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ABSTRACT 

This paper describes how Markov chain Monte Carlo and related methods 
recently presented in the statistical literature can be used to quickly and 
efficiently simulate random draws from distributions with log-concave or 
nearly log-concave densities. These methods should be useful in many ac- 
tuarial computer simulations, because a number of distributions in actuarial 
contexts have log-concave or nearly log-concave densities. To illustrate their 
application, the paper examines how they can be used to simulate realiza- 
tions of life contingent functions under Makeham's law and certain other 
patterns of mortality when the distribution of the future lifetime random 
variable either has a log-concave density or possesses one that is nearly so. 
These simulation methods allow a variety of previously inaccessible infer- 
ences to be made routinely and easily. Several examples are included. 

1. INTRODUCTION 

The analytical laws of mortality devised by Gompertz [16] and Makeham 
[24] are well-known to actuaries and are also known to be very good rep- 
resentations of the mortality process at adult ages. Unfortunately, neither law 
lends itself to convenient mathematical analysis. As noted by London [23, 
p. 18-19] and Anderson [1, p. 124], among others, even evaluating char- 
acteristics like the mean or variance of their respective survival distributions 
is somewhat difficult. Computing the expected value of the life contingent 
functions defining annuities or insurances under either Gompcrtz's or Mak- 
eham's law is even more burdensome, as is the calculation of any of the 
associated higher moments or tail probabilities. Fortunately, a number of 
authors, including Mereu [25], Moore [28], and Carriere [6], have studied 
and facilitated the application of these laws, thus making them far more 
palatable to the practicing actuary. Nevertheless, some of these analytical 
results have been rather limited and yet have typically involved reason- 
ably sophisticated mathematical analyses, often requiring the numerical 
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evaluation of the incomplete or left-truncated gamma function, for instance, 
Moore [28] and Carrier [6]. Further, none of these references has considered 
simulating random variates from either Gompertz's or Makeham's survival 
distribution. 

In this paper I take a different approach and describe how Markov chain 
Monte Carlo (MCMC) methods, related to some of those recently appearing 
in the Transactions [5], can be used to quickly and efficiently simulate re- 
alizations of life contingent functions under Makeham's law and certain 
other patterns of mortality when the distribution of the future lifetime ran- 
dom variable either has a log-concave density or possesses one that is nearly 
so. For this purpose, a density function f ( t )  is said to be log-concave if the 
logarithm of this function is concave with respect to the argument t (that is, 
the first derivative of ln[f(t)] is a monotonically decreasing function of t). 
If the second derivative of In[f (t)] exists, then the density f ( t )  will be log- 
concave, provided that 

d 2 
dt--- i In If(t)] -< 0 

for all values of t in the domain D= {tlf(t)>0} of the density function. The 
MCMC methodology described allows a variety of previously inaccessible 
inferences to be made routinely and easily, for example, in studying the 
distribution of a prospective loss random variable associated with some in- 
surance contract to determine the necessary reserve under one of the patterns 
of mortality described above. However, the MCMC methods discussed here 
are very general and actuarial practitioners should find many other uses for 
them (see Section 5). The mortality laws of Gompertz and Makeham provide 
a context for the main examples. 

2. THE MORTALITY LAWS OF GOMPERTZ AND MAKEHAM 

The force of mortality for a life age x under Gompertz's law is given by 

~ x =  BCX, B > O , C  > - 1, x--- 0, 

and by 
p ,x= A + B C ~ , A  > -  B , B > O , C  >- 1, x-->0 

under Makeham's (London [23] and Bowers et al. [3]). Gompertz's law 
is obviously a special case of Makeham's. Makeham intended the extra pa- 
rameter A to capture that part of the hazard that is independent of age 
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[23, p. 19]. Although negative values of the parameter A may have little 
practical application, the case - B < A < 0  is included for completeness. 
Henceforth, reference is made only to Makeham's law, with the understand- 
ing that Gompertz's law is a special instance of it. 

As in Chapter 3 of Bowers et al. [3], let X denote the age-at-death random 
variable for a newborn life, let the symbol (x) denote a life age x, and let 
T(x) denote the future lifetime random variable for (x). Then the survival 
function for a newborn life under Makeham's law is given by 

s(x) = Pr[X > x] 

= exp -Ax - ~ 

the survival function for (x) is given by 

, p ~  = P r [ T ( x )  > t ]  = - -  

(C ~ -  1 ) ] , x - > 0 ;  

s(x + t) 
, t - - 0 ;  

s(x) 

and the probability density function of the random variable T(x) is given by 

f(t) = ,pxl~+, 

= e x p  - A t - i ~ ( C ' -  1) (.4 +BCX÷'),t~--O. 

The most interesting observation is that 

dt -'5d2 [ (A A ln _] In [f(t)] = -BC x+' 1 ~C--;+,)2] In C. 

When this expression is non-positive for all values of t, the continuous den- 
sity f(t) is log-concave with respect to its argument. Inspection of the ex- 
pression above indicates that log-concavity will always be obtained provided 
that -B<A<-O. On the other hand, log-concavity may not be obtained when 
A>0. However, the Makeham parameters are usually confined to the ranges 

0.001 < A  <0.003,  0.000001 < B < 0 . 0 0 1 ,  1.08 < C <  1.12 

when describing human mortality [21, p. 24], and so the value of the second 
derivative of the log-density will still be very close to zero in this case even 
when A>0. Consequently, the distribution of the future lifetime random 
variable T(x) has a density function that is either concave on the logarithmic 
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scale (that is, log-concave) or else very nearly so in the case of human 
mortality under Makeham's law. The significance of this result becomes 
apparent in the following sections. 

3. A NUMBER OF USEFUL MCMC-RELATED METHODS 

Recently, Carlin [5] showed that a random draw from a complicated k- 
variate distribution with density f ( x  I , x 2 ..... xk) can be generated by itera- 
tively and repeatedly sampling from each of the associated univariate full 
conditional distributions f (x l  Ix2 ..... xk), f(x2]xl, x3 ..... xk) ..... f(xklXl ..... 
X k_ 1 ) in turn. This algorithm describes a very simple implementation of the 
so-called Gibbs sampler, a type of MCMC method. A MCMC method is a 
sampling-based procedure that is used to generate a sequence of dependent 
random draws from a distribution of interest on a fast computer. Over the 
last six or seven years, MCMC methods have become very popular within 
the statistical sciences (for example, Gelfand and Smith [11], Smith and 
Roberts [33], Tanner [34], and Tierney [35]), and a great deal of effort has 
been expended to develop efficient and general-purpose random number gen- 
erators to implement the necessary draws from the full conditional distri- 
butions described above (for example, Wakefield et al. [36], Gilks and Wild 
[13], Gilks [12], and Wild and Gilks [37]). MCMC methods have also re- 
cently begun to be applied to actuarial problems. The Gibbs sampler was 
utilized by Carlin [4] to conduct the Bayesian state space modeling of non- 
standard actuarial time series, by Carlin [5] and Klugman and Carlin [22] 
in the context of Bayesian graduation, by Scollnik [31] to implement a 
Bayesian analysis of a simultaneous equations model for insurance rate- 
making, and by Scollnik [32] to conduct the Bayesian analysis of some 
generalized Poisson models. The Gibbs sampler is not used in this paper, 
but two methods that have recently appeared in the related MCMC literature 
are used: adaptive rejection sampling (ARS) and adaptive rejection Metrop- 
olis samp!ing (ARMS). These methods are introduced below along with 
some background material. 

The Rejection Sampling Method 

The rejection sampling method allows one to obtain a random draw from 
a distribution with a continuous density f(x).  It requires that a proposal 
distribution with density g(x) be available such that random draws from this 
distribution are easily obtained and also such that there exists a finite con- 
stant M>0 with f(x)<-Mg(x) for all values of x in the domain of f (x) .  Then 
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the following algorithm is known to yield a random draw from the distri- 
bution with density f(x): 
Step 1. Generate a uniform random variate U on the unit interval. 
Step 2. Generate a random variate X from the distribution with density 

g(x). 
Step 3. Determine whether U<f(X)/Mg(X). When this inequality is false, 

return to Step I. When this inequality is true, accept the current 
value of X and stop the algorithm. 

The value of X finally accepted will be a random draw from the distribution 
with density f(x). The rejection sampling method may be applied as many 
times as necessary in the case that a random sample of size greater than one 
is required from the distribution with density f(x). The number of iterations 
of this algorithm required in order to generate each accepted draw is known 
to be geometriclaly distributed with a mean of M, so this algorithm may be 
inefficient unless a good proposal distribution is available so that the value 
of M is close to 1. Rejection sampling and its properties are discussed in 
more detail by Devroye [10, p. 40-43] and Ross [30, p. 478-83]. These 
authors also present proofs that the algorithm performs as claimed. The 
rejection sampling method is included in the course of reading for Associ- 
ateship Course 130, Operations Research [18, p. 871-2]. 

The rejection sampling method can also be described pictorially as in 
Figure 1. In this figure, the bimodal distribution with density f(x) is the one 
from which we desire a random draw. The density f (x)  is plotted with a 
solid ( ) line. The proposal distribution has a density g(x), and some 
constant M is presumed to be known such that f(x)<--Mg(x) for all values 
of x in the domain of f(x). The curve Mg(x) is plotted with a dashed 
( - - - )  line. We assume that a method is available that permits us to imple- 
ment random draws from the proposal distribution. Then any value X sam- 
pled from the proposal distribution will be accepted with a probability equal 
to the ratio of the height f(X) to the height Mg(X). These heights are in- 
dicated on the figure for the value X=5. Rejected values are discarded. This 
procedure can be repeated as many times as necessary in the case in which 
a random sample of size greater than one is required from the distribution 
with density f(x), and the final collection of accepted values constitutes a 
random sample from the distrubition with density f(x). 
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FIGURE I 
AN ILLUSTRATION OF THE REJECTION SAMPLING METHOD 
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B. Numerical  Example  1 

The following simple example illustrates the rejection sampling method. 
Imagine that we want to generate a random variate from the beta distribution 
(with parameters 3 and 5) having the density function 

f(x) = 105 X 2 (1 - x )  4, 0 ' ~  x < 1. 

Since the random variable is concentrated on the unit interval, we use the 
rejection sampling method together with the uniform proposal distribution 

g(x) = l , O < x <  1. 
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To determine the constant M such that f(x)<-Mg(x), we need to determine 
the maximum value of the ratio 

f(x) 
= 105x a (1  - x )  4, 

g(x) 

when 0 < x <  1. Differentiation of this ratio yields 

I kg-- J = 210 x (1 - x) 4 - 420 x 2 (1 - x) 3. 

Setting this expression equal to zero and solving for x shows that the max- 
imal value of the ratio is obtained when x = l / 3 ,  so that 

and 

g5  105 

f(x) 729 
- x 2 ( 1  - x )  4. 

Mg(x) 16 

When this last expression is substituted into the rejection sampling algo- 
rithm, we find that to generate a random variate from the original beta dis- 
tribution f(x) of interest, we should perform the following procedure: 
Step I. Generate a uniform random variate U on the unit interval. 
Step 2. Generate a random variate X from the uniform proposal distribution 

with density g(x). 
Step 3. Determine whether U<f(X)lMg(X)=(729116) X 2 ( l - X )  4. If  this 

inequality is false, return to Step 1 and start over. If this inequality 
is true, then accept the current value of X and stop the algorithm. 

The value of X finally accepted will be a random draw from the desired beta 
distribution with density f(x). This example is described pictorially in Figure 
2. As mentioned previously, the number of iterations required to generate 
an accepted draw is known to be geometrically distributed with a mean of 
M, so for this simple example approximately 2.3 iterations of the algorithm 
are required. In a sense this is an atypical result, since many applications of 
the rejection sampling method require dozens or even hundreds of iterations 
on average to generate a single accepted draw. 
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FIGURE 2 

A SECOND ILLUSTRATION OF THE REJECTION SAMPLING METHOD 
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C. The Adaptive Rejection Sampling Method 
Two difficulties are associated with this rejection sampling method. First, 

the practitioner must be able to specify a proposal distribution with a density 
g(x) satisfying the relation f(x)<-Mg(x) for some constant M. Second, since 
M is the average number of iterations required to generate an accepted draw, 
the practitioner must be able to deduce a small value of M, so that the 
implementation of the rejection sampling method will be efficient. Gilks 
and Wild [13] and Gilks [12] have designed ARS methods that remove the 
difficulties associated with, and improve upon, straightforward rejection 
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sampling when the random draw is required from a distribution with a log- 
concave density function f(x). Specifically, their ARS methods construct the 
proposal distribution automatically and cleverly update it periodically, so 
that the probability of rejecting a candidate draw from the proposal distri- 
bution decreases monotonically from iteration to iteration. ARS can be used 
to obtain an independent random sample of any size from a distribution with 
a log-concave density. The following paragraphs describe the main idea of 
ARS, specify the formal algorithm, clearly state the conditions necessary for 
its successful utilization, and indicate how programming code implementing 
ARS can be obtained. 

Briefly, ARS proceeds by using the fact that a concave function can be 
squeezed between two bounds or hulls with piece-wise linear structures. The 
original formulation of ARS given by Gilks and Wild [13] constructs the 
upper hull by joining tangent lines evaluated at points along the function's 
domain and the lower hull by joining chords between these same points. 
This notion of bounding a log-concave function is illustrated in Figure 3. 
When this construction is applied to the logarithm of a log-concave density, 
the exponentiated upper hull defines a distribution with a piece-wise expo- 
nential form. This is the proposal distribution from which random draws are 
initially generated. A random draw from the proposal distribution is then 
accepted with a probability related to how closely the true density is 
squeezed between the upper and lower hulls at the value of the random 
draw. Furthermore, if the draw falls a certain test condition, then the upper 
and lower hulls are updated to incorporate the value of this draw. As the 
hulls are updated, the proposal distribution comes to more closely resemble 
the distribution from which random draws are sought, and the probability 
of rejecting a candidate draw from the proposal distribution monotonically 
decreases. By carefully tailoring the rejection step and test condition, ac- 
cepted draws are .independently generated realizations from the distribution 
of interest with the original log-concave density function. 

The ARS method of Gilks and Wild [13] can be thought of as a black- 
box technique for sampling from any univariate log-concave probability den- 
sity function f(x). The density need only be specified up to a constant of 
integration, so that rejection sampling can be performed by using g(x) in- 
stead of f(x), where g(x)=cf(x) for some possibly unknown value of c (this 
is not the same g(x) as in the previous section). This is useful when the form 
of the density is available, but the normalizing constant c=.fg(x)dx is difficult 
to compute. To use ARS to sample from a density function f(x), it is nee- 
essary to check that the domain D= {xlf(x)>O} is a connected set, that g(x) 



418 TRANSACTIONS, VOLUME XLVII 

FIGURE 3 

BONDING A LOG-CONCAVE DENSITY FUNCTION 
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is continuous and differentiable everywhere in D, and that h(x)=ln[g(x)] is 
concave everywhere in D (that is, the first derivative of h(x) decreases mon- 
otonically with increasing x in D). If the second derivative of In[f  (x)] exists, 
then it suffices to check that 

a ~ 
dx--- ~ In [ f (x)]  - 0, 

for all values of x in the domain of the density function, to ensure that h(x) 
is concave as required. 
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A formal description of the ARS algorithm of Gilks and Wild [13] be- 
gins by supposing that h(x) and h'(x) have been evaluated at k points 
XI<--X2<--...<--Xk in the domain of f(x). Let Tk={xi;i=l ..... k} and let Uk(X) 
and l~(x) denote the piece-wise linear upper hull-formed by connecting the 
tangents to h(x) at the points in T k, and the piece-wise linear lower hull 
formed by connecting the chords between the adjacent points in T k, respec- 
tively (in the spirit of Figure 3). Define the sampling density 

exp[uk(x)] 
Sk(x) = f exp[uk(x)]dx" 

The following ARS algorithm allows as many independent random draws 
as desired to be made from the distribution with density proportional to 
f(x). 
Step 1. Select and order the values in Tk. If the domain of f(x) is un- 

bounded on the left, then select x~ so that h'(xm)>0. If the domain 
of f(x) is unbounded on the fight, then select Xk SO that h'(Xk)<O. 

Step 2. Generate a uniform random variate U on the unit interval. 
Step 3. Generate a random variate X from the sampling density Sk(x). 
Step 4. Determine whether U<exp[lk(X)-uk(X)]. When this inequality is 

true, accept the current value of X. When this inequality is false, 
determine whether U<exp[h(X)-uk(X)]. If this second inequality 
is true, then accept the current value of X; otherwise reject it. 

Step 5. If the first inequality in Step 4 is false, then insert X into the set 
T k, increment k, relabel and reorder the values in T k, and redefine 
the functions Uk(X), lk(x ), and S~(x). 

Step 6. Return to Step 2 and iterate this procedure until as many values of 
X have been accepted as required. The final collection of accepted 
values constitutes a random sample from the distribution with den- 
sity proportional to f(x). 

Although the ARS algorithm of Gilks and Wild [13] is fairly simply 
stated, designing and then programming an efficient implementation of it 
might prove to be a daunting task. Fortunately, this is not required. Wild 
and Gilks [37] discuss an implementation of the ARS method, which appears 
as Algorithm AS 287 in Applied Statistics [37], and Fortran code imple- 
menting ARS is freely available on the computer Internet in the StatLib 
archive site* maintained at Carnegie Mellon University. Gilks [12] describes 

*Send an electronic mail message containing only the two words send index to statlib 
@lib.stat.cmu.edu to receive a message describing the contents of this archive site and how to 
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a derivative-free variant of ARS, which neither assumes continuity in the 
derivatives of f(x) nor requires the evaluation of these derivatives. 

TABLE 1 

DENSITIES USEFUL IN ACTUARIAL APPLICATIONS 
AND THEIR LoG-CONCAVITY PROPERTIES 

Name of Density Parameters Log4~oacave wrt: 

Exponential h x, In x, k 
Gamma a ,  13 In x, x (if a - > 1), a ,  13 
Lognormal IX, ~r 2 In x, Ix, lhr ,  log cr 
Normal Ix, Gr z x, Ix, !/~, log cr 
Pareto or, k In x, ot 
Weibull c, "r x (if "r -> 1), In x, c, "r 

Bernoulli  
Binomial 
Poisson 
Negative Binomial 

P 
n, p 
h 
r, p 

p, logit p 
p, logit p 
h 
p, logit p 

Random variate generation techniques for distributions with log-concave 
density functions should be of interest to the actuarial practitioner precisely 
because so many of the distributions in practical actuarial applications share 
this property. A number of these densities, along with their log-concavity 
properties, are listed in Table 1. These densities are parameterized as in Hogg 
and Klugman [20]. When a density is indicated as being concave on the 
logarithmic Scale with respect to a transformation of its random variable (for 
example, In x) in Table 1, this means that the density for the transformed 
random variable is log-concave with respect to its argument. As shown in 
Table 1, a number of these densities are also log-concave with respect to 
one or more of their continuous parameters, which can prove useful in the 
context of a Bayesian analysis (for an example, see Gilks and Wild [13]). 
Of course, many distributions besides those listed in Table 1 also possess 
log-concave densities. In fact, for the general location-scale family of dis- 
tributions with densities of form 

f ( x [ 0 ,  or)  o~ - qb 
(3" 

retrieve selections from it. Send an electronic mail message containing only the four words send 
index from apstat to statlib@lib.stat.cmu.edu to obtain an index of all the Applied Statistics algo- 
rithms currently archived in StatLib. Finally, send an electronic mail message containing only the 
four words send 287from apstat to statlib@lib.stat.cmu.edu to obtain Fortran code implementing 
Algori thm AS 287. 
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the logarithm of the density will be concave with respect to x, 0, and 
"r=l/tr,  provided that the function £b(z) is log-concave with respect to 
z ([13, p. 343]. 

1). l b e  Metropol is-Bast ings  Algori thm 

Rejection sampling and ARS each allow generation of a sequence of in- 
dependent draws from a distribution of interest. On the other hand, a MCMC 
method generates a sequence of dependent draws from some distribution. 
Good discussions of these methods are provided by Smith and Roberts [33], 
Tanner [34], and Tierney [35]. The Metropolis algorithm (Metropolis et al. 
[26]) is a form of MCMC method. Hastings [17] proposed a generalization 
of this method, which has become known as the Metropolis-Hastings (MH) 
algorithm. The MH algorithm allows a dependent sequence of random draws 
to be sampled from a distribution with density proportional to f(x), provided 
that a proposal distribution with density g(xlz) is available such that a random 
draw is easily obtained from it for any value of z in the domain of f(x). 
Then the MH algorithni proceeds as follows: 
Step 1. Select a starting value X o and set i equal to 0. 
Step 2. Generate a uriiform random variate U on the unit interval. 
Step 3. Generate a random variate X from g(xlxi). 
Step 4. Determine whether 

f(X)g(X,lX)~ 
U < m i n  1, f -~ / )  ~ / .  

When this inequality is true, accept the current value of X and set 
Xi+~ equal to X. When this inequality is false, reject the current 
value of X and set Xi+ I equal to X i. 

Step 5. Increment i to i+ 1 and return to Step 2. 
After a suitably large number of iterations, relevant asymptotic theory (for 
example, Smith and Roberts [33] and Tierney [35]) states that the sequence 
X~, X 2 . . . . .  can be considered to be a dependent random sample from f(x)  
in the sense that 

d 
X, ---* X ~ f (x) as t ----* oo 

and 

1 
~, h(Xi) ---* Ef[h(X)] as t --* 0% 

t i=1 

almost surely. 



422 TRANSACTIONS, VOLUME XLVII 

In plain English, the first result says that as t becomes moderately large, 
the value X, is very nearly a random draw from f(x). In practice, a value of 
t~10 to 15 is typically more than sufficient. This result also allows an ap- 
proximately independent random sample to be generated from the distribu- 
tion with density f(x) by using only every k-th value appearing in the se- 
quence. The value of k should be taken to be large enough so that the sample 
autocorrelation function coefficients for the values appearing in the sub- 
sequence are reminiscent of those for a purely random process or stochas- 
tically independent sequence, that is, until there are no significant autocor- 
relations at non-zero lags. An illustration is provided below. Autocorrelation 
functions are covered in some depth in the course of reading for Associa- 
teship Course 120, Applied Statistical Methods (also see Miller and Wichern 
[27, 333-7, 356-65]). The second result says that if h is an arbitrary 
f-integrable function of X, then the average of the function h taken over the 
sampled values X, (the ergodic average of the function) converges (almost 
surely, as t---,oo) to its expected value under the distribution with density 
f(x). 

Note that the proposal distribution g(xlz ) must satisfy some mild regularity 
conditions to guarantee that the MH algorithm converges in the sense de- 
scribed above. Basically, if u and o are two values in the domain of f(x), 
then the proposal distribution utilized must permit it to be possible to move 
from u to o in a finite number of iterations of the MH algorithm with non- 
zero probability. Further, the number of iterations required to move from u 
to v should not have to be a multiple of some number. These conditions are 
usually satisfied if g(xlz) has a positive density on the domain of f(x), or 
else has a positive density over a restricted domain (for example, g(xlz) 
corresponds to a uniform distribution around z with finite width) [8], [9]. In 
short, the practitioner has considerable freedom when selecting the proposal 
distribution. A popular choice is for the proposal distribution g(xlz) to cor- 
respond to a normal distribution with mean z, or perhaps a heavier tailed 
student t distribution. 

Another common selection is to let g(xlz)correspond to a fixed distribu- 
tion, independent of z, that is, g(xlz)--g(x). An example of this is a normal 
distribution with zero mean. In practice, the proposal distribution should be 
selected so that the autocorrelations in the sequence of simulated values 
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generated by the MH algorithm are not too high, and this is often the case 
if the proposal distribution is selected in such a way that the average number 
of times the acceptance check in Step 4 of the MH algorithm rejects a 
candidate draw is about 50% [8], [9]. 

E. Numerical Example 2 

The MH algorithm is illustrated with a trivial yet illuminating example. 
Consider the distribution with density 

f ( x ) =  2 x ,  O < - x < -  1. 

The MH algorithm is applied with a uniform proposal distribution on the 
unit interval, so that 

g(xlz)  - g(x)  = 1, 0 <- x <-- 1. 

In this case, the acceptance probability appearing in Step 4 of the MH al- 
gorithm becomes 

f(x,) g(xlx,)} 
To initialize the MH algorithm, the starting value X 0 was arbitrarily set equal 
to 0.5. The (i+l)-st iteration was entered with the value X~; a candidate 
value X was sampled from the uniform proposal distribution on the unit 
interval; and the iteration was exited with the value of Xi+ ~ set equal to X 
with a probability equal to min(1, XIXi). Otherwise, X;+ I was assigned the 
iteration's entering value X~. A total of 3,000 iterations of this algorithm was 
performed, and the first 75 values of X are plotted in Figure 4a. The depen- 
dent nature of this sequence is immediately perceptible. 

This observation can be confirmed by examining the sample autocorre- 
lation function for this sequence of 3,000 simulated values. This sample 
autocorrelation function appears as Figure 5a. The heights of the 20 different 
spikes in this plot represent the values of the sample autocorrelation coef- 
ficients at lags 0 through 19. If the sequence of 3,000 sampled values is 
truly independent, then all the sample autocorrelations at non-zero lags 
should be close to zero. Spikes crossing either of the two horizontal dashed 
lines identify autocorrelation coefficients that are significantly different from 
zero (at the 95% level of significance). For the sequence of 3,000 sam- 
pled values, significant autocorrelations are identified at the non-zero 
lags 1 through 4, reinforcing the original impression that this sequence was 



424 TRANSACTIONS, VOLUME XLVII 

FIGURE 4 
PLOTS FOR NUMERICAL EXAMPLE 2 

| . O "  

0.8 

0.6 

0.4 

O.2 

0.0 

e •  * t'm ~elp• • 

e 

(a) SEQUENCE OF SIMULATED VALUES FOR X 

1 . 0 "  

0 . 8 .  

0.6 

0,4 

0 . 2 .  

0.0 

• , **** • 
• • • • • 

It • • • •  • S  • •  t 
• • • . • • 

* f 

• • • • *••• l i t  
• • • 

8 

i1, 

6 5b 16o 60 ~o 
( b )  SUB-SEQUENCE OF SIMULATED VALUES FOR X 

e e  

8 

2.0 .  

!.5, 

1.0. 

0 .5 ,  

0.0. 

,,- / j 

r / / 

/ / / 

,f / / 

/ / J 

f J ./  

010 012 0~4 016 0~8 110 
(C) EMPIRICAL HISTOGRAM CONSTRUCTED 

USING THE SUB-SEQUENCE OF SIMULATED VALUES FOR X 



SIMULATING RANDOM VAR1ATES FROM MAKEHAM'S DISTRIBUTION 425 

dependent. Even so, the empirical mean (0.66121) and variance (0.05520) 
of these 3,000 sampled values are each very close to the exact theoretical 
values associated with the random variable with distribution f(x) (0.66667 
and 0.05556, respectively). 

FIGURE 5 

SAMPLE AUTOCORRELATION FUNCTION PLOTS FOR NUMERICAL EXAMPLE 2 
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Incidentally, the implementation of the MH algorithm for this example 
was monitored as it ran on a fast computer, and the acceptance check in 
Step 4 of the algorithm rejected 978 of the 3,000 candidate draws from the 
proposal distribution. Thus, the observed rejection rate was 32.6%. The re- 
jection rate is sometimes referred to as the "staying rate," since when a 
candidate draw X from the proposal distribution is rejected in Step 4 of the 
MH algorithm, the value of X;+~ stays the same as that of X i. Obviously, 
this accounts for the dependence observed in the sequence of 3,000 simu- 
lated values. 
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To recover an approximately independent random sample from this se- 
quence, the sub-sequence of 1,000 values was formed by keeping only every 
third value in the original sequence of 3,000 (that is, k=3 in the discussion 
above). The first 75 values of this sub-sequence constitute Figure 4b. The 
sample autocorrelation function for this sub-sequence of 1,000 values ap- 
pears as Figure 5b. This sample autocorrelation function is reminiscent of 
what we would expect for a purely random process, since none of the au- 
tocorrelations at non-zero lags is significantly different from zero. An em- 
pirical histogram constructed using the 1,000 simulated values of the sub- 
sequence appears as Figure 4c, along with the exact density function for the 
distribution of interest. We note that the correspondence between the em- 
pirical histogram and the exact density is very good, indicating that the sub- 
sequence does appear to form a random sample from the desired distribution. 

F. The Adaptive Rejection Metropolis Sampling Method 

As its name suggests, ARMS is a hybrid method combining ARS with 
the MH algorithm. ARMS generalizes ARS to deal with distributions pos- 
sessing non-log-concave densities by appending a MH acceptance step (like 
Step 4 in the description of the MH algorithm above) to the ARS algorithm. 
In general, ARMS is much more convenient to use than MH alone, since 
ARMS automatically constructs the required proposal distribution using 
ARS. ARMS also operates such that when the distribution of interest does 
possess a log-concave density, the MH step always accepts and ARMS sim- 
ply reduces to ARS. This means that there is no additional overhead in using 
ARMS when just ARS would have sufficed. When the distribution of interest 
does not possess a log-concave density, the ARMS algorithm defines a valid 
MCMC method and generates a dependent sequence of random draws from 
the distribution of interest. A detailed description of ARMS can be found 
in Gilks et al. [14], [15]. Those two papers also announce the free availability 
of C code implementing ARMS, utilizing a derivative-free version of ARS, 
and indicate that it may be obtained from the authors on request (e-mail 
wally.gilks@mrc-bsu.cam.ac.uk). This C code was utilized to perform the 
simulations discussed in the next section. I will gladly provide interested 
readers with the main calling program used in conjunction with the ARMS 
code to implement the random draws from the Makeham survival distribu- 
tion described in the next section. 
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4. APPLYING ARS AND ARMS IN THE MAKEHAM CONTEXT 

When operating under Makeham's law, as noted at the end of Section 2, 
the distribution of the future lifetime random variable T(x) either has a log- 
concave density or possesses one that is nearly so for all practical selections 
of the Makeham constants. The discussion in Section 3 states that a very 
efficient and fast random number generator now exists, which can be used 
to simulate a sequence of (possibly dependent) random draws from the dis- 
tfibution of T(x), in these cases. By utilizing well-known Monte Carlo sim- 
ulation methods (for example, Ross [29], Tanner [34]), it will also be pos- 
sible to easily infer a variety of characteristics related to the distribution of 
various life contingent functions under the assumption of Makeham's law. 
The remainder of this section provides a few examples illustrating some of 
the applications of this method. 

.4. Numerical  Example 3 

Consider a life age 50. whose future lifetime random variable T(50) 
is assumed to follow the Makeham distribution, as in Section 2, with 
parameters 

A = 0.001, B = 0.0000070848535, C = 1.1194379, 

as found in Mereu [25] and Moore [28]. ARMS was utilized to generate 
5,000 dependent realizations of T(50) from this Makeham distribution. This 
simulation took a second or two to run on a desktop UNIX workstation (that 
is, a SUN Sparcstation LX operating at 50 MHz).t  The MH acceptance step 
in the ARMS algorithm rejected none of the 5,000 candidate draws from 
the proposal distribution, indicating that the ARS part of ARMS was doing 
a very good job at constructing and updating an efficient proposal distri- 
bution. This comes as no great surprise, since in Section 2 the density of 
the Makeham survival distribution was very nearly log-concave, so that the 
ARS algorithm should be able to construct a proposal distribution that 
closely matches the Makeham survival distribution of interest. As in Ex- 
ample 2, the sample autocorrelation function was examined for the depen- 
dent sequence of 5,000 simulated values, and it was reminiscent of that for 
a purely random process (that is, none of the autocorrelations at non-zero 

tThis simulation time, along with those reported below, should be comparable to that using a 
fast PC (for example, 486 or Pentium operating at 50 Mhz or faster). In fact, since my Sparcstafion 
is circa 1992 with no upgrades, I would expect even better simulation times using a fast Pentium- 
based PC. 
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lags was significantly different from zero). Thus, the 5,000 dependent real- 
izations were treated as independent draws for all practical intents and pur- 
poses. The empirical histogram for these sampled values is plotted against 
the exact density for the random variable T(50) in Figure 6a to demonstrate 
that they do appear to constitute a random sample from the desired distri- 
bution. Recall that the exact density function f(t) for the future lifetime 
random variable T(x) under Makeham's law was previously derived in Sec- 
tion 2. 

For this same life, consider a newly issued unit whole life insurance with 
benefit payable at the moment of death, so that the present value of the 
benefit is described by the random variable 

Z = v r~5°) = exp[-~T(50)], T(50) -> 0, 

in which 3---0 denotes the force of interest. Also, consider a continuous 
whole life annuity with the random variable 

1 - exp[-~T(50)] 
Y = ff'rt5-3-~ = 8 , T(50) --- 0, 

describing the present value of the annuity payments. Both of these random 
variables are typical of the sort found in Bowers et al. [3]. We applied these 
two transformations to the 5,000 previously sampled values of T(50) to gen- 
erate (effectively independent) random samples from the distributions of Z 
and Y, taking the force of interest to be equal to ~=1n(1.025) for illustrative 
purposes. In Figures 6b and 6c the empirical histograms of these transformed 
values have been plotted against the exact density functions for Z and Y to 
demonstrate that they essentially constitute random samples from the distri- 
butions we claim. The exact density functions for the random variables Z 
-and Y were obtained by applying the standard transformation of variable 
technique to the density function of T(50) (for example, Hogg and Craig 
[19, p. 132-3]). 

At this time ARMS once again was utilized to generate 250,000 realiza- 
tions of T(50) from the same Makeham distribution as before; these sampled 
values were also transformed into realizations of Z and Y. This simulation 
took less than 2 minutes of real time on the same desktop SUN Sparcstation 
LX. The empirical mean, variance, skewness, kurtosis, and 95th percentile 
of these sampled values were used to estimate the corresponding population 
quantities. These empirical values are presented in the third column of Table 
2. Estimated approximate Monte Carlo standard errors [34, p. 30] are also 
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FIGURE 6 

EXACT DENSITIES AND EMPIRICAL HISTOGRAMS FOR NUMERICAL EXAMPLE 3 
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included for the three empirical means in brackets beside these entries 
in the third column. Recall that if n is the Monte Carlo sample size and 
x I . . . . .  x n denote the independently sampled values, then the estimated 
Monte Carlo standard error associated with the sample mean is given by 

¥ n(n-  1) 

This time the MH acceptance step in the ARMS algorithm rejected a single 
• one of the 250,000 candidate draws from the proposal distribution, indicating 
once again that the ARS part of ARMS was doing a very good job at 
constructing and updating an efficient proposal distribution. As before, the 
sample autocorrelation function for the dependent sequence of 250,000 sim- 
ulated values was examined and no autocorrelations at non-zero lags were 
significantly different from zero. This means that the 250,000 dependent 
realizations can be treated as independent draws for all practical intents and 
purposes, and so we are comfortable using the definition for the estimated 
Monte Carlo standard error associated with the sample mean given above. 

Finally, the values in the second column of Table 2 are numerical ap- 
proximations to the exact theoretical values and were determined with the 

TABLE 2 

NUMERICAL APPROXIMATIONS AND EMPIRICAL VALUES 

FOR NUMERICAL EXAMPLE 3 

Numerical 
Quantity of Interest Approximation 

E [T(50)] 30.81125 
Variance [T(50)] 108.87118 
Skewness [T(50)] -0.60911 
Kurtosis IT(50)] 2.96685 
95th Percentile (T(50)] 45.39895 
E [ vT~5°)] 
Variance [v To°l] 
Skewness [vX~5°q 
Kurtosis [v T~5°~] 
95th Percentile (v rls°l] 

E t ~ l  , 

Variance [gr~-7"~ J 
Skewness [g~ 5o ] . ( 
Kurtosls [~-~---~ 
95th Percentile (~T~I  

0.48388 
0.01851 
1.26008 
4.50669 
0.77004 

20.90160 
30.36526 

- 1.26008 
4.50669 

27.29774 

Empirical Value 

30.79607 (0.02086) 
108.80472 
-0.61111 

2.96872 
45.35621 

0.48406 (0.0O027) 
0.01852 
1.26134 
4.50692 
0.77025 

20.89457 (0.01102) 
30.38141 

- 1.26134 
4.50692 

27.2838 
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aid of a symbolic mathematics computer package (namely, Maple V Release 
3). A symbolic mathematics package represents another means by which 
simple characteristics like moments or tail probabilities associated with the 
Makeham survival distribution can be determined. Unfortunately, these pack- 
ages are not always well-suited for more sophisticated problems (for ex- 
ample, like numerical example 4 below), and they are not as commonplace 
as Fortran or C compilers (Fortran and C being two languages for which 
programming code implementing ARS and ARMS is freely and readily 
available). Further, symbolic mathematics packages are usually not designed 
for simulation applications, so that they may not be very convenient com- 
puting environments in which to implement simulation methods such as 
ARS or ARMS. 

B. Numerical Example 4 

Now consider a whole life insurance issued to a life age 30 with a 10,000 
benefit payable at the moment of death and with a premium of an amount 
equal to "rr payable at the beginning of each year. For this policy, the random 
variable describing the present value of the loss faced by the insurer is 
defined by 

L = 10,000 o r~3°) - rr ~ ,  T(30 ) >-- 0, 

where K(x) is used to denote the curtate future lifetime random variable for 
(x). The value of ~r is determined according to some premium principle as 
in Chapter 6 of Bowers et al. [3]. The equivalence principle, for example, 
selects ar such that the insurer's expected loss is equal to zero (that is, 
E[L]=0). For the present numerical illustration, we set ~r as small as possible 
such that the insurer faces a positive loss on this single insurance contract 
with a probability no greater than 5% (that is, Pr[L>0]<---0.05). Unfortu- 
nately, the distribution of L is somewhat awkward to study analytically since 
L is a function of the continuous random variable T(30) along with its dis- 
crete valued part K(30). This would also complicate the application of a 
symbolic mathematics package. Nevertheless, we may easily estimate the 
value of ~r on the basis of a Monte Carlo simulation. 

Specifically, if the future lifetime random variable T(30) is assumed to 
follow a Makeham distribution as in Section 2, then it is a simple matter to 
simulate a large number of realizations of T(30) using ARMS and, for a 
given value of It, then transform these sampled values into realizations of 
L. On the basis of just such a Monte Carlo simulation, assuming that the 
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Makeham parameters remained as in numerical example 3, taking the force 
of interest ~ to be equal to 1n(1.075), and utilizing 250,000 sampled values 
of T(30), we determined that for a value of "tr equal to 143.20, the probability 
Pr[L>O] is approximately equal to 0.05. Incidentally, during this simulation 
the MH acceptance step in the ARMS algorithm rejected 1,796 of the 
250,000 candidate draws from the proposal distribution, thus yielding a re- 
jection rate of 0.7184%. This rejection rate is very small and indicates that 
the ARS part of ARMS is doing a good job at constructing and updating an 
efficient proposal distribution. Note that this rejection rate is considerably 
larger than the one encountered in the previous example, possibly indicating 
that the Makeham survival distribution for a life age 30 is not quite as log- 
concave as it is for a life age 50. 

To test the value of "tr determined above, another 250,000 realizations of 
T(30) were sampled. The empirical histogram of these values is presented 
in Figure 7a along with a plot of the exact density curve. Taking "rr equal 
to 143.20, we transformed these values into realizations of L. The proportion 
of these realizations exceeding zero was 5.082% (that is, the observed value 
of L exceeded zero 12,705 times out of 250,000). The empirical histogram 
for these sampled values of L is also presented in Figure 7b. Note that this 
second histogram is plotted on a square root scale, so that the proportion of 
realizations of L observed between -2,000 and -1,500 is approximately 
equal to 500x0.039×0.039=0.7605, for example. A square root scale was 
adopted for the vertical axis of this histogram to better illustrate the long 
tail of the distribution on the right-hand side. Table 3 presents the empirical 
mean, variance, skewness, kurtosis, and 95th percentile of the sampled val- 
ues of L. 

Finally, assume that the life under study survives to age 50 and that we 
are interested in studying the adequacy of the reserve at that time. Using 
ideas found in Chapter 7 of Bowers et al. [3], the insurer's prospective loss 
random variable at that time is defined by 

2oL = 10,000 v r¢5°) - 1 4 3 . 2 0 / / ~ .  

By now, it should be apparent that we can simulate random draws from the 
distribution of 2oL by sampling values of T(50) using ARMS and then ap- 
plying the appropriate transformation to them. We simulated 250,000 reali- 
zations of zoL in this manner and plotted the empirical histogram for the 
sampled values in Figure 7c. As before and for the same reason, this his- 
togram is plotted on a square root scale. Table 3 presents the empirical mean, 
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FIGURE 7 

EXACT DENSITY AND EMPIRICAL HISTOGRAMS FOR NUMERICAL EXAMPLE 4 
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TABLE 3 

EMPIRICAL VALUES FOR NUMERICAL EXAMPLE 4 

Quantity of Interest Empirical Value 

E[L] - 1,444.17600 (2.31665) 
Variance [L] 1,341,721 
Skewness ILl 5.49276 
Kurtosis ILl • 39.11419 
95th Percentile [L] 12.89028 

E[2oL] -267.6755 (3.57699) 
Variance [2oL] 3,198,709 
Skewness [2o L] 2.68140 
Kurtosis [2oL] 11.31819 
95th Percentile [zo L] 3,529.356 

variance, skewness, kurtosis, and 95th percentile of the sampled values 
of 2o L. 

5. CLOSING REMARKS 

This paper discusses the application of MCMC-related methods to simu- 
late life contingent functions under Makeham's law and certain other patterns 
of mortality, when the distribution of the future lifetime random variable 
either has a log-concave density or possesses one that is nearly so. Specif- 
ically, the application of recently formulated ARS and ARMS methods is 
discussed, and several illustrations are provided. As noted in the main text, 
ARS and ARMS can be used to simulate random draws from a wide variety 
of other distributions commonly used by actuarial practitioners. These in- 
clude, but are not restricted to, the gamma, lognormal, normal, Pareto, and 
Weibull distributions. Many other problems in actuarial science can be ex- 
pected to benefit from an application of MCMC and related methods. One 
possible application may be to use MCMC methods to simulate from arbi- 
trary aggregate claims distributions. I expect to report upon this application 
in the near future. 

A variety of very timely research papers concerned with MCMC methods 
are currently available on the computer Internet via the MCMC Preprint 
Service located at http://www.statslab.cam.ac.uk/. Those papers in the ref- 
erence list with an asterisk were available through this service when this 
paper was being prepared. 
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DISCUSSION OF PRECEDING PAPER 

JACQUES F. CARRIERE: 

Dr. Scollnik's paper presents MCMC-related methods to simulate random 
variables from densities that are nearly or exactly log-concave. The purpose 
of this discussion is to argue that these simulations can be done with simple 
and standard methods. 

Let us suppose that we have generated a sequence of independent and 
identically distributed random variables, denoted as X~ . . . . .  X n, from a com- 
mon cumulative distribution function (cdf), denoted as F(x). It is well-known 
that this sequence can be used to construct an empirical function 

F(x) =-1 ~ 1 (X k<--x), 
n k = l  

which can be used to approximate any property of F(x). The paper states 
that these "simulation methods allow a variety of previously inaccessible 
inferences to be made routinely and easily." To suggest that this paper solves 
problems that were "previously inaccessible" is too strong a statement, be- 
cause these problems are easily solved with standard techniques. Moreover, 
it is not the simulation methods that allow these inferences to be made easily; 
rather, it is the empirical function /~(x). For example, to approximate -4so, 
we would use the formula 

= - -  o x k ,  
I.) x X )  n k = l  

assuming that T(50)-F(x). Again,  the more complicated Numerical Exam- 
ple 4 is easily solved, as long as F(x) is known. 

The paper also states that "none of these references has considered sim- 
ulating random variates from either Gompertz's or Makeham's survival dis- 
tribution," possibly implying that these simulations are difficult to imple- 
ment, thus requiring a sophisticated MCMC-related method. Actually, 
generating random variables from these distributions is quite simple. Let U 
be a random variable from a uniform distribution on the interval (0,1). Also, 
let F-I(u)=inf{xE ~& : F(x)>--u} be an inverse function of F(x). It is well- 
known that if F(x) is a continuous function in x, then F- t (U)  is a random 
variable with a cdf equal to F(x). The key to using this result is calculating 
the inverse function F-~(u). This is a trivial exercise for the Gompertz 

439 
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distribution. For Makeham's law, no explicit expression exists for the inverse 
function, but the problem of finding the value X such that F(X)= U is easy. 
In this case the Newton-Raphson method is used, a technique that all ac- 
tuaries know. 

The paper also states that the MCMC-related methods "can be used to 
quickly and efficiently simulate random draws," possibly implying that these 
methods are quicker than others. As evidence, the paper states that 250,000 
realizations from a Makeham distribution "took less than two minutes of 
real time" on a SUN Sparcstation LX. Using the GAUSS programming 
language and the Newton-Raphson method, it took me about six minutes to 
generate 250,000 observations from the Makeham distribution. These cal- 
culations were done on a 66 MHz Pentium processor, and so it is not clear 
to me that the MCMC-related methods are much faster. 

In conclusion, the MCMC-related simulation methods are very interesting 
and they may be useful under certain situations, but I am not convinced that 
they are practical enough for simply simulating a Makeham random variable 
or any other univariate distribution that actuaries may use. 

GORDON E. KLEIN: 

Dr. Scollnik presents a method for simulating random draws from distri- 
butions such as Makeham's. The methods he presents are interesting, and 
they provide a nice addition to the acceptance-rejection method as covered 
in the syllabus for Examination 130 [18, p. 871-2]. (Note that my references 
are to Dr. Scollnik's bibliography.) In particular, the method as presented on 
the 130 Syllabus can be used only for random variables that are bounded 
on both sides. The rejection sampling method described by Dr. Scollnik 
overcomes this problem. 

My criticisms of the paper can be stated as follows: (1) This is a method 
in search of an actuarial problem to solve. I can think of no real problem 
that is solved by this method, and this paper certainly does not provide one. 
The illustrations in the paper (particularly Numerical Example 4) are sim- 
ply artificial problems designed to illustrate the method. I can think of no 
actuarial application for generating large numbers of random draws from 
Makeham's distribution. (2) Even if this were not the case, there are ways 
to simulate Makeham-distributed random variables that are more generally 
useful. I address the second criticism first. 
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Other Methods for  Simulating Draws f rom 
M a k e b a m  's Distribution 

What if one didn't have the methods of this paper and it were necessary 
to generate a large number of random draws for a future-lifetime random 
variable that had the Makeham distribution? One method that comes to mind 
is to invert the cdf of the future-lifetime random variable and to apply this 
to random draws from the uniform distribution. Actually, it is a little easier 
to do this with the survival distribution, of a life currently age (x), instead 
of the cdf. For a life subject to Makeham's law of mortality, we have 

tP~ = stg 0'C¢'-I), 

using the notation of [21], where 

and 

In s = - A ,  

B 
In g In c" 

Now, let's say that you have a random draw u from the uniform distribution 
on the unit interval. Setting tP~ equal to u and solving for t will result in a 
random draw, t, from the Makeham-distributed random variable, T(x). 

The equation 

U "~ tPx  : s t g  c ' (ct-I)  

cannot be solved explicitly for t, but this presents no real problem. Taking 
the natural logarithm of each side, we have: 

l n u  = t i n s  + cX(c ̀-  1) lng ,  

which, in terms of the original parameters, is 

Bc ~ 
l n u  = - A t -  ~ (c t -  1). 

Moving all the terms to the left, we have a function whose root we need. 
Applying the Newton-Raphson Method, we find t as the limit of the quad- 
ratically convergent sequence (for an appropriate initial value) 
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Bc ~ 
Atk + ln  c (c'k - 1) + l n u  

tk+l = tk - A + Bc ~+'k 

This routine required about seven minutes on a 486-66 computer using 
BASIC to generate 250,000 draws (and calculate the loss random variable 
for each draw). This compares with less than two minutes for Dr. Scollnik's 
routine using a SUN Sparcstation and a C-language routine. This does not 
seem to me to be a significant difference given the infrequency with which 
one needs to generate 250,000 random draws from a Makeham distribution. 

Another method for generating random draws is to simply create a table 
of the cdf and to search it for each random draw from the uniform distri- 
bution on the unit interval. That is, create a table of ~lq* for non-negative 
integral values of k, and then, for each random draw from the uniform 
distribution, find the integers that surround that number in the table. This 
method requires some type of interpolation between the surrounding integers 
(if you are interested in the exact time of death instead of the number of 
complete years lived) and an upper bound on the table (even though the 
Makeham distribution is unbounded). Neither of these problems is very se- 
rious. One advantage of this "table lookup" method is that it can be used 
for a n y  distribution of mortality. I think that the method of Dr. Scollnik's 
paper is more complicated and less general than the method of this 
paragraph. 

A Solut ion in S e ar ch  o f  a n  A c t u a r i a l  P r o b l e m  

My other criticism is that I don't think that the methods of Dr. Scollnik's 
paper solve any actuarial problem. Numerical Example 4 purports to be a 
"more sophisticated problem" than can be handled by symbolic mathematics 
packages. This problem is a variation of one that is common on Examina- 
tion 150 ("Actuarial Mathematics") and that is easily solved by hand. The 
random variable L is a continuous (except at the integers), monotonically 
decreasing function of the remaining-future-lifetime random variable, T(30), 
which is subsequently referred to as T. Thus, if we find the number t* such 
that Pr[T<t*] = 0.05, then the premium calculated as 

10,000 v'* 
Tr = 

/iffrj~ 

(where Lt*J indicates the greatest integer) will be such that 



DISCUSSION 443 

Pr[L(.rr) > 0] = 0.05 

(where we have indicated that the loss random variable is a function of the 
premium). 

For the problem considered in Numerical Example 4, t* is the solution of 
,,q3o=0.05. This is easily found to be 24.323001. Substituting this into the 
expression for the premium, we have 

10 ,000  0 24.323001 
"tr = - 143.7102. 

This is exact to the number of places show, but just to demonstrate, I gen- 
erated 250,000 random draws of the loss random variable using this pre- 
mium. Of these, 12,603 turned out negative, which is about 5.04%. (Note 
that this method does not require the generation of any random draws. This 
was done merely to parallel the "demonstration," actually also the estimation 
of the answer, in Dr. Scollnik's paper.) 

I am interested in Dr. Scollnik's explanation of the discrepancy between 
this and his answer of 143.20. It appears to me that his method is much 
more complicated, requiring the generation of a huge number of random 
draws. Yet it gives an answer that is subject to a random error whose range 
is unbounded. That is, one cannot determine an interval in which the answer 
lies with probability 1 using Dr. Skollnik's method. 

The second part of Numerical Example 4 likewise complicates the process 
of finding the distribution of the loss random variable 20 years after issue. 
For example, the 95th percentile of this random variable can easily be found 
by evaluating the random variable at the value of t* where r,qs0=0.05. It is 
easily shown that t*= 10.58276, so that the 95th percentile of the loss random 
variable is 

20L(10.58276) = 10,000 o 10.58276 _ 143.20 ~/~ - 3,525.56, 

(using Dr. Scollnik's premium for comparison). This is exact to the number 
of places shown. It compares with his "empirical value" of 3,529.356. 

The estimation of the x-th percentile of a random variable using the Monte 
Carlo method (with a given degree of precision) requires a larger sample as 
x approaches 0 or 100. For example, to estimate the value of the loss random 
variable, 2o L, that has a one-in-a-million chance of not being exceeded, we 
could use an estimate between the 10th and 1 lth order statistics out of a 
sample of 10 million. This estimate would be unbiased, but its variance 
would be large. A larger sample would reduce the variance of the estimate. 
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(The sample of 250,000 from the paper would be useless for this problem.) 
A better method, when it can be done, is to approach the problem directly. 
In this particular case, we can find that 

59.002996P50 = 0.000001, 

so that the 0.0001th percentile of the loss random variable is 

2oL(59.002996) = 10,000 13 5 9 . 0 0 2 9 9 6  - -  143.20 a ~  = - 1,885.536. 

Conclusion 

Despite my two criticisms of this paper, I find the methods interesting. It 
will be interesting to see what actuarial problems they can be applied to. I 
look forward to seeing Dr. Skollnik's work applying the methods to aggre- 
gate claims distributions. 

JEFFREY S. PAl: 

Markov chain Monte Carlo methods have become very popular in recent 
years as a way of generating a sample from a complicated probability dis- 
tribution. Dr. Scollnik has applied some of these techniques successfully on 
Makeham's distribution and other distributions. The author has also shown 
how to easily estimate the distribution of the present value of the benefit as 
well as the distribution of the present value of the annuity payments using 
sampling methods. The estimations can be made as accurate as desired by 
increasing the length of the MCMC simulations. 

The problem of the computer generation of random variates with a given 
force of mortality can be done easily by applying the connection between 
the cumulative distribution function, F, and the cumulative force of mortal- 
ity, M: 

F(t) = 1 - exp [-M(t)], M(0 = Ix(s)ds. 

For generating a random variate with cumulative mortality M, it suffices to 
invert an exponential random variate E [Scollnik's ref. 10, p. 2601. If the 
solution t of M(t)=E is not explicitly known, such as the Makeham's law, 
we can incorporate Newton-Raphson iterations, the thinning algorithm, or 
the composition method (see Pai [2]). 

The Metropolis algorithm is a method of constructing a reversible Markov 
transition kernel with a specified invariant distribution. I would like to 
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suggest the applications of the Metropolis algorithm in the optimization 
procedure and the Bayesian analysis. 

The Metropolis algorithm can be used in the simulated annealing method 
[1], which has attracted significant attention in finding a desired global ex- 
tremum among many local extrema. Programs coded in C and Fortran are 
available from Press et al. [3]. 

Bayesian inference proceeds by obtaining marginal posterior distribu- 
tions of the components of the model parameters as well as features of these 
distributions. For instance, suppose we use the data of size 200, say T=(t~, 
. . . .  rE00)', sampled from the Makeham's distribution with 

I x ( t )  = A + B C  x+' ,  x = 50, 

where 

A = 0.001 

B = 0.0000070848535 

C = 1.1194379. 

If we assume the priors of these parameters are 

"rr(A) = 1/0.003, 0 < A < 0.003, 

-rr(B) = 1/0.001, 0 < B < 0.001, 

"tr(C) -- 1/0.2, 1 < C < 1.2, 

then the posterior is proportional to the product of the priors and the like- 
lihood function: 

"n'(A, B, clr) ~ (A + BC x÷') exp - A t i - ~ ( C "  - 1) . 
i=1 i=1 In C i=1 

Using the uniform priors stated above, this is essentially the likelihood ap- 
proach. The ARMS-within-Gibbs method or the Metropolis-within-Gibbs 
method can be utilized to sample from the full conditional densities. The 
results of using the Metropolis-within-Gibbs method and the estimated mar- 
ginal posterior densities are shown in Figure 1 and Figure 2 with 2000 
iterations. 

As Dr. Scollnik stated, many problems in actuarial science can be expected 
to benefit from an application of MCMC methods. The attractiveness of the 
sampling methods is their conceptual simplicity and ease of implementation 
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FIGURE I 

MCMC OUTPUT FROM THE METROPOLIS-WITHIN-GIBBS ALGORrrHM 

FIGURE 2 

ESTIMATED MARGINAL POSTERIOR DENSITIES 

I 

| I 



DISCUSSION 447 

for users with available computing resources but without numerical analytic 
expertise. I believe that actuarial students will soon gain more insight and 
understanding in the classroom by using MCMC methods. 
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JOHN A. MEREU: 

Dr. Scollnik has written an interesting paper showing how some new tech- 
niques for generating random variables can be used to efficiently solve prob- 
lems in which mortality follows Makeham's law. 

This discussion presents an alternative to Monte Carlo methods referred 
to as a grid approach. The grid approach also takes advantage of the com- 
putational power of today's personal computers. It calls for the generation 
of values of a probability density function (pdf) over a broad and dense 
spectrum of the independent variable. 

Let T be the future lifetime random variable for a person aged x. The 
expected value of T is given by the integral 

E[T] = t ,Px Ixx+, dt. 

The integral is the limit of the following sum as n approaches infinity and 
h approaches zero. 

~ f(K+l)h 
E[T] = lim t tPx Ix~+t dt - Kh ghPx ['l'x+Kh" 

k=0 JKh K=0 
h---.O 

Setting n to 6000 and h to 0.01, I computed the following values given 
in Table 2 of the paper with an APL program using 1.87 seconds of CPU 
time: 
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Quantity of Interest Nurtmrieal Empirical Value Empirical Value 
T(50) Approximation (Monte Carlo) (Grid Method) 

Mean 30.8 i 125 30.79607 30.80711 
Variance 108.87118 1 0 8 . 8 0 4 7 2  108.84535 
Skewness -0.60911 -0.61111 -0.60872 
Kurtosis 2.96685 2.96872 2.96621 
95th Percentile 45.39895 45.35621 45.39 

Let Z be the discounted benefit random variable for 1 payable at the 
moment of death. The expected value of Z is given either of the two inte- 
grals, one based on the pdf of Z and the other based on the pdf of T. The 
grid method can be used to approximate the quantities of interest for either 
integral. The results are approximately the same and also conform to those 
given by the Dr. Scollnik in Table 2. If the pdf of T is used, the histograms 
require a mapping of the pdf values to histogram segments of Z and a 
totaling of the probabilities by segment. If the pdf of Z is used, the mapping 
is more straightforward, but some calculus is required to determine the pdf 
of Z, given by 

pdf(Z) = ~  (A + exp - l n c  ( c s -  1) exp(-As) 

where s = - (1 /g)  In Z. Similar comments apply to Y, the discounted benefit 
random variable for a continuous annuity to the moment of death. 

In Table 3 and Figure 7 Dr. Scollnik provides an analysis of the semi- 
continuous loss function random variable, L, assuming the premium charged 
is large enough to reduce the probability of positive loss to 5%. Because it 
does not seem feasible to derive a probability density function for L, the 
grid method was applied using the pdf of T. The results obtained were 
consistent with those published by Dr. Scollnik. The premium itself can be 
obtained by solving tp3o=0.95 using the grid method to get t and then solv- 
ing L(t)=0 to find the premium. I found the premium to be $143.76. 

(AUTHOR'S REVIEW OF DISCUSSIONS) 

DAVID P.M. SCOLLNIK: 

I thank the discussants for their valuable comments and for the interest 
that they have shown in this paper. 
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One goal of this paper was to introduce Transactions readers to some of 
the new and very generally applicable techniques for random number gen- 
eration and stochastic simulation that have attracted much interest in recent 
statistical literature. ARS was introduced as an example of an adaptive ran- 
dom variate generation method, and the MH and ARMS algorithms served 
as two examples of MCMC methods for generating sequences of dependent 
random variates from a target distribution of interest. These techniques com- 
plement, but do not entirely replace, the few tried and true simulation meth- 
ods currently appearing in the Associateship syllabus. 

Another goal of the paper was to demonstrate the application of these 
MCMC methods in a simple and easily understood actuarial context and to 
illustrate some of the characteristics of these methods. However, emphasiz- 
ing the univariate Makeham distributional setting as I did may have obscured 
the fact that the methods have a much wider field of application. Klein goes 
so far as to suggest that in this paper I have described a "solution looking 
for an actuarial problem." Notwithstanding Klein's comment, at the start of 
Section 3 I did supply a short list of references to a number of problems in 
actuarial settings with MCMC-driven solutions that have recently appeared 
in the literature (that is, [4], [5], [22], [31], [32] in the paper). This may be 
an opportune time to add to this list. 

Towards this end, note that: Rosenberg [4] used MCMC to implement the 
Bayesian analysis of a hierarchical model for the rate of nonacceptable in- 
patient hospital utilization; Scollnik [5] considers an application of the Gibbs 
sampler to three hierarchical credibility models for classification rate making 
and involves the Bayesian prediction of frequency counts in workers com- 
pensation insurance; Shephard and Pitt [6] apply MCMC methods to a num- 
ber of problems arising in the context of parameter-driven exponential family 
models, notably including the estimation of actuarial death rates and the 
estimation of the parameters appearing in several stochastic volatility models 
for financial returns. Professor Pai describes several other applications of 
MCMC methods in his discussion of my paper. MCMC is certainly not the 
only tool for stochastic simulation present in the modem actuary's toolbox, 
but it is another tool that is now available and is also one that more actuaries 
should be made aware of. 

Carriere's first comment addresses the fact that the expected value of a 
function of a random variable can be estimated by averaging that function 
with respect to the empirical distribution for an independent sample from 
the distribution of the random variable in question. This is simply a restate- 
ment of my own comments in the second paragraph of Section 3-D regarding 
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the ergodic average of an f-integrable function h(x), in the less general and 
trivial instance that g(xlz)=f(x). When this is the case, it is obvious that 
every draw is independent and no draws are rejected, thus yielding the con- 
text of Carriere's observation. 

Both Carriere and Klein suggest that a brute force method of random 
variate generation, direct inversion either of the cumulative distribution func- 
tion (cdf) or of the survival function using the Newton-Raphson method, 
can be used to generate draws of the Makeham-distributed future lifetime 
random variable T(x). Whereas I agree that this is technically the case, it 
must be pointed out that the efficiency of this brute force method is ex- 
tremely dependent upon the choice of the Makeham parameters, the assumed 
age x of the life in question, and the selection of the starting value plugged 
into the Newton-Raphson algorithm. In order to partially illustrate this fact, 
I implemented the Newton-Raphson algorithm exactly as described by Klein, 
taking the Makeham parameters equal to the values appearing in my Nu- 
merical Example 3 and arbitrarily setting t o equal to 75. The algorithm was 
allowed to iterate until the absolute difference between t k and tk+ ~ was no 
larger than a modest 0.01. In this manner, I generated 100 draws of T(x) for 
each of six different values of x (that is, x=0, 10, 20, 30, 40, and 50). The 
observed average number of iterations required to generate a single draw of 
T(x) for the six different values of x is tabulated below. Examining these 
numbers, it is evident that direct inversion of the cdf using Newton- 
Raphson's method is not always particularly efficient. In fact, for a newborn 
life (x=0) and under the conditions described above, it required in excess 
of 200 iterations to generate a single realization of T(0) on seven of the 100 
attempts. Please note that these simulation results are only illustrative and 
are certainly not definitive. 

Age x Average Number of Iterations 

0 67.95 
10 34.30 
20 14.56 
30 7.08 
40 3.91 
50 3.62 

Klein also suggests that random draws from an arbitrary univariate dis- 
tribution can be generated by simply creating a table of the cdf and then 
searching it for each random draw from the uniform distribution on the unit 
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interval. However, and as noted by Klein, this method requires some type 
of interpolation and the table must be bounded above and below, even though 
the distribution itself may be unbounded. Consequently, the sampled values 
are only approximately from the distribution desired. In Section 2.3.6 of 
[35], Tierney describes how the MH algorithm can be used to correct for 
this failing of Klein's suggested "table lookup and interpolation" procedure, 
so that the values generated actually form a dependent sequence from the 
exact distribution of interest. This is an excellent example of how a MCMC 
method can be used to augment a traditional random variate generation pro- 
cedure. For the convenience of the reader, I have summarized the MCMC 
method described in [35] immediately below using the terminology and no- 
tation previously adopted in Section 3-D of my paper. 

Assume that we want to generate a dependent sequence of random draws 
from a distribution with a density proportional to f(x) on the real line. Candi- 
date draws will be generated from a proposed distribution by means of a two- 
step procedure, requiring the availability of another distribution h(x) on the real 
line from which random draws are easily accomplished. To begin with, let 
x~ . . . . .  x,, be a fixed set of points, and let X i be the value of the draw generated 
in the i-th iteration of the MH sampling algorithm. At the start of the next 
iteration, select a point X" from x~ . . . . .  x,~ according to a discrete distribution 
that is proportional to the density values f(x~) ..... f(x'm) at these points. Then 
generate a value Z from h(x) and add this number to X" in order to obtain 
X=X*+Z. This process defines a proposal distribution With density 

~, f(x])h(x - x]) 
g ( x l x , )  = 

j=l  

According to the MH algorithm, the value of X is accepted with a probability 
equal to 

rnin [ f(X) ~ f(xf)h(Xi - x]) j=~m • (1) 

s x,) 2 S x;)h X 4) J 
j=l  
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In the case that X is accepted, Xi+ ~ is set equal to X; otherwise, Xi+~ is set 
equal to X~. This algorithm is iterated until the required number of random 
variates has been generated. 

This algorithm was very simple to program using S-Plus, and I used it to 
simulate 500 dependent values of the Makeham-distributed future lifetime 
random variable T(50) for the life in Numerical Example 3. I took m= 100, 
and set the fixed points t~ . . . . .  t~0 o equal to the integers from 1 to 100. For 
h(t), I simply used the density for a normal distribution with a mean of 0 
and a standard deviation of 10. Although this permits an occasional candi- 
date draw from the proposed distribution to take on a negative value, such 
draws are never accepted because the MH acceptance probability (1) is al- 
ways equal to 0 in these instances by construction. The simulation results 
were as follows: the observed staying rate (Section 3-E) for this example 
was 25.4%; the 500 simulated values of T(50) had a sample mean equal to 
30.90; and the empirical histogram of the simulated values appeared to be 
in agreement with the exact density function for T(50) appearing in Figure 
6(a). Unlike the "table lookup and interpolation" procedure suggested by 
Klein, the MCMC method I described is exact, requires no artificial bounds 
to be imposed, and requires no interpolation. 

Klein describes a simple and elegant exact alternative to my simulation- 
driven analysis in Numerical Examples 3 and 4, and it is one that I should 
have presented for comparison. Concerning the value of or, the discrepancy 
between Klein's answer and my own is almost certainly due to a combina- 
tion of simulation error and numerical rounding error. In any case, the rel- 
ative error inherent in my simulation-based answer is approximately equal 
to (143.2-143.7102)/143.7102~-0.0035502, which is not excessive. To 
correct a minor technical point made by Klein, note that the range of the 
random error inherent in my estimate of rr is not unbounded in the context 
of Numerical Example 3, because the value of the estimate is restricted to 
the interval between 0 and 10,000 by construction. 

Professor Pai describes how MCMC methods can be used to implement 
Bayesian posterior parameter estimation when a vector of survival times, T, 
has been observed from a Makeham distribution with parameters A, B, and 
C (compare estimation of the Gompertz parameters in [1]). It is a simple 
matter to extend Pai's discussion to implement Bayesian predictive inference 
with respect to the future lifetime T(y) for a new life age y as well. Let the 
values A~, B~, and C~, for i= 1 . . . . .  N, be the dependent sequence simulated 
from the posterior distribution p(A, B, CIT) using the method described by 
Pai. According to the discussion in the second paragraph of Section 3-D 
concerning the ergodic average of a function, we have 
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f(T(y) = tiT) 

= f f f  f ( T ( y ) = t [ A , B ,  C ) p ( A , B ,  CIT)dA dB dC 

1__ ~ f(T(y) = t[Ai, Bi, Ci). 
N i=l 

The last expression is an estimate of the predictive density at the point t. 
A sample from the predictive distribution can be obtained by simulating 
a single draw of T(y) from each Makeham distribution with density 
f(T(y)=t[A i, B i, Ci), for i = 1 . . . . .  N. 

The recent text by Gelman, Carlin, Stern, and Rubin [3] provides a com- 
prehensive treatment of the statistical analysis of data from a Bayesian per- 
spective. In particular, a very readable account of posterior integration and 
Markov chain simulation strategies is given in Chapters 10 and 11. 

In his discussion, Professor Pai also mentions that MCMC methods like 
MH and ARMS can be used in conjunction with Gibbs sampling, thus yield- 
ing the so-called MH-within-Gibbs and ARMS-within-Gibbs variants of 
MCMC. Although the references I cited for ARMS discuss these variants, 
it appears that I failed to mention this fact explicitly in my paper. See [14] 
and [15] in the original paper or Section 11.3 of [3] for details. I am thankful 
to Dr. Pai for bringing this omission to my attention. 

I was a student of Professor Mereu's at the University of Western Ontario 
in 1986-87, and so it was a distinct pleasure to receive his discussion of 
my paper. His "grid" approach to integration describes a version of numer- 
ical quadrature, akin to some of these covered in the Course 135 "Numerical 
Methods" syllabus. Although these methods are competitive for evaluating 
univariate Or low-dimensional integrals, they may not be quite as successful 
in high dimensions. Bayesian analyses of actuarial data typically require the 
evaluation of high-dimensional integrals to obtain posterior and predictive 
densities, means, variances, and so forth. As indicated at the start of Section 
3 and earlier in this discussion, MCMC methods have proven to be very 
useful in these contexts. 

Since my paper was written, Evans and Swartz [2] have developed a class 
of adaptive rejection algorithms for generating independent random variates 
for a wide assortment of families of densities. These generators depend on 
the concavity structure of a transformation of the density. Makeham's dis- 
tribution is included as one of the examples. Interested readers can obtain a 
copy of this technical report from the authors. 
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