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Abstract

For the construction of a fair tariff structure in automobile insurance, insurers clas-

sify the risks that they underwrite. The idea behind this risk classification is to sub-

divide the portfolio into classes of risks with similar profiles. While some insurers

may have sufficient historical data, several others may not have significant volume

of experience data in order to produce reliable claims predictions to help enhance

their risk classification systems. A database containing a pooled experience of sev-

eral insurers thereby helps to produce a more fair, reliable, and equitable premium

structure for all risks concerned. Research and analysis of such “intercompany” in-

surance experience data is lacking in both the actuarial and statistical literature.

Its benefits goes beyond the insurer; reinsurers (i.e. insurers of insurers) together

with regulators also benefit from statistical models of this type of data because they

typically deal with analyzing the experience of a collection of insurers.

In this paper, we use multilevel models to analyze the data on claim counts pro-

vided by the General Insurance Association of Singapore, an organization consisting

of most of the general insurers in Singapore. Our data comes from the financial

records of automobile insurance policies followed over a period of nine years. The

multilevel nature of the data is due to the following: a certain vehicle is observed
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over a period of years and is insured by a particular insurance company under a

certain ‘fleet’ policy. Fleet policies are umbrella–type policies issued to customers

whose insurance covers more than a single vehicle with a taxicab company being a

typical example. We show how intercompany data lead to a priori premiums and

a posteriori corrections to these initial premiums. Specific focus is made in under-

standing the intercompany effects using various count distribution models (Poisson,

negative binomial, zero–inflated and hurdle Poisson). The performance of these var-

ious models is compared; we also investigated how to use the historical claims of a

company, fleet and/or vehicle in order to correct for the premium initially set.

Keywords: actuarial science; hierarchical model; multilevel model; experience rat-

ing; bonus–malus factors; generalized count distributions.

1 Introduction

In many countries and for many lines of business, the insurance market is mature,

or at least expanding less rapidly, and highly competitive. This strong competition

induces insurers to classify risks that they underwrite in order to mitigate problems of

adverse selection. To illustrate the nature of adverse selection in automobile insurance,

a policyholder’s prior driving history is commonly used as a risk rating factor. A person

with a poor driving history may seek for a company that does not use this rating factor

for pricing; use of the rating factor penalizes him or her for past mistakes in the form of

higher premiums. Conversely, a person with a good driving history may seek companies

that use this rating factor; these companies reward previous good experience with lower

premiums. Companies that use a less refined classification system than their competitors

tend to attract less desirable risks, which can have a spiraling effect on future claims.

Risk classification systems allow insurers to price their products in a fair and equitable

manner, and on a sound statistical basis.

Strong competition encourages insurers to utilize detailed classification systems, so

refined that they may not have sufficient exposure to produce reliable claims predictions

for all risks in the portfolio. To understand their claims distributions, it is common for

several insurers to pool their experience, forming a database known as ‘intercompany’
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data. With a database large enough to produce a refined classification system, fair and

equitable premiums can be determined more reliably across all risks.

Although insurance companies compete for the same business, economic forces dic-

tate that the loss experience of insurers can differ. During the sales process, insurers

use different underwriting standards and pricing structures to attract different mixes of

business. During claim settlements, insurers differ in their procedures (including legal)

and the calculations of claims adjustments, thereby realizing different loss experience

across companies. Moreover, there are issues of moral hazard, where an insured that

has a policy with a company may have a different claims experience than if the insured

were contracted with another company.

1.1 Multilevel Modeling

This paper examines an intercompany database using multilevel modeling. Specifically,

we consider policy exposure and claims experience data derived from automobile in-

surance portfolios of a randomly selected sample of ten general (property and casualty)

insurance companies in Singapore. Our data comes from the financial records of auto-

mobile insurance policies over a period of nine years, 1993-2001.

Multilevel modeling allows us to readily handle individual claims experience and

account for clustering at the company level. It also allows us to examine commercial in-

surance policies by restricting considerations to ‘fleet’ policies. These are policies issued

to customers whose insurance covers more than a single vehicle. A typical situation of

‘fleet’ policies is automobile insurance coverage provided to a taxicab company, where

several taxicabs are insured under the same policy. A peculiar characteristic of these

policies is the nature of the possible dependence of claims of automobiles within a fleet.

Multilevel models, to an extent, capture this peculiarity. The unit of observation in our

analysis is therefore a registered vehicle insured under a fleet policy. Our multilevel

model accommodates clustering at four levels: vehicles (v) observed over time (t) that

are nested within fleets (f), with policies issued by insurance companies (c).

Ideas of multilevel modeling and inference are now well–developed in the statistics

literature (Kreft and deLeeuw (1998), Snijders and Bosker (1999), Raudenbush and

Bryk (2002), Goldstein (2003) and Gelman and Hill (2007)). Linear multilevel model-



A Multilevel Analysis of Intercompany Claim Counts 4

ing also has a long history in the actuarial literature, as summarized in Norberg (1986).

Norberg credits the idea to Jewell (1975), with early contributions by Taylor (1979)

and Sundt (1980). As an example of classic multilevel insurance applications, Sundt

briefly mentions (i) insurance claims from a person, with (ii) several people living in a

household, (iii) where several houses are in a town, (iv) and many towns in a county

and (v) several counties with a country. Norberg (1986) and Frees et al. (1999) dis-

cuss the connections between the statistical linear modeling and traditional actuarial

literatures.

1.2 Count Data

This paper examines nonlinear models using insurance claim counts. The frequency

component has been well analyzed in the actuarial literature, at least when cross-

sectional and panel data structures are considered. For instance, the modern approach

of fitting a claims count distribution to longitudinal data can be attributed to the work of

Dionne and Vanasse (1989) who applied a random effects Poisson count model to auto-

mobile insurance claims. Pinquet (1997) and Pinquet (1998) extended this work, con-

sidering severity as well as frequency distributions. Pinquet et al. (2001) and Bolancé

et al. (2003) introduced a dynamic element into the observed latent variable, again

using Poisson regression.

Poisson regression is probably the most popular technique for regression with count

data. However, recent research in actuarial science (see e.g. Yip and Yau (2005) and

Boucher et al. (2007)) has highlighted the use of parametric distributions other than

Poisson to accommodate features of actuarial panel data that are inconsistent with

the Poisson distribution. These authors investigated the use of the negative binomial,

zero-inflated and hurdle distributions for the analysis of cross-sectional and longitudi-

nal claim counts. Cameron and Trivedi (1998), Winkelmann (2003), Yau et al. (2003)

and Lee et al. (2006) discuss similar research in econometrics, respectively biostatistics.

Further on, we extend these distributions towards the analysis of multilevel data with

more than two levels.

A data analytic discussion of ratemaking for fleet data has received limited atten-

tion in the actuarial literature, Desjardins et al. (2001) and Angers et al. (2006) being
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the exceptions. They discuss the calculation of bonus–malus factors (‘BMF’) for a three

level data set of claim counts on insured trucks in Québec. The econometric (or statisti-

cal) models used in their papers are Poisson regression models with random effects for

vehicles and fleets.

1.3 Benefits of Intercompany Data

A multilevel model of intercompany data is of interest to insurance companies, regula-

tors and reinsurers. Insurance companies can use the results of this paper to predict the

number of claims not only for each vehicle but also for each fleet. Predictions at the fleet

level are particularly important because contracts are written and hence premiums are

exchanged for coverage at this level. Further, an insurance company can use a model

of several companies to understand and possibly compare their experience with their

competitors. To illustrate, given a specific risk class (such as female, aged 20-24 with

poor driving experience), is the loss experience for the company high or low compared

to the competition? This type of information is extremely useful in a competitive pricing

environment.

Regulators and reinsurers typically deal with several companies and so would also

benefit from a single model representing the experience of many companies. Regula-

tors are concerned with establishing fair pricing of insurance policies and ensuring that

insurers have sufficient assets to meet contractual obligations. A single model can help

regulators examine loss experiences of several companies, using covariate information

to comparably account for the risks underwritten by these companies. Moreover, reg-

ulators can use these comparisons for detecting fraud and further inspecting unusually

high or low losses (that may be suspect as indicated by the risk rating factors as covari-

ates).

Reinsurers are the ‘insurers of insurance companies’ and they take on layers of risks

so that insurers are able to diversify their loss exposure. Naturally, reinsurers are inter-

ested in the loss distributions that they are accepting. Predictions at the company level

are important to prices charged by reinsurers.

In the USA the Society of Actuaries (‘SOA’) collects intercompany data through expe-

rience studies. As noted in Iverson et al. (2007), “one of the key elements that led to the
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creation of the Actuarial Society of America in 1889 was the need for an independent

body to collect and report upon experience.” The SOA publishes descriptive statistics

based on the data collected from participating insurers and these “intercompany reports

of experience are considered a proxy for the state of the industry with companies us-

ing these results to benchmark their own experience” (Iverson et al. (2007)). Despite

the various parties (insurers, reinsurers, regulators and actuarial organizations like the

SOA) interested in the analysis of intercompany data on claim statistics, sound statisti-

cal research in this area is still lacking.

The primary contributions of the research in this paper are threefold. Firstly, we

develop the connection between hierarchical credibility and multilevel statistics, a dis-

cipline that is generally unknown in actuarial science. We go beyond the two level

structures often found in panel data. Credibility is a classical actuarial approach for

experience rating (and Hickman and Heacox (1999) claimed it to be one of the corner-

stones of actuarial mathematics). Secondly, with the growing popularity of the gener-

alized count distributions in actuarial science, we extended their applications towards

more than two level data sets. The statistical estimation poses some challenges, but

Bayesian estimation techniques allowed us to meet these. Thirdly, we provide modeling

and a detailed analysis of intercompany data on fleets, which, as alluded earlier, has

been rather scarce in the actuarial literature.

The paper has been structured as follows. Section 2 gives background on the data

used in the analysis. Model specification, data analysis and prediction for claim counts

is covered in Section 3 and 4. Section 5 concludes.

2 Intercompany Insurance Claims Data

2.1 Background

We investigate a data set with policy exposure information, covariates and claim counts

registered for vehicle insurance portfolios of general insurance companies in Singapore.

With ‘exposure’ is meant the fraction of a year during which the policy holder pays for

insurance. The source of this intercompany data set is the General Insurance Associ-

ation (‘GIA’) of Singapore (see the organization’s webpage http://www.gia.org.sg), an
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organization consisting of general insurers in Singapore. In Singapore motor insurance

is compulsory and it is not surprising to find it to be one of the most important general

insurance lines of business.

Two files were examined: the policy and the claims files. The policy file consists

of records of policyholders with vehicle insurance coverage purchased from a general

insurer during the period 1993-2001. Each vehicle is identified with a unique code.

In general, the file provides characteristics of the policyholder and the vehicle insured.

However, for fleet policies, no information on the driver of the vehicle is available,

since a vehicle may be used by several drivers. Thus, the unit of observation in our

analysis is a registered vehicle insured, broken down according to their exposure in

each calendar year 1993 to 2001. The claims file provides a record of each accident

claim that has been filed with the insurer during the observation period and is linked to

the policyholder file.

All policies in the sample have a comprehensive coverage that includes coverage

for third party injury and property damage as well as damage to one’s own vehicle.

Each vehicle is followed over a period of (maximum) nine years: January 1993 until

December 2001. However, not every vehicle is in the sample during the full period

(see infra for concrete statistics). Vehicles may switch fleets and companies and enter

and exit the panel. Vehicles with doubtful information on some variables such as the

vehicle capacity or the year the car was manufactured were removed from the sample

and therefore ignored in the analysis.

The hierarchical structure of the data lends itself naturally to multilevel modeling

with four different levels for this data set. At the highest level, we analyze ten insur-

ance companies (using c to denote a company). For confidentiality reasons, these ten

companies, labeled 1 to 10, were randomly drawn from 27 companies available in the

GIA’s entire database. At the next level, from these 10 companies, we consider 6,763

fleets (f). Level two consists of 16,437 vehicles (v) that we observe over time (t), for a

total of 39,120 level one observations.
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2.2 Data Characteristics

The empirical distribution of the observed claim counts in Table 1 (2nd column) illus-

trates that about 88% percent of the observations are zeros. At most 5 claims during

one time period have been observed. Table 1 describes the distribution of claim counts

per company. ‘# Obs.’ gives the number of observations per company and ‘# Exp.’ the

total exposure time per company (in policy years). These statistics show that the com-

panies are roughly the same size, with no one company dominating the market. The

‘Mean’ is the sum of claim counts divided by the total exposure. This suggests substan-

tial differences among companies; the average claim count for company 3 is quite small

compared to companies 2, 9 and 10.

Table 1: Claims by company

Percentage of Claims by Company

Count All 1 2 3 4 5 6 7 8 9 10

0 87.82 88.27 81.68 94.68 87.71 89.43 88.83 87.44 86.86 88.78 87.28

1 10.49 10.23 15.11 4.96 10.55 9.3 9.74 11.09 11.13 9.57 10.85

2 1.41 1.3 2.73 0.3 1.43 0.96 1.1 1.26 1.62 1.37 1.71

3 0.22 0.18 0.36 0.06 0.29 0.19 0.2 0.19 0.34 0.24 0.17

4 0.04 0.03 0.12 0 0 0.06 0.1 0.02 0.05 0.04 0

5 0.01 0 0 0 0.02 0.06 0.04 0 0 0 0

# Claims 5,557 528 1,096 191 603 398 669 891 318 328 535

# Obs. 39,120 3,920 4,951 3,327 4,191 3,225 5,105 6,251 2,040 2,487 3,623

# Exp. 30,560 3,106 4,440 2,480 3,240 2,497 3,978 5,023 1,635 1,505 2,656

Mean 0.14 0.17 0.25 0.08 0.19 0.16 0.17 0.18 0.19 0.22 0.20

# Fleet 6,763 841 270 1,229 270 1,279 646 1,286 335 268 339

Figure 1 shows the distribution of claim counts at the fleet level. Specifically, for each

fleet, the average claim count (per unit of exposure) was computed and the distribution

of these averages appears in Figure 1, by company. One can observe company effects in

Table 1 in the sense that the average number of claims reported by company 3 is very

low, whereas the averages from companies 2, 9 and 10 are rather high. Company 9 is

special in the sense that it has the lowest exposure and yet one of the largest claims

per unit of exposure. However, at fleet level (see Figure 1), 81% of the fleets in this

company reported zero claims in total (compare this with e.g. company 10 where only

51% of the fleets stayed claim–free during the observation period).
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Figure 1: Boxplots of a fleet’s average number of claims, by company

1 2 3 4 5 6 7 8 9 10

0
2

4
6

8

Average Claim Counts Per Fleet

Company

Fleets buy and sell vehicles periodically and switch insurance companies. To explore

this behavior, we can explore the length of time that a vehicle, our unit of analysis,

stays in the sample with the same fleet and company. For example, 55% of all vehicles

in the sample never switched fleet nor company during their period of insurance that

is registered in the data set, 21% switched once and 24% switched two or more times.

Statistics for the total length of stay of a vehicle within the same fleet (‘Cum(ulative)

L(ength) Fleet’) and the total observation period in the sample (‘Cum(ulative) L(ength)

Sample’) (in years) are in Table 2. ‘Prem(ium)’ gives the premium paid per unit of

exposure. Striking in the latter table is that vehicles – on average – only stay for a short

period within the same fleet. Averages of the total length of their exposure period in

the sample are just slightly higher.

Table 2: Length of stay (in years) of a vehicle within a fleet and within the sample. Premi-

ums paid are per unit of exposure.
Company

1 2 3 4 5 6 7 8 9 10

Cum.L. Min 0.008 0.005 0.011 0.005 0.011 0.005 0.008 0.005 0.008 0.011

Fleet Mean 0.994 0.949 1.065 1.135 0.963 0.969 0.934 0.94 1.142 0.979

Max 2.504 2 2.219 6 2.225 2.285 2.244 2.459 2.999 2

Cum.L. Min 0.008 0.027 0.011 0.005 0.011 0.005 0.011 0.033 0.008 0.016

Sample Mean 1.821 2.096 1.77 1.675 1.355 2.106 2.309 1.831 1.414 1.778

Max 7.753 5.922 7.467 7.331 5.505 8 7.174 7.567 5.008 7.99

Prem. Min 0.01 0.0312 0.01 0.025 0.032 0.014 0.004 0.014 1.8*10−4 0.045

Mean 1.522 0.952 1.232 1.124 1.553 1.2 1.107 1.366 0.854 1.422

Max 11.648 59.562 56.129 7.124 156.411 96.963 42.8 188.935 5.635 12.379
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Table 3: Vehicle level explanatory variables

Categorical Description Percentage

Covariate

Vehicle Type Car 54%

Motor 41%

Truck 5%

Private Use Vehicle is used for private purposes 31%

Vehicle is used for other than private purposes 69%

NCD ‘No Claims Discount’ at entry in fleet: based on previous accident

record of policyholder. The higher the discount, the better

the prior accident record.

NCD = 0 83%

NCD > 0 17%

SwitchPol 1 if vehicle changes fleet 55%

0 if vehicle enters fleet for first time or 45%

stays in the same fleet

Continuous Minimum Mean Maximum

Covariate

Vehicle Age The age of the vehicle in years, at entry in fleet 0 4.22 33

Cubic Capacity Vehicle capacity for cars and motors 124 1,615 6,750

Tonnage Vehicle capacity for trucks 1 7.6 61

TLengthEntry Time (in years) vehicle was 0 0.35 6.75

in the sample, before entering the fleet

TLength (Exposure) Fraction of calendar year for 0.006 0.78 1

which insurance coverage is purchased

Other measurable characteristics at the level of the vehicle are summarized in Ta-

ble 3. No specific information at the level of the fleet or company is available (such as

the branch where the fleet is operating, details on the financial structure of the com-

pany, et cetera). For instance, Angers et al. (2006) uses the sector of activity of the

carrier as an explanatory variable in their regression analysis. To compensate this lack,

averages at the level of the fleet and company are created. These are listed in Table 4.

The averages in the upper part of the table are computed at fleet level, e.g. ‘AvPrem’ is

the total premium paid by all vehicles in the fleet, divided by the total period (in years)

for which insurance is guaranteed by the fleet.



A Multilevel Analysis of Intercompany Claim Counts 11

Table 4: Fleet and company level explanatory variables

Covariate Description Minimum Mean Maximum

Fleet Level

AvNCD Average of No Claims Discount at entry 0 6.3 50

in the fleet

AvTLengthEntry Average of TLengthEntry 0 0.59 6.75

AvTLength Average of cumulative time period spent in fleet 0 1 3.64

AvVAge Average of vehicle age at entry in the fleet 0 4.75 27.33

AvPrem Average of premium paid per unit of exposure 0.01 1.3 59.56

FleetCap Number of vehicles in the fleet 1 4.56 1,092

Company Level

NumFleets Number of fleets in the company 268 942 1,286

NumVeh Number of vehicles in the company 1,319 3,084 5,394

NumCars, Number of cars, trucks and motorcycles 391 1,652 4,453

NumTrucks, in the company 224 1,259 3,019

NumMotors 0 170 888

3 Models and Results

We use multilevel modeling for this 4–level data set (vehicles followed over time,

grouped in a fleet policy issued by a company). Multilevel models allow us to incor-

porate explicit knowledge about the hierarchical structure of the data by specifying

random effects for the vehicle and/or fleet and/or company. The random effects are

included to deal with the (apparent) contagion resulting from unobservable effects at

the various levels in the data. For instance, the missions assigned to a vehicle or the be-

havior of its drivers (in case this group is small) may influence the riskiness of a vehicle.

At the level of the fleet, guidelines on driving hours, mechanical check-ups and loading

instructions may influence the number of accidents reported by vehicles in the fleet.

Due to the huge percentage of zeros reported in Table 1, we will not only investigate

Poisson regression, but also negative binomial, zero–inflated Poisson and hurdle Poisson

models. These distributions are specified below:

- (Poisson) PrPoi(Y = y|λ) = exp (−λ)λy

y!
;

- (Negative binomial) PrNB(Y = y|µ, τ) = Γ(y+τ)
y!Γ(τ)

(
τ

µ+τ

)τ (
µ

µ+τ

)y

;
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- (Zero–inflated Poisson)

PrZIP(Y = y|p, λ) =





p + (1− p)PrPoi(Y = 0|λ) y = 0,

(1− p)PrPoi(Y = y|λ) y > 0;

- (Hurdle Poisson)

PrHur(Y = 0|p, λ) = p y = 0,

PrHur(Y = y|p, λ) =
1− p

1− PrPoi(0|λ)
PrPoi(Y = y|λ) y > 0.

In the sequel of this paper we will use ‘Poi’ to denote a Poisson distribution, ‘NB’ for a

negative binomial, ‘ZIP’ for a zero–inflated Poisson and ‘Hur’ for a hurdle Poisson dis-

tribution with parametrization as given above. In the absence of covariate information,

these count distribution models are each fitted to the ‘rough’ data set. A comparison of

their performance is illustrated in Table 5. Table 5 suggests that the negative binomial

is the best candidate model followed closely by the hurdle Poisson model.

Table 5: Observed and expected claim counts for the various count distributions

(likelihood–based estimation)

Num. Claims Obs. Freq. Poisson NB ZIP Hurdle Poi

0 34,357 33,940 34,362 34,357 34,357

1 4,104 4,821 4,079 4,048 4,048

2 551 342 577 641 641

3 86 16 86 68 68

4 17 1 13 5 5

≥ 5 0 2 0 0

Mean 0.142 0.142 0.142 0.142 0.142

Variance 0.171 0.142 0.17 0.17 0.17

-2 Log Lik / 34,032 33,536 45,815 33,582

AIC / 34,034 33,540 45,819 33,586

Categorized versions of the covariates are used in our multilevel specifications (see

Table 6 and 7). Using categorizations is in line with tarification practice in insur-

ance companies and with the literature on non-life insurance (see e.g. Desjardins et al.

(2001), Angers et al. (2006) and Denuit et al. (2007)).
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An overview of the likelihood specifications involved in panel data models for gen-

eralized count distributions may be found in Antonio (2007) (pages 93–120). Both

econometric (with conjugate distributions for the random effects) as well as general

statistical specifications are discussed there. A collection of useful formulas with re-

spect to prediction for panel data is also available.

Section 3.1 is a summary of the multilevel models that we investigated for our data.

The corresponding results are presented and discussed in Section 3.2.

Table 6: Vehicle level categorizations

Covariate Categorization

Vehicle Age 0<=VAgeEntry<=4 Reference

VAgeEntry>4

Cubic Capacity 0<VehCapCubic<=1500 Reference

VehCapCubic>1500

Tonnage 0<Tonnage<=2 Reference

2<Tonnage<=8

8<Tonnage

TLengthEntry TLengthEntry=0 Reference

TLengthEntry>0

Year Year<=1997 Reference

1997<Year<=1999

1999<Year

coverage is purchased.

3.1 Model Specifications

3.1.1 Hierarchical Poisson Models

Starting point are hierarchical Poisson models with random intercepts for the vehicle,

fleet and company.

Jewell’s hierarchical model The first model is a Bayesian implementation of Jewell’s

hierarchical credibility model for counts. Jewell’s credibility scheme (see Dannenburg
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Table 7: Fleet level categorizations

Covariate Categorizations

AvNCD AvNCD=0

AvNCD>0 Reference

AvTLengthEntry AvTLengthEntry=0 Reference

0<AvTLengthEntry

AvTLength AvTLength<=0.7 Reference

AvTLength> 0.7

AvVAge 0<= AvVAgeEntry <=4

4<AvAgeEntry

FleetCap FleetCap=1 Reference

1<FleetCap<= 15

15<FleetCap

et al. (1996) and Antonio and Beirlant (2007)) is the traditional actuarial approach for

experience rating with hierarchical data. It is distribution–free in its original specifica-

tion, but can be interpreted as a random effects model under normality assumptions

(see Frees et al. (1999)). Our specification is given in (1), where ec,f,v,t is an exposure

variable that gives the length of time during calendar year t for which the vehicle has

insurance coverage. Yc,f,v,t denotes the claims observed in year t for vehicle v, which is

insured under fleet f in company c.

- Jewell’s model

Yc,f,v,t ∼ Poi(λc,f,v,t) with λc,f,v,t = ec,f,v,t exp (ηc,f,v,t)

and ηc,f,v,t = γ + εc + εc,f + εc,f,v, (1)

where γ is the intercept, εc is a random company effect, εc,f is a random effect for the

fleet within the company and εc,f,v is a random effect for the vehicle within the fleet.

- Random effects distributions used in (1)

εc ∼ N(0, σ2
c ), εc,f ∼ N(0, σ2

c,f ) and εc,f,v ∼ N(0, σ2
c,f,v). (2)
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Hierarchical Poisson models We now incorporate risk factors corresponding with

the four levels in the data set and random effects for the vehicle, fleet and company. In

general:

- Poisson model

Yc,f,v,t ∼ Poi(λc,f,v,t) with λc,f,v,t = ec,f,v,t exp (ηc,f,v,t + εc + εc,f + εc,f,v)

and ηc,f,v,t := γ + Xcβ4 + Xc,fβ3 + Xc,f,vβ2 + Xc,f,v,tβ1.

(3)

Hereby εc, εc,f and εc,f,v are as previously defined. The explanatory variables used in

ηc,f,v,t are:

- Xc,f,v,t: Year;

- Xc,f,v: VehicleType, Capacity Cubic, Tonnage, VAgeEntry, TLengthEntry, Private,

SwitchPol;

- Xc,f : AvPrem, AvTLength, AvTLengthEntry, AvNCD; and

- Xc: / (intercept γ is included in (3)).

However, for fleets with only one vehicle (there are 6,245 of such fleets in the sample)

the general specification of the linear predictor is slightly modified. With only one

vehicle per fleet, the vehicle and fleet level coincide. Therefore, no fleet random effect

is included for such fleets, neither are averages at the level of the fleet used. Apart from

the model in (3), we also consider a Poisson hierarchical model with a random effect

for the company and fleet but without a random effect for the vehicle.

Our distributional assumptions for the random effects in the Poisson hierarchical

models (as in (3)) slightly differ from those traditionally used in multilevel modelling:

- Random effects distributions for (3)

εc ∼ N(−σ2
c

2
, σ2

c ), εc,f ∼ N(−σ2
c,f

2
, σ2

c,f ), and εc,f,v ∼ N(−σ2
c,f,v

2
, σ2

c,f,v). (4)
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Using the specifications in (3) and (4), the a priori mean, E[Yc,f,v,t], is given by

E[Yc,f,v,t] := λprior
c,f,v,t

= ec,f,v,t exp (ηc,f,v,t).

(5)

The a posteriori premium, E[Yc,f,v,t|εc, εc,f , εc,f,v] then becomes

E[Yc,f,v,t|εc, εc,f , εc,f,v] = λprior
c,f,v,t exp (εc) exp (εc,f )(εc,f,v), (6)

In our Bayesian analysis, the posterior distributions of (5) and (6) are used for ratemak-

ing. Examples follow in Section 4. Specification (6) explicitly shows how a posteriori

corrections are made to the a priori premium.

Priors Prior distributions used in the Bayesian analysis are selected as follows (similar

specifications are used for the other models discussed in this Section):

(i) for the regression coefficients in β4, . . . , β1: a normal prior with a variance of 106;

(ii) for the inverse of the variance components: gamma priors Γ(0.001, 0.001).

3.1.2 Hierarchical Negative Binomial Model

Because the negative binomial provides a good fit to the ‘raw’ count data in Table 5,

a negative binomial multilevel regression model is considered as well. This regression

model uses the same covariate information as in Section 3.1.1. Thus,

- Negative binomial model

Yc,f,v,t ∼ NB(µc,f,v,t, τ)

where µc,f,v,t = ec,f,v,t exp (ηc,f,v,t + εc + εc,f ) (7)

where random effects for the company and fleet are used. Apart from this specification,

we also examined the possible inclusion of an extra variability component at the level of

the vehicle. However, convergence of the MCMC updates for this variance component

could not be obtained within a reasonable number of iterations. The simpler model in

(7) is therefore preferred. The random effects distributional assumptions in (4) result

in E[Yc,f,v,t] = µprior
c,f,v,t = ec,f,v,t exp (ηc,f,v,t). Prior distribution for τ was τ = exp (τ ?) with

τ ? ∼ N(0, 106).
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3.1.3 Hierarchical Zero-Inflated Poisson Models

Two types of zero-inflated Poisson models were investigated. For the first specification,

we have:

- Zero-inflated Poisson model (1)

Yc,f,v,t ∼ ZIP(p, λc,f,v,t)

where λc,f,v,t = ec,f,v,t exp (ηc,f,v,t + εc + εc,f ). (8)

Prior specifications are similar as before, completed with p ∼ Beta(1, 1) as prior for the

additional proportion of zeroes. Using the random effects distributions in (4), the a

priori premium for this ZIP model is E[Yc,f,v,t] = (1 − p)λprior
c,f,v,t with λprior

c,f,v,t as in (5). A

posteriori (1− p)λprior
c,f,v,t exp (εc) exp (εc,f ) is used.

In a second hierarchical ZIP model we let the extra proportion of zeros be fleet-

specific and use pc,f ∼ Beta(1, b). Prior for b is log (b) ∼ N(0, 106). Thus,

- Zero-inflated Poisson model (2)

Yc,f,v,t ∼ ZIP(pc,f , λc,f,v,t)

where λc,f,v,t = ec,f,v,t exp (ηc,f,v,t + εc + εc,f ), (9)

which results in an a priori premium E[Yc,f,v,t] = (1 − 1
1+b

)λprior
c,f,v,t and a posteriori (1 −

pc,f )λ
prior
c,f,v,t exp (εc) exp (εc,f ).

3.1.4 Hierarchical Hurdle Poisson Model

The hurdle Poisson model for panel data is extended towards multilevel data through

the inclusion of level specific explanatory variables and random effects. The following

specification is used:

- Hurdle Poisson model

Yc,f,v,t ∼ Hur(pc,f,v,t, λc,f,v,t)

where pc,f,v,t = logit (ηc,f,v,t,Bin + εc,Binεc,f,Bin) ,

and λc,f,v,t = ec,f,v,t exp (ηc,f,v,t + εc + εc,f ). (10)
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The risk factors in ηc,f,v,t,Bin are

- intercept, Year;

- VehicleType, Private, VehicleAge, Capacity Cubic, Tonnage;

- AvTLength, AvTLengthEntry, AvPrem, AvNCD, SwitchPol;

and for ηc,f,v,t the same set of explanatory variables is included (though this is not nec-

essary). Note that this second part of the model (over the hurdle) is fitted to only 12%

of the original data set. Distributional specifications for the random effects are those in

(4). The random effects in the zero and non-zero part are independent of each other.

These specifications however do not lead to an explicit expression for the a priori mean.

3.2 Results

3.2.1 Hierarchical Poisson Models

Estimated claim frequencies are in Table 8. In the table we compare the results obtained

with Jewell’s hierarchical model (full version), Jewell’s hierarchical model with just fleet

and company specific intercepts, a Poisson regression without random effects and the

Poisson regression model with random intercepts for vehicles, fleets and companies.

The table reports estimated claim counts obtained from hierarchical Poisson analysis.

For every count model, two parallel chains were run; 15,000 iterations each with burn-

in of 500 observations. ‘RE’ stands for random effects. We conclude that the Poisson

multilevel model in (3) outperforms the other specifications.

3.2.2 Hierarchical Negative Binomial, Zero-Inflated and Hurdle Poisson Models

Table 9 compares estimated claims amounts for the preferred hierarchical Poisson model

(3) and alternatives described in Sections 3.1.1- 3.1.4. On the basis of this table, the

negative binomial, zero-inflated Poisson and hurdle Poisson outperformed hierarchical

Poisson with the negative binomial (7) performing the best. We also remark that, among

the negative binomial, zero-inflated Poisson and hurdle Poisson, the hurdle Poisson

regression models have the advantage of allowing for the fastest MCMC sampling.
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Table 8: Estimated claim counts obtained from Bayesian Poisson hierarchical analyses.

(95% credibility intervals are given in parens.)
Num. Obs. Freq. Poisson No RE Poisson Jewell Poisson Jewell Poisson Multilevel

(No Veh. RE) (1) (3)

0 34,357 34,020 34,180 34,300 34,310

(33,900;34,140) (34,060;34,290) (34,180;34,410) (34,200;34,430)

1 4,104 4,665 4,395 4,204 4,176

(4,564;4,767) (4,299;4,491) (4,104;4,306) (4,081;4,273)

2 551 404 490 529 536

(385;423) (467;514) (505;554) (511;560)

3 86 26 52 76 79

(24;28) (47;57) (68;84) (71;87)

4 17 1.42 6 13 14

(1.24;1.7) (5;7) (10;15) (11;16)

5 5 0.088 0.69 2 3

(0.05;0.22) (0.49;1.03) (1.8;3.37) (2;4)

With the exception of the Poisson model, the estimation of a variability component at

the level of the vehicle was problematic; the corresponding chains could not converge

in a reasonable number of iterations. Hereby it is important to recall the descriptive

statistics in Table 2; for the general insurers present in the data the cumulative period

of exposure of a vehicle in a certain fleet was – on average – around 1. Thus, in general,

the number of repeated measurements for a single vehicle in the same fleet is very small.

Apart from this, the NB, ZIP and hurdle Poisson models – compared to the Poisson –

incorporate already an extra heterogeneity or overdispersion component in their model

specifications.

95% credibility intervals for the parameters used in the negative binomial model

(7) are displayed in Figure 2. Similar credibility intervals for the parameters used in

the zero–inflated regression (8) are in Figure 3. For the hurdle model (10), Figure 4 is

included. These results are based on 2 parallel chains with 15,000 iterations each, after

a burn-in of 1,000 iterations. To illustrate the mixing and convergence of the chains,

Figure 6 is attached at the end of this paper. Similar plots were obtained for the other

multilevel models.

In agreement with the findings in Frees and Valdez (2008) (who investigate a non

fleet data set from the GIA), few risk factors have a statistically significant effect on the
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Table 9: Estimated claim counts obtained from Bayesian hierarchical analyses
Num. Claims Obs. Freq. Poisson NB ZIP Hurdle Poi

(3) (7) (8) (10)

0 34,357 34,310 34,365 34,350 34,360

(34,200;34,430) (34,240;34,490) (34,230;34,470) (34,230;34,480)

1 4,104 4,176 4,086 4,092 4,139

(4,081;4,273) (3,978;4,196) (3,979;4,207) (4,025;4,253)

2 551 536 560 584 540

(511;560) (532,588) (551;618) (505;576)

3 86 79 88 79 73

(71,87) (78,99) (70;89) (64;82)

4 17 14 16 11 10

(11,16) (13,20) (9;13) (8;13)

≥ 5 5 3 4 2 2

(2,4) (2,4.5) (1;2) (1;2.4)

Figure 2: 95% credibility intervals for negative binomial hierarchical model (7).
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average number of claims. Some observations are (to name a few): switching fleets

(see ‘SwitchPol’) has a positive and significant effect on the number of claims, motors

report significantly less claims than the reference class (i.e. trucks) and heavy trucks

(‘Tonnage>8’) report significantly more claims. This is not surprising because switching
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Figure 3: 95% credibility intervals for zero-inflated Poisson hierarchical model (8).
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Figure 4: 95% credibility intervals for hurdle Poisson regression model (10).
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of policies is often motivated by increases or decreases in premiums resulting from the

variability of claims. Regarding the averages at the fleet level: fleets with higher (aver-
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age) premiums report more claims on average and staying longer within the same fleet

(see ‘AvTLength’) has a negative effect on the number of claims. Again, this is consis-

tent with fair actuarial premium calculations whereby premiums are directly linked to

claims. Parameter estimates reported for the Poisson (3) and negative binomial model

(7) closely correspond since they use the same specification for E[Yc,f,v,t].

4 A Priori Premiums and A Posteriori Corrections

The very aim of the data analysis is a sound statistical approach to premium rating for

intercompany data. How should a reinsurer or regulator translate the company effects

that became apparent in the descriptive Table 1 into an accurate prediction for the

expected number of claims? The posterior distribution of the random company effects

is used for this purpose. Fleet effects can be taken into account in a similar manner. In

Section 4.2 it is motivated that the different distributions used in Section 3.1 represent

different styles of penalizing for past claims. For instance, the zero-inflated model with

fleet-specific pc,f (see (9)) and the hurdle Poisson model in (10) not only use the number

of past claims, but also the claim-free period of a fleet. The various distribution models

considered in this paper give the user the choice of which style is suitably adoptable to

its philosophy.

4.1 Posterior distributions for the random effects

Figure 5 illustrates the a posteriori distributions for the company effects as well as for a

random selection of fleet effects. The underlying model specification is Jewell’s model

(see (1)). We briefly comment:

- The company effects in the upper plot of Figure 5 are in line with the statistics

from Table 1.

- Some descriptive statistics for the fleet effects in the lower plot of Figure 5: for

fleet 1 zero claims are reported on a period of 11 years of exposure, for fleet 3

9 claims are reported on a period of 9 years of exposure, for fleet 4 zero claims
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are reported on a period of 53 years of exposure and for fleet 10 41 claims are

reported on a period of 100 years of exposure.

Figure 5: Illustration of a posteriori distributions of company effects and a random selec-

tion of fleet effects.
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4.2 A posteriori corrections to a priori premiums

We select some vehicle and fleet profiles and examine how the reported claims history

a posteriori corrects the a priori premium. Both premiums are calculated for the various
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model specifications introduced in Section 3. Recall from Section 3 that E[Yc,f,v,T+1] is

used for the a priori premium and E[Yc,f,v,T+1|εc, εc,f , εc,f,v] is used for the a posteriori

premium. In the scenarios shown below ‘SwitchPol’ is always equal to 0.

4.2.1 Results for Poisson Hierarchical Model with Company, Fleet and Vehicle

Effects

Let us start from the model in (3). To correct the a priori premium, this model uses the

history of the vehicle, the history of the fleet to which it belongs and the history of the

company. The results are printed in Table 10. Hereby the bonus–malus factor (‘BMF’)

is the ratio (a posteriori premium/a priori premium). BMFs are standards used in the

insurance industry for penalizing or rewarding customers according to their historical

claims experience. Apparently, a BMF > 1 indicates some penalty required, while a BMF

< 1 indicates the opposite. See Lemaire (1995) for more details.

4.2.2 Results for Poisson Hierarchical Model with Company and Fleet Effects

This model does not use the history of the vehicle separately, but relies on the history

of the whole fleet to which the vehicle belongs and on the history of the company. The

results are not displayed here due to space restrictions (see Antonio (2007), page 141

for full details). We briefly comment that, for instance, in Table 10, for fleet 6,592,

the BMFs for all vehicles are > 1, but the BMF for the vehicle that reports 2 claims

is much higher (=3.27) than the BMF for the claim-free vehicles (=1.45). Checking

the corresponding results for the hierarchical Poisson model with just company and

fleet random effects, the BMF for all vehicles is > 1 and in between those reported in

Table 10.

4.2.3 Negative Binomial, Zero-Inflated Poisson and Hurdle Poisson Hierarchical

Models with Company and Fleet Effects

For the scenarios used in Table 10, the NB, ZIP and hurdle poisson models (see (7), (8),

(9) and (10)) and their corresponding a priori and a posteriori premiums and bonus–

malus factors are calculated. We only display the results for (9) (see Table 11). The
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Table 10: Results for Poisson model in (3).
Co. Fleet Vehicle A Priori A Posteriori BMF Acc. Cl. Acc. Cl.

(Exp.) Fleet (Exp.) Veh. (Exp.)

4 1,590 6,213 0.2141 (1) 0.6325 2.95 7 (15.25) 3 (1)

6,261 0.2141 (1) 0.3641 1.7 0 (1.22)

1 4,370 10,104 0.1428 (1) 0.2895 2.03 7 (21.5) 2 (4.24)

5,841 0.1428 (1) 0.1946 1.36 1 (7)

7,152 0.1773 (1) 0.3675 2.07 3 (7)

5 4,673 9,350 0.07956 (0.5) 0.145 1.82 6 (18.5) 1 (1)

12,131 0.07956 (0.5) 0.11 1.38 0 (1)

12,210 0.07956 (0.5) 0.1102 1.39 0 (1)

4 6,592 1,656 0.1059 (1) 0.1529 1.44 12 (40) 0 (1.8)

15,329 0.11 (1) 0.1597 1.45 0 (1.7)

2,577 0.1315 (1) 0.4301 3.27 2 (2)

2 1,485 11,122 0.01683 (0.08) 0.09327 5.54 17 (40) 4 (1)

10,782 0.01223 (0.08) 0.02652 2.17 0 (1)

11,063 0.01519 (0.08) 0.03234 2.13 0 (1)

3 4,672 12,007 0.07028 (0.334) 0.06179 0.88 5 (20.4) 0 (2)

8,367 0.07028 (0.334) 0.08484 1.21 1 (1.334)

11,958 0.07028 (0.334) 0.06294 0.9 0 (2)

5 1,842 1,826 0.1473 (1) 0.1024 0.7 2 (16) 0 (2)

1,569 0.1473 (1) 0.09015 0.61 0 (4)

6 5,992 1,906 0.183 (1) 0.2373 1.3 7 (21) 1 (5)

1,889 0.183 (1) 0.2886 1.58 2 (6)

9 5,823 1,020 0.109 (1) 0.07598 0.7 2 (16) 0 (3)

1,056 0.109 (1) 0.07591 0.7 0 (3)

1,025 0.109 (1) 0.09828 0.9 1 (3)

10 3,564 15,564 0.1929 (1) 0.1797 0.93 2 (17) 2 (5)

14,831 0.1553 (1) 0.1249 0.8 1 (4)

15,194 0.1553 (1) 0.08599 0.55 0 (7)

10 3,568 1,119 0.1512 (1) 0.1391 0.92 3 (19.25) 1 (3.7)

1,206 0.1512 (1) 0.1934 1.28 3 (5.75)

1,540 0.1512 (1) 0.09953 0.66 0 (5)

Note: ‘Acc. Cl. Fleet’ and ‘Acc. Cl. Veh.’ are accumulated number of claims at fleet and vehicle

levels, respectively. ‘Exp.’ is exposure at year level, in parenthesis.

other results are not printed, due to space restrictions, but are available in Antonio

(2007).

Tables 10 and 11 illustrate the calculations of the bonus–malus factors that can be

used to update premiums based on claims experience. As a result of the statistical

modeling, Table 11 shows BMFs calculated at the fleet level, a natural point in the

hierarchy because it is at this level where an insurance contract between a fleet and
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Table 11: Results for the zero–inflated Poisson model in (9).
Co. Fleet Vehicle A Priori A Posteriori BMF Acc. Cl. Claim free

(Exp.) Fleet (Exp.) Years

4 1,590 6,213 0.2156 (1) 0.3653 1.69 7 (15.25) 10.4

6,261 0.2156 (1) 0.3653

1 4,370 10,104 0.1404 (1) 0.218 1.56 7 (21.5) 16.5

5,841 0.1404 (1) 0.218

7,152 0.1715 (1) 0.2663

5 4,673 9,350 0.07942 (0.5) 0.106 1.33 6 (18.5) 17

12,131 0.07942 (0.5) 0.106

12,210 0.07942 (0.5) 0.106

4 6,592 1,656 0.1066 (1) 0.1898 1.78 12 (40) 32.3

15,329 0.1099 (1) 0.1956

2,577 0.1302 (1) 0.2319

2 1,485 11,122 0.01672 (0.08) 0.03961 2.4 17 (40) 31.7

10,782 0.01223 (0.08) 0.02867

11,063 0.01494 (0.08) 0.03539

3 4,672 12,007 0.06814 (0.334) 0.0705 1.03 5 (20.4) 16.1

8,367 0.06814 (0.334) 0.0705

11,958 0.06814 (0.334) 0.0705

5 1,842 1,826 0.1486 (1) 0.1244 0.84 2 (16) 14

1,569 0.1486 (1) 0.1244

6 5,992 1,906 0.1816 (1) 0.2333 1.28 7 (21) 16

1,889 0.1816 (1) 0.2333

9 5,823 1,020 0.1091 (1) 0.09044 0.83 2 (16) 14.25

1,056 0.1091 (1) 0.09044

1,025 0.1091 (1) 0.09044

10 3,564 15,564 0.1919 (1) 0.1475 0.77 2 (17) 15

14,831 0.157 (1) 0.1207

15,194 0.157 (1) 0.1207

10 3,568 1,119 0.1508 (1) 0.135 0.90 3 (19.25) 16.25

1,206 0.1508 (1) 0.135

1,540 0.1508 (1) 0.135

Note: ‘Acc. Cl. Fleet’ and ‘Acc. Cl. Veh.’ are accumulated number of claims at fleet and vehicle

levels, respectively. ‘Exp.’ is exposure at year level, in parenthesis.

insurance company is written. Hence, fleet level BMFs can be used for premium re-

newals. Table 10 shows BMFs calculated at the vehicle level. This information could

also be used for contracts written at the fleet level; as the fleet composition changes

through the retirement or sale of vehicles, the total fleet premium should reflect the

changing composition of vehicles. Vehicle level BMFs will allow prices to depend on the

vehicle composition of fleets. We anticipate that pricing actuaries will find both set of
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findings useful.

Some brief comments:

- a priori premiums obtained with the different model specifications closely corre-

spond;

- the zero-inflated model with fleet-specific pc,f (see (9)) and the hurdle poisson

model in (10) take the claim-free period of a fleet into account. For panel data

this feature was made explicit in the derivations in Antonio (2007) (pages 105–

107) and the references mentioned there. Compare the results for fleet 4,673

between the various specifications: in the Poisson, NB and ZIP with p fixed, the

BMF for this fleet is about 1.5. In ZIP model (9) this drops to 1.33 and in the

hurdle model even to 0.9. That is because these last two model specifications not

only use the number of registered claims, but also the claim-free periods (which

is here 17 out of a total of 18.5 years).

In Table 12 some artificial scenarios are investigated. Fleet 4,672 (see also Tables 10

and 11) originally belongs to company 3, but the observations corresponding with this

fleet were switched to different companies (namely company 2, 6, 7 and 10). Results

are for the hierarchical negative binomial model in (7). The a priori premiums closely

correspond, but a posteriori premiums reflect the company differences that became ap-

parent in Figure 5.

Table 12: Fleet 4,672 under different companies: results for negative binomial model in

(7).

Company

2 3 6 7 10

A Priori 0.0695 0.071 0.07126 0.0712 0.07102

A Posteriori 0.0911 0.06967 0.08112 0.08383 0.08778
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5 Conclusion

This paper presents a multilevel analysis of a four–level intercompany data set on claim

counts for fleet policies. The data come from the General Insurance Association in

Singapore and the observations are from 10 Singaporean general insurers. We build

multilevel models using generalized count distributions (Poisson, negative binomial,

hurdle Poisson and zero–inflated Poisson) and use Bayesian estimation techniques. The

effect of explanatory variables at the different levels in the data set is investigated. We

find that in all models considered, there is the importance of accounting for the effects

of the various levels. The results also indicate possible different styles for penalizing or

rewarding past claims. To demonstrate the usefulness of the models, we illustrate how

a priori rating (using only a priori available information) and a posteriori corrections

(taking the claims history into account) for intercompany data can be calculated on

a sound statistical basis. A comparison of these calculated premiums results in bonus–

malus factors which are important in establishing experience–rated premiums. Insurers,

reinsurers and regulators can use the methodology recommended in this paper to study

the differences in riskiness among fleets and companies. A posteriori predictions for a

specific fleet, vehicle or company can be readily calculated from the estimated multilevel

models.
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