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DEPENDENT DECREMENT THEORY 

JACQUES F. CARRIERE 

ABSTRACT 

Currently, multiple decrement theory is based on the assumption that 
competing causes of decrement are stochastically independent, even though 
this assumption is usually not true in reality. This paper presents well- 
known results in the theory of dependent competing risks that are fun- 
damental in extending multiple decrement theory towards a dependent 
decrement theory. First, the state of the art is examined and the results 
that are based on the independence assumption are identified. Next, we 
use the well-developed theory of copula functions to model dependence, 
and we present a theorem that characterizes the mathematical relationship 
between the crude and net probabilities when the decrements are depen- 
dent. We also discuss the issue of identifiability and the related issue of  
measuring the effect of removing causes of decrement. Finally, we use 
an identifiability result to analyze the effect of removing heart/cerebro- 
vascular diseases from the U.S. population when these diseases are cor- 
related to other: causes of death. 

I. INTRODUCTION 

The book Actuarial Mathematics [4] develops multiple decrement the- 
ory under the convenient assumption that the competing causes of dec- 
rement are stochastically independent. Hooker and Longley-Cook [12] 
state that it has long been known that every decrement is "selective" or 
dependent to a greater or less degree. We believe that the errors in analy- 
sis due to the independence assumption are unacceptable. To rectify this 
situation, this paper presents some results in the theory of dependent 
competing risks that are fundamental in extending multiple decrement 
theory towards a dependent decrement theory. 

We begin the discussion by redefining the standard actuarial functions 
in multiple decrement theory in terms of latent random variables. Thus 
we can use standard actuarial notation when restating some well-known 
results in the theory of competing risks. Specifically, we identify those 
relationships in the current theory that are based on the independence 
assumption and those that are invariant to it. 
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Next, we show how to characterize the dependence structure of any 
continuous multivariate probability distribution with a copula function. 
This allows us to generalize the current independent decrement theory 
to a dependent decrement theory and also provides some insight into the 
identifiability problem that biostatisticians have been investigating. We 
discover that in the nonparametric case identifiability is only possible if 
the copula is fixed. 

Finally, we investigate the effect of removing heart/cerebrovascular 
diseases as a cause of death from the U.S. population, assuming that 
heart/cerebrovascular diseases are dependent on the other causes. We 
discover that if the correlation between decrements is negative, then re- 
moving a cause of  death extends the median lifetime more than if the 
correlation is positive. This result is qualitatively similar to a result re- 
ported in Yashin, Manton and Stallard [25] in which a stochastic process 
model is investigated. 

2. DEFINITIONS AND BASIC RESULTS 

In this section, we redefine the standard actuarial functions in multiple 
decrement theory in terms of latent random variables. Using actuarial 
notation, we restate some well-known results in the theory of competing 
risks, and we identify those relationships in the current theory that are 
based on the independence assumption. Many of the definitions in this 
section can be found in the book Actuarial Mathematics [4]. 

Following the example of Elandt-Johnson [7], let 0<-Tj< oo for j =  l,  
. . . .  m be the latent random time of withdrawal, due to cause j ,  for a life 
aged a->0. Note that these random variables may be stochastically de- 
pendent and they are not observable in a competing risks model. Usually, 
biostatisticians and actuaries assume that some (but not all) of these ran- 
dom variables may be defective; that is, Pr(Tj<oo)<l. This assumption 
leads to some thorny theoretical problems that complicate the analysis 
while contributing nothing practical to the model. In fact, this assump- 
tion is not even testable, and so we always assume that Pr(Tj<oo)= 1. 

Denote the radix of a multiple decrement table as l~.')>0 and let x ~ a  
denote the attained age. Also, let t->0 and tj>-0 for j =  1, . . . ,  m. Define 
a multivariate survival function as 

S(t, . . . .  , t,.) = Pr(T, > t~ . . . . .  Tm> t,.). (2.1) 
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See Tucker [23] for a good discussion of  multivariate probability distri- 
butions. Another way to define a multivariate survival function is given 
in Yashin, Manton and Stallard [25]. Throughout the paper, we assume 
that S( f l  . . . . .  t,,) is absolutely continuous. That is, there exists a function 

f ( h  . . . . .  tin) such that 

lf?  S ( f l ,  . . . ,  tin) = . . .  sl  . . . . .  Sin) d s  . . . . .  d s l .  (2.2) 
I 

In reality, some decrements occur only at year-ends and so the absolute 
continuity assumption is not valid in all cases, but we believe that this 
is a good approximating assumption. A more precise, albeit complicated, 
theory can be constructed with Riemann-Stieltjes integrals, as Shiu [21] 
suggests. 

A. T h e  O v e r a l l  Surv iva l  Funct ion  

In this section, we present certain actuarial functions associated with 
the random variable min(Tl . . . . .  Tin). Using this random variable, we 
define the o v e r a l l  survival function as S ( t  . . . . .  t)=Pr[min(Tt . . . . .  Tm)>t]. 
Whenever the functions exist, define 

S(r)( t)  = S ( t  . . . . .  t) 

l(~) = I ~) S(~)(x - a ) ,  x > a x ~¢1 

cl( 'O = I ('r) _ l ( ' r )  
t ~ X  " X  ~ X q ' l  

,4 ('r) 

I£~X  
l ( r )  x 

1 (r)  
_(x )  ~ ~ x + t  

tl-Lr I (~ )  
~ x  

d p ( r )  _ (r) 
x+t loge(lx+,) 

d t  

f ~ ) ( t )  = , p~ )  ~Ztx~,. 

Using the definitions, it is easy to verify that 

(2.3a) 

(2.3b) 

(2.3c) 

(2.3d) 

(2.3e) 

(2.3f)  

(2.3g) 
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d ,q~,) (,) 
- -  = fx (t) and 
dt  

B.  T h e  C r u d e  S u r v i v a l  F u n c t i o n  
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_(-r) _09 ( ' r )  
t q x  = sP'.r ~t~+s ds. (2.4) 

I(J) 
,p~J) = ":,+! (2.6e) 

l ( :  ) 

d 

a ?  - , d ?  
157) (2.6d) 

l~ j) = .~t (') S~i)(x - a) ,  x - > a 

,d~ J) l~x j) ,(J) 

- -  _ t(J) 
~x+t 

dt  
~!~+), - (2.6f) 

l(,) X-F! 

f~xJ)(t) = -(,), (j) (2.6g) t P x  P x + t .  

A few observations about the definitions in (2.6a-g) are in order. First, 
,q]J) is usually a defective cumulative distribution function. Second, it is 
easy to verify that 

fo d -(') ds. (2.7) 
- -  = sP~x Wx+s dt  ,q~) = f(J)(t) and ,q~) ' (j) 

(2.6a) 

(2.6b) 

(2.6c) 

In this section, we present certain actuarial functions associated with 
the joint distribution of min(Tl, . . . ,  Tin) and the index random variable 

m 

J = ~'. fl[min(T~ . . . . .  T,,) = Tj]. (2.5) 
j=  I 

In this case, the crude  survival function is equal to Pr[min(Tl . . . . .  Tm)>t,  
J=j] .  To ensure that all the mass of J is on the integers 1 . . . . .  m, we 
assume that Pr(Tj=Ti)=0 whenever j # i .  Whenever the functions exist, 
define 

S~J)(t) = Pr[min(Tl, . . . ,  To,) > t, J = j] 
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Third, our definition of ,p~J) is equivalent to the one given in Promislow 
[19], where -¢J)- ~u)_ ~u) because , ,u) -  Au)/t~) and d U ) = l  tJ9 It t P x  - - : ~ t t x  t ~ l x  , ~"/x - - : ¢~x  I ~ x  ae x .r • 

may be instructive to note that SUg(t)=,p~ j). Finally, let g( .  ) denote any 
of  the functions SC)(t) ,  l~x" ), , d~) ,  , g  ~, , p~) ,  p,~+),, or f t '  )(t). Then it is 
easy to verify that the addi t i ve  p r o p e r t y ,  

g('r) = g( l )  + - - .  + g ( m ) ,  (2.8) 

is true regardless of  any dependence assumption. The additive property 
holds because 

Pr [J = j]  = 0, 

which means that the events are almost surely mutually exclusive. 
The following lemma is an important result in the theory of  competing 

risks. This result gives a representation of  the crude survival function 
that will be useful later. An alternative proof of  this lemma can be found 
in Tsiatis [22]. 

Lemma 1: 
If S(tl . . . . .  tin) is differentiable with respect to ti>O for all j =  1 . . . . .  

m, then 

Su)( t)  = - Sj(r . . . . .  r) dr ,  (2.9a) 

Proo f :  

where 

0 
Sj(r . . . .  , r) = -S-. S ( t , ,  . . . ,  tm)l,,=r.Vk. (2.9b) 

otj 

s~J)(t) = Pr[min(Tl . . . . .  T,.) > t, J = j]  

= P r [ ( T k > t  and T j - < T k V k ) ]  

= P r [ T j > t  and ( T k > T j V k # j ) ]  

= ... f ( t l  . . . . .  t z )  dtk dtj 
k # j  
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} - 0  S ( t l ,  tm)],,=,j.vk dtj,  . . . ,  

which is exactly equal to (2.9a-b).  [] 
Sometimes the random variable J is stochastically independent of min(Tl, 

. . . ,  T,,). This is true if and only if 

,.~(J) scJ)(s)  = Pr(J = j )  × Pr[min(Ti, . . . ,  T,,) > s] = S c*~ (s) =~  , 

which is true if and only if ~q~J)=~q]~ =q~J~, if and only if f ~ J ) ( s ) =  
f~*)(s)= q~i), if and only if ,,cj~ _,,c,) v ~cj) ~+~-wo+~--=,to for all s>0.  Note that 
=q~J)=sCJ~(o). If we let s = x + t - a ,  then we can summarize the result as 
follows. 

L e m m a  2: 
The random variable J is independent of min(Tt, . . . ,  Tin), if and only 

if 

f £ x ( j )  . (T) ~ ( J )  X.t +, = Wx+, × ~q~, v.~, t, j .  (2.10) 

If  the identity in (2.10) holds, then we have the so-called proportional 
hazards model of the theory of competing risks. The result in Lemma 2 
is a restatement, using actuarial notation, of a theorem given in Kochar 
and Proschan [14]. 

(7. T h e  N e t  S u r v i v a l  F u n c t i o n  

In this section, we present certain actuarial functions associated with 
the random variable Tj. In this case, the ne t  survival function is equal 
to Pr(Tj>t). Whenever the functions exist, define 

s'(J)(t) = Pr(T~ > t) (2.1 la) 

l "(j)  = l "cj) s'CJ)(x - a ) ,  x >- a (2.1 lb) 

, d  "j~ = l'~ c j ) .  - ,x+tl'cJ) (2.1 lc) 

,q-~J~ - , d  " ~  
(,c j) (2.1 l d) 

/ ' (J) 
t p ,  Cj ) = "x+t l,~j ) (2.1 le) 
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d t . , ( j )  ¢(j )  
x+, = - - -  loge(l~+,) (2. l I f )  

dt 

f'(J)(t) = tP.'r (j) P~+t' '(j) (2.1 lg )  

A few observa t ions  about  the def ini t ions  in (2.1 l a - g )  are in order .  First ,  
that in t roduced 

t ( j )  
note we a new s y m b o l  Px+,." T h e  b o o k  Actuarial Math- 
ematics [4] def ines  

fo _,(j)  (j) 
,t,.r = ex - ~x+s , 

which  impl ies  that ~x+," (j) --'P~+, '(j). In T h e o r e m  3, we  show that  i ndependence  
is a sufficient  condi t ion for  this ident i ty to hold.  Final ly ,  it is easy  to 
ver i fy  that 

fo d ^'(J) -- f'(J) ,q'~(J) sp "(j) ~+," '(J) ds. (2 .12)  , q ,  ( t )  a n d  = 

D. The  C o n s e q u e n c e s  o f  I n d e p e n d e n c e  

W e  end this sect ion by  giv ing a t heo rem and a corol lary .  The  t h e o r e m  
proves  that p x + , -  ' '(j) - 'px+t  '(j) when  Tj, . . . ,  Tm are s tochas t ica l ly  independent .  
The  corol lary  character izes  t P x  (j) i n  t e rms  o f  _(7) =q~j) ,/)x and when  J is 
independent  o f  min(TI . . . .  , T,,). These  results  are a res ta tement ,  us ing  
actuarial  notat ion,  o f  s o m e  theorems  g iven  in E land t - Johnson  and John-  
son [ 8 ] .  

Theorem 3: 
I f  T~ . . . . .  Tm are s tochast ical ly  independent ,  then 

(i) ' (j) ' '(j) P x + t  = P x+t 

(ii) 

Proof'. 
(i) L e m m a  1 impl ies  that 

d 
-"--e:')~s~ = - i 

. /  u \  .' 

ds 

tn 

I-[ ,p;(J'. 
j = l  

s ( J ) ( s )  = - S j ( s  . . . .  , s ) .  

(2 .13)  

(2 .14)  
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Using stochastic independence, we get 

m l i=$,Vi  
f(J)(s) = ----OtjO I-Ii=l S'(i) (ti) = la~a+s' t(j) i=l st(i)(s) = ~'lt'a+s" t(j) X S (*) (s). 

Using our definitions, we know that S~')(s)=,p~ ") and that 
f~) (s )=,P~ ")'wa+, ~j) • Therefore ,-a+,-- ''{j) --"'(J),-~*, for all s>0.  The result 
follows by letting s = x + t - a .  

(ii) Independence implies that 
m 

S(t, . . . . .  t~) = I-I  S'<j) (tj). 
j=l 

So 

t(') S(')(x + t - a) m S,(j)( x + t - a) 
_,,, ,x+, _ = 1 - I  -- a ;  tlJx l(x ") S(')(x - a) s'(J)(x j=¿ 

m p ( j )  m 

= I-I  "x+t= I-I  tP:(J'" [] 
j=l / ~  j=l 

Corollary 4: 
If Tl . . . . .  Tm are independent and J is independent of min(TI . . . . .  Tm), 

then 

,p.',(;) = {,p}~)}~q~'. (2.15) 

Proof: 
Using the results in Lemma 2 and Theorem 3, we find that 

,px '(J) = exp{-f 'o tX(x~, ds} = exp{-f~ ix!/+)s x :¢q~J' as} = (,p~,)}~u'J'. [] 

3. C O P ~  AND MEASURES OF ASSOCIATION 

In this section, we show how to characterize the dependence structure 
of any continuous multivariate probability distribution. This allows us to 
generalize the current independent decrement theory to a dependent  dec- 
rement theory and also provides some insight into the identifiability problem 
of the theory of competing risks. 

Let u=(u,  . . . . .  Um)'E[0, 1]". Following the example of Schweizer 
and Sklar [20], we define a copula, C(u), as a multivariate cumulative 
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distribution function that has uniform marginals with support on the hy- 
percube [0, 1] m. This means that for all j =  1 . . . . .  m, we have C(u~ . . . . .  
uj-l,  0, uj+j . . . .  , urn)=0 and C(1, . . . ,  1, uj, 1 . . . . .  1)=uj. An example 
of a copula is 

trl 

C(u) = I-I u~ 
j = l  

and another is C(u)=min(u l  . . . . .  u,,). Some other examples of two- 
dimensional copulas can be found in Barnett [3]. The copula function is 
very useful in understanding the dependence structure of multivariate 
probability distributions because of  the following result. 

Lemma 5: 
Let  

C(u) = Pr [S '<i) (Tj) -<ui] . 
k j = l  

Then C(u) is the only copula such that 

S(t l ,  ..., tm) = C[S'(l)(t=), ..., S'(=)(t=)], V tj >- 0 and j = ] ,  ..., m. (3.1) 

Proof'. 
It is well-known that i f  S'(~!(t) is a continuous survival function, then 

the transformed random variable S'(J)(Tj) has a uniform distribution on 
[0, I ] .  Therefore, C(u) is a copula because it is a cumulative distribution 
function with uniform marginals. Next, 

C[S ' ° ) ( tO . . . . .  s'~m)(t;~)] = Pr [S '(j) (Tj) -< S '(j) (tj)] 
j=l  

= Pr > 

= S(t l  . . . . .  tin), 

because the event [S'~i)(Tj)<-S'~J)(tj)] is equal to [Tj>tj] ,  except on a set 
of probability 0. Let us suppose that C( .  ) is not unique, then there exists 
C*(" ) # C ( "  ) such that 



54 TRANSACTIONS, VOLUME XLVI 

S( t l  . . . . .  t~) = C [ S ' ° ) ( t l )  . . . . .  S'~")(tm)] 

= C * [ S ' " ) ( t l ) ,  . . . ,  S'~m)(tm)], V tj >- 0 and j = 1 . . . .  , m. 

Let u*=(u* ,  . . . ,  * ' u,,) E[0, 1]" be a value such that C*(u*)¢C(u*) .  Us- 
ing the continuity of S'CJ)(tj), we know there exists t ' E [ 0 ,  ~] such that 
S'  t j)( t*) = u* .  Therefore 

C [ S m ) ( t  *) . . . . .  S'~")(t*)] ~ C*[S'Ct)(t *) . . . . .  s ' ( m ) ( t ~ ) ] .  

This is a contradiction. Therefore C ( ' )  is unique. [] 
As far as we know, Lernma 5 is a new result because of its focus on 

survival functions. Generalizing Lemma 5 to defective random variables 
would be an interesting research problem. Note that if T~ . . . . .  Tm are 
stochastically independent, then the unique copula associated with S(t~, 
• . . ,  tin) is equal tO 1-I7=~ u i. Moreover, if T~ . . . . .  T,,, then the unique 
copula associated with S( f i ,  . . . ,  t,,) is equal to min(u~ . . . . .  Urn). This last 
copula is actually an upper bound because C(u)-<min(u~ . . . . .  u,,), for 
any copula C(u) and for all uE[0 ,  1]". For more information about co- 
pulas, consult Genest and MacKay [9], [10]. 

We are now in a position to give a representation of the crude survival 
function in terms of copulas. Using the results in Lemma 1 and Lemma 
5, along with the chain rule, we get the following result, which appears 
in Heckman and Honore [11]. We apply this result when investigat- 
ing the effect of removing heart/cerebrovascular diseases from the U.S. 
population. 

Theorem 6: 
If C(u~ . . . . .  u,,) is differentiable with respect to ujE(0,  1) and 

S'~J)(tj) is differentiable with respect to t j>0 for all j =  1 . . . . .  m, then 

d s~j) t d --  ( ) = Cj [Sm)(t), . . . ,  S'~")(t)] × --S'~i)(t), (3.2a) 
dt dt  

where 

0 
Cj(uj  . . . . .  Urn) = - -  C(Ul,  . . . ,  Urn). (3.2b) 

auj 

Note that (3.2a) gives a nonlinear system of differential equations, where 
the net function S'~i)(tj) can be solved if the copula C( .  ) and the crude 
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function S(J)(%) are given. We discuss this problem in Section 4. To 
understand Section 5, the reader needs to know something about mea- 
sures of association. We now present a concise discussion of  this im- 
portant topic. 

A. Measures o f  Association 

Nonparametric measures of  association are very useful for understand- 
ing the nature of the dependence in a copula. They are also useful for 
parametrizing families of copulas, as we will see later. Two examples 
of these measures are Spearman's p and Kendall 's  "r. Given a bivariate 
copula function C(u~, u2), we can calculate these two correlation coef- 
ficients as follows, 

and 

r 
p = 12 | Ulu2dC(ul, u2) - 3, 

Ji0 .112 
(3.3) 

f 
= 4 |  C(ul, u2)dC(ul, u2) - 1. (3.4) 

./to .ll 2 

Note that IPl_<l, M_<l and p = - r = - I  if and only if C(u,, u2)=max(0, 
u l + u 2 - 1 )  and p = ' r = + l  if and only if C(ul, u2)=min(ul, u2). The co- 
pulas max(0, u l + u2 - 1 )  and min(u~, u2) are called the Frechet bounds, 
because 

max(0, ul + u2 - 1) -< C(uj, u2) --< min(ul, u2) for all C(ul, u2). 

For more information, see Genest and MacKay [9], [10] or Carriere and 
Chan [6]. One of  the most simple copulas is the Morgenstern copula. 
We use this copula for illustrative purposes in Section 4. 

B. The Morgenstern Copula 

Let Ipl< 1/3 and let 0-<uj- < 1 for j =  1, 2; then the bivariate Morgenstern 
copula is equal to 

C(Ul, u2) = ulu2{l + 3p(1 - ui)(1 - u2)}. (3.5) 

This copula is parametrized with Spearman's p; that is, 

p = 12 f Ulu2dC(ul, u2) - 3. 
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Note that this family does not include the Frechet bounds max(0, ut +u2-1) 
and min(ul, u2). The Morgenstern copula is an example of a one-param- 
eter family of copulas. Other examples of one-parameter families can be 
found in Barnett [3], Carriere and Chan [6], Genest and MacKay [9], 
Kimeldorf and Sampson [13], and Mardia [16]. The Morgenstern copula 
is used in our discussion of identifiability, given in Section 4. A copula 
that is useful in Section 5 is the normal copula. 

C. The N o r m a l  Copula 

Let us give an example of a multivariate copula. Specifically, let us 
give the probability density function of the copula associated with the 
multivariate normal distribution. This copula is used when we investigate 
the effect of removing heart/cerebrovascular diseases from the U.S. pop- 
ulation. For t, z~fft, define 

dP(t) = ( '  +(z) dz, (3.6) 
j -  z e  

where 

+(z) = (2rr)- ,/2 exp{- z 2/2}. (3.7) 

Next, for uE(0, 1) define ~- l (u)  as the inverse function of qb(t); that 
is, ~ [~- I (u) ]=u .  Next, let R={rkt} denote an mXm nonsingular corre- 
lation matrix. This is actually a variance-covariance matrix in which all 
the diagonal elements are equal to 1. Note that R is a symmetric and 
positive definite matrix. Let z=(zj, .... z,,)'~fft"; then the probability 
density function of a standardized multivariate normal distribution is 

h(z)  = -m/2 IRI - ' / 2  exp 2 " (3.8) 

See Mardia, Kent and Bibby [17] for more details about the multivariate 
normal distribution. Let u=(u~ . . . . .  u,,)'E(0, 1)"; then the density of the 
normal copula is 

a"C(u) h[qb-I(u0 . . . . .  ( I)--  I (Urn ) ]  
- ( 3 . 9 )  

Out . . . . .  aUm +[~- l (u0]  × "'" × +[~-~(Um)] 

We can express the coordinates in the mXm matrix R={rkl} as functions 
of Spearman's correlation coefficient. Using the results in Kruskal [15], 



DEPENDENT DECREMENT THEORY 57 

we find that rkl=2 sin(rrpJ6), where pkk = 1 and if k # l ,  then Pkl is Spear- 
man's correlation for the bivariate normal copula with parameter rkt. 

4. IDENTIFIABILITY AND THE EFFECT OF REMOVING CAUSES 

In this section, we discuss the problem of identi f iabil i ty .  A competing 
risk model is identifiable only if the joint survival function S(tl . . . . .  tin) 
can be calculated or identified by simply knowing the net survival func- 
tion S~J)(t). We find that identifying S(tl . . . . .  tin) is not possible unless 
some simplifying assumptions are made. In the nonparametric case, we 
find that identifiability occurs only if the copula is fixed. 

To fix our ideas, consider a group from where a person may leave due 
to one of m different causes. Suppose that we can estimate S~J)(t)Vj by 
simply observing this group, and suppose we wanted to measure the 
effect of removing a particular cause of decrement. We claim that re- 
moving cause j is mathematically equivalent to letting S'~J)(t) = 1 for all 
t>--0. Let S'~-J)(t) denote the overall survival function with cause j re- 
moved. Then 

S'~-J)(t) = C[S'~I)(t) . . . .  , S '~J-°( t ) ,  1, s ' ( J + l ) ( t )  . . . .  , s'~m)(t)]. (4.1) 

This representation of S'~-J)(t) reveals that we can measure the effect of 
removing a cause only when we know the copula and the marginals. In 
the case of independence, measuring the effect is  a straightforward ex- 
ercise because knowing S~)(t) Vj  is equivalent to knowing S"J)(t) V j ,  
which is equivalent to knowing S(t~ . . . . .  tin). Measuring this effect is not 
possible, in general. But Arnold and Brockett [1] and Bagai and Rao [2] 
have shown that for certain dependent and parametric models, we can 
still identify S(tj  . . . . .  t,,) by simply knowing StJ)(t)Vt, j .  Heckman and 
Honore [11] also give an identifiability theorem in a semiparametric case. 
An identifiability result that was applied to cancer data is given in Yashin, 
Manton and Stallard [25]. Let us investigate the issue of identifiability. 

a.  A D e f i n i t i o n  o f  l d e n t i f i a b i l i C y  

In this section we give a concise definition of identifiability. Let 
denote a family of multivariate survival functions with members denoted 
as Pr(Tl>t~ . . . .  , Tm>tm)=S(t ,  . . . . .  t,,). Also, let q~ denote a family of 
crude survival functions with members denoted as Pr[min(Tl . . . . .  Tm)>t,  
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min(Tl . . . .  , Tm)=Tj]=StJ)(t). Now, let qs be a mapping from ~ onto ~3, 
defined so that 

• [S( .)] = S()( • ). (4.2) 

We say that ~ is identifiable by ~3 whenever q' is an injective function. 
This means that if at'(Si)=~(Sz), then St =$2. It is well-known that the 
function • is not necessarily injective. This situation usually occurs in 
the so-called nonparametric case. 

B. The  N o n p a r a m e t r i c  Case  

In this case, let ~ denote a family in which the survival functions are 
absolutely continuous and there is no restriction on the dependence struc- 
ture. Also let ~ c C ~  be a subfamily in which the copula C(u) of each 
multivariate survival function in ,~c is the same. As an example, if 

t// 

C(u) = ]--I uj 
j = l  

is the independent copula, then all the members of ~c  have the form 
rn 

S(tl . . . .  , tin) : ]-I  S'(J)(tJ )" 
j = l  

Using Theorem 3, we find that in the independent case, ~c  is identifiable 
by ~3. This immediately implies that ,~ is not identifiable by ~3. 

Let us investigate the identifiability of ~c  by ~3, assuming that C(u) 
is fixed and known, that it has continuous second-order partial deriva- 
tives, and that d[S~J)(t)]/dt is continuous. These continuity assumptions 
allow us to use an existence result from the theory of ordinary differential 
equations. Now, define u=(u~ . . . . .  Urn)' where uj=S '(j) is an absolutely 
continuous survival function on (0, o0) whose probability density function 
is denoted as -d[S'(J)(t)]/dt. Next, stlppose we know that the crude 
function is equal to S(J)(t). Using Theorem 6, we find that we have a 
system of nonlinear differential equations. Specifically, we can write 

d 
- -  u ( t )  = G [ t ,  u ( t ) ] ,  ( 4 . 3 )  
dt 

where G(t, u(t))={Gl[t, u(/)] . . . . .  Gin[t, u(/)]}' and 
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d S~J)(t ) 
dt 

Gj(t, u(/)) - Cj[u(/)]" (4.4) 

It is well-known (see Verhulst [24]) that with the initial condition 
s'~J)(0) = 1Yj and with some other minor conditions, there exists a unique 
solution u* to this system. This implies that the model is identifiable, 
whenever C(u) is known. Note that u* may be difficult to calculate, 
even if we know it exists. Finally, the identifiability result given by Yashin, 
Manton and Stallard [25] also requires that a system of nonlinear dif- 
ferential equations be solved, although their approach is totally different 
from ours. 

C. T h e  P a r a m e t r i c  C a s e  

In this section, we describe in an abstract way how identifiability can 
be proved for parametric models, and we demonstrate the ideas with the 
Morgenstem copula presented earlier. The techniques presented here were 
used by Arnold and Brockett [1] and by Bagai and Rao [2] to prove 
identifiability. 

Let S(tl . . . . .  /,.10) denote a multivariate survival function indexed with 
some parameter 0 that belongs to a parameter space O C ~  p where p =  I, 
2 . . . . .  As an example, consider a Morgenstern copula with 

S'~J)(ti) = 1 - t i, O <- tj <- 1, j =  1 ,2 .  

In this case, 

S(h,  tzlP) = (1 - t0(1 - tz){1 + 3ptlt2} 

and m=2, p = l ,  0=9,  and O = ( - 1 / 3 ,  +1/3) .  
As a function of 0, S('[0) is a mapping of O onto ~o C ~.  The com- 

position • o S=~[S("  10)] is a mapping of 19 onto ~o C_ ~. If it is 
injective, then • is injective on ~o; thus ~;o is identifiable by q3o. Con- 
sider the Morgenstern example. In this case, we find that 

and where s J)(tlp)= 
2-~( l - t )  2 ( l+3p t2 )=~  o S(p). For any t¢0 ,  1, if W o S(p0=W o S(pz), 
then 91=92 and we have injectivity immediately. 

Sometimes it is difficult to prove the injectivity of W o S. A technique 
that may simplify the analysis is to introduce an auxiliary function A that 
maps q3o onto a space ~o of statistical parameters. Let F(.  ]O)E~0 denote 
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a statistical parameter. An example is the moment-generating function. 
The key is selecting A, so that the injectivity of F=A o t~ o S is relatively 
easy to check. The injectivity of F immediately implies the injectivity 
of W o S. Consider the Morgenstem example. If we let 

F(p) = E[min(Tl, ..., Tm)[p] = (10 + 30)/30, 

then ~p={F(p): 101<1/3} and F(p) is injective, proving that ~;p is iden- 
tifiable by ~p. 

O. C o n c l u s i o n  

Essentially, we found that the only way that we can identify a unique 
survival function S( t l ,  . . . ,  tm) with the crude survival function S~J~(t) is 
by restricting the family of functions that S ( h  . . . . .  tin) may belong to. 
In the nonparametric case, we do this by assuming that the copula func- 
tion is the same for all members in the class ,~c. While in the parametric 
case, we restrict the family by using a parametric survival function, de- 
noted as S(.  10). In both the nonparametric and parametric cases, re- 
stricting the class ~ simply replaces the problem of identifiability with 
the equally thorny problem of deciding what the restriction will be. In 
conclusion, identifying S( t l  . . . . .  tm) is not possible without some sim- 
plifying assumptions. 

5. AN APPLICATION 

In this section, we investigate the effect of removing heart and cere- 
brovascular diseases as a cause of death from the U.S. population. Spe- 
cifically, we calculate the net survival probabilities from the crude prob- 
abilities, assuming that these diseases are dependent on the other causes. 
We model the dependence with a normal copula that allows the Frechet 
bounds to be investigated. 

The data come from the National Center for Health Statistics [ 18]. This 
publication gives the number of deaths from heart and cerebrovascular 
diseases and from the other causes, in five-year age groups. Using these 
data, we can calculate the crude survival functions s(h)(t) and s(-h)( t )  for 
t=0, 5 . . . . .  95, 100. The superscript (h) denotes that heart/cerebrovas- 
cular diseases are the cause of death, while ( - h )  denotes the other causes 
of death. Using the data, we find that the probability of dying from heart/ 
cerebrovascular diseases is equal to :~qt0h)=0.509. Using a cubic poly- 
nomial, we interpolated the crude survival functions at t=0, 1 . . . . .  104 
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and we approximated the densities ftoh)(t) and f(o-h)(t). Figure 1 is a plot 
of f(o~)(t)=f(oh)(t)+f(o-h)(t) and of f(oh)(t), f(o-h)(t). All the graphs and cal- 
culations were done with the statistical Computing package .GAUSS. 

FIGURE 1 

A PLOT OF THE DENSITIES f~0 "~, f~h~ AND f~-n~ BASED ON THE 1979--81 U.S. LIFE TABLES 
BY C A U S E  OF D E A T H  
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The net survival functions S'th~(t) and S'C-h)(t) can be found by solving 
a system of differential equations. To solve this system, we have to spec- 
ify the form of the copula function. We use the normal copula given in 
Section 3 because it attains the Frechet bounds, when [p[---~l, and its 
properties are well-documented. Currently, we cannot recommend it as 
an all-purpose model, but it does serve our purpose well. Consider the 
Equations (3.2a-b) that relate the net and crude probabilities with the 
copula function. With a normal copula, these equations yield the system 

f(oh)(t) = Ct[S'(h)(t), S'~-h)(t)[9] X f~(h)(t), 
fto-h)(t) = C2[S'(h)(t), S'(-h)(t)lp] × f~(-h)(t),  

where 
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C,(u, vlp) = ~{[~-'(v) - r (p)dP- ' (u) ] /~v/ l  - r ( p ) 2 } ,  

and C2(u, vlp)=C~ (v, u[p) and r(p)=2sin(~rp/6). Note that we param- 
etrized the copula with Spearman's p because we believe that this pa- 
rametrization is informative, albeit complicated. The parameter p cannot 
be estimated because if it could, then the joint survival function 

S(h ,  tzlP) = C[S'(h)(t,), S'(-h)(tz)lP] 

would be identifiable, but in Section 4 we showed that it is not. 
Let us describe how we solved this system numerically. Most of the 

techniques that we used are given in Burden and Faires [5]. First, we 
transformed the differential system into a system of difference equations. 
We did this by letting 

f(oh)(k + 0.5) 

f(o-n)(k + 0 . 5 )  

f~(h)(k + 0.5) 

f~( -h) (k  + 0.5) 

s'(h)(k + 0.5)  

S'(-h)(k + 0.5) 

s(h)(k) - s(h)(k + 1), 

s(-h)(k) - S(-h)(k + 1), 

s'(h)(k) - s'(h)(k + 1), 

S't-h)(k) - S '(-h)(k + 1), 

0.5 x {s'(h)(k + I) + s'Ch)(k)}, 

0.5 X {S'(-h)(k + 1) + S'(-h)(k)}, 

for k=0,  1 . . . . .  104. Using the initial condition s'(h)(o)=s'(-h)(O) = 1, we 
find that we can solve the problem recursively. Moreover, the problem 
reduces to finding the zeros of a sequence of nonlinear systems that were 
solved with Newton's method. To verify our numerical solution, we 
checked that 

C[S'(h)(t), S'(-h~(t)[9] = s(n)(t) + s(-h)(t). 

We solved the system under the assumption that Spearman's corre- 
lation is equal to p = - 0 . 9 9 ,  - 5 0 ,  0, +0.50, +0.99. Note that the copula 
is not differentiable when p is equal to - 1 or + 1. If p=0,  then the net 
probabilities are independent and we have the standard analysis. But if 
the correlation is +0.99, then this strong positive dependence means that 
removing heart/cerebrovascular diseases has little effect on survival. But 
if the correlation is -0 .99 ,  then this strong negative dependence means 
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that removing heart /cerebrovascular  diseases will significantly increase 
the chances of  survival. 

These effects can be seen in Figure 2 in which S'(-h)(t) was plotted at 
t=0 ,  1 . . . . .  110 and p = - 0 . 9 9 ,  - 0 . 5 0 ,  0, +0 .50 ,  +0.99.  These graphs 
indicate that S'(-h)(t) increases when p decreases. If p = - 0 . 9 9 ,  then S'(-h)(t) 
is essentially an upper bound on the improvement in mortality that can 
be expected when heart /cerebrovascular  diseases are removed as a cause 
of death. Moreover,  if p = + 0 . 9 9 ,  then S'(-h)(t) is essentially a lower 
bound on the improvement in mortality that can be expected when hear t /  
cerebrovascular diseases are removed. 

F I G U R E  2 

A PLOT OF S'l-h)(t) WHEN THE HEART/CEREBROVASCULAR DISEASES ARE CORRELATED 
WITH THE OTHER CAUSES OF DEATH 
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The graph also reveals that if we remove hear t /cerebrovascular  dis- 
eases, then the median age at death of  a newborn increases as p de- 
creases. Currently, the median age at death of  a newborn is 77. Under  
the standard analysis (p=0) ,  removing hear t /cerebrovascular  diseases in- 
creases the median age at death to 86. If p = +0 .99 ,  then removing hea r t /  
cerebrovascular diseases only increases the median age to 78 but if 
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9 = - 0 . 9 9 ,  then the median age increases to 100. Note that b0 is not 
calculable because  the survival function is not known after the age of 
110. 

6. SUMMARY 

We showed that the effect of  removing a cause of  death depends on 
the copula used in the analysis. We found that if the correlation between 
decrements is negative, then removing a cause of  death extends the me- 
dian lifetime more than if the correlation is positive. We also found that 
a competing risks model is identifiable only when the class of  potential 
models is greatly restricted. This means that we cannot identify S(fi . . . . .  

tin) without some simplifying assumptions. We also gave a theorem that 
characterizes the mathematical relationship between the crude and net 
probabilities when the decrements are dependent. Finally, we examined 
the current state of  multiple decrement  theory and we identified the re- 
sults that depend on the independence assumption. 
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DISCUSSION OF PRECEDING PAPER 

STEVE CRAIGHEAD: 

This paper was very enjoyable to read and will allow our multiple 
decrement models to reflect reality. I have three questions about the ex- 
pansion and/or use of the theory. 

Question 1. In most actuarial mathematical derivations, we assume 
that interest is independent of the decrements. With the introduction of 
the copula, you remove the independence requirement for the decrements 
from Actuarial Mathematics (your reference [4]). Can your theory be 
expanded to include the stochastic nature of interest rates? 

Question 2. Can we compare your process of eliminating a decrement 
from the overall model to that of decomposing a vector into a linear 
combination of basis vectors? That is, could a multiple-decrement model 
be decomposed into its component decrements? Could these component 
decrements be manipulated by increasing or decreasing their influence 
to easily produce a new multiple-decrement model? 

Question 3. Is the theory easily integrated into specific software pack- 
ages such as S-Plus or APL? 

JAMES W. DANIEL: 

Dr. Carriere has made an interesting contribution to the problem of 
the relationship between a multiple-decrement model and single,decre- 
ment models that are associated with it in some manner. This is a dif- 
ficult problem, inherent in the construction of multiple-decrement models 
that will be appropriate for a particular application. Although interesting, 
the present paper in my opinion only deals with the special case in which 
the various causes of decrement can each occur regardless of whether 
the others have occurred. 

First, Dr. Carriere errs in asserting that the development of multiple- 
decrement theory in the textbook Actuarial Mathematics assumes that 
competing causes of decrement are stochastically independent. The as- 
sertion would be correct had Actuarial Mathematics presented such 
expressions as ,p~(j) as representing probabilities associated with some 
event. In fact, the authors of that text are careful to point out that those 
symbols should not be so interpreted. A correct statement is that, if those 
expressions were in fact survival probabilities for independent causes, 
then the multiple-decrement model constructed from them would be 

67 
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identical with the one from which they were derived. [This is analogous 
to representing a two-dimension force vector as the resultant of two per- 
pendicular north-south and east-west forces, even if the original force 
had resulted from combining still other forces.] Actuarial Mathematics 
starts directly with the multiple-decrement model, rather than construct- 
ing it from competing causes. But this has little beating on the rest of 
Dr. Carriere's article. 

Dr. Carriere's analysis begins, not with a given multiple-decrement 
model, but instead with a set of so-called latent random variables rep- 
resenting survival times under various single risks. To my mind, the 
biggest difficulty lies right here in trying to understand what such latent 
variables might mean. For example, if we consider two causes of dec- 
rement from employment, namely, death and retirement, then I can un- 
derstand the notion of the time until an employee dies, regardless of 
whether the employee retires from the company; that could well be a 
meaning for a latent random variable naturally associated with time until 
death. But I cannot intuitively understand a latent random variable nat- 
urally associated with time until retirement--surely it is not the time 
until retirement regardless of whether the employee dies. This makes it 
difficult for me to see intuitively how it is easier to construct a multiple- 
decrement model from latent random variables than to construct it out 
of whole cloth. 

The preceding paragraph looked intuitively at constructing multiple- 
decrement models from latent random variables instead of just starting 
with the full multiple-decrement model. Let's look at this more mathe_- 
matically. 

Suppose that 7 ~ and J are the fundamental random variables in a mul- 
tiple-decrement model as described in Actuarial Mathematics; these would 
be denoted by T and J in that book. For each j,  define the random vari- 
able Tj as 

Tj = 7 ~ + rj[1 - lj(J)] 

where Yj is any arbitrary positive random variable (or constant) and Ii(J) 
is the usual indicator function equal to 1 if J = j  and equal to 0 otherwise. 
Let's use these as the latent random variables T L of Carriere. Clearly, 
Tj>7 ~ for all j#J, while Tj=T for j=J. That is, T equals the minimum 
of the Tj, which is precisely what Dr. Carriere defines as T in his con- 
stmction; moreover, the minimizing j that Dr. Carriere defines as J is 
in fact exactly our original J. This means that the multiple-decrement 
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model using T and J constructed from these latent random variables is 
precisely the original model using 7 ~ and J. 

What's the point of the preceding construction? Just this: Since the Yj 
were arbitrary positive random variables, the same multiple-decrement 
model can be constructed from infinitely many quite different sets of 
latent random variables; in fact, all sets of latent random variables pro- 
ducing the same multiple-decrement model must be of the form involv- 
ing the Yj. So I find it difficult to see how picking an appropriate set of 
latent random variables--either out of the air or from the experience in 
a variety of single- or multiple-decrement models-- is  any easier than 
writing down a full multiple-decrement model directly in terms of T 
and J. 

The preceding criticisms apply only when it is unclear what might 
naturally be meant by the latent random variables. Of course in some 
cases--for  example, the joint survival of two individuals, which can fail 
for either of two clearly understood latent causes (the death of either 
party)--there is a perfectly natural and meaningful set of latent random 
variables associated with the competing causes. In such cases Dr. Car- 
riere's analysis in the present paper is quite informative. 

ESTHER PORTNOY: 

The preprint of Dr. Carriere's paper arrived as I was planning lectures 
for the second semester of my life-contingencies class, and I decided to 
try presenting the material to the graduate students (who must do some 
additional work to earn their higher level of credit). The experiment was 
quite successful, and I plan in the future to use this approach to multiple- 
decrement theory with undergraduates as well. My comments are re- 
stricted to the early portions of the paper, all I could present to the class: 
I do not mean thereby to suggest that the latter portions are uninterest- 
i n g - f a r  from it! 

Dr. Carriere notes that the standard textbook Actuarial Mathematics 
develops multiple-decrement theory only under the assumption that dif- 
ferent causes operate independently. One could make a stronger state- 
ment: the presentation obscures the fact that dependence might be an 
issue. I remember being confused about independence the first time I 
saw competing-risk models outside of Jordan, but until now I had not 
tried to raise the matter in class. 

I presented to my graduate students the following simple example of 
two dependent latent variables. My primary aim was to demonstrate the 
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distinction between the forces of  decrement p J J) and !~ '~j). Suppose the 
joint density function for two random variables (T~, T2) is 

f ( h ,  t2) = c(tt + t2) for 0 < tl < a, 0 < t2 < b, 

vanishing elsewhere. We set 

[ a +  
c = ab  x 

2 

so that the density integrates to 1, and for definiteness assume a>-b. 
There is no claim that this joint distribution is at all natural or realistic; 
it just serves as an example for illustrative purposes. 

It is easy to calculate 

S(')(t) = (a - t ) (b  - t) c + t , 
2 

and the net survival functions 

S ' ( t l ( t ) = P r ( T l > t ) = c f f f o  ° 

and 

(tl + t2) dt2 dh  

1 
= (a - t) bc  × - (a + b + t) 

2 

1 
S'(2)(t) =.a(b - t) c × - (a + b + t). 

2 

From the latter we obtain the forces 

b + 2t a + 2t 

Ix'll) = (a - t ) (a  + b + t) '  Ix'I2) = ( b -  t)(a + b + t)" 

Calculation of the crude survival functions S~t)(t), S~2)(t) is facilitated 
by a geometric approach that was familiar to the class from earlier work 
with multilife functions. First, note that S ° ) ( t ) = P r ( t < T ~ < - T z ) = O  if t>-b. 
For t < b ,  we integrate the density function over the triangular region 
shaded in Figure 1, thus obtaining 
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and 

! 
S(I)(t) = ~-c(b - t)2(b + t) 

/ . ,  

b +  3 t  ~l) = 

(a  -- t ) (a  + b + 2t)" 

The formulas for S~2~(t) and/x~ 2) are messier. Note that/z~ ~) equals /.~tl) 
only for t=0 ,  and both tend to oo as t---~a. 

F I G U R E  1 

b 

y 
t a 

Finally, it is not too hard to calculate the copula C(u, v) associated 
with this joint distribution. For the sake of  simplicity at this point I used 
specific numbers a = 2 0 ,  b = 1 0 ,  whence c = 1 / 3 0 0 0 .  I was a little sur- 
prised at the complexity of  the copula associated with such a simple joint 
density; maybe Dr. Carriere or another reader can suggest a better ex- 
ample. We have 

(20 - t0(10 - t2)(30 + tl + t2) 
C(u, v) = 

6000 
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where 

tl = ~v/625 - 600u - 5, tz = ~v/400 - 300v - 10. 

Note that tl decreases strictly and continuously from 20 (=a)  to 0 as u 
increases from 0 to 1, and t2 decreases from 10 to 0 as v increases from 
0 to 1. Clearly C(0, v)=C(u,  0)=0,  and it takes only a bit of algebraic 
manipulation to confirm that C(u, 1)=u and C(1, v)=-v. 

At this point I might note that I am puzzled by the paper's Lemma 5, 
or rather by its long proof. If  the net survival functions S'~J)(t) are con- 
tinuous, and none of  the Tj are defective, then the equation 

C(S'°)(t0 . . . . .  S'~")(tm)) = S(fi . . . . .  t,,) 

defines C everywhere on the unit hypercube; uniqueness is obvious. One 
might hesitate to use this equation to define C because of the possible 
existence of vectors t, s such that S(t)¢S(s) while S'~i)(tj) = S'~J)(sj) for 
each j .  By defining 

(-~m C(u) = Pr{ j=l [s'(J)(Tj) uj]}, 

and then showing that C(S'°)(t,) . . . . .  S'{")(tm))=S(tl . . . . .  tm), Dr. Car- 
riere neatly finesses the difficulty. (In the given example, the net survival 
functions are one-to-one; I did not call students' attention to the fact that 
this might not always be the case.) 

There was insufficient class time to discuss the Morgenstern and nor- 
mal copulas or identifiability; these may be included in a more advanced 
course. Students were asked to read the application (Section 5), and they 
seem to have come away.from the exercise with some appreciation of 
the issues of importance. I thank Dr. Carriere for this opportunity to 
show students some of the excitement of mathematical research in ac- 
tuarial science. 

S. DAVID PROMISLOW: 

Dr. Carriere has done a great service by bringing to the attention of 
the actuarial profession, the work of biostatisticians in multiple-decre- 
ment theory. He illustrates that at times, our profession is in danger of  
being too narrowly focused. We are not always aware of developments 
in other fields that parallel our own interests, and we are indebted to 
those researchers who understand these developments and can make them 
known. 
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Although Dr. Carriere notes in several places that the paper is largely 
an expository piece and that many of the results are well known, he 
perhaps should have made this clearer. Some of his wording (the first 
sentence of the Abstract, for example) is misleading. It suggests that the 
study of multiple-decrement theory has been confined to the independent 
Case and that the purpose of his paper is to extend this to the situation 
with dependent risks. The truth is, however, as the author himself shows, 
that this extension has already been done. The current actuarial syllabus 
deals only with the independent case, but the referenced work in the 
paper indicates that dependence has been extensively investigated by oth- 
ers. A casual reader of the paper may be even more confused on this 
point because of the distinction that Dr. Carriere seems to make between 
"multiple-decrement theory" and the "theory of competing risks." Ac- 
tuaries typically use the former terminology, while biostatisticians use 
the latter, and the applications of each group are somewhat different. 
However, they are just different words for exactly the same mathematical 
model. 

(AUTHOR'S REVIEW OF DISCUSSIONS) 

JACQUES F. CARRIERE: 

I extend my thanks to Mr. Craighead and Drs. Daniel, Portnoy and 
Promislow for their discussions. Let me respond to each discussant's 
remarks in succession. 

Mr. Craighead poses three questions about the expansion and use of 
the theory. He asks whether the theory can easily be integrated into spe- 
cific software packages such as S-Plus or APL. I found it easy to im- 
plement the theory with GAUSS, my preferred language, but the cal- 
culations can be done in almost any language. My view is that ease of 
integration depends on the skills of the programmer. He asks whether 
my process of eliminating decrements can be viewed linearly. Let me 
emphasize that my method requires that you solve a nonlinear system of 
differential equations to analyze the effect of eliminating a decrement 
and so the process is not linear. He asks whether the theory can be ex- 
panded to include interest rates. At first, I thought that this would be 
impossible, but on reflection I found that discounting for interest can be 
viewed as a decrement, thus allowing it to depend on other decrements. 
To illustrate this point, consider the net single premium 
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R --, (m+ 1) If we have m decrements, then the force of interest ,,~= ~x+z can simply 
be viewed as another force of decrement that may depend on the others. 

Dr. Daniel states that the textbook A c t u a r i a l  M a t h e m a t i c s  does not 
assume stochastic independence between the competing causes of dec- 
rement. This is true for most of the discussion in Chapter 9, but Bowers 
et al. implicitly make this assumption in Equation (9.5.1), where the 
single decrement function ,p'(J) is defined as 

ex / / 
My article proves that this definition is actually a consequence of the 
assumption of independence between competing causes of decrement. 
Dr. Daniel also states that "the same multiple-decrement model can be 
constructed from infinitely many quite different sets of latent random 
variables." This statement is equivalent to saying that S(t~ . . . . .  tin) is not 
identifiable by simply knowing S~J)(t). This weakness of multiple-dec- 
rement models was extensively discussed in the paper. Essentially, the 

• only way to calculate ,p'(J) is to make some simplifying assumption like 
independence, which may be unreasonable. This paper shows how to 
calculate this single-decrement function in the dependent case by using 
a copula function. 

Dr. Portnoy presents a very good pedagogical discussion of the earlier 
parts of my paper. Dr. Portnoy suggests that the proof to Lemma 5 is 
rather long for a fairly obvious result. I must concur. 

Finally, Dr. Promislow cautions the reader that this is not the first 
article that models dependence in multiple-decrement theory, because 
biostatisticians have been doing it for years in the guise of the theory of 
competing risks. Dr. Promislow would also suggest that this paper is 
simply an expository piece of well-known results. In my opinion, the 
role of the copula function for solving the nonlinear system of differential 
equations that relate the crude rates with the net rates was not well under- 
stood. In this paper, the copula function was used to give a representation 
of the system that allowed us to solve the system for the first time. More- 
over, this solution was presented by an actuary, not a biostatistician. 


