
r(O,O)=y(1) 
f(O)=y(1) 

The algorithm then proceeds from t = 1 to n - 1  by using the following 
steps: 
• Begin with i=O (so that s(O,t)=t). 
• As a first guess, estimate the median interest rate by using the pre- 

vious period's rate, f ( t )=f( t-1) .  
• Calculate the spot rate, r(O,t) by using 

L too r O'L(t) ] r(O,t) = f(t)  exp 1-:-Y:-~ s(0,t)~/h 



TABLE 2 
ZERO-COUPON YIELD CURVE AND SPOT RATE VOLATILITIES 

I I 2 3 
y(t) 6.65 6.58 6.53 
~(t) 21 21 21 

4 
6.5 6.44 

21 21 

5 6 7 8 
6.41 

21 
6.39 6.39 

21 21 

9 10 I1 12 
6.38 6.4 6.42 6.45 

21 21 21 21 

TABLE 3 

ZERO-CouPON BOND PRICES 

ol j2 
P(t) 1 0.994563 0.989268 F 3 1 4 1 5  0.984064 0.978904 0.973935 

I 
6 7 I 8 

0.968945 0.963973 I 0.958933 
I 9 [ IO I I I  12 

0.953989 0.948856 0.943721 0.938491 
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Calculate the discount factor corresponding to r(O,t) by using 

r(O,t)- (-2h) 

p(O,t)= 1 + 200 

• Calculate the state-contingent value of  $1 payable at time t by using 
the modified forward recursive relationship for i=O: 

G(O,t) = I/zp(O,t- 1 ) G ( 0 , t -  1). 

• Continue for  all nodes for f x e d  t by using, for i= 1 . . . . .  t -  1: 

s(i,t) = t - 2i 

t, exp[  ] 
. . .  7 ( - 2 h )  

r(t,t) I 
p(i,t) = 1 + - ~  j 

G(i,t) = l/z[p(i,t-  1)G(i,t - 1) + p ( i -  l , t -  1)G(i - l , t -  1)]. 

• Finally, complete the process for  i= t, so that s(t,t)= - t, and r(t,t) 
and p(t, t) are calculated as above, but G(t,t) is calculated by using 
the modified recursive relationship: 

G(t,t) = V l [p( t -  l , t -  1 ) G ( t -  1 , t -  1)]. 

• The values for  G(i,t) and p(i,t) are then used to calculate the next 
period zero-coupon bond price using the relation: 

P*(t + 1) = E G(i,t)p(i,t). 
i 

The first value derived for P*(t+ l ) is based on an estimate for  f(t) and 
is unlikely to be equal to the market price of  the zero-coupon bond price 
derived from the input market yields and given in Table 3 for the ex- 
ample. I f  the value is not equal to P( t+l )  in Table 3, at least within a 
reasonable margin of  tolerance such as 10 -5, then an iterative method 
such as the secant method is used to determine the value o f f ( t )  that 
equates P*(t+ l )  to the market price. Once P*(t+ l )  has converged to 
P(t+ l ), the zero-coupon bond price for next time point is then fitted. 
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At the end of Algorithm 1, the values ofp(i , t )  and G(i,t) for all values 
of (i,t) in the lattice will have been derived so that they are "arbitrage- 
free" with respect to the zero-coupon yield curve. These values are all 
that are required to value the rational prepayment option. 

For the 12-month loan example, the median future spot interest rates 
determined by using the above algorithm to fit the interest rate lattice to 
the market prices of the zero-coupon bonds are given in Table 4. 

The fitted-interest-rate lattice is given in Table 5 as semiannual com- 
pounding rates. The corresponding discount factors for the interest rate 
lattice are given in Table 6; these are determined in conjunction with the 
values for G(i,t) given in Table 7. 

For the 12-month loan example, Table 7 gives the G(i,t) values de- 
termined from Algorithm 1. 

The values in the tables were derived by solving for the median for- 
ward rate in Formula (2) for r(i,t) that produced values equal to the price 
of the zero-coupon bond for each maturity given in Table 3 using 
Algorithm 1. 

Cash flows at future times can be valued by using the lattice of state- 
contingent prices simply by multiplying the cash flow at node (i,t) by 
G(i,t) and summing over all values of i and t. This procedure works for 
standard loan cash flows and also for bond and other fixed-interest se- 
curities but not for loans and securities with prepayment options. These 
options require a backward recursion approach to determine the value of  
the security on future dates allowing for an optimal prepayment strategy. 

The steps involved in the valuation of a loan with a prepayment option 
are, first, to determine the current values of the loan repayments at each 
node of the lattice. The contractual loan cash flows are set out in a lat- 
tice. The loan cash flow at node (i,t) in the lattice is denoted as c(i,t). 
The value of the loan is derived by backward recursion through the 
lattice. 

The example uses a 12-month interest-only fixed-rate loan with an 
interest rate of 6.449 percent per annum (semiannual compounding) for 
an amount of $10,000. Monthly interest repayments for such a loan will 
be $53.036 with repayment of the $10,000 in a bullet payment in 12 
months. The loan rate of 6.449 percent per annum (semiannual) was 
chosen because this is the "arbitrage-free" interest rate for such a loan 
based on the one-factor term structure model derived earlier, for which 
numerical values are found in Tables 5, 6, and 7. The lattice of  loan 
cash flows is given in Table 8. 



TABLE 4 

MEDIAN SPOT INTEREST RATES f(t) (% PER ANNUM SEMIANNUAL) 

f( t)  

t 

I 2 3 ] 4  s I 6 7 8 
6.498 6.408 6.376 6.158 6.206 6.205 6.315 6.214 

I 
9 I0 [ 11 

6.481 6.509 I 6.657 

TABLE 5 

ONE-PERIOD SPOT RATES r(i,t) (% PER ANNUM SEMIANNUAL) 

2 l 3 4 ] 5 6 7 ] 8 i 9 l0 II i o I 

0 6.65 6.904105 
1 6.115782 
2 
3 
4 
5 
6 
7 
8 
9 

I0 
11 

7.23399 
6.408 
5.676323 

7.64771 
6.774481 
6.000958 
5.315758 

7.847846 
6.951765 
6.158 
5.454868 
4.832022 

8.403308 
7.443803 
6.593856 
5.840958 
5.174027 
4.583247 

8.927051 
7.907744 
7.004823 
6.205 
5.4965O2 
4.868901 
4.312961 

9.653111 
8.550901 
7.574544 
6.709668 
5.943546 
5.264901 
4.663745 
4.131231 

10.09236 
8.939999 
7.919214 
7.014984 
6.214 
5.504474 
4.875963 
4.319217 
3.826041 

11.18385 
9.906858 
8.775675 
7.773653 
6.886043 
6.099782 
5.403298 
4.78634 
4.239827 
3.755716 

11.93414 
10.57148 
9.364412 
8.295166 
7.348009 
6.509 
5.765791 
5.107442 
4.524265 
4.007676 
3.550073 

12.96831 
11.48756 
10.17589 
9.01399 
7.984756 
7.073042 
6.26543 
5.550031 
4.916319 
4.354965 
3.857707 
3.417227 



TABLE 6 

DISCOUNT FACTORS p(i,t) 

i o I 2 3 4 5 6 7 8 9 IO 11 
I I I I I I I I I I I 

0 0.994563 0.99436 0.994096 0.993765 0.993606 0.993164 0.992748 0.992175 0.991829 0.990972 0.990387 0.98 c- 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

0.994992 0.994758 
0.995346 

0.994463 
0.995085 
0.995638 

0.994321 
0.994959 
0.995525 
0.996029 

0.993928 
0.994608 
0.995214 
0.995752 
0.996231 

0.993558 
0.994279 
0.994921 
0.995492 
0.995999 
0.99645 

0.9931347 
0.993824 
0.994515 
0.995131 
0.995679 
0.996166 
0.996598 

0.992738 
0.993549 
0.994271 
0.994913 
0.995485 
0.995993 
0.996445 
0.996847 

0.991975 
0.992868 
0.993665 
0.994374 
0.995005 
0.995567 
0.996066 
0.99651 
0.996904 

0.991452 
0.992403 
0.99325 
0.994005 
0.994676 
0.995274 
0.995806 
0.996279 
0.996699 
0.997072 

~8958 
0.99073 
0.99176 
0.99268 
0.99349 
0.99422 
0.99487 
0.99544 
0.99596 
0.99641 
0.99682 
0.99718 



TABLE 7 

STATE-CONTINGENT PRICES G(i,t) 
I ! 

i 0 I 2 3 4 5 6 7 8 9 10 11 12 i i 
0 1 0.497282 
1 0.497282 
2 
3 
4 
5 
6 
7 
8 
9 

I0 
I1 
12 

0.247238 
0.494634 
0.247396 

0.122889 
0.36891 
0.369143 
0.123122 

0.061062 
0.244495 
0.367098 
0.244957 
0.061293 

0.030336 
0.151889 
0.304177 
0.304554 
0.152455 
0.030525 

0.015064 
0.090547 
0.226752 
0.302817 
0.227452 
0.091108 
0.015205 

0.007477 
0.052459 
0.157709 
0.263367 
0.263852 
0.158585 
0.052947 
0.007575 

0.003709 
0.029757 
0.104415 
0.209329 
0.262245 
0.210234 
0.105322 
0.030147 
0.003775 

0.00184 
0.01661 
0.066641 
0.155935 
0.23452 
0.235098 
0.157092 
0.06747 
0.016901 
0.001881 

0.000911 
0.00915 
0.041321 
O. 110557 
O. 194074 
0.233562 
O. 19516 
0.1118 
0.042023 
0.009359 
0.000938 

0.000451 
0.004987 
0.025039 
0.075409 
0.151361 
0.212615 
0.213278 
O. 152784 
0.076599 
0.025598 
0.005132 
0.000468 

0.00022 
0.00269 
0.01488 
0.04984 
O. 11261 
O. 18088 
0.21178 
0.18213 
0.11418 
0.05089 
0.01531 
0.00279 
0.00023 



TABLE 8 

LOAN CASH-FLOW LA'I'rlCE c(id) 

i 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

0 i 2 3 l 4 
i ! ! 

0 53.036 53.036 53.036 53.036 
53.036 53.036 53.036 53.036 

53.036 53.036 53.036 
53.036 53.036 

53.036 

! 

5 6 7 8 
i i i 

53.036 53.036 53.036 53.036 
53.036 53.036 53.036 53.036 
53.036 53.036 53.036 53.036 
53.036 53.036 53.036 53.036 
53.036 53.036 53.036 53.036 
53.036 53.036 53.036 53.036 

53.036 53.036 53.036 
53.036 53.036 

53.036 

9 

53.036 
53.036 
53.036 
53.036 
53.036 
53.036 
53.036 
53.036 
53.036 
53.036 

IO 

53.036 
53.036 
53.036 
53.036 
53.036 
53.036 
53.036 
53.036 
53.036 
53.036 
53.036 

11 

53.036 
53.036 
53.036 
53.036 
53.036 
53.036 
53.036 
53.036 
53.036 
53~036 
53.036 
53.036 

12 

10053.04 
10053.04 
10053.04 
10053.04 
10053.04 
10053.04 
10053.134 
10053.04 
10053.04 
10053.04 
10053.04 
10053.04 
10053.04 
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The value of the loan at node (i,t) is denoted as v(i,t). The loan values 
are determined from Table 8 by using the following backward recursion 
algorithm. 

Algorithm 2. Backward Recursion: 
• Initialize the value o f  the loan to zero at the end o f  the term o f  the 

loan, f o r  t=n and f o r  i=O to n (n=12 fo r  the example): 

v(i,n) = O. 

• Then calculate each value o f v ( i , t )  by using, f o r  t = n - 1 to 0 and 
fo r  i = O to t: 

v(i,t) = p(i,t){v(i,t  + 1) 
1 

+ c(i,t + 1) + v(i + 1,t + 1) + c(i + 1,t + 1)}x-. 
L 

At the end of 12 months the value of the loan is zero because all 
repayments have been made. The values of the loan cash flows are de- 
rived by averaging the next period's loan values plus the loan cash flows 
for the two states that originate from the node and multiplying this by 
the one-period discount factor for that node. This gives the lattice of 
loan values in Table 9. An illustration of backward recursion is shown 
in Figure 2. 

The next step is to generate a lattice of balances outstanding at the 
original loan yield rate. This is the amount due to be paid on early pre- 
payment. These are the exercise prices of the prepayment option and are 
denoted by b(i,t). They are given in Table 10 for the loan example. Note 
that these do not vary for different values of i, because the loan out- 
standing that is to be prepaid is the value of the outstanding repayments 
at the original loan interest rate. 

The cash flow on optimal early prepayment is the difference between 
the value of the loan and the balance outstanding, provided that this is 
positive. These values are denoted by o(i,t) and are determined as, for 
all t and i, o ( i , t )=maximum(v( i , t ) -b ( i , t ) ,O) .  These values for the loan 
example are set out in Table 11. 

Notice that for lower future spot interest rates, the prepayment option 
is more "in the money." Because the prepayment option is assumed to 
be exercisable at any time, Table 11 does not give the state-contingent 
values of the prepayment option. At each node in the lattice it is nec- 
essary to check whether the prepayment option is worth more if left 



TABLE 9 

VALUE OF LOAN v(i,t) 

I t 
2 i 3 4 5 6 7 8 [ 9 . 10 II i 0 I 

I I 
0 10000 9967.962 
1 10035.3 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

9939.114 
10003.82 
10061.72 

9914.291 
9975.93 

10031.08 
10080.37 

9894.439 
9952.474 

10004.39 
10050.79 
10092.22 

9878.054 
9932.102 
9980.45 

10023.65 
10062.22 
10096.62 

9868.342 
9917.679 
9961.805 

10001.23 
10036.42 
10067.8 
10095.76 

9865.449 
9909.329 
9948.565 
9983.612 

10014.89 
10042.78 
10067.63 
10089.75 

9871.501 
9908.944 
9942.414 
9972.301 
9998.967 

10022.74 
10043.92 
10062.77 
10079.55 

9884.691 
9914.896 
9941.886 
9965.981 
9987.473 

10006.63 
10023.69 
10038.88 
10052.39 
10064.4 

9910.943 
9932.464 
9951.685 
9968.837 
9984.131 
9997.757 

10009.89 
10020.69 
10030.29 
10038.83 
10046.42 

9948.32 
9959.895 
9970.228 
9979.444 
9987.658 
9994.973 

10001.49 
10007.28 
10012.43 
10017.01 
10021.08 
10024.69 



TABLE 10 

LOAN OUTSTANDING EAT'I'ICE b(i,t) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

o 

10000 

1 

10000 
10000 

2 

10000 
10000 
10000 

3 

10000 
10000 
10000 
10000 

t 

4 5 6 
I I 

10000 10000 10000 
10000 10000 10000 
10000 10000 10000 
10000 I0000 10000 
10o00 10000 10000 

10000 10000 
10000 

7 

i0000 
I0000 
!0000 
10000 
10000 
10000 
IO000 
I o000 

8 
10000 
10000 
I0000 
10000 
10ooo 
10000 
I oooo 
10000 
10000 

9 

10000 
10000 
10000 
10000 
10000 
i0000 
io0oo 
10000 
10000 
10000 

1o 

10000 
10000 
iO000 
10000 
10000 
10000 
1oooo 
10000 
lO000 
10000 
10000 

i1 

!0000 
10000 
10000 
10000 
1o000 
10000 
1 oooo 
10000 
10000 
10000 
I0000 
10000 

12 

0 
0 
0 
0 
o 
0 
o 
0 
0 
0 
0 
0 
0 



TABLE I I 

EARLY-EXERCISE VALUES o(i,t) 

t 

4 5 6 7 8 9 I0 ! II i 0 
i i 

0 0.004288 0 
! 
2 
3 
4 
5 
6: 
7 
8 
9i 

1oi 

I 2 3 
i i 

0 0 
35.30308 3.821413 0 

61.72284 31.08213 
80.37433 

0 
0 
4.394019 

5 0 . 7 9 3 3 1  
92.21812 

0 
0 
0 

23.65158 
62.21785 
96.61645 

0 
0 
0 
1.228116 

36.41594 
67.79727 
95.76283 

0 
0 
0 
0 

14.88889 
42.77748 
67.62698 
89.75412 

0 
0 
0 
0 
0 

22.73893 
43.91642 
62.77062 
79.54697 

0 
0 
0 
0 
0 
6.628694 

23.68996 
38.87682 
52.38788 
64.40225 

0 
0 
0 
0 
0 
0 
9.889743 

20.68681 
30.29023 
38.82807 
46.41547 

0 
0 
0 
0 
0 
0 
1.485188 
7.278335 

12.42969 
17.00841 
21.07659 
24.68994 
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~v(i,t) 

HGURE 2 

BACKWARD RECURSION 

c(i,t+ 1) .~ 

v ( i , t +  1) and 
, t + l )  and 

e ( i + l , t + l  ) ~ 
+ 

v(i,t+ 1) 

v(i+ 1 ,t+ 1) 

unexercised and an optimal exercise policy followed for the remaining 
term of the loan. 

The value of the optimal early-prepayment option is determined by 
stepping back through the optimal early-prepayment cash-flow lattice, 
allowing for the possibility that the value of the prepayment option at 
any node is worth more than the value that would be received by pre- 
paying at that time. To do this, denote the optimal early-prepayment 
option value by ov(i , t ) .  The required value is ov(O,O). 

The following algorithm is then used to determine ov(i , t) .  

Algorithm 3. Backward Recursion for Option Values: 
• Ini t ial ize the values  at t ime t = 1 2 ,  f o r  i = 0 to n(n = 12): 

ov( i ,n)  = O. 

• Calcula te  the opt ion value, f o r  t = n - 1 to 0 and  f o r  i = 0 to t: 
1 

ov(i , t )  = p( i , t ) {ov( i , t  + 1) + ov(i  + 1,t + 1)}~ .  

• l f o ( i , t )  is grea ter  than ov(i , t) ,  then set  ov( i , t )=o( i , t ) .  

Note that whenever o(i, t)  exceeds ov(i , t ) ,  then it is optimal to ex- 
ercise the early-prepayment option in full and repay the whole loan. Oth- 
erwise, the option value is greater if kept "alive" and not exercised. The 
optimal exercise policy of this prepayment option therefore involves 100 
percent prepayment of the loan whenever it is optimal to do so. 
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The values derived using Algorithm 3 are given in Table 12. For 
the example the prepayment option value is ov(0,0)=26.42259 per 10,000 
face value for the interest-only loan. 

B. Valuing the Prepayment Option Allowing for  Realistic 
Prepayment Behavior 

The actual prepayment behavior of loan customers does not conform 
to this ideal optimal prepayment behavior. Allowance for the actual pat- 
tern of exercise of the prepayment option is usually incorporated into the 
calculations. 

A simple method for doing this is to assume a rate of prepayment as 
a proportion of the loan outstanding at each time period that is indepen- 
dent of the then-current interest rate. These rates are denoted by q(t). 
These prepayment proportions can then be used to determine the a l tered 
principal repayment cash flows by adding the balance outstanding at time 
t multiplied by q(t) to the existing principal repayment cash flows. The 
altered balance outstanding on the loan is then determined by deducting 
principal repayments including the early prepayments from the previous 
balance outstanding. This new balance outstanding is then used to es- 
tablish the altered interest payments at the original loan interest rate. The 
sum of the principal repayments, allowing for previous early prepay~ 
ments, and the interest payment is the altered loan cash flow c(i,t). 

The value of the loan at each node of the lattice is determined in the 
same way as before by using these altered loan cash flows. The balance 
outstanding of the loan is determined either by valuing the altered out- 
standing repayments at the original loan interest rate or by multiplying 
the original loan outstanding by a survivorship proportion of the principal 
outstanding by using the rates of prepayment q(t). 

The lattice approach is then used to value the prepayment option. The 
lattice approach as outlined so far allows only for prepayments that de- 
pend on the current interest rate and not on previous values of the interest 
rate. 

The prepayment experience for mortgage-backed securities found in 
Becketti and Morris [3] and Bartlett [2] suggests that the prepayment 
rate should vary by: 
• The original loan interest rate 
• Time since the loan was issued 



TABLE 12 

PREPAYMENT OPTION VALUES ov(i,t) 

i 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
!1 
12 

0 I 2 3 
i i i 

26.42259 12.40141 4.79104 i .387873 
40.73266 20.15246 8.251119 

6 1 . 7 2 2 8 4  32.26622 
80.37433 

0.256931 
2.536231 

14.05788 
50.79331 
92.21812 

0.02238 
0.494789 
4.606641 

23.65158 
62.21785 
96.61645 

0 
0.045068 
0.950555 
8.312671 

36.41594 
67.79727 
95.76283 

0 
0 

0.090721 
1.821328 

14.88889 
142.77748 

67.62698 
89.75412 

0 
0 
0 

0 . 1 8 2 5 6 9  
3.480176 

22.73893 
43.91642 
62.77062 
79.54697 

0 
0 
0 
0 

0.367243 
6.628694 

23.68996 
38.87682 
52.38788 
64.40225 

0 
0 
0 
0 
0 

0.738641 
9.889743 

20.68681 
30.29023 
38.82807 
46.41547 

I1 12 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

1.485188 0 
7.278335 0 

12.42969 0 
17.00841 0 
21.07659 0 
24.68994 0 

0 



A ONE-FACTOR INTEREST RATE MODEL 275 

• The interest rate several months previously 
• The month of the year (seasonal) 
and accurate estimation of such rates will be important. 

To allow for prepayments on such a basis is more difficult than al- 
lowing for prepayments as a function only of time t. The value of the 
loan outstanding and the balance outstanding of the loan will be depen- 
dent on the history of interest rates during the life of the loan, because 
the prepayment proportions at each time will be dependent on the interest 
rate at that time, or at least several months previously, and the loan 
outstanding at any time will depend on all the previous prepayment pro- 
portions. The valuation lattice and the prepayment option valuation is 
then referred to as path-dependent because values at any time depend on 
the path of interest rates through the lattice. 

The computation is more intensive than for the non-path-dependent 
case outlined so far. The valuation procedure is conceptually the same, 
but the interest rate lattice, and all the other lattices, require a separate 
node at each point for each distinct path through the lattice. In this case 
a down movement followed by an up movement in the lattice produces 
a node different than what is produced when an up movement is followed 
by a down movement. The binomial lattice used earlier assumed that an 
up move followed by a down move had the same financial effect on 
values as a down move followed by an up move. 

The path-independent state lattice has t+ 1 nodes at the maturity date 
of the loan for a t period loan. In the 12-month-loan example with a 
monthly time interval, this produced 13 nodes at the maturity date (i=0 
to 12). The path-dependent lattice will have 2 n+t nodes at maturity, be- 
cause the nodes will double over each time interval in the lattice, re- 
sulting in 213=8,192 for the 12-month example. This presents a com- 
putational problem where longer term loans are to be valued because the 
number of nodes explodes and cannot be handled even with powerful 
computers for reasons of both speed and memory. The method used to 
handle this is to value the option by sampling the possible paths. Sim- 
ulation is the most common method of doing this. 

Simulation is a powerful means of valuing interest-sensitive cash flows 
such as the loan-prepayment-option cash flows. Recent developments in 
the application of simulation to valuations allowing for optimal behavior 
are given in Tilley [29]. 

Applying simulation in a conventional manner to the prepayment fea- 
ture problem requires some additional assumptions. The loan yield rate 
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can be modeled as a normal or lognormal random variable. Mean re- 
version can also be incorporated. The valuation proceeds by generating 
standard normal random variables for each period for the number of sim- 
ulations to be performed. The number of simulations required for ac- 
curacy could be determined by valuing options for which the value was 
known, such as traded bond options, and checking how close the sim- 
ulated value was to the accurate value. Alternatively, an estimate of the 
standard error of the values calculated by using simulation can be de- 
termined and the number of simulations selected to reduce this standard 
error to an acceptably low level. The number of simulations required for 
any given accuracy will be reduced by using the variance reduction Monte- 
Carlo techniques referred to in Tilley [29]. Computational speed and 
accuracy inevitably require the use of such techniques in practical 
applications. 

For this illustrative example, a fiat yield curve has been assumed for 
the simulations. It would be possible to simulate values for one-period 
forward rates for every maturity of the yield curve at which cash flows 
occur. This would require a much higher number of simulated values 
and a longer computation time. 

The interest rate level at the end of each month is generated by using 
the distributional assumption most suited for interest rate data. Interest 
rates are generated with a normal distribution using Formula (6): 

r(t)  = r(t  - 1) + Ix(t)h + trN(t)Wrhe(t) ,  (6) 

where e(t) is normal (0,1) random number; h is the time interval in years 
(for monthly values V ~  = X/(I / 12) = 0.288675); and CrN(t) is the annual 
volatility of the one-period interest rate in absolute terms. Values for 
Ix(t) and aN(t) are determined so that values for conventional zero-coupon 
bonds calculated using simulation agree with the market values. The value 
for r(0) is determined from the current yield curve. 

The interest rate distribution is "arbitrage-free" in the sense that prices 
of cash flows calculated as expected present values using the parameters 
of this distribution will be consistent with the current zero-coupon bond 
yield curve. 

The normal distribution allows negative values for one-period interest 
rates, and so it will usually be desirable to ensure positive values by 
generating returns from a lognormal distribution using Formula (7): 
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r(t) = r(t  - 1)(1 + crL(t)~/-he(t)),  (7) 

where ere(t) is the percentage volatility of the interest rate. 
Interest rates can be generated allowing for mean reversion by using 

Formula (8): 

r(t) = r(t  - 1) + K(IX -- r(t -- 1)) + crL( t )Whr( t  - 1)e(/), (8) 

where Ix is the long-term mean interest rate and K is the speed with which 
the current interest rate tends to move to the long-term interest rate. 

Once a model has been selected, the market loan interest rate, r(t) ,  is 
generated. The proportion of the principal outstanding that is to be repaid 
is modeled as a function of the interest rate level or even the path of 
interest rates. Denote this by q(t ,r)  to indicate that it is a function of the 
interest rate, r. It should consist of: 
• A monthly proportion varying with the time since issue of the loan 

and the month of the year (to allow for seasonal effects) 
• A proportion varying with the difference between the current rate, 

r(t) ,  and the original loan rate. 
The contractual repayments, reduced by the proportion of the loan re- 
paid, are valued at the market interest rate, r(t) ,  to obtain the value of 
the loan, v(t).  The value of the outstanding contractual repayments is 
determined at the original loan interest rate, r(0), to get the balance out- 
standing, b(t).  The cash flow from the early-prepayment option, which 
could be a cost or benefit, is then determined by multiplying the pro- 
portion repaying by the difference between the value of the loan, v(t) ,  
and the loan outstanding, b(t) .  This gives o ( t ) = q ( t , r ( t ) ) { v ( t ) - b ( t ) } .  

The new principal outstanding is reduced by the amount of contractual 
repayments of principal and the proportion who repay early. The reduced 
contractual repayments are then determined based on the new principal 
outstanding. 

This procedure continues for each month of the loan. 
The early-prepayment-option cash flows, o(t), are present-valued along 

the path of simulated interest rates by using the r(t)  interest rates gen- 
erated for each month as discount rates. If r(t)  is a semiannual com- 
pounding rate, then the procedure obtains the value ov(O) for this sim- 
ulation as follows: 
• Initialize ov(n)=O 
• Then for i = n - 1  to 0 
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r ( i -  1)] (-2/12) 

ov(i) =o(i) + o v ( i -  1)* 1 + 200 J ' 

This procedure is repeated for the desired number of simulations. The 
prepayment-option cost is then estimated as the average of the simulated- 
option values, ov(O), determined from each simulation. 

Table 13 illustrates values derived for a 12-month loan for ten sample 
paths simulated by using the normal distribution model. They are pro- 
vided only as an illustration of the procedure described above. The pro- 
portion prepaying has been modeled by using a prepayment function that 
generally corresponds to the Public Securities Association (PSA) stan- 
dard prepayment assumptions as given in Bartlett [2] and most other 
mortgage-backed securities publications. The proportion prepaying has 
been determined by using Formula (10) given in Section 4 of the paper 
with g=0.008 and p =  1.3. 

The average discounted value of the o(t) cash flows over all ten sim- 
ulations is -0 .07464.  In practice, thousands of simulations are required 
to price these prepayment cash flows even when variance reduction 
techniques are used. The same random numbers are used for loans of 
different terms to produce consistent values and for computational 
efficiency. 

4. PREPAYMENT MODELS 

The prepayment experience in the mortgage-backed security market is 
discussed in Bartlett [2]. This reference indicates that prepayment rates 
vary with the original loan interest rate and that higher original interest 
rate loans have higher prepayment rates. An increase of 4 percent in the 
original interest rate can mean a four times higher prepayment rate. There 
is also a lag of about three months from when interest rates increase to 
when loans prepay early. Prepayments are seasonal, reflecting the timing 
of  house sales, which are higher in summer and spring than in winter. 
Loans are not very sensitive to prepayment when rates rise during the 
first 2.5 years of loan issue. 

The PSA standard that is used in the U.S. market has prepayment rates 
commencing at 0 percent in month 0 and increasing by 0.2 percent monthly 
to 6 percent in month 30 and a constant 6 percent thereafter. 

Models that allow for prepayments for mortgage-backed securities have 
been set out in a number of studies. Examples of U.S. studies include 



TABLE 13 

SIMULATION OF PREPAYMENT OPTION VALUES 
I 

Month r(t) q(t,r) I Loan O/S Value of Loan O/S off) 

Simulation 1 

1 0.00553 
2 0.00484 
3 0.00466 
4 0.00407 
5 0.00427 
6 0.00362 
7 0.00375 
8 0.00373 
9 0.00362 

I0 0.00396 
II 0.00372 
12 0.00000 

0.00299 
0.00337 
0.00366 
0.00390 
0.00410 
0.00428 
0.00443 
0.00457 
0.00470 
0.00481 
0.00511 
0.00000 

9191.42516 
8378.43032 
7560.99131 
6739.08383 
5912.68347 
5081.76566 
4246.30571 
3406.27878 
2561.65992 
1712.42401 
858.54583 

0.00000 

9188.03202 
8406.98550 
7591.21424 
6781.22284 
5940.83988 
5114.36721 
4268.09752 
3421.01575 
2571.10000 
1716.26460 
860.04073 

0.00000 

-0.01016 
0.09625 
0.11066 
0.16435 
0.11553 
0.13951 
0.09664 
0.06740 
0.04436 
0.01848 
0.00764 
0.00000 

Simulation 2 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

0.00509 
0.00524 
0.00526 
0.00492 
0.00508 
0.00503 
0.00550 
0.00520 
0.00543 
0.00568 
0.00587 
0.00000 

0.00299 
0.00337 
0.00366 
0.00390 
0.00410 
0.00428 
0.00443 
0.00457 
0.00470 
0.00481 
0.00492 
0.00000 

9191.42516 
8378.43032 
7560.99131 
6739.08383 
5912.68347 
5081.76566 
4246.30571 
3406.27878 
2561.65992 
1712.42401 
858.54583 

0.00000 

9212. i 1659 
8388.71854 
7568.53630 
6755.4971 i 
5921.83504 
5089.53646 
4245.90887 
3408.56575 
2561.86055 
1711.88083 
858.20540 

0.00000 

0.06195 
0.03468 
0.02763 
0.06402 
0.03755 
0.03325 

-0.00176 
0.01046 
0.00094 

-0.00261 
-0.00167 

0.00000 



TABLE 13--Continued 

Moo~ I ~" I q,,r, I ban O/S I Va,~oo,~o~ O/S I , t ,  
Simulation 3 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 

0.00561 
0.00543 
0.00553 
0.00521 
0.00532 
0.00555 
0.00506 
0.00494 
0.00481 
0.00451 
0.00464 
0.00000 

0.00299 
0.00337 
0.00366 
0.00390 
0.00410 
0.00428 
0.00443 
0.00457 
0.00470 
0.00481 
0.00492 
0.00000 

9191.42516 
8378.43032 
7560.99131 
6739.08383 
5912.68347 
5081.76566 
4246.30571 
3406.27878 
2561.65992 
1712.42401 
858.54583 

0.00000 

9183.42698 
8380.15971 
7558.48468 
6746.65675 
5916.13366 
5080.30070 
4251.45674 
3410.73940 
2564.99967 
1714.86262 
859.25299 

0.00000 

Simulation 4 

0.00578 
0.00523 
0.00523 
0.00507 
0.00524 
0.00523 
0.00556 
0.00514 
0.00533 
0.00539 
0.00589 
0.00000 

0.00299 
0.00337 
0.00366 
0.00390 
0.00410 
0.00428 
0.00443 
0.00457 
0.00470 
0.0048 I 
0.00492 
0.00000 

9191.42516 
8378.43032 
7560.99131 
6739.08383 
5912.68347 
5081.76566 
4246.30571 
3406.27878 
2561.65992 
1712.42401 
858.54583 

0.00000 

9174.61617 
8388.98600 
7570.00990 
6750.91862 
5918.05752 
5085.88863 
4245.11018 
3409.01312 
2562.35766 
1712.61010 
858.18624 

0.00000 

-0.02395 
0.00583 

-0.00918 
0.02954 
0.01416 

-0.00627 
0.02284 
0.02040 
0.01569 
0.01173 
0.00348 
0.00000 

-0.05033 
0.03558 
0.03302 
0.04616 
0.02205 
0.01764 

-0.00530 
0.01251 
0.00328 
0.00090 

-0.00177 
0.00000 



Month 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

TABLE 13--Continued 

r(O q(t,r) Loan O/S 

Simulation 5 

Value of Loan O/S at) 

0.00585 
0.00602 
0.00634 
0.00682 
0.00619 
0.00637 
0.00652 
0.00609 
O.0O599 
0.00588 
0.00599 
0.00000 

0.00299 
0.00337 
0.00366 
0.00390 
0.00410 
0.00428 
0.00443 
0.00457 
0.00470 
0.00481 
0.00492 
0.00000 

9191.42516 
8378.43032 
7560.99131 
6739.08383 
5912.68347 
5081.76566 
4246.30571 
3406.27878 
2561.65992 
1712.42401 
858.54583 

0.00000 

9170.66595 
8353.33499 
7528.40434 
6698.72100 
5895.88114 
5065.84995 
4232.98137 
3400.97910 
2559.01339 
1711.37289 
858.09733 

0.00000 

-0.06215 
-0.08459 
-0.11932 
-0.15742 
-0.06894 
-0.06811 
-0.05909 
-0.02424 
-0.01244 
-0.00506 
-0.00220 

0.00000 

Simulation 6 

0.00580 
0.00596 
0.00596 
0.00593 
0.00670 
0.00705 
0.00663 
0.00657 
0.00624 
0.00589 
0.00529 
0.00000 

0.00299 
0.00337 
0.00366 
0.00390 
0.00410 
0.00428 
0.00443 
0.00457 
0.00470 
0.00481 
0.00492 
0.00000 

9191.42516 
8378.43032 
7560.99131 
6739.08383 
5912.68347 
5081.76566 
4246.30571 
3406.27878 
2561.65992 
1712.4240l 
858.54583 

0.00000 

9173.09867 
8356.25944 
7542.72463 
6725.11188 
5883.93745 
5054.06065 
4231.70009 
3397.00558 
2557.73194 
1711.35273 
858.69488 

0.00000 

-0.05487 
-0.07473 
-0.06688 
-0.05449 
-0.11795 
- 0 .  ! 1856 
-0.06477 
-0.04241 
-0.01846 
-0.00516 

0.00073 
0.00000 



TABLE 13--Continued 

I 
Month r(t) q(t,r) I Loan O/S Value of Loan O/S o(t) 

Simulation 7 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I1 
12 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

0.00549 
0.00549 
0.00577 
0.00598 
0.00602 
0.00628 
0.00661 
0.00698 
0.00646 
0.00630 
O.00664 
0.00000 

0.00299 
0.00337 
0.00366 
0.00390 
0.00410 
0.00428 
0.00443 
0.00457 
0.00470 
0.0048 I 
0.00492 
0.00000 

9191.42516 
8378.43032 
7560.99131 
6739.08383 
5912.68347 
5081.76566 
4246.30571 
3406.27878 
2561.65992 
1712.42401 
858.54583 

0.00000 

9190.16457 
8377.25888 
7549.64023 
6723.64091 
5899.68742 
5067.48978 
4231.90072 
3393.52888 
2556.60260 
1710.29872 
857.54334 

0.00000 

Simulation 8 

0.00539 
0.00555 
0.00555 
0.00542 
0.00500 
0.00529 
0.00539 
0.00576 
0.00605 
0.00627 
0.00630 
0.00000 

0.00299 
0.00337 
0.00366 
0.00390 
0.00410 
0.00428 
0.00443 
0.00457 
0.00470 
0.00481 
0.00492 
0.00000 

9191.42516 
8378.43032 
7560.99131 
6739.08383 
5912.68347 
5081.76566 
4246.30571 
3406.27878 
2561.65992 
1712.42401 
858.54583 

0.00000 

9195.65644 
8374.64566 
7557.98124 
6740.34906 
5923.62068 
5084.95380 
4247.20793 
3403.81774 
2558.68135 
1710.37170 
857.83394 

0.00000 

-0.00377 
-0.00395 
-0.04156 
-0.06023 
-0.05332 
-0.06109 
-0.06388 
-0.05831 
-0.02376 
-0.01023 
-0.00493 

0.00000 

0.01267 
-0.01276 
-0.01102 

0.00493 
0.04488 
0.01364 
0.00400 

-0.01126 
-0.01400 
-0.00988 
-0.00350 

0.00000 



TABLE 13--Continued 

Moo~ I '~" I ~,r, I ~oao o/s  I Valuo of~oan O/S I o,,, 

Simulation 9 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

0.00544 
0.00536 
0.00550 
0.00561 
0.00599 
0.00593 
0.00575 
0.00571 
0.00613 
0.00597 
0.00594 
0.00000 

0.00299 
0.00337 
0.00366 
0.00390 
0.00410 
0.00428 
0.00443 
0.00457 
0.00470 
0.0048 I 
0.00492 
0.00000 

9191.42516 
8378.43032 
7560.99131 
6739.08383 
5912.68347 
5081.76566 
4246.30571 
3406.27878 
2561.65992 
1712.42401 
858.54583 

0.00000 

9192.82046 
8383.43764 
7559.76330 
6734.80844 
5900.41709 
5073.63464 
4242.77710 
3404.20513 
2558.30997 
1711.14988 
858.13743 

0.00000 

Simulation 10 

0.00575 
0.00577 
0.00551 
0.00574 
0.00580 
0.00616 
0.00623 
0.00608 
0.00627 
0.00644 
0.00635 
0.00000 

0.00299 
0.00337 
0.00366 
0.00390 
0.00410 
0.00428 
0.00443 
0.00457 
0.00470 
0.00481 
0.00492 
0.00000 

9191.42516 
8378.43032 
7560.99131 
6739.08383 
5912.68347 
5081.76566 
4246.30571 
3406.27878 
2561.65992 
1712.42401 
858.54583 

0.00000 

9176.14843 
8364.58642 
7559.43697 
6731.03887 
5904.94010 
5069.64508 
4236.71792 
3401.10575 
2557.56331 
1709.93923 
857.79363 

0.00000 

0.00418 
0.01688 

-0.0O450 
-0.01667 
-0.05033 
-0.03479 
-0.01565 
-0.00948 
-0.01574 
-0.00613 
-0.00201 

0.00000 

-0.04574 
-0.04666 
-0.00569 
-0.03138 
-0.03177 
-0.05187 
-0.04252 
-0.02366 
-0.01925 
-0.01196 
-0.00370 

0.00000 
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Becketti and Morris [3], Green and Shoven [8], and Schwartz and To- 
rous [25]. Prepayment models used in practice are often considered to 
be proprietary even though the basic form of such models is standard. 

The basic form of these models allows for the following components: 
(a) A proportion of loan amounts outstanding being prepaid, which var- 

ies through time and is assumed to be independent of interest rates. 
This proportion is assumed to increase to a maximum and then re- 
main constant or decline slowly. 

(b) An increase in this proportion whenever the difference between the 
original loan rate and an indicator of market interest rates increases 
above a threshold margin. This threshold margin reflects refinance 
c o s t s .  

(c) A reduction in the proportion of the time-dependent (non-interest- 
sensitive) prepayment proportions whenever the difference between 
the original loan rate and an indicator of market interest rates ex- 
ceeds a "burnout" level beyond which it is assumed that all interest- 
sensitive loans will have prepaid. 

The indicator of market interest rates is usually taken as the current fixed- 
interest refinance rate for a similar loan or a previous value of such a 
market rate, such as the minimum rate since issue of the loan or the rate 
three months previously. Another alternative is an average of several 
previous months market interest rates. 

The usual form of these prepayment models can be written as follows: 

q(t,r) = q(t)m(r) (9) 

where q(t) is the interest-rate-independent prepayment proportion, which 
depends only on the time since issue of the loan, and m(r) is a function 
of the market interest rates, which gives the proportionate increase in 
q(t) resulting from the financial incentive to refinance for those borrow- 
ers who are considered to be interest-sensitive. 

A multitude of formulas can be used for q(t) and m(r). Details can be 
found in Schwartz and Torous [25]. The aim should be to select a for- 
mula that can model a range of possibilities and that depends on as few 
parameters as possible. 

All these prepayment models apply to a pool of loans, so that they are 
considered to be the average percentages of loans that prepay as a per- 
centage of the balance outstanding for a large group of similar loans that 
were issued at the same time and for the same fixed interest rate. They 
do not apply directly to a single loan because in most cases a single loan 
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will either fully prepay or will continue with the contractual payments. 
Estimation of prepayment rates will be dependent on a large enough vol- 
ume of similar loans being issued, so that the prepayment functions can 
be considered as expected values. For smaller volumes of similar loans, 
the prepayment percentages vary from the model, and it is important to 
analyze the sensitivity of the prepayment model assumptions in the light 
of the expected statistical variation in such prepayment rates. 

The form of the prepayment model should ideally be estimated from 
available data. The sensitivity of any pricing to the prepayment as- 
sumption must be examined before a particular model is adapted. As an 
example, based on Schwartz and Torous [25], the following formula cap- 
tures a range of prepayment patterns. Assume q ( t , r ) = q ( t ) m ( r )  with 

(gp ) (g t )P- l  
q(t)  - 1 + (gt)(  ~ ' (10) 

where g and p are parameters and t is the number of months since issue 
of the loan (t=0, 1 . . . . .  12 for a 12-month loan). 

Parameters of g=0.008 and p =  1.3 give q(t) proportions similar to those 
of the PSA standard for U.S. mortgage-backed securities. Values of 
g=0.013 and p =  1.9 give proportions approximately twice those of the 
PSA standard. The q(t)  proportions can be calculated as multiples of the 
PSA standard by following these two steps: . 
(i) Convert them to annual equivalents using the formula 

cpr( t )  = 1 - [1 - q(t)] 12 

(ii) Multiply by 500/t  for t < 30 or 16.67 for t >- 30. 
The prepayment proportions should be examined visually in a graph 

of q( t )  versus time to compare one set of assumptions against another. 
The form of re(r) can be specified in many ways. "i'he following is 

one possible approach. Other specifications of re(r)  are possible, as given 
in Green and Shoven [8] and Schwartz and Torous [25], amongst others. 

The following inputs are used: 
(i) a(t), the moving average of the market refinance fixed rates, r(t), 

generated by using the simulation model for the previous t months. 
The value for t could be equal to six months to approximate the 
three-month lag typ!cally found in studies of interest rate sensitiv- 
ity of prepayments. For the first six months, a(t)  will be the av- 
erage of all the monthly rates available until six months has passed. 
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(ii) r,, the threshold point equal to the difference required between the 
original loan rate, r(0), and the average of market rates at time t, 
a(t), so that prepayments are influenced by falling interest rates. 

(iii) rh, the burnout point equal to the difference required between the 
original loan rate and the six-month average of market rates, at 
which point all interest-sensitive prepayments are assumed to have 
occurred. 

(iv) b=ln( l+v/100) ,  where v is the maximum percentage increase in 
the prepayment proportion assumed to occur at the burnout point. 

The function m(r) is then estimated as follows: 

If the original loan rate minus the moving average market rate at time 
t is greater than the threshold point and less than the burnout point 
(that is, r,<{r(O)-a(t)}<rh) and if the current moving average market 
rate is lower than the minimum of all its previous values (that is, 
a(t)>minimum {a(i), i<t}), then 

m(r) = exp[b (r(O)-a(t)!].rh ' (11) 

otherwise, m(r) = 1. 

Suitable values for the input parameters are based on any repayment 
experience available. A slowing down of the rate of prepayments also 
can be modeled whenever prepayments over the life of the loans issued 
at a particular time have been higher than expected. To do this, the 
prepayment proportion, q(r,t), would be multiplied by the factor 
exp(-c{ln(ob(t)/sb(t)}), where ob(t) is the actual balance outstanding on 
the loans issued and sb(t) is the originally scheduled balance outstanding. 
This factor is included in some of the U.S. studies of mortgage-backed 
securities, such as Schwartz and Torous [25]. 

The simplest procedure for determining the parameters is to select the 
values of g, p, b, r,, and rh that best fit the available or expected loan 
experience data. This loan experience could be based on forecast ex- 
perience or on historical data. The historical data required would be 
• The month of issue 
• The fixed interest rate 
• The actual balances outstanding for each month since issue 
• The contractual balances ou.tstanding had the loan followed the con- 

tractual repayment pattern for each month since issue 
• The market interest rate for each month since issue. 
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The best fit can be determined by using a number of  techniques of which 
least squares would be the most straightforward. The U.S. studies re- 
ferred to in this paper have also used other statistical techniques such as 
maximum likelihood. 

Figures 3 to 7 give simulations over ten years of sample prepayment 
rates by using Formulas (9), (10), and (11) for q(r,t). The prepayment 
rates have been designed to be similar to the PSA standard with an al- 
lowance for interest-sensitive payments. They are given only as a graph- 
ical illustration and are not designed to be based on any particular his- 
torical loan prepayment experience. 

5. RISK STATISTICS 

As with any portfolio of interest-sensitive financial contracts, it is es- 
sential in the management of  the portfolio to determine the sensitivities 
of the portfolio value to the underlying factors that affect the value. For 
options, these sensitivities, or risk statistics, are the delta, gamma, theta, 
and vega. The delta measures the change in the option value for a small 
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change in the value of the underlying contract. The gamma measures the 
sensitivity of the delta to changes in the value of the underlying contract. 
The theta measures the change in the value of the option as time changes. 
The vega measures the sensitivity of the option value to changes in the 
volatility. Hull [11, chapter 13] provides a comprehensive description 
of the risk statistics used in the management and hedging of options 
positions. 

Since this loan contract is an interest-rate-related instrument, the interest- 
rate-related risk statistics such as duration and convexity also must be 
evaluated. Duration measures the sensitivity of the option value to changes 
in interest rates, and convexity measures the sensitivity of the duration 
to changes in interestrates. 

The prepayment option is an American-style option, and to evaluate 
risk statistics, a numerical technique must be used. This numerical tech- 
nique is equivalent to a discrete approximation to the partial differential 
of the option value. For the lattice model, the formulas for the delta and 
gamma are found in Hull [11, page 341]. The underlying asset is taken 
to be the loan. 

A. Option D e l t a  

For the optimal prepayment option valuation, the delta is calculated 
by using the following lattice values: 

or(0,2) - ov(2,2) 

v(0,2) - v(2,2) 

For the 12-month-loan example, the value of the loan and the value of 
the option are found in Tables 9 and 12, respectively. The option delta, 
measuring sensitivity to changes in the underlying loan value, is: 

4.79104 - 61.72284 = 0~464348. 
9939.114 - 10061.72 

For the simulation option value, the delta is calculated by recalculating 
the option value for a small change, usually 0.01 percent, in the loan 
value, so that the formula will be: 

ov*(O) - ov(O) 

V *  - -  V 
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where v*=v(1.0001) is the current value of the loan, v, increased by 
0.01% and ov* is the option value using the identical random numbers, 
e(t), for ov but with a starting market interest rate, r*(0), determined 
by equating the value of the outstanding contractual loan prepayments 
by v*. 

Note that a much larger number of simulations are usually required 
than for the estimation of the option value to ensure an accurate calcu- 
lation of the option delta, even when variance reduction techniques are 
used. 

B. Option Gamma 

For the optimal prepayment option, the gamma is calculated by using 
the following lattice values: 

o v ( 0 , 2 )  - ov(l,2) ov(l,2) - o v ( 2 , 2 ) -  

v(0,2) - v(2,2) 

2 

The values from Tables 9 and 12 give: 

4 . 7 9 1 0 4  - 2 0 . 1 5 2 4 6  2 0 . 1 5 2 4 6  - 6 1 . 7 2 2 8 4 1  

- -  06--  .72j 

= 0.007839. 
9939.114 - 10061.72 

2 

The gamma for the simulation option value uses an approximation to the 
second derivative of the option value with respect to the loan value given 
by: 

ov*(O) - 2ov(0 )  + ov**(O)  

Iv* - v] 2 

where ov* and v* are as for the option delta and v**=0.9999v, so that 
ov** is the option value corresponding to a starting market interest rate, 
which equates the outstanding contractual loan repayments, adjusted for 
any previous early proportion of prepayments, to v** using the same set 
of random numbers used to calculate the option value. Once again, care 
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has to be exercised to ensure that "a large enough number of simulations 
are used to guarantee a reasonable accuracy in calculating these numer- 
ical approximations to the option derivative. 

C. Option Theta 

For the optimal prepayment option, the lattice values used for the op- 
tion theta are given by: 

ov(1,2) - ov(O,O) 

2h 

where h = 1 / 12. 
Using the values from Table 12 for the 12-month loan example gives: 

20.15246 - 26.42259 
= -37.62078. 

0.166667 

The theta for the simulation option valuation is determined by using: 

ov*(1) - or(O) 

h 

where ov*(1) is the value of the option at the end of the following month 
when the loan term will be reduced by one month and allowance is made 
for the contractual repayments due over the next month. The same ran- 
dom numbers are used in the calculations as when or(O) is calculated. 

D. Option Vega 

For the optimal exercise option value, the option vega cannot be de- 
rived from the lattice values; it must be approximated by recalculating 
the option value for a small change in the input volatilities. The same 
approximation can be used in the simulation calculations. The formula 
is: 

ov(crl.O1) - ov(O) 

cr.01 

where ov(crl.01) is the option value calculated by using a volatility of 
1.01 times the volatility used to derive the option value ov(O). 
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E. Option D u r a t i o n  

Option deltas given above measure the sensitivity of the option value 
to changes in the value of the underlying loan. They can be interpreted 
as the usual option hedge ratios if the option is to be replicated by using 
loan instruments with the same cash flow and value characteristics. 

Hedging could also be considered by using financial instruments with 
different cash-flow characteristics to the loan but with similar sensitivity 
to general levels of interest rates. The option duration is a measure of 
the sensitivity of the change in the value of the option to changes in 
interest rates used to determine the value of the loan. 

The loan option duration can be estimated by using the formula: 

v(O,O) 
D[option~] ov(O,O)' 

where D is the modified duration of the outstanding loan repayments. 
The modified duration is the proportionate sensitivity of the loan to changes 
in the loan interest rate. Because the option sensitivity to interest rates 
is given by the partial differential of the option value with respect to 
interest rates, the above formula can be derived by recognizing that the 
option value is a function of the loan value. 

Option duration can also be approximated by using the formula: 

ov(r +) - ov 

O.O001ov 

where ov(r +) is the option value calculated for a 1-basis-point increase 
in the interest rates used to calculate the option value. 

F. Opt ion  Convexi ty  

The prepayment option convexity can be approximated numerically by 
recalculating the option value for a 1-basis-point decrease in interest rates 
as well as a 1-basis-point increase and by using the approximate formula: 

ov(r +) - 2ov + ov(r-) 

(0 .0001)  20V 

The option duration and option convexity are closely related to the option 
delta and gamma for interest rate options, because the underlying value 
of the loan is a function of the interest rate as well as the option value. 
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Duration and convexity measures would be the common measures of 
interest sensitivity, because these are computed for most interest-sensitive 
assets, including interest-rate-related options such as bond options. 

Accurate calculation of risk statistics, and also of values, of these in- 
terest-sensitive cash flows requires significant computation time. De- 
velopments in computational techniques are constantly improving the 
methods and accuracy of calculations for these statistics. One such tech- 
nique that improves the speed of computation of risk statistics attributed 
to Eric Reiner is given in the Tompkins and Field book [28, pages 
44-45].  

6. HEDGING 

The ideal hedge instrument for the prepayment option is an American- 
style call option on an amortizing reducing-term interest rate swap. Such 
a swap pays a fixed interest rate on a reducing balance outstanding in 
exchange for a floating interest rate on the same reducing balance. Any 
alternative hedging strategies involve either overhedging or underhedg- 
ing. The amortization of the interest rate swap needs to correspond to 
the prepayment pattern of the loan. In the case of interest-only loans, 
the ideal hedge for the prepayment option would be an American-style 
physical bond option for the term of the loan, because a physical bond 
pays interest only in the same way as an interest-only loan. 

The ideal hedge instrument often does not exist, and alternative ways 
of hedging the option must be considered. In theory the actual hedging 
instruments can be used to value the option, because the market price 
of the hedge instruments that perfectly hedge the option will be the cost 
of the prepayment option. 

To evaluate alternative hedging methods, the pricing basis must be 
considered as well. If the prepayment option is to be priced on a optimal 
exercise basis and this is the price charged to the borrower, then the 
option cash flows determined by using the lattice approach are appro- 
priate for determining the required hedging. If realistic allowance for 
prepayments is made in the value of the option, then it will be necessary 
to attempt to hedge the expected cash flows based on estimated prepay- 
ment proportions, and the accuracy of the hedge will depend on the ac- 
curacy of the estimate of the proportions prepaying. In this case, as- 
sessment of the risk of the hedging strategy will be needed. 



A ONE-FACTOR INTEREST RATE MODEL 295 

A simple approach to hedging the prepayment option is to use an im- 
munization or dynamic hedging approach. Hedge instruments are chosen 
to match the prepayment option duration and convexity. Each month the 
portfolio of hedge instruments is rebalanced to match the altered duration 
and convexity of the prepayment option. This strategy is likely to be 
relatively risky, because it relies on the accuracy of the estimates of 
interest rate sensitivity (in the form of duration and convexity) of the 
hedge instruments and the prepayment option. In theory, any interest- 
sensitive hedge instrument for which an estimate of the duration and 
convexity was available could be used. This would include instruments 
such as bond options, swaptions (options on interest rate swap agree- 
ments), cap agreements (agreements that place a cap on interest rates 
payable over fixed time intervals), and floor agreements (agreements that 
place a floor on interest rates payable over fixed time intervals). The 
selection of hedge instrument should take into account the liquidity and 
depth of the market for the instrument, transactions costs, and other market- 
related factors. 

A better approach would be to attempt to match the cash flows of the 
prepayment option more exactly. Although the prepayment option is 
American-style, most over-the-counter interest rate options are European- 
style. A portfolio of European-style options will not match the prepay- 
ment option cash flows well unless it is possible to sell the European 
options when it is optimal to prepay the loan agreement. Even so, the 
sale of the European-style options will be for less than the payoff on 
early exercise of the prepayment option, because American-style options 
usually have higher values than European options. 

Even when American-style options are available, these are not usually 
on an underlying instrument that is equivalent to the loan. Using American- 
style options will involve constructing a portfolio of options on different 
underlying instruments. Such a portfolio of options is unlikely to exactly 
replicate the prepayment option, because it will not recognize the inter- 
dependencies of the underlying instruments that are needed when they 
are put together to form the loan cash flows. Purchasing a portfolio of 
options will involve paying too much for the hedge. 

The hedging of loan contracts with prepayment features requires skill 
as well as a knowledge of financial market instruments and the interest 
sensitivity of these different instruments. 
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7. CONCLUSIONS 

This paper has described computational algorithms that are used to 
value loan contracts with prepayment features. It uses a simple example 
tO illustrate the techniques. The computational algorithms have been pre- 
sented in a form that can be implemented rather than in the mathematical 
form that these term structure models are usually presented. 

Prepayments introduce the computational problem of path dependence 
because the prepayment rates depend not only on the level of interest 
rates but also on the future path taken by interest rates. Conceptually the 
valuation is no different from when there is no path dependence, but 
computationally it is more difficult. 

Prepayment models usually include an underlying rate of prepayment 
as well as the dependence of these prepayment rates on interest rates, 
the time since issue of the loan, and other factors such as seasonal 
variation. 

Hedging the interest rate in loan contracts with prepayments is more 
difficult than for most interest-rate-dependent securities because prepay- 
ment behavior is difficult to predict. The computation of risk statistics 
is also more demanding because of the path dependence. Computational 
techniques such as variance reduction are essential. 

The simple model covered in this paper is relatively easy to implement 
and can be used to assess interest-rate-related options in assets and 
liabilities. 
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A P P E N D I X  

PRICE AND YIELD VOLATILITY 

Let P(r) be the price of  security at yield r. The current values of  P 
and r are known. The absolute volatility of  P and r is denoted by tr(P) 
and tr(r), respectively. The percentage volatility of  P and r are simply 
tr(P)/P and cr(r)/r, respectively. The relationship between price and yield 
volatility can be approximated by using I to ' s  l emma and assuming a 
diffusion process for both P and r. In this case: 

dP = u(P)dt + cr(P)dZ 

and 

dr = u(r)dt + tr(r)dZ, 

and since P=P(r ) ,  then: 

dP = {Pru(r)  + V2P~cr2(r)}dt + P~cr(r)dZ, 
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where P, denotes the partial derivative of the price with respect to the 
interest rate. 

It then follows that: 

or(P) = P, cr(r), 

and since the modified duration of a security is defined as - P , / P ,  this 
gives: 

or(P) = PDcr(r), 

where D is the modified duration of the security. Hence: 

absolute price volatility = price x modified duration 

x absolute yield volatility. 

We also have 

or  

e(P)IP = D { c r ( r ) / r } r  

percentage price volatility = modified duration 

x percentage yield volatility x yield. 

GLOSSARY OF KEY TERMS 

Arbitrage-free. An interest rate or price model is arbitrage-free, with 
respect to the securities being priced, if it is not possible to construct 
portfolios of these securities with no net future cash flows that require 
a non-zero net initial investment at the market prices of these securities. 

Backward recursion. A calculation procedure in which values at an 
earlier time point are calculated from those at the next time point by 
using a prespecified algorithm. The recursion commences with the final 
time point values and produces intermediate time point values one step 
at a time backwards through time to ultimately provide the initial values. 

Convexity. A measure of the curvature of the price to yield relation- 
ship for a set of cash flows. It is usually determined as the second de- 
rivative of the price with respect to the yield as a proportion of the price. 
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Delta. A measure of the sensitivity of the value of  an option on an 
underlying security or commodity to changes in the value of the under- 
lying security or commodity.  It is usually determined as the partial dif- 
ferential of the option value with respect to the underlying security or 
commodity value. 

Dura t ion .  A measure of the weighted average term to receipt of a set 
of cash flows that is closely related to the sensitivity of the value of a 
set of cash flows to changes in the yield used to value the cash flows. 
This sensitivity is referred to as modified duration. 

F o r w a r d  interest  rate .  An interest rate as of a specified date that 
applies for a fixed time period commencing on a future date. These fu- 
ture dates and time periods are also referred to as forward dates and time 
periods. Forward interest rates on or before the current date can in theory 
be determined from market yields and are not random variables, whereas 
forward interest rates that apply as at future dates will not be known at 
the current date and are therefore random variables. 

F o r w a r d  ra te  volatility curve.  The curve of forward rate volatility 
as a function of  the forward date to which the forward rate volatility 
applies. 

F o r w a r d  reeurs ion.  A calculation procedure in which values at a later 
time point are calculated from those at the previous time point. The re- 
cursion commences with the initial time point values and produces in- 
termediate time point values one step at a time forwards through time 
to ultimately provide the final time point values. 

G a m m a .  A measure of the curvature of the option value as a function 
of the underlying asset value. Defined as the second partial differential 
of the option value with respect to the underlying asset value, it is the 
same as the partial differential of  the option delta with respect to the 
underlying asset value. 

Interest  ra te  volatili ty. A measure of the variability, or volatility, of 
interest rates. It usually refers to the diffusion parameter, or, in the con- 
tinuous time stochastic differential equation for the interest rate, 
di=Fx(i)dt+~(i)dZ, where dZ is a standardized Brownian motion. The 
volatility parameter is often estimated by the historical interest rate sam- 
ple standard deviation. In this sense volatility is another term for standard 
deviation. If  offi)=cr, a constant, then volatility is estimated in absolute 
terms, whereas if ~y(i)=tri so that ~(i)/i=cr, a constant, then volatility 
is estimated in percentage terms. 
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Mean reversion. The tendency of a future interest rate to revert back 
to a long-run equilibrium interest rate. In a stochastic interest rate model, 
the expected next period interest rate, conditional on all past values of 
the interest rates, reverts towards a long-run unconditional mean interest 
rate. 

One-period discount factor. A discount, or present value, factor that 
is used to present value expected cash flows back in time for one future 
period. For a discrete binomial term structure model based on monthly 
time intervals, each future monthly time interval will have an associated 
one-period discount factor for present valuing expected cash flows from 
the end of the time interval to each node at the beginning of the time 
interval. 

One-factor interest rate model. A stochastic interest rate model that 
incorporates one factor as the only source of randomness in the model. 
The factor is usually taken as the one-period spot interest rate. 

Spot interest rates. These are the yields to maturity on zero-coupon 
(single-payment) bonds for different maturities. The one-period spot in- 
terest rate is the yield to maturity on a zero-coupon bond maturing in- 
one period's time. For a model with a monthly time interval, the spot 
interest rates will be for zero-coupon bonds maturing in 1 month, 2 months, 
3 months, and so on to the longest maturity date in the model. 

Theta. A measure of the change in value of an option on an underlying- 
security or commodity with respect to time. It is usually determined as  
the partial differential of the option value with respect to time. 

Vega. A measure of the sensitivity of the value of an option on an 
underlying security or commodity to changes in the volatility of the value 
of the underlying security or commodity. It is usually determined as the 
partial differential of the option value with respect to the volatility 
parameter. 

Zero-coupon yield curve. The curve of yields to maturity for zero- 
coupon bonds as a function of time to maturity. These yields are also 
referred to as spot interest rates. 





DISCUSSION OF PRECEDING PAPER 

PHILIPPE ARTZNER*: 

I suggest adding to this interesting paper some precisions on prepay- 
ment risk and on default risk and some remarks about the links with 
traditional educational material. 

Prepayment  Risk 

In Section 2 the author defines prepayment risk as arising from the 
possibility that the lender will repay the loan "regardless of current mar- 
ket interest rates." At first sight, this refers only to interest rate risk. 

Section 3 indeed mentions that "some borrowers prepay when it does 
not appear to be optimal to do so," and Section 7 warns that this pre- 
payment behavior "is difficult to predict." The expression "prepayment 
risk" should be reserved for this very problem of discrepancy between 
actual prepayment rates and forecasted ones. The prepayment patterns 
presented in Formula (10) of Section 4 introduce randomness risk, only 
through the randomness of interest rates and not through the nonoptimal 
behavior of borrowers. Griffin's paper in the Transactions and the dis- 
cussions [2] raised the .question of possible diversification of this dis- 
crepancy risk or of its possible reward. 

Default  Risk 

The developments of the paper aim at the mortgage markets for in- 
dividuals, as shown in the third paragraph of Section 3, which alludes 
to the risk of default. Although the first events mentioned are ingredients 
to the prepayment risk, the default risk would deserve a treatment on its 
own [1]. 

A d d i t i o n a l  R e m a r k s  

It would be interesting, at least from an educational point of view, to 
mention the relation between prepayments (prepayment options) and swaps 
(swaptions) before the section on hedging. In the same spirit, note that 
Algorithm 3 pertains to optimal stopping problems. 

*Dr. Artzner, not a member of the Society, is Professor of Mathematics and Director of 
the Actuarial Program at the Louis Pasteur University, Strasbourg, France. 
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Finally, let me mention the challenging problem of determining the 
"level premium" that should be asked from the borrower for the right 
of prepaying the loan. 
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ELIAS S.W. SHIU: 

Mr. Sherris is to be congratulated for this paper, explaining the val- 
uation of interest-sensitive cash flows. The numerical examples are 
illuminating. The purpose of this discussion is to supplement this fine 
exposition with some technical details about binomial lattices. In particular, 
I present the development of an additive model related to Formula (1). 

The binomial lattice model in Section 3 is based on the multiplicative 
model as prescribed by Formula (2), which may be rewritten as 

r(i, t) = r(O, t) a(t) i, 0 <- i <- t, (D. 1) 

where 

a(t) = exp[-crL(t) V'h/50] .  (D.2) 

The "base" rate at time t, r(0, t), is determined so that the current price 
of the t+ 1 period zero-coupon bond, P(t+ 1), is replicated by the model, 

l 
G(i, t) 

P(t + 1) = Z [ r(O, t) ]2h. (D.3) 
i=o 1 + - - a ( t )  i 

2OO 

To solve for r(0, t), we need to use an iterative method such as the 
Newton-Raphson method or the secant method. 

Let us now consider the additive model as prescribed by Formula (1), 
which may be rewritten as 

r(i, t) = r(O, t) - ib(t),  O <- i <- t, (D.4) 
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where 

b(t) = ~ru(t) ~/h /50 .  (0.5) 

Because, for small x (in absolute value), 

1 
- -  ~ e - x ,  
l + x  

we are motivated to model the forces of interest. In other words, we 
replace Condition (D.4) by 

8(i, t) = 8(0, t) - i c(t), 0 <- i <- t, (D.6) 

where c(t) is a deterministic function of t. In terms of the notation in the 
paper, 

p(i,  t) = e -h~( i ' ' ) .  (D.7) 

Here the formula analogous to (D.3) is 
l 

P(t  + 1) = ~ G(i, t) e -h~( i ,O  

i=0  

I 

= e -h~(O'') ~ G(i, t) e hic('). (D.8) 
i=0  

An advantage of Condition (D.6) is now clear. There is no need to use 
an iterative method to solve for the "base" rate g(0, t) for each t. 

Let us further examine this additive model. For simplicity we assume 
h= 1. For m<-t, let p(m,  t; i) denote the price at node (i, m) of the zero- 
coupon bond paying 1 at time t. In terms of the notation in the paper, 

p(t,  t + 1; i) = p(i,  t) 

and 

p(O, t; O) = P(t). 

It immediately follows from (D.6) that, for O<-i, j<-t, 

p(t ,  t + 1;j) = p(t,  t + 1; i)e (j-i)c('). (D.9) 

For O<-i<-m, we assume that the risk-neutral probability of moving from 
node (i, m) to (i+1, m + l )  is ~(m) (which is independent of i), and 
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t h e r e f o r e  the  r i s k - n e u t r a l  p r o b a b i l i t y  o f  m o v i n g  f r o m  (i, m)  to (i ,  m +  1) 
is 1 - ' r r ( m ) .  In  the  p a p e r ,  ~ r ( r n ) = l / 2  fo r  all  m.  T h e n ,  fo r  O~-i<-m<t,  

p ( m ,  t; i) = p ( m ,  m + 1; i){~r(m) p ( m  + 1, t; i + 1) 

+ [1 - ~r(m)]p(m + 1, t; i)}. ( D . 1 0 )  

W i t h  m = t - 2 ,  (D.  10) b e c o m e s  

p ( t  - 2,  t; i) = p ( t  - 2,  t -  1; i ) { T r ( t -  2 )p ( t  - 1, t; i + 1) 

+ [1 - "tr(t - 2 ) ]p ( t  - 1, t; i)} 

= p ( t  - 2 ,  t - 1; i){~r(t  - 2 ) e  ~ ' -~)  

+ [1 - "rr(t - 2)]}p(t  - 1, t; i) ,  ( D . 1 1 )  

b e c a u s e  o f  ( D . 9 ) .  It  f o l l o w s  f r o m  (D.  11) and  ( D . 9 )  tha t ,  fo r  0-<i ,  j < - t - 2 ,  

p ( t  - 2, t ; j )  = p ( t  - 2, t; i )e ~j-°tc(t-E)+ctt-I)l. (D.  12) 

W i t h  r e = t - 3 ,  ( D . 1 0 )  b e c o m e s  

p ( t  - 3, t; i) = p ( t -  3, t - 2; i){'rr(t - 3 )p ( t  - 2,  t; i + 1) 

+ [1 - "rr(t - 3 ) ]p( t  - 2, t; i)} 

= p ( t  - 3, t - 2; i){'rr(t - 3)e  c~t-2)+c(t-l~ 

+ [1 - ~r( t -3 ) ]}p ( t  - 2, t; i), 

b e c a u s e  o f  ( D . 1 2 ) .  A p p l y i n g  (D.  11) y i e lds  

p ( t  - 3, t; i) = p ( t  - 3, t - 2; i){'rr(t - 3 )e  c~t-2~+~'-l~ 

+ [1 - rr(t  - 3)]}p(t  - 2, t - 1; i){w(t - 2 )e  ~ ' - °  

+ [1 - 7r(t - 2 ) ] } p ( / -  1, t; i). ( D . 1 3 )  

I t  f o l l o w s  f r o m  ( D . 1 3 )  and  ( D . 9 )  tha t ,  fo r  O<-i, j < - t - 2 ,  

p ( t  - 3,  t ; j )  = p ( t  - 3, t; i )e (j-l)tc('-3)+c('-2)+c(t-l)]. (D.  14) 

T h e  pa t t e rn  is n o w  c lea r .  D e f i n e  

g ( j , s ) = [ 1 - T r ( j ) ] + ' r r ( j ) e x p [ c ( j +  1 ) + c ( j + 2 ) + . . . + c ( s ) ] ,  j < s ,  

and  

g(s ,  s) = 1. 
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Then, for O<-i<-m<t, 
t--I 

p(m,  t; i) = I-I  [P(J ,J  + 1; i)g(j ,  t - 1)]. (D.15) 
j=ra 

Applying (D. 15) twice (with m = 0 ,  i=0 ,  t= t+ 1 and t=t) and dividing 
yields 

~ I  g(J, t) 
p(0, t + 1; 0) i=0 

- p ( t ,  t + 1;0),_i 
p(O, t; O) 1-I g(J, t - 1) 

j=0 

t - I  

1-I g(J, t) 
j=O 

= p(t ,  t + 1; 0) ,_~ (D. 16) 

1-I g(J, t -  1) 
j=0 

It follows from (D. 16) that, for m =  1, 2, 3 . . . .  , O<-i<-m, 

p(m,  m + 1; i) = p(m,  m + 1; 0) e ic(m) 
m-2 

I-I g(J, m - 1) 
p(0,  m + 1; 0) j=o 

= e '~''). (D. 17) 
p(0,  m; 0) m-i 

1-I g(J, m) 
j=0 

Thus the binomial lattice model is completely specified as soon as the 
risk-neutral probabilities, {'tr(m)}, and volatility numbers, {c(m)}, are given. 
The current bond prices, {p(0, m; 0)}, are replicated in the model be- 
cause they are incorporated through (D. 17). The path-breaking Ho and 
Lee model [1] is the special case where 

"rr(0) = "rr(1) = -rr(2) . . . .  

and 

c(1) = c ( 2 ) = c ( 3 )  . . . .  
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Because 

t-I Ik__~g(k'J-- 1) I - I g  ( k , m -  1) ,-1 
I-[ g(j,  t - 1 )  = k=O ,-2 I-I g(J, t - 1) 

J=m L k~o g( k' j) k=oI-~g(k't-1 ) j=m 

m - 2  

1-[ g(k, m - 1) 
k=O 
m ~ l  

I-I g(k, t - 1) 
k=O 

it follows from (D. 15) and (D. 17) that, for O<-i<-m<t, 

1 I-I g(J, m - 1) 
p(m, t; i) - p(O, t; O) I J=~°----i . . . . . .  

P(0' m; 0) L j~=og(j , t -1 ) 

x exp(i[c(m) + c(m + 1) + . - -  + c ( t -  1)]). (D. 18) 

It is surprising that the bond price p(m, t; i) does not depend on the risk- 
neutral probabilities {'rr(m), "tr(m+ 1), w(m+2) . . . . .  ~r(t-2)} because the 
formula for p(m, t; i) was derived by backward induction starting with 
the boundary condition 

p ( t , t ; i ) = p ( t , t ; i +  1) . . . . .  p ( t , t ; i + t - m ) =  1; 

see (D.10) and (D.15). 
There is a "deficiency" in a binomial lattice model satisfying 

r(0, t) > r(1, t) > r(2, t) > . . .  > r(t, t) 

o r  

r(0, t) < r(1, t) < r(2, t) < . . .  < r(t, t). 

Unless we diminish the volatilities of the one-period interest rates as t 
becomes large, the model will have high interest rates or negative interest 
rates or both. 
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The introduction of the state-contingent prices or Arrow-Debreu prices, 
G(i, t), has greatly simplified the construction of  the multiplicative bi- 
nomial lattice. Jamshidian [2, p. 62, p. 74] wrote: 

Ironically, forward induction is virtually unknown, if less so among 
practitioners than academicians. To the best of my knowledge, there 
is no written public account of it, nor of the even more fundamental 
binomial forward equation, save for my appendix in Merrill Lynch & 
Co., Inc. [1990] . . . .  While I came upon forward induction inde- 
pendently, and by mid-1989 had internally released it in software and 
lectured and written about it, I claim to be neither the sole nor the 
first discoverer of this method. Yet the method appears to be known 
to few others in Wall Street. 

I would like to take this opportunity to give credit to Kevin Buhr, cur- 
rently a doctoral student at the University of  Wisconsin, Madison. In 
1990, Kevin was a sophomore summer intern at the Great-West Life 
Assurance Company in Winnipeg. That summer we were interested in 
building binomial lattices to study the price behavior of  mortgage-backed 
securities. Kevin came up with the idea of  forward induction indepen- 
dently. Of  course, he never studied "Arrow-Debreu securities." 

I would like to suggest an exercise for the interested reader. The pre- 
payment option value in the example in Section 3.A of  the paper is 
26.42259 for 10,000 of  loan. This means that the initial market value 
of  the loan is 9973.57741. My suggestion is to redo Table 9 to obtain, 
this value directly. The one change is that, in the backward recursion, 
whenever a value is greater than 10,000, it is replaced by 10,000. 

My final comment  is to recommend some references on pricing mort- 
gage-backed securities. Two instructive papers are Richard and Roll [5] 
and Richard [4]. Number 3 in Volume 4 of  the Journal of Fixed Income 
is a special issue focusing on recent changes in prepayment modeling 
and hedging for mortgage-backed securities. Again, I thank Mr. Sherris 
for writing this useful exposition. 
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YONG YAO*: 

It is a pleasure to read Mr. Sherris's informative paper. He discusses 
the valuation of interest-sensitive assets and liabilities based on a model 
of short-term interest rates. The computational algorithms described in 
the paper are easy to implement. As pointed out by Mr. Sherris, we need 
to "ensure that prices of zero-coupon bonds derived by using the algo- 
rithm are equal to the market prices of such bonds on the valuation date." 

Recent research has led to the construction of models that can perfectly 
replicate the current term structure. An excellent survey of these models, 
as well as other continuous time models of term structure of interest 
rates, is given by Vetzal [7]. One such model is the Heath-Jarrow-Mor- 
ton (HJM) model [4], which has found increasing favor with traders of 
fixed-income derivative securities. The HJM approach begins by taking 
the state vector to be the entire forward rate curve and assuming that its 
movement is driven by a finite number of standard Brownian motions 
(see Equation (4) below). Restrictions are then imposed on the drift of 
the process to guarantee that no riskless arbitrage opportunities arise (see 
Equation (5) below). Like the Black-Scholes model of stock options, the 
HJM model requires no assumptions about investor preferences. The 
contingent claim prices do not explicitly depend on the market prices of 
risk and are determined by the volatility structure of interest rates. In 
particular, estimates of drift or expected rate changes are not needed. In 
general, in this framework, the spot rate process underlying the bond 
prices is path-dependent, and the movements of the spot rate may depend 

*Mr. Yao, not a member of the Society, is a graduate student in the Department of Statistics 
and Actuarial Science at the University of Iowa. 
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on its entire history. This makes the model difficult to implement from 
a computational point of view. Fortunately, a special case of the HJM 
model has been found ([2], [5], and [6]), where the path-dependence 
nature of the short rates is captured by a single sufficient statistic (see 
d~(t) in Equation (9) below), and the bond prices are easy to calculate 
(see Formula (10) below). 

Term Structure  o f  In teres t  Rates  

A default-free, pure-discount bond maturing at time T>-0 is a security 
that will pay one dollar at T and nothing at any other time. Zero-coupon 
Treasury securities or stripped Treasuries can be viewed as examples of 
default-free, pure-discount bonds. Any noncallable default-free bond can 
be considered as a package of these bonds. 

We denote the price of this default-free, pure-discount bond prevailing 
at time t, O<-t<-T, as P(t, T).  At maturity, we require that 

P(T, T)  = 1. 

The instantaneous forward rate prevailing at time t<T,  f ( t ,  T) ,  is given 
by 

f ( t ,  T)  = 

It follows from (1) that, for t<T,  

O(ln P(t, 7")) 

dT 
(1) 

Fl ] P(t, T) = exp - f ( t ,  s)ds . (2) 
L . I  $ = t  

The (instantaneous) spot rate prevailing at time t is given by 

r(t) = f ( t ,  T)lr=, = lim f ( t ,  t + A). (3) 
A,--*0+ 

For a better understanding of the HJM model, we first explain the term 
structure dynamics in a simple setting, in which all the future movements 
of the interest rates are known with certainty. In this case, we know 
from the theory of compound interest that 

P(t, 7") = exp - r(s)ds = P(O, T)/P(O, t). 
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From Formula (2), we have 

ex - r s = ex - t, s , 
L d S = t  

and hence 

f ( t , T ) - r ( T )  for a l l T - > t - > 0 .  

So we have f(t, T ) - f ( 0 ,  T)=r(T) for all T>-t>-O. 

1be HIM Mode l  

Let "r be a fixed positive number. For each TE [0, "r], the instantaneous 
forward rate f(t ,  T) is assumed to satisfy the following equation: 

fo f(t ,  T) = f(O, T) + Ix(s, T)ds + cri(s, T)dZi(s) for all t < T, 
.=  

(4) 

where {f(0, T): T@[0, "r]} is the initial forward rate curve calculated from 
the current market prices {P(S): SE[0 ,  "r]}, and {Zi(t); t>-0} are n inde- 
pendent one-dimensional standard Brownian motions. In the absence of  
riskless arbitrages, it can be shown that 

Ix(t, T) = ~ (Ti(t, T) cri(t, u)du - hi(t) , (5) 
i = 1  

t 

where {hi(s), h2(s) . . . . .  h,(s)} are the market prices of risk satisfying 
some technical condi t ions  (see the Heath-Jarrow-Morton paper [4]). 

Substituting Equation (5) into (4), we obtain an arbitrage-free char- 
acterization of  the term structure in terms of  forward rates: 

i f0 ] f(t ,  T) - f (O ,  T) = ~ cri(s, T) ~i(s, u)du - hi(s) ds 

nfo + ~ cri(s, T)dZi(s), 
i = 1  

(6) 

or equivalently, 
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df(t, T) = Z ~ i ( t '  T )  lYi(t , u)du - hi(t ) d t  + lYi(l  , T ) d Z i ( t  ) .  
i=1 i = l  

(7) 

A Special  Case o f  tbe HJM Mode l  

Let k(x) be a deterministic function, and denote 

[ l  ] K(t, T) = exp - k(x)dx . 

In the HJM model, if we choose 

O'i(t , T) = o' i( t  , t)K(t, T) for t ----- T, and i = 1, 2 . . . . .  n, (8) 

then the movement of the spot rate will be determined by 

dr(t) = k(t)[f(O, t) - r(t)] + 4fit) - ~ ~i(t, t) hi(t) + ~ f (O,  t) dt 
j = l  

n 

+ Z ~i(t, t)dZi(t), 
i= I (9) 

and the prices of  default-free, pure-discount bonds are given by 

P(T) l 
e(t, T) = P(t----)exp{-13(/, T)[r(t) - f(O, t)] - ~ [~3(/, T)]%(/)}, (10) 

where 

qb(t) = ~.= [lYi(S, t ) ]  2 ds = i= I [Ori(S, s)K(s, 0] 2 ds, 

T 

f3(t, T) = f K(t, u)du, 

and {P(t): t~[O, "r]} are the current market prices. 

Remarks  

1. It follows from Equation (10) that bond prices at time t are expressed 
in terms of  the current prices, the spot rate at time t, and the ac- 
cumulated variance of the forward rates up to time t. 
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2. Bond prices at time 0, {P(0, T)}, are consistent with the current 
market prices {P(T)} automatically. 

Proof of Equations (9) and (10) 
For simplicity, we prove the case n= 1, and omit all the subscripts. 

Set 

A(/; T) = f ( t ,  T)  - f ( O ,  T).  

It follows from (8) that 

or(s, T)  = tr(s, s) K(s, T)  

= or(s, s) K(s, t) K(t, T)  

= tr(s, t) K(t, T). 

Applying this formula to Equation (6), we have 

fo If/ ] A(t; T) = r~(s, OK(t, T)  cr(s, u)du - h(s) ds 

+ ~(s, t)K(t, T)dZ(s).  

Hence 

o r  

A(t; T) 

fo If/ ] A(t; T) - K(t, T)  tr(s, t) tr(s, u)du ds 

E f o f o  ] = K(t, T)  - ~(s,  t)h(s)ds + ~(s, t)dZ(s) , 

T ] fo K(t, T) tr(s, t) or(s, u)du ds = - cr(s, t)X(s)ds + cr(s, t)dZ(s). 

Since the right-hand side of this equation is independent of T, the left- 
hand side is also independent of T. So we have, for each S>-t, 
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t i f f ]  ds A(t; S) fo [ f  s ] ~ r ( s ,  fort(s, t) or(s, u)du - cr(s, t) u)du ds. 
K(t, S) 

A(t; T) 

K(t, T) 
With S=t and noting that K(t, t)= 1, we obtain 

A(t; f Jo' or(s, t) or(s, u)du ds = A(t; t) - or(s, t) cr(s, u)du ds, 
T) 

K(t, T) 
which simplifies to 

{ Yo ] A(t; T) = K(t, T) A(t; t) - ~(s, t) or(s, u)du ds 

= K ( t ,  r) La(t; t) + e(s,  t) e(s,  u)du 

= K(t, T){z%(t; t) + [fo'[Cr(s, t)]2ds][frK(t, u)du]} 

]} = K(t, r)[a(t; t) + 4,(0 K(t, u)du (11) 

= K(t, r)[a(/; 0 +.~(t)[3(t, T)]. 

0 
Because - -  ~(t, T) = K(t, T), we have 

OT 
d [  1 ] 

A(t; T) = ~ r  A(t; t)[3(t, T) + ~ [~3(t, r)]%(t) . (12) 

We are now ready to prove (9). By (3), we have 

From Equation (7), 
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df(t ,  T)lr=t = -or(t,  t)h(t)dt + or(t, t)dZ(t). 

From Formula  (11), 

f ( t ,  T)  = f(O,  T) + K(t, T)[A(/; t) + d~(t)f$(t, T)], 

and hence 

0 t ,  ~ f (  r ) ]  
d 

= -£f(O,  t) - k(t)[A(t; t)] + dp(t) 
a t  

T = t  

d 
~ m dt f (O,  t) + k(t)[f(O, t) - r(t)] + dp(t). 

So we can get 

dr(t) = -or(t ,  t)X(t)dt + or(t, t)dZ(t) 

+ k(t)[f(O, t) - r(t)] + 4~(t) + _ f ( O ,  t) dt, 

which is the one-dimensional  case of  (9). 
Next we prove (10). Recall  that A(t; T)=f ( t ,  T ) - f (O ,  T). From (2), 

we obtain 

P(t,  T) = exp - f ( t ,  s)ds 
= l  

= exp - If(O, s) + ~(t; s)lds 
k d S = t  

[I2 ,,0 ] Ff ] = exp - s)ds exp - A(t; s)ds 
L d 3 ~ l  

Because of  exp - s)ds P( t ) '  

P(t) exp A(t; s)ds 
~ t  
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P(T)  exp{ 
P(t) 

-~3(t, T)[r(t) - f ( O ,  t)] - ~ [13(t, T)]2~b(t) , 

by (12). 

Two E x a m p l e s  

We present two examples to explain how to use this result. 
E x a m p l e  1: Set n= 1, or(t, t)=orlr(t)[ 1/2, k (x)=k,  where or and k are two 

positive constants. We choose h( t )=0 and use the following 
approximations: 

dp(t) = fo' 

where 

t - l  

[or(s, s)K(s, 012 ds ~ orz E [r(i)[ e -2~(t-i) 
i=0  

r(t) = r(t - 1) + Ix(Oh + or[hlr(t - 1)]]l/2e(t), 

[f(O, th) - f (O,  (t - 1)h)] 
Ix(t) = k[f(0, (t - 1)h) - r(t - 1)] + ~b(t) + 

h 

e(t) is a normal (0, l) random number; and h is the length of the time 
interval in years. From (10), we can calculate the prices of pure-discount 
bonds. Then we use simulation to value loans with prepayment provisions. 

E x a m p l e  2: If or(t, t )#0  for all t->0, we can simplify the model de- 
scribed in this discussion by choosing h(t) such that 

dp(t) - or(t, t)h(t) = 0. 

For simplicity, we set or(t, t)=or and k(x)=k,  where or and k are two 
positive constants. Then 

1 
[3(t, T) = ~ (1 - e -~r - ° ) ,  

O .2 
= e t ) , .  dp(t) ~ (1 - -2k 

and 
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qb(t) (1 - e -2k') 
h(t) - - -  - cr 

o'(t, t) 2k 

which is a increasing function of  t. 
In this case, the movements  of  the spot rate are determined by 

dr(t) = k[f(O,  t) - r(t)] + _ f ( O ,  t) dt + ~dZ(t ) .  
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( A U T H O R ' S  REVIEW OF DISCUSSIONS)  

MICHAEL SHERRIS: 

I thank Dr. Artzner, Dr. Shiu and Mr. Yao for their informative dis- 
cussions of  the paper. 

Dr. Artzner raises important issues in prepayment  and default risk. The 
pricing model in the paper  does not price prepayment  risk as defined by 
Dr. Artzner. It is concerned only with interest rate risk and the extent 
to which the prepayments  are a function of  interest rates. This is an 
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important issue because it has parallels with insurance products. Lapse 
rates in insurance products can be sensitive to interest rates and other 
factors in a similar way to prepayments in mortgage-backed securities. 
The pricing of lapse risk is an issue separate from the pricing of interest 
rate risk in these products. The difficulty in insurance products is de- 
termining a price for this lapse risk. The same problem applies to mort- 
gage-backed securities. In the case of mortality, it is possible to assume 
that the probabilities of death for different policies are relatively inde- 
pendent and the mortality risk can be diversified to a significant extent. 
To the extent that lapse risks can be diversified, then there is a similarity 
to mortality. However, prepayments on mortgage-backed securities tend 
to be correlated, and a significant component of the correlation is often 
the common effect of interest rate moves. 

In Section 3 of the paper, in the first paragraph, I state that "the option 
is equivalent to an American-style option to exchange the fixed-rate loan 
for a floating-rate loan for a term equal to the remaining term of the 
original loan." Since a swap is a contract to exchange a fixed-rate loan 
for a floating-rate loan, I have introduced this idea prior to the section 
on hedging, but as noted by Dr. Artzner, I did not spend any time dis- 
cussing swaps or swaptions. 

Determining the "level premium," which would normally be incor- 
porated in the interest rate or yield on the mortgage-backed security, is 
a difficult theoretical problem. In practice, this is how these securities 
price the prepayment option. This problem is similar to that of pricing 
a level-premium insurance contract that provides a guaranteed surrender 
value. 

I also thank Dr. Artzner for pointing out his paper with Delbaen [ 1], 
the paper by Griffin [2], and, in particular, the discussion of Griffin's 
paper. On reading the Artzner and Delbaen paper, I realized that I had 
attended a presentation of that paper to the Erasmus University Confer- 
ence on Insurance, Solvency and Finance in 1991. I recall enjoying Dr. 
Artzner's presentation very much. However, it also became clear that I 
had not appreciated the significance of the issues he discussed at the 
time. 

Dr. Shiu has provided a general specification of the mathematics for 
the additive model. This allows the fitting of the model parameters to 
the current zero-coupon bond yield curve directly and also allows the 
analytical specification of the possible yield curves on any future date. 
The original intention of my paper was to set out the steps in developing 
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a simple term structure model in a manner that an actuary or student, 
with limited knowledge of term structure models, could follow and use 
to develop simple programs for valuing interest rate instruments includ- 
ing bonds and interest rate options. For this reason, the paper does not 
contain any mathematical development of the formulas. Dr. Shiu's dis- 
cussion indicates the usefulness of a mathematical approach to term 
structure models, and I highly recommend it to readers of my paper. 

I was also interested in the result in Equation (D. 18), where the bond 
price does not depend on the risk-neutral probabilities. This result ap- 
pears to be related to the results in the paper by Heath, Jarrow and Mor- 
ton [3, p. 420], which states that 

We show, however, in the limit that contingent claim values only 
depend on the volatility parameters, and not the pseudo probability. 
This is analogous to the situation that occurs with the binomial ap- 
proximation to the Black-Scholes model. 

Mr. Yao's discussion develops continuous-time results similar to the 
discrete-time results of Dr. Shiu. Mr. Yao develops a continuous-time 
bond price formula in terms of the current market bond prices. The Heath- 
Jarrow-Morton approach to modeling interest rates is quite general. I 
found the derivation of the bond price formula in this discussion infor- 
mative. The examples presented are very instructive and indicate how 
the results derived in the discussion can be used in the problems dis- 
cussed in my paper. 

I conclude by noting that the discussions of papers in the Transactions 
are a very valuable component of the published papers. More often than 
not, the discussions include original ideas and add much to the published 
papers. The discussions of my paper have demonstrated this, and I thank 
the discussants for their contributions. 
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