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ABSTRACT 

This paper presents a parsimonious 1 l-parameter model that explains 
the pattern of mortality for the female and male mortality rates of the 
1975-80 Select and Ultimate Basic Tables. This parametric model is 
useful because it can predict the select mortality rates beyond the 15- 
year select period and because it can predict the select rates for issue 
ages greater than 70 years old. Moreover, the parameters in this model 
provide insightful statistical information about the data. 

1. INTRODUCTION 

The purpose of this paper is to present a parsimonious parametric model 
that explains the pattern of mortality for select and ultimate mortality 
tables. Specifically, we model the 1975-80 Basic Tables produced by 
the Committee on Ordinary Insurance and Annuities [2]. 

A review of the literature reveals that very little research has been done 
on the fitting of parametric formulas to select rates. Using Canadian data, 
Panjer and Russo [5] did a graduation of select and ultimate rates that 
they refer to as "parametric." In fact, a true parametric formula was 
developed only at the higher ages. This is also true of the laws of select 
and ultimate mortality developed by Tenenbein and Vanderhoof [8]. In 
both cases, the formulas are based on Gompertz's law or generalizations 
thereof, and in neither case were they able to develop formulas that fit 
the pattern of mortality from childhood to early adulthood. In contrast, 
this paper presents a parametric formula that reflects the fall in mortality 
at the childhood years, the hump at about age 20 and the exponential 
pattern at the adult ages. 

We suggest that future graduations be done with mathematical for- 
mulas because of the many advantages of this approach. First, the basic 
tables present select rates for five-year age groupings, which may be 
inconvenient to practitioners, and so Paquin [6] had to extend the select 
rates to the issue ages x=0,  1, ..., 70 while ensuring that a monotonicity 
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constraint, given in Equation (4.2), holds. If the committee [2] had pre- 
sented the select rates in the form of a mathematical formula, then Pa- 
quin's interpolation exercise would not be necessary. Second, another 
strength of a mathematical formula is its ability to predict or estimate 
the select rates at issue ages above 70, which is impossible with the 
current tabulated rates. Still another strength of a parametric model is its 
ability to extend the select period beyond 15 years. Therefore, a math- 
ematical formula is the most convenient way for practitioners to use se- 
lect rates. 

Before we proceed, it is instructive to plot the crude and graduated 
rates and examine the pattern of mortality in the Basic Tables. All the 
graphs in this paper were produced with the statistical computing lan- 
guage GAUSS. Figure 1 gives plots of the logarithm of the select and 
ultimate crude rates for the female and male Basic Tables, while Figure 
2 gives plots of the logarithm of the graduated rates. Let ~lx]+k denote 
a crude select mortality rate for an issue age x - 0 ,  at the nearest birthday, 
and for policy year k+ 1-> 1. We denote the attained age as y=x+k.  Note 
that the select period for these tables is 15 years, and so '~Ixj+k is given 
only for k=0 . . . . .  14. Next, let ~y denote a crude ultimate rate for a 
person aged y. Now, consider the female graph in Figure 1. This graph 
plots loge(~y) for y=  15 . . . . .  90, and it plots 15 curves for each of the 
policy years. That is, for each k, the graph plots 1Oge(~Lv-k}+k) for the 

a t ta ined ages y=k  . . . . .  k+67. Many of the values for qt,.-kj÷~ are not 
given in the Basic Tables because of grouping; therefore the function 
loge(,~b._~j+,), with respect to y, was approximated linearly. 

Next, let '~t.,j+k denote a graduated select mortality rate for an issue 
age x>--0, at the nearest birthday, and for policy year k+ 1 >-1; and let qy 
denote a crude ultimate rate for a person aged y. Figure 2 is the same 
graph as Figure 1 except that we replaced the crude rates, ,~, with the 
graduated rates, ~. Figure 2 illustrates that the pattern exhibited by the 
graduated rates shows a decrease in the childhood years, a hump at about 
age 20 and a linear pattern at the adult ages. 

The rest of the paper proceeds as follows. First, we present our math- 
ematical formula and discuss some of its features, including the choice 
of parametrization. In this discussion, we also present an approximation 
for the mean and variance of the Gompertz distribution. Next, we. ex- 
amine some issues associated with the lack of information in the data 
presented by the committee [2]. Finally, we estimate the parameters and 
discover some good-fitting formulas that have a monotonic property. 
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H G U R E  1 

TIlE ~ARITHMS OF THE CRUDE RATES FROM TIlE MALE AND FEMALE 1975--80 BASIC TABLES 
TIlE HORIZONTAL AXIS GIVES THE ATTAINED AGE y, 

WIllLE TIlE VERTICAL AXIS GIVES THE VALUES Iog,(~y) AND Iog,(~ty_k)+~). 
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F I G U R E  2 

THE LOGARITHMS OF THE GRADUATED RATES 
FROM THE M A L E  AND FEMALE 1975 - -80  BASIC TABLES 

THE HORIZONTAL AXIS GIVES THE ATTAINED AGE y, 
WHILE THE VERTICAL AXIS GIVES THE VALUES log,(C]y) AND 1og,(t]b,_kl+k). 
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2. A P A R A M E T R I C  M O D E L  

In this section, we present our mathematical law of select and ultimate 
mortality and discuss some of its features. A general mathematical law 
of select and ultimate mortality can be defined as follows. Let x->0 be 
the issue age at the nearest birthday; let k+ 1-> 1 be the policy year; and 
let y=x+k be the attained age. Also, let s(yl0k) denote a parametric sur- 
vival function with a parameter vector, Ok, that converges to the finite 
value 0~ as k-+oo. Then, the select mortality rates can be defined as 

s(y + l[0k) 
q[y-kl+k = 1 s(Yl0k) ' (2.1) 

while the ultimate rates can be defined as 

s(y + 110=) 
qy = 1 s(yl0=) (2.2) 

Now, let us specify the formula for s(yl0). The pattern of  mortality 
exhibited in Figure 2 is very similar to that of  the total population of  the 
U.S. A model developed by Carriere [1] proved successful in modeling 
the pattern of mortality of  the U.S. population. Therefore, we propose 
to use Carriere's model as the basic formula s(y[O) in (2.1) and (2.2). 
The model given by Carriere [ 1 ] is a mixture of  a Weibull survival func- 
tion, an Inverse-Weibull survival function and a Gompertz survival func- 
tion. In this eight-parameter model, the probability of  surviving to age 
y > 0  is 

s(y[0) = d~isj(y) + ~2sz(y) + d~3s3(y) (2.3a) 

where 
f [y~m,/~l] 

s,(y) : e x p t - t ~ - ~ j  ~, 

s2(y) = 1 - exp - 

s3(y) = exp{e  -"3/~3 - e(Y-~3)/~3}, 

0 = (d~l, t~2, t~3, m, ,  m2, m3, (rl, or2, 0"3)'. 

(2.3b) 

(2.3c) 

(2.3d) 

(2.3e) 

(2.3f)  
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The parameters in this model are ~i@[0, 1], m`.>0 and 0.,->0 for i=1,  
2, 3, and they are summarized with the vector 0. It seems that we have 
9 parameters, but there are only 8 because of the restriction 43 = 1 -t~,-qJ2. 
This nonstandard parametrization of the Gompertz, Weibull and Inverse- 
Weibull functions was chosen because it provides insightful statistical 
information. For example, mi is approximately equal to the mean of si(y), 
while 0.̀ . is proportional to the standard deviation of s`.(y). First, it is easy 
to verify that all the mass concentrates about m~ when 0-̀ . is small. This 
is true because 

l im{si(m`.  - e)  - s`.(m`. + ~)} = 1, 
~i'-~ 0 

for any arbitrary ~>0. Let ix,- and •̀ . denote the mean and variance of the 
survival function s i ( y )  for i= 1, 2, 3. Consulting Johnson and Kotz [3], 
we find that the Weibull distribution admits the approximations 

O.2,1.r 2 
I x ~ m l - 3 ' 0 . 1  and ~ . - - ,  

6 

whenever 0.1 is small. The value 3,=0.5772 ... in the approximation of  
txl is Euler's constant. Using this result for the Weibull, we can show 
that for the Inverse-Weibull, ix2~m2-]-3,0.2 and ~2~0.22"rr2/6, when 0.2 is 
small. Finally, the Gompertz distribution is a truncated extreme-value 
distribution. Consulting Johnson and Kotz [3], we find that the mean of 
the extreme-value distribution 

1 - exp{-  e O'-m)/~} 

is m-3,0- and the variance is 0.2~r2/6. If m3>0, then we can show that 
for the Gompertz distribution 

O-2,11- 2 
I J-3 "~ m3 -- 3,0"3 and u3 ~ - - ,  

6 

when 0.3 is small. We can also prove that m3 is the mode of the prob- 
ability density function of the Gompertz survival function s3(y ) .  There- 
fore, we can conclude that mi~-[~`, and 1.28×0.`. is approximately equal 
to the standard deviation of s`.(y) when 0.~ is small. All the approximations 
were verified numerically, with good success. 

Now, let us model 0 ,=(%. , ,  ~2,k, t~3.,, rnl.,, rn2.,, m3.,, 0"1,,, 0.2,,, 0.3,,)' 
for k>0.  With this notation, 00 denotes the parameter values at issue, 
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while 0~= ( , l  ~, ,2,~, '3,~, ml~,  m2.~, m3.:~, o|.~, o2.~ , o'3,:~ )' denotes the 
ultimate parameter values. Using 0o and 0~, we defined Ok as a weighted 
average 

Ok = 00 + (0~ - 00) (1 - exp{-akb}), (2.4) 

where a > 0  and b>0.  An idea similar to (2.4) was used by Panjer and 
Giuseppe [5], where a weighted average was taken of qy and qiy]. Note 
that if k----~oo, then 0k---->0~, as required. 

If we use (2.4), then the resulting model will have 18 parameters. 
Other formulas for Ok, with more than 18 parameters, can be constructed, 
but we found that (2.4) yielded a good-fitting model of the 1975-80 
basic rates. Actually, we found that restricting the parameters as follows 

* , , o  = * , , ~ ,  *2 ,0  = *~,~, 

m l ,  0 = m l : .  , m2,0  = m 2 , ~ ,  

cr,.o = ~l.~, (2.5) 

yielded a 13-parameter model that also fit the data well. By adding more 
restrictions, we discovered some parsimonious models that had less than 
13 parameters that also fit the data. See Section 4 for more details. 

3. HETEROSCEDASTICITY AND THE LOSS FUNCTION 

In this section, we discuss the issue of  heteroscedasticity (hetero- 
geneous variance) and the related issue of  choosing a loss function for 
parameter estimation. Suppose we have crude rates ~x where x E X  and 
we want to model the response with a parametric function qx(O). In a 
nonlinear regression model, we would assume that ~x=qx(0)+ex where 
E(ex)=0. In our case, the variance Var(~x)=Cr 2 is not constant in x (het- 
eroscedastic), and so Seber and Wild [7] would suggest that we estimate 
the parameters by the method of  weighted least-squares, to avail our- 
selves of some standard inference results. Assuming that ~ is uncorre- 
lated with ~y when x#y,  Seber and Wild [7] suggest that we minimize 
the loss function 

w~{~x - q,(0)} 2, (3.1) 
xEX 

where the weights w, are proportional to the inverse of the variance, 
1/Crx 2. Let us derive an expression for the variance cry. Many of  the ideas 
in the following discussion can be found in Klugman [4]. 
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Let nx be the number of  policies associated with the crude rate ~. and 
let D.  be the total amount of  death claims associated with 0.. The amount 
of  death claims, D., is based on a group of  nx policies, where the death 
benefit for policy i=  1, . . . ,  n. is b..i. Let 6.,i denote an indicator random 
variable that is equal to 1 if a death has occurred and 0 otherwise. As- 
sume that 6x.l, ..., 6. .... are independent and identically distributed with 
E(8..i)=q.. Then, Ox=D./B~, where 

.x 

Dx = Z bx, iSx. i  
i = 1  

and 

nx 

Bx = Z bx,i. 
i = 1  

This means that E(~.)=qx, and so the crude rate is an unbiased estimator 
of  qx. We can now calculate the variance of ~., given that we know b.,i 
for i=  1, . . . ,  n,. This is equal to 

n.r 

q.(1 - q.) X Z b2.i 
2 i = 1  

O" x = 

The variance cr 2 is not calculable because 

is not given in [2]. Let us make 
ically, let us assume that 

and 

(3.2) 

nx 

Z 
i =  1 

some simplifying assumptions. Specif- 

nx 

n~l Z bx,i  = oL 
i = 1  

nx 

i = I  
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are constant functions in x. With these assumptions, we find that 

~2 ([3/c~ 2) X qx(l - q~) 

]/x 

We know that G=Dx/(nx~), where Dx is the amount of death claims 
associated with G. Therefore E(Dx)=qxnxo~ and 

E(D~) E(D.,) Dx 

So, if we let wx=D~/q~, then the weights will be approximately pro- 
portional to the inverse of the variance and the residuals 

will almost have a constant variance, as required. 
Initially, we used a loss function like 

for estimating the parameters, but we found that the tail of the distri- 
bution of residuals was heavy because of many outliers. We believe that 
these outliers are due to a violation of our initial assumption that the 
variance of qx is always proportional to Dx/q~. Nevertheless, we believe 
that letting wx=D,/gl~ removes most of the heteroscedasticity in the re- 
siduals. As a precaution, we decided to use a loss function with absolute 
residuals to reduce the influence from outliers, as recommended by Seber 
and Wild [7]. In conclusion, all the parameter estimates in this paper 
can be found by minimizing loss functions that have the form 

  xll_ 
This approach to parameter estimation is different than any of the meth- 
ods proposed by Carriere [1] and Tenenbein and Vanderhoof [81. We 
found that (3.4) leads to reasonable parameter estimates. 
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4. PARAMETER ESTIMATION 

In this section, we estimate the parameters a, b, 00 and 0= that yield 
a good fit to the male and female select and ultimate crude rates given 
in the 1975-80 Basic Tables. All parameter estimates were calculated 
by the NONLIN module of the statistical computer software called SYS- 
TAT. We found that the NONLIN simplex or polytope algorithm was 
very successful at minimizing the nondifferentiable loss function 

14 I 0~) L(a, b, 0o, 0~) = 2 2 Wlx]+k 1 -- qlx]+k(a, b, 0o, 
xEX k=O qtxl+k 

ioo qiy_z4]+za(a, b, 00, 0=) 
+ £ Wy 1 -  - , (4.1) 

y=15 qy 

which is a generalization of (3.4). If you look at (2.1), then you will 
find that (4.1) is well-defined when y=  15. The simplex algorithm is 
successful in minimizing (4.1) only if it has good starting values. We 
started with values given in Carriere [1], but in the future we would use 
the parameter estimates developed in this paper. 

In our loss function, X={0, l,  3, 7, 12, 17, 22 . . . . .  67} and q[x]+k(a, 
b, 00, 0=) is our parametric formula for a select mortality rate when the 
issue age is x and the policy year is k + l .  The value OExl+~ denotes a 
crude select rate, while gly denotes a crude ultimate rate for a person aged 
y. Let D~,j+t. denote the amount of death claims associated with 0l~]+~ and 
let D:. denote the amount of death claims associated with gly. Define 

14 100 

xGX k=0 y= 15 

Then the weights are equal to 

V'-Dtx]+k 
wlxj+ ~ -  ~ and Wy-  ~; 

This definition for our weights allows us to interpret the loss function 
L(-) as an average of absolute relative errors, giving us a meaningful 
comparison of the loss for the female and male models that we develop. 
This is necessary because the amount of death claims from the male 
experience is about ten times that of the female experience. 
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Let us further justify the form of the loss function given in (4.1). This 
loss function uses all the crude data given in [2], except for the select 
rates for 70 and over, as a group. We excluded these rates because we 
were unable to determine the appropriate issue age for this group. Also 
included in (4.1) are the ultimate crude rates that are based on the ex- 
perience from policy years 16 and over. This means that the ultimate 
crude rate, ~y, actually corresponds to a parametric select rate with an 
average policy year of about k+ 1 =25. The predicted value of 24, in the 
e x p r e s s i o n  qty_241+24(a, b, 0o, 0~), was chosen after some preliminary 
analysis in which we predicted the graduated ultimate rates with a para- 
metric model that was constructed with the select graduated rates only. 

Using SYSTAT, we were able to find parameter values a, b, 00, and 
0~ that minimized (4.1) for the female and male rates separately. Tables 
1 and 2 give the parameter estimates for the female and male models, 
respectively. Note that the tables do not include estimates for the param- 
eters IJ~l ~e , ~J2 ,~ ,  ml,~, m2~, and Orl.~e , because we used the restrictions of 
(2.5). We found that introducing these parameters, by removing the re- 
strictions, did not improve the fit very much. For example, we found 
that the full 18-parameter model had an average relative error, L(.), of 
0.079, which is a minimal improvement to the 13-parameter model where 
L(.)=0.082. Initially, an 8-parameter model that did not account for the 
effects of selection was fit to the data. This special case occurs by im- 
posing the constraint 00=0~. This reduced model explained most of the 
pattern of mortality in the data because the average relative error was 
equal to 0.296 and 0.212 for the female and male models, respectively. 

The Gompertz component of the 8-parameter model explained most 
of the deaths because t~3,0 = 1-~j,o-t~2,0 was equal to 0.99314 and 0.98177 
for the female and male models, respectively. This means that the most 
important parameters are the Gompertz parameters. By removing the re- 
striction m3,0=m3 ~ and by freeing the parameter a while fixing b= 1, we 
found a 10-parameter model that improved the fit considerably. Specif- 
ically, L(.) reduced to 0.188 and 0.096 for the female and male models, 
respectively. Removing the restriction o'3,o~--or3,~ yielded an I l-parameter 
model that further improved the fit. At this point, we discovered that 
adding more parameters to the female model decreased L(.) only mini- 
mally. But freeing the parameter b resulted in a 12-parameter male model 
that was somewhat better. In any case, adding more parameters to the 
13-parameter model yielded only minimal decreases in L('). 
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T A B L E  1 

PARAMETER ESTIMATES FOR THE FEMALE MODEL 

M~el Eight ! Ten Eleven Twelve Thi~een 
i i [ i i 

~,.o 0.003?2 i 0.003?4 0.00335 0.00332 0.00314 
~2.o , 0 .00314  , 0 .00333  , 0.00271 , 0 .00246  , 0 .00302 

ml.o 8 .386  9 .008 7.638 7 .673 6 .759 
m2.o 18.16 18.21 18.72 18.59 18.69 
m3.o 89.95 102.0 114.2 120.0 119.2 
m3.= , 89.95 , 88 .94  , 88.08 , 87 .76 , 87.69 

o-t.0 14.00 t5 .56  13.21 13.35 11.65 
02.0 4 .384  4 .562  i 4 .425 ! 4 .405 8.398 
~2,= 4 .384  4 .562 4 .425 ] 4 .405 2.573 

"~3.o 10.78 11.86 15.36 16.59 16.57 
~ . ~  , 10.78 , 11.86 , 11.25 ,, 11.27 , 11.15 

a 0 0 .1592 0 .1989 0 .3227 0 .2856 
b 1 1 1 0 .7873 0 .8307 

L ( ' )  0 .296  0 .188 0 .172  0.171 0 .168 
Change 0.108  0 .016  0.001 0.003 

T A B L E  2 

PARAMETER ESTIMATES FOR THE MALE MODEL 

M ~ e l  Eight Ten Eleven Twelve T h i a ~ n  
i i i i 1 

~l.o 0 .00623  0 .00963  0.00941 0 .00804  0 .00832  
~2.o . 0 .01200  . 0 .01234  . 0 .01187 . 0 .01046  . 0 .01006  

/Y/1,0 
m2,o 
m3.o 
m3.= 

O't, 0 
O'2, 0 
0"2,= 
0-3,o 
0-3.= 

L ( . )  
Change 

9 .514  
19.87 
83.22 
83.22 

15.28 
4.711 
4.711 
9 .839  
9 .839  

30.13 
20.27 
92 .64  
81.58 

50.02 
4 .875 
4 .875  

10.48 
10.48 

0 .1253 
1 

27.55 
"20.05 
94.37 
81.64 

49 .20  
4 .757 
4 .757 

11.15 
10.46 

0 .1307 
1 

31.12 
19.57 

105.8 
80.18 

62 .56  
4 .635 
4 .635 

14.61 
9 .959 

0 .3684 
0 .6136  

23 .79  
19.36 

105.7 
80.25 

50 .06  
4.591 
3.641 

14.56 
9 .984  

0 .3767 
0 .6092 

0 .212  0 .096  0.091 0.083 0 .082  
0 .116  0 .005 0 .008 0.001 

The values L(.) seem to indicate that the 1 l-parameter female model 
and the 12-parameter male model were good-fitting models. But the 12- 
parameter model for both the male and female data did not pass a mono- 
tinicity test. Happily, we found that both the female and male 11-pa- 
rameter models satisfied the following monotonicity constraint 

ql~l+k(') -< %-II+k+ l('), (4.2) 
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for all x = 1 .... 78 and k=0 . . . .  , min(y-1 ,  25), except for the violation 
qtll>ql01+l in the female rates and the violation q[781+24>q[771+25 in the 
male rates. We also discovered that the constraint in (4.2) held at issue 
ages greater than 78 for the female model. The failure in monotonicity 
of our model at attained ages that are greater than 102=78+24 is not 
very significant because no data were available beyond age 100. 

Notwithstanding the low values for L(.) and the monotonic property 
of the 11-parameter model, the most important way of verifying that the 
parameters for this model actually fit the data is to plot the estimated 
rates against the crude rates given in the 1975-80 Basic Tables. Figures 
3 and 4 are plots of the select rates for the female and male models, 
respectively. Specifically, each plot shows 15 graphs, one for each k=0, 
.... 14, of 

and of 

1oge('~[y-k]+k) at y ~ k + X 

loge(qly-kl+k(a, b, 00, 0~)) at y = k . . . .  , k + 67. 

After examining Figures 3 and 4, we believe that the rates calculated 
with our formulas are almost .indistinguishable from the crude select rates 
in the 1975-80 tables. 

Figure 5 gives two graphs, one showing the female ultimate data and 
the other showing the male ultimate data. Examining these graphs, we 
find that our I 1-parameter models reproduced the pattern of mortality 
very well. In conclusion, the graphical evidence along with the mono- 
tonicity property and the low values for L(.) suggest that our I 1-param- 
eter select and ultimate parametric models did a good job. 

5. CONCLUSION 

In conclusion, Figure 6 illustrates our 11-parameter female and male 
models at various policy years. This illustration immediately shows that 
the effects of selection are minimal at the younger ages and that these 
effects increase at the older ages. 

Based on the success of our mathematical law of select and ultimate 
mortality, in capturing the pattern of mortality in the 1975-80 Basic 
Tables, we suggest that future graduations be done with parametric models. 
One advantage of this approach is that the mathematical formula pro- 
vides a ready extrapolation for issue ages beyond 70. Another advantage 
is that we can easily extend the select period beyond 15 years. F ina l ly ,  
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FIGURE 3 

THE LOGARITHMS OF THE RATES FROM THE CRUDE DATA 
AND THE 1 I-PARAMETER FEMALE MODEL 

THE HORIZONTAL AXIS GIVES THE ATTAINED AGE y, WHILE THE VERTICAL AXIS 
GIVES THE VALUES OF Iog,(~l.,,.-k~+k) AND Iog,[qt:.._,tt÷~(a, b, 0o, 0~)]. 
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FIGURE 4 

THE LOGARITHMS OF THE RATES FROM THE CRUDE DATA AND THE 1 I-PARAMETER MALE MODEL 
THE HORIZONTAL AXIS GIVES THE ATTAINED AGE y, WHILE THE VERTICAL AXIS 

GIVES THE VALUES OF Iog..(~>t:,_,j.~) AND Iog,.[qty_,l+,(a, b, 0o, 0=)]. 
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FIGURE 5 

A COMPARISON OF THE CRUDE ULTIMATE RATES WITH THE RATES OF THE 1 I-PARAMETER MODEL 
THE HORIZONTAL AXIS GIVES THE ATTAINED AGE y,  WHILE THE VERTICAL AXIS 

GIVES THE VALUES OF log,(~.) AND |Oge[qly_241+24(a , b, 0o, 0=)]. 
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the parameters in the model provide insightful statistical information about 
the select rates. Therefore, a mathematical model is the most convenient 
way for practitioners to calculate select rates. 
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DISCUSSION OF PRECEDING PAPER 

MARK D.J. EVANS: 

Dr. Carriere has presented an interesting approach to graduating select 
and ultimate mortality data. He presents comparisons of crude and grad- 
uated mortality rates in graphical form with a logarithmic vertical scale. 
Visually the crude rates and graduation curve appear very similar, but 
logarithmic scales understate differences when used in this fashion. 

For example, consider the numerical data underlying the female rates 
in Figure 5. These are shown in Table 1 along with the original grad- 
uation of the 1975-80 Female Ultimate Mortality Rates for attained ages 
79 through 99. 

TABLE 1 

Attained 
Age 

79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 

90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

Crude 
Mortality 

Rates 

44.42 
52.65 
58.32 
59.32 
67.56 
76.06 
87.32 
92.53 
99.44 

120.03 
116.78 

138.88 
133.07 
161.39 
184.42 
180.13 
333.07 
167.97 
268.80 
663.16 

23.61 

Graduated 
Mortality Rates 

Catriere Original 

39.82 44.00 
43.43 49.48 
47.36 55.51 
51.63 62.09 
56.28 69.22 
61.33 76.90 
66.82 85.13 
72.78 93.91 
79.25 103.24 
86.26 113.12 
93.87 123.55 

102.11 134.53 
I 11.02 146.06 
120.66 '158.14 
131.07 170.77 
142.31 183.95 
154.41 197.68 
167.45 211.96 
181.45 226.79 
196.49 242.17 
212.59 258.10 

Ratios 

Carriere Original 
i 

90 99 
82 94 
81 95 
87 105 
83 102 
81 101 
77 97 
79 101 
80 104 
72 94 
80 106 

74 97 
83 1 I0 
75 98 
71 93 
79 102 
46 59 

100 126 
68 84 
30 37 

900 1 093 

Dr. Carriere's graduation technique consistently understates the crude 
data by 10 percent to 25 percent at these ages. The data for the male 
rates in Figure 5 exhibit a similar problem (but in the opposite direction) 
in the 40s, as shown in Table 2. 

93 
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TABLE 2 

Attained 
Age 

36 
37 
38 
39 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

50 
51 
52 
53 

Crude 
Mortality 

Rates 

1.22 
1.28 
1.36 
1.45 

1.56 
1.70 
1.87 
2.07 
2.31 
2.58 
2.89 
3.24 
3.61 
4.02 

4.45 
4.92 
5.44 
6.00 

Graduated 
Mortality Rates 

Carriere Original 

1.38 1.34 
1.48 1.26 
1.61 1.35 
1.74 1.42 

1.90 1.60 
2.07 1.72 
2.25 1.84 
2.46 2.02 
2.70 2.30 
2.95 2.59 
3.23 2.80 
3.55 3.33 
3.89 3.63 
4.27 4.13 

4.68 4.37 
5.14 5.00 
5.65 5.42 
6.20 5.91 

Carriere 

113 
116 
118 
120 

122 
122 
120 
119 
117 
114 
112 
110 
108 
106 

105 
104 
104 
103 

Ratios 

Original 

I10 
98 
99 
98 

103 
101 
98 
98 

100 
100 
97 

103 
101 
103 

98 
102 
100 
99 

These problems with fit would be excessive in practice. Hopefully, re- 
finements of this formula can lead to more useful results. 

ROGER SCOTT LUMSDEN*: 

Dr. Carriere has written an interesting and timely paper--interesting 
because there are few examples of parametric fitting to select and ulti- 
mate rates and timely because several actuarial experience bodies are 
currently developing new select and ultimate tables. 

I'd like to make a few comments on the weighting factor used in the 
loss function in Formula (3.1) in Section 3, Heteroscedasticity and the 
Loss Function. 

I have had several opportunities in the last few years to try to develop 
select and ultimate mortality tables from fairly detailed experience, working 
on extensions of two-dimensional Whittaker-Henderson graduation sug- 
gested in the Knott paper [2]. And this causes me concern about the 
weighting factor suggested, which is deaths divided by the square of 

*Mr. Lumsden,  not a member  of the Society, is Actuarial Systems Director, Corporate 
Actuarial, at Crown Life Insurance Company,  Regina, Saskatchewan. 
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experience mortality rate; an equivalent expression would be the expo- 
sures divided by the experience mortality rate. In the largest study (data 
loaned to me by a large company on condition its name not be disclosed), 
the exposures and deaths were available for issue ages 0-85 and for 
durations 1-15 plus ultimate, without grouping. For males the total deaths 
were $1.8 billion and for females $0.3 billion, so this was a quite re- 
spectable study. Nevertheless, for 83 male cells and 163 female cells, 
there were exposures but no deaths. In most cases these occurred at younger 
issue ages (below 15) or at higher ages (above 70) where little business 
is sold and thus few deaths are expected. In the suggested weight- 
ing, this would give these cells infinite weighting, which is a practical 
problem. 

Beyond this immediate practical problem, I am concerned about any 
cell in which few deaths are experienced. Such cells are notorious for 
outlying values. It seems to me that in such cases, the experience mor- 
tality rate may be a biased parameter to use in estimating the variance 
of such a cell. If the deviation is to an unusually high amount of deaths, 
that result will be given a low weighting. If the deviation is to a very 
low amount of deaths, that result will be given a very high weighting. 
Taken together, that could produce a graduated table with a tendency to 
systematically underestimate the total deaths. 

I have a suggestion that might alleviate these problems, although at 
the cost of doing twice as many calculations. I suggest that the para- 
metric fit be done in two passes. For the first pass, use the exposures 
as the weights and calculate a set of preliminary smoothed q factors. 
Then use these preliminary q factors as the divisor of the exposures for 
the second pass. 

I also have a general question about any graduation process for select 
and ultimate tables: What statistical tests should be applied to determine 
whether the graduated table gives reasonable fit and smoothness? 

The U.K. actuarial profession has developed several tests in the Con- 
tinuous Mortality Investigation Reports (CMIR) work. Perhaps the best 
example is the paper "On Graduation by Mathematical Formula" by For- 
far, McCutcheon and Wilkie [1] to explain the methods used to develop 
the graduated mortality tables in CMIR 9. Section 9 of the paper covers 
"Tests of a Graduation" and lists signs test (9.3), runs test (9.4), Kol- 
mogorov-Smirnov test (9.5), serial correlation test (9.6), and the chi- 
squared test (9.7), along with an overall assessment of the tests (9.8). 
But the tests listed are for one-dimensional graduation and for studies 
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based on number of lives; tests suitable for two-dimensional graduations 
based on amounts of insurance are more difficult to define. I hope that 
some of the talented theoreticians who have contributed so much of value 
to the Transactions will take up this question. 
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PERRY WISEBLATT: 

Dr. Carriere should be commended for his research of parametric models. 
It is clear that a parametric model that fits the underlying crude data has 
several advantages over a graduated table. 

It should be emphasized that many parametric models were tested, 
such as the 18-parameter model described in the paper. The 11-parameter 
model used was chosen because the author determined that it offered the 
best combination of fit and simplicity while satisfying the monotonicity 
constraint over a broad range of ages. The model is not necessarily rep- 
resentative of mortality in general. Similar methods applied to other data 
sets may yield different models. It is possible that for certain data sets 
or for certain purposes, no parametric formula tested will provide an 
acceptable approximation to the underlying data. 

On another note, it may not be appropriate to use a parametric model 
to extrapolate rates beyond the range of the crude data. Had crude data 
been available for issue ages over 70, it is likely that the parameter es- 
timates would be different; perhaps even a different model would have 
been selected. In addition, there is no general agreement on what un- 
derwriting criteria should be used to classify older lives as standard risks. 
The level of mortality measured at the older ages will certainly reflect 
those judgments. 

The breakdown of the monotonicity constraint at the extreme older 
ages as documented by the author is an indication that, at the very least, 
caution should be exercised when extrapolating rates beyond the limits 
of the crude data. 
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(AUTHOR'S REVIEW OF DISCUSSIONS) 

JACQUES F. CARRIERE: 

I thank Messrs. Evans, Lumsden and Wiseblatt for their discussions. 
Mr. Evans points out the lack of fit of my model at various ages, while 
Mr. Lumsden makes several comments on the appropriateness of the 
weighting factors used in the loss function. Lastly, Mr. Wiseblatt cau- 
tions readers about using the model to extrapolate mortality rates beyond 
the range of the crude data. Let me respond to each discussant's remarks. 

In Figure 5, I think it is obvious that the model systematically under- 
estimates the male rates between'the ages of 36 and 53 and overestimates 
the female rates between the ages of 79 and 99. This lack of fit is the 
penalty that we must pay for using a parametric model that yields smooth 
rates. The objective of my paper is not to develop a graduation technique 
that fits the data everywhere. Instead, I present a parametric model that 
fits the "overall" pattern of mortality, thereby enabling practitioners to 
predict the select rates at issue ages above 70 and beyond the 15-year 
select period. Mr. Evans states that these problems with fit would be 
"excessive in practice." I claim that using a parametric model is more 
practical than using tabular rates. 

I agree with Mr. Lumsden's comments and suggestions for setting 
weights. There is no "right" method for choosing the weights, but the 
"double-pass" technique that Mr. Lumsden presents is a great idea. Es- 
sentially, the key to setting good weights is knowing the variance as- 
sociated with any crude rate. Therefore, I suggest that in the future, the 
reports prepared by the Society of Actuaries give the variances associated 
with all the crude rates. 

In conclusion, I must agree with Mr. Wiseblatt's comments. Certainly, 
the parametric models presented here may not fit all select and ultimate 
data sets, but they do present a starting point for other researchers who 
may find better models. Notwithstanding the cautions about the predic- 
tive ability of this model, my parametric formula is currently the only 
tool available for predicting the select rates at issue ages above 70 and 
beyond the 15-year select period. 




